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Abstract

It is well known that the spectral measure of eigenvalues of a rescaled square non-
Hermitian random matrix with independent entries satisfies the circular law. In this
paper, we consider the product TX, where T is a deterministic N ×M matrix and X
is a random M ×N matrix with independent entries having zero mean and variance
(N∧M)−1. We prove a general local circular law for the empirical spectral distribution
(ESD) of TX at any point z away from the unit circle under the assumptions that
N ∼M , and the matrix entries Xij have sufficiently high moments. More precisely,
if z satisfies ||z| − 1| ≥ τ for arbitrarily small τ > 0, the ESD of TX converges to
χ̃D(z)dA(z), where χ̃D is a rotation-invariant function determined by the singular
values of T and dA denotes the Lebesgue measure on C. The local circular law is valid
around z up to scale (N ∧M)−1/4+ε for any ε > 0. Moreover, if |z| > 1 or the matrix
entries of X have vanishing third moments, the local circular law is valid around z up
to scale (N ∧M)−1/2+ε for any ε > 0.
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1 Introduction

Circular law for non-Hermitian random matrices. The study of the eigenvalue
spectral of non-Hermitian random matrices goes back to the celebrated paper [19] by
Ginibre, where he calculated the joint probability density for the eigenvalues of non-
Hermitian random matrix with independent complex Gaussian entries. The joint density
distribution is integrable with an explicit kernel (see [19, 28]), which allowed him to
derive the circular law for the eigenvalues. For the Gaussian random matrix with real
entries, the joint distribution of the eigenvalues is more complicated but still integrable,
which leads to a proof of the circular law as well [6, 10, 18, 35].
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Local circular law for the product of a deterministic matrix with a random matrix

For the random matrix with non-Gaussian entries, there is no explicit formula for the
joint distribution of the eigenvalues. However, in many cases the eigenvalue spectrum of
the non-Gaussian random matrices behaves similarly to the Gaussian case as N →∞,
known as the universality phenomena. A key step in this direction is made by Girko
in [20], where he partially proved the circular law for non-Hermitian matrices with
independent entries. The crucial insight of this paper is the Hermitization technique,
which allowed Girko to translate the convergence of complex empirical measures of a
non-Hermitian matrix into the convergence of logarithmic transforms for a family of
Hermitian matrices, or, to be more precise,

Tr log[(X − z)†(X − z)] = log
[
det((X − z)†(X − z))

]
, (1.1)

with X being the random matrix and z ∈ C. Due to the singularity of the log function
at 0, the small eigenvalues of (X − z)†(X − z) play a special role. The estimate on the
smallest singular value of X − z was not obtained in [20], but the gap was remedied
later in a series of paper. Bai [1, 2] analyzed the ESD of (X − z)†(X − z) through its
Stieltjes transform and handled the logarithmic singularity by assuming bounded density
and bounded high moments for the entries of X. Lower bounds on the smallest singular
values were given by Rudelson and Vershynin [31, 32], and subsequently by Tao and Vu
[36], Pan and Zhou [30] and Gőtze and Tikhomirov [21] under weakened moments and
smoothness assumptions. The final result was presented in [38], where the circular law
is proved under the optimal L2 assumption. These papers studied the circular law in the
global regime, i.e. the convergence of ESD on subsets containing ηN eigenvalues for
some small constant η > 0. Later in a series of papers [7, 8, 40], Bourgade, Yau and Yin
proved the local version of the circular law up to the optimal scale N−1/2+ε under the
assumption that the distributions of the matrix entries satisfy a uniform sub-exponential
decay condition. In [37], the local universality was proved by Tao and Vu under the
assumption of first four moments matching the moments of a Gaussian random variable.

( )a ( )b ( )c

Figure 1: The eigenvalue distribution of the product TX of a deterministic N × M

matrix T with a Gaussian random M ×N matrix X. The entries of X have zero mean
and variance (N ∧M)−1, and TT † has 0.5(N ∧M) eigenvalues as 2/17 and 0.5(N ∧M)

eigenvalues as 32/17. (a) N = M = 1000. (b) N = 1000, M = 2000. (c) N = 1500,
M = 750.

In this paper, we study the ESD of the product of a deterministic N ×M matrix T
with a random M × N matrix X, where we assume N ∼ M . In Figure 1, we plot the
eigenvalue distribution of TX when T has two distinct singular values (except the trivial
zero singular values). The goal of this paper is to prove a local circular law for the ESD of
TX at any point z away from the unit circle. Following the idea in [7], the key ingredients
for the proof are (a) the upper bound for the largest singular value of TX − z, (b) the
lower bound for the least singular value of TX − z, and (c) rigidity of the singular values
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Local circular law for the product of a deterministic matrix with a random matrix

of TX − z. The upper bound for the largest singular value can be obtained by controlling
the norm of X through a standard large deviation estimate (see e.g. [9, 27, 33]) or by
studying the eigenvalue rigidity of X∗X (see e.g. [4] and (2.64)). The lower bound for
the least singular value of TX − z follows from the results in e.g. [32, 36, 39] (see also
Lemma 2.23). Thus the bulk of this paper is devoted to establishing (c).

Basic ideas. To obtain the rigidity of the singular values of TX − z, we study the
ESD of Q := (TX − z)†(TX − z) using Stieltjes transform as in [7]. We normalize X so
that its entries have variance (N ∧M)−1. Then Q is an N ×N Hermitian matrix with
eigenvalues being typically of order 1. We denote its resolvent by R(w) := (Q − w)−1,
where w = E + iη is a spectral parameter with positive imaginary part η. Then the
Stieltjes transform of the ESD of Q is equal to N−1TrR(w), and we have the convergence
estimate

N−1TrR(w) ≈ mc(w) (1.2)

with high probability for large N . Here mc is the Stieltjes transform of the asymptotic
eigenvalue density, and the convergence in (1.2) is referred to as the averaged law. By
taking the imaginary part of (1.2), it is easy to see that a control of the Stieltjes transform
yields a control of the eigenvalue density on a small scale of order η around E (which
contains an order ηN eigenvalues). A local law is an estimate of the form (1.2) for all
η � N−1. Such local laws have been a cornerstone of the modern random matrix theory.
In [16], a local law was first derived for Wigner matrices. Subsequently in [7], a local
law for the resolvent of (X − z)†(X − z) was established to prove the local circular law.

In generalizing the proof in [7] to our setting, a main difficulty is that the entries of
TX are not independent. We will use a new comparison method proposed in [24], which
roughly states that if the local law holds for R(w) with a Gaussian X, then it also holds
in the case with a general X. For definiteness, we assume N = M for now, and let T be
a square matrix with singular decomposition T = UDV . For a Gaussian X ≡ XGauss, we

have V XGaussU
d
= X̃Gauss, where X̃ is another Gaussian random matrix. Then for the

determinant in (1.1), we have

det(TXGauss − z)= det(DVXGaussU − z) d
= det(DX̃Gauss − z). (1.3)

The problem is now reduced to the study of the singular values of DX̃Gauss − z, which
has independent entries. Notice the entries of DX̃Gauss are not identically distributed,
which will make our proof much more complicated. However, this issue can be handled,
e.g. as in [14], where a local law was obtained for generalized Wigner matrices with
non-identically distributed entries.

To use the comparison method invented in [24], it turns out the averaged local law
from (1.2) is not sufficient. We have to control not only the trace of R(w), but also
the matrix R(w) itself by showing that R(w) is close to some deterministic matrix
Π(w), provided that η � N−1. This closeness can be established in the sense of
individual matrix entries Rij(w) ≈ Πij(w) (see e.g. [7, 17]). We call such an estimate an
entrywise local law. More generally, in [4, 25] the following closeness was established
for generalized matrix entries:

〈v, R(w)u〉 ≈ 〈v,Π(w)u〉, η � N−1, ∀‖v‖2, ‖u‖2 = 1. (1.4)

We call the estimate in (1.4) an anisotropic local law. (If Π is a scalar matrix, (1.4)
is also referred to as an isotropic local law, in the sense that R(w) is approximately
isotropic for large N .) This kind of anisotropic local law is needed in applying the
method in [24]. Here we outline the three steps to establish the anisotropic local law for
Q = (TX − z)†(TX − z): (A) the entrywise local law and averaged local law when T is
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Local circular law for the product of a deterministic matrix with a random matrix

diagonal (Theorem 2.18); (B) the anisotropic local law when T is diagonal (Theorem 2.18);
(C) the anisotropic local law and averaged local law when T is a general (rectangular)
matrix (Theorem 2.19).

In performing Step (A), our proof is basically based on the methods in [7]. However,
our multi-variable self-consistent equations and their solutions are much more compli-
cated here. Thus a key part of the proof is to establish some basic properties of the
asymptotic eigenvalue density and prove the stability of the self-consistent equations
under small perturbations. These work need some new ideas and analytic techniques
(see Appendix A). In performing Step (B), we applied and extended the polynomialization
method developed in [4, section 5]. Finally, as remarked around (1.3), (B) implies the
anisotropic local law and averaged local law for Gaussian X and general T . Based on
this fact we perform Step (C) using a self-consistent comparison argument in [24]. With
the averaged local law proved in Step (C), we can obtain a generalized (inhomogeneous)
local circular law for TX. In general, the averaged local law we get is up to the non-
optimal scale η � (N ∧M)−1/2. As a result, we can only prove the local circular law for
TX up to the scale (N ∧M)−1/4+ε. A new observation is that the non-optimal averaged
local law can lead to the optimal local circular law for TX outside the unit circle (i.e.
|z| > 1) (see Section 2.4). To prove the optimal local circular law inside the unit circle
(i.e. |z| < 1), we need the optimal averaged local law up to the scale η � (N ∧M)−1,
which can be obtained under the extra assumption that the entries of X have vanishing
third moments.

Conventions. The fundamental large parameter is N and we assume that M is compa-
rable to N (see (2.1)). All quantities that are not explicitly constant may depend on N ,
and we usually omit N from our notation. We use C to denote a generic large positive
constant, which may depend on fixed parameters and whose value may change from one
line to the next. Similarly, we use c or ε to denote a generic small positive constant. If a
constant depend on a quantity a, we use C(a) or Ca to indicate this dependence. We use
τ > 0 in various assumptions to denote a small positive constant, and use ζ, τ ′ to denote
constants that depend on τ and may be chosen arbitrarily small. All constants C, c and ε
may depend on τ ; we neither indicate nor track this dependence.

For any (complex) matrix A, we use A† to denote its conjugate transpose, AT the
transpose, ‖A‖ := ‖A‖l2→l2 the operator norm and ‖A‖HS the Hilbert-Schmidt norm.
We use the notation v = (vi)

n
i=1 for a vector in Cn, and denote its Euclidean norm by

|v| ≡ ‖v‖2. We usually write the n × n identity matrix In as 1 without causing any
confusions.

For two quantitiesAN andBN > 0 depending onN , we use the notationsAN = O(BN )

and AN ∼ BN to mean |AN | ≤ CBN and C−1BN ≤ |AN | ≤ CBN , respectively, for some
positive constant C > 0. We use AN = o(BN ) to mean |AN | ≤ cNBN for some positive
sequence {cN} with cN → 0 as N → ∞. If AN is a deterministic matrix, we use the
notations AN = O(BN ) and AN = o(BN ) to mean ‖AN‖ = O(BN ) and ‖AN‖ = o(BN ),
respectively.

2 The main results

In this section, we state and prove the main result of this paper. In Section 2.1,
we define our model and list our main assumptions. In Section 2.2, we first define the
asymptotic eigenvalue density ρ2c of Q = (TX − z)†(TX − z), and then state the main
theorem—Theorem 2.6—of this paper. Its proof depends crucially on local estimates of
the resolvent of Q, which are presented in Section 2.3. In Section 2.4, we prove Theorem
2.6 based on the local estimates stated in Section 2.3.
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2.1 Definition of the model

In this paper, we want to understand the local statistics of the eigenvalues of TX−zI,
where T is a deterministic N ×M matrix, X is a random M ×N matrix, z ∈ C and I is
the N ×N identity matrix. We assume M ∼ N , i.e.

τ ≤ M

N
≤ τ−1 (2.1)

for some small constant τ > 0. We assume the entries Xiµ of X are independent (not
necessarily identically distributed) random variables satisfying

EXiµ = 0, E |Xiµ|2 =
1

N ∧M
(2.2)

for all 1 ≤ i ≤ M, 1 ≤ µ ≤ N . For definiteness, in this paper we only focus on the case
where all the X entries are real. However, our results and proofs also hold, after minor
changes, in the complex case if we assume in addition EX2

iµ = 0 for Xiµ ∈ C. We assume
that for all p ∈ N, there is an N -independent constant Cp such that

E |
√
N ∧MXiµ|p ≤ Cp (2.3)

for all 1 ≤ i ≤ M, 1 ≤ µ ≤ N . We define Σ := TT †, and assume the eigenvalues of Σ

satisfy that
τ−1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σN∧M ≥ τ (2.4)

and all other eigenvalues are 0. Furthermore, we can normalize T by multiplying a scalar
such that

1

N ∧M

N∧M∑
i=1

σi = 1. (2.5)

We summarize our basic assumptions here for future reference.

Assumption 2.1. We suppose that (2.1), (2.2), (2.3), (2.4) and (2.5) hold.

2.2 The main theorem

To state the main theorem, we need to define the asymptotic eigenvalue density
function for Q. We first introduce the self-consistent equations, then the asymptotic
eigenvalue density will be closely related to their solutions. Let

ρΣ :=
1

N ∧M

N∧M∑
i=1

δσi (2.6)

denote the empirical spectral density of Σ. Let n := |supp ρΣ| be the number of distinct
nonzero eigenvalues of Σ, which are denoted as

τ−1 ≥ s1 > s2 > · · · > sn ≥ τ. (2.7)

Let li be the multiplicity of si. By (2.5), li and si satisfy the normalization conditions

1

N ∧M

n∑
i=1

li = 1,
1

N ∧M

n∑
i=1

lisi = 1. (2.8)

For each w ∈ C+ := {w ∈ C : Imw > 0}, we define the self-consistent equations of
(m1,m2) as

1

m2
= −w(1 +m1) +

|z|2

1 +m1
, (2.9)
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Local circular law for the product of a deterministic matrix with a random matrix

m1 =
1

N

n∑
i=1

lisi

[
−w (1 + sim2) +

|z|2

1 +m1

]−1

. (2.10)

If we plug (2.9) into (2.10), we get the self-consistent equation for m1 only:

m1 =
1

N

n∑
i=1

lisi

−w
1 +

si

−w(1 +m1) + |z|2
1+m1

+
|z|2

1 +m1

−1

. (2.11)

The next lemma states that the solution to the functional equation (2.11) in C+ is unique
if z is away from the unit circle. It will be proved in Appendix A.3.

Lemma 2.2. Fix z ∈ C such that |z| 6= 1. For w ∈ C+, there exists at most one analytic
function m1c,z,Σ(w) : C+ → C+ such that (2.11) holds and wm1c,z,Σ(w) ∈ C+. Moreover,
m1c,z,Σ,N (w) is the Stieltjes transform of a positive integrable function ρ1c with compact
support in [0,∞).

We shall abbreviate m1c(w) := m1c,z,Σ(w). We also define m2c(w) := m2c,z,Σ(w) by
taking m1 = m1c(w) in (2.9). Obviously, m2c is also an analytic function of w. Moreover,
for any w ∈ C+ we can verify that m2c(w), wm2c(w) ∈ C+ by using (2.9) and that
m1c, wm1c ∈ C+. We define two functions on R as

ρ1,2c(x) =
1

π
lim
η↘0

Imm1,2c(x+ iη), x ∈ R. (2.12)

It is easy to see that ρ1,2c ≥ 0 and supp(ρ1,2c) ⊆ [0,∞). Moreover, supp ρ2c = supp ρ1c by
(2.9). We shall call ρ2c the asymptotic eigenvalue density of Q = (TX − z)†(TX − z) (for
a reason that will be made clear during the proof in Section 4). Since Im(wm2c) ≥ 0, we
have

Im

[
−w (1 + sim2c) +

|z|2

1 +m1c

]
≤ −Imw,

and (2.10) gives |m1c| ≤ 1/Imw → 0 as Imw → ∞. Similarly, |m2c| ≤ 1/Imw → 0 as
Imw →∞. Thus m1,2c(w) is indeed the Stieltjes transform of ρ1,2c:

m1,2c(w) =

∫
R

ρ1,2c(x)

x− w
dx. (2.13)

We now state the basic properties of ρ1c and ρ2c, which can be obtained by studying
the solutions m1,2c(w) to the self-consistent equations (2.9) and (2.11) when w ∈ (0,∞).
Here we extend the definition of m1,2c continuously down to the real axis by setting

m1,2c(x) = lim
η↘0

m1,2c(x+ iη), x ∈ R.

As a convention, for w ∈ C+, we take
√
w to be the branch with positive imaginary part.

Denote m :=
√
w(1 +m1) and mc :=

√
w(1 +m1c). Equation (2.11) then becomes

f(
√
w,m) = 0, (2.14)

where

f(
√
w,m) = −

√
w +m+

1

N

n∑
i=1

lisi
m(m2 − |z|2)√

wm3 − (si + |z|2)m2 −
√
w|z|2m+ |z|4

. (2.15)

The following lemma gives the basic structure of supp ρ1,2c. Its proof will be given in
Appendix A.1.
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Local circular law for the product of a deterministic matrix with a random matrix

Lemma 2.3. Fix τ ≤
∣∣|z|2 − 1

∣∣ ≤ τ−1. The support of ρ1,2c is a union of connected
components:

supp ρ1,2c ∩ (0,+∞) =

 ⋃
1≤k≤L

[e2k, e2k−1]

 ∩ (0,∞), (2.16)

where L ≡ L(n) ∈ N and C1τ
−1 ≥ e1 > e2 > . . . > e2L ≥ 0 for some constant C1 > 0 that

does not depend on τ . If |z|2 ≤ 1− τ , we have e2L = 0; if 1 + τ ≤ |z|2 ≤ 1 + τ−1, we have
e2L ≥ ε(τ) for some constant ε(τ) > 0. Moreover, for every ei > 0, there exists a unique
mc(ei) such that

∂mf(
√
ei,mc(ei)) = 0. (2.17)

We shall call ei the edges of ρ1,2c. For any w ∈ (0,∞) and 1 ≤ i ≤ n, the cubic
polynomial

√
wm3 − (si + |z|2)m2 −

√
w|z|2m + |z|4 in (2.15) has three distinct roots

ai(w) > 0, bi(w) > 0 and −ci(w) < 0 (see Lemma A.1). Our next assumption on ρΣ and |z|
takes the form of the following regularity conditions.

Definition 2.4. (Regularity) Fix τ ≤
∣∣|z|2 − 1

∣∣ ≤ τ−1.
(i) We say that the edge ek 6= 0, k = 1, . . . , 2L, is regular if

min
1≤i≤n

{|mc(ek)− ai(ek)|, |mc(ek)− bi(ek)|, |mc(ek) + ci(ek)|} ≥ ε, (2.18)

and ∣∣∂2
mf(
√
ek,mc(ek))

∣∣ ≥ ε, (2.19)

for some small constant ε > 0. In the case |z|2 ≤ 1− τ , we always call e2L = 0 a regular
edge.

(ii) We say that the bulk components [e2k, e2k−1] is regular if for any fixed τ ′ > 0 there
exists a constant c(τ, τ ′) > 0 such that the density of ρ1c in [e2k + τ ′, e2k−1− τ ′] is bounded
from below by c.

Remark 1: The edge regularity conditions (i) has previously appeared (may be in slightly
different forms) in several works on sample covariance matrices and Wigner matrices
[3, 11, 23, 24, 26, 29]. The conditions (2.18) and (2.19) guarantees a regular square-root
behavior of ρ1c near ek and ensures that the gap in the spectrum of ρ1c adjacent to ek
does not close for large N (Lemma A.5):

min
l 6=k
|el − ek| ≥ ε (2.20)

for some constant ε > 0. The bulk regularity condition (ii) was introduced in [24]. It
imposes a lower bound on the density of eigenvalues away from the edges. Without it,
one can have points in the interior of supp ρ1c with an arbitrarily small density and our
arguments would fail.

Remark 2: The regularity conditions in Definition 2.4 are stable under perturbations of
|z| and ρΣ. In particular, fix ρΣ, suppose the regularity conditions are satisfied at z = z0

with τ ≤ ||z0|2 − 1| ≤ τ−1. Then for sufficiently small c > 0, the regularity conditions hold
uniformly in z ∈ {z : ||z| − |z0|| ≤ c}. For a detailed discussion, see the remark at the end
of Section A.3.

We will use the following notion of stochastic domination, which was first introduced
in [12] and subsequently used in many works on random matrix theory, such as [4, 5, 7,
13, 14, 24]. It simplifies the presentation of the results and their proofs by systematizing
statements of the form “ξ is bounded by ζ with high probability up to a small power of
N”.
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Definition 2.5 (Stochastic domination). (i) Let

ξ =
(
ξ(N)(u) : N ∈ N, u ∈ U (N)

)
, ζ =

(
ζ(N)(u) : N ∈ N, u ∈ U (N)

)
be two families of nonnegative random variables, where U (N) is a possibly N -dependent
parameter set. We say ξ is stochastically dominated by ζ, uniformly in u, if for any (small)
ε > 0 and (large) D > 0,

sup
u∈U(N)

P
[
ξ(N)(u) > N εζ(N)(u)

]
≤ N−D

for large enough N ≥ N0(ε,D), and we use the notation ξ ≺ ζ. Throughout this paper
the stochastic domination will always be uniform in all parameters that are not explicitly
fixed (such as matrix indices, and w and z that take values in some compact sets). Note
that N0(ε,D) may depend on quantities that are explicitly constant, such as τ and Cp in
(2.1), (2.3) and (2.4).

(ii) If for some complex family ξ we have |ξ| ≺ ζ, we also write ξ ≺ ζ or ξ = O≺(ζ).
We also extend the definition of O≺(·) to matrices in the weak operator sense as follows.
Let A be a family of complex square random matrices and ζ be a family of nonnegative
random variables. Then we use A = O≺(ζ) to mean |〈v, Aw〉| ≺ ζ‖v‖2‖w‖2 uniformly for
all deterministic vectors v and w.

(iii) We say that an event Ξ holds with high probability if 1− 1(Ξ) ≺ 0.

In the following, we denote the eigenvalues of TX by µj , 1 ≤ j ≤ N . We are now
ready to state our main theorem, i.e. the generalized local circular law for TX.

Theorem 2.6 (Local circular law for TX). Suppose Assumption 2.1 holds, and τ ≤
||z0|2 − 1| ≤ τ−1 for any N (z0 can depend on N ). Suppose ρΣ (defined in (2.6)) and
|z0| are such that all the edges and bulk components of ρ1c are regular in the sense of
Definition 2.4. We assume in addition that each entry of X has a density bounded by
NC2 for some C2 > 0. Let F be a smooth non-negative function which may depend on N ,
such that ‖F‖∞ ≤ C1, ‖F ′‖∞ ≤ NC1 and F (z) = 0 for |z| ≥ C1, for some constant C1 > 0

independent of N . Let Fz0,a(z) = K2aF (Ka(z − z0)), where K := N ∧M . Then TX has
(N −K) trivial zero eigenvalues, and for the other eigenvalues µj , 1 ≤ j ≤ K, we have

1

K

K∑
j=1

Fz0,a(µj)−
1

π

∫
Fz0,a(z)χ̃D(z)dA(z) ≺ K−1/2+2a‖∆F‖L1 , (2.21)

for any a ∈ (0, 1/4]. Here

χ̃D(z) :=
1

4

∫ ∞
0

(log x)∆zρ2c(x, z)dx, (2.22)

where ρ2c ≡ ρ2c,z,Σ is defined in (2.12). If 1 + τ ≤ |z0|2 ≤ 1 + τ−1 or the entries of X have
vanishing third moments,

EX3
iµ = 0, 1 ≤ i ≤M, 1 ≤ µ ≤ N, (2.23)

then we have the improved result

1

K

K∑
j=1

Fz0,a(µj)−
1

π

∫
Fz0,a(z)χ̃D(z)dA(z) ≺ K−1+2a‖∆F‖L1 , (2.24)

for any a ∈ (0, 1/2]. If the entries of X are identically distributed, then the bounded
density condition is not necessary.
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Remark 1: Note that Fz0,a(z) = K2aF (Ka(z − z0)) is an approximate delta function
obtained from rescaling F to the size of order K−a around z0. Thus (2.21) gives a
generalized circular law up to scale K−1/4+ε, while (2.24) gives a generalized circular
law up to scale K−1/2+ε. The χ̃D in (2.22) gives the distribution of the eigenvalues of TX.
It is rotationally symmetric, because ρ2c(x, z) depends only on |z| (see (2.9) and (2.10)).
If TT ∗ = 1 or T ∗T = 1 (i.e. all the nontrivial singular values of T are equal to 1), then χ̃D
becomes the indicator function χD on the unit disk D, and we get the well-known local
circular law for X (see [7] for the T = I case). For a general T , we do not have much
understanding of χ̃D so far. This will be one of the topics of our future study. Also, we
have assumed that z is strictly away from the unit circle. Our proof may be extended to
the |z − 1| = o(1) case if we have a better understanding of the solutions m1,2c.

Remark 2: As explained in the Introduction, the basic strategy of this paper is first to
prove the anisotropic local law for the resolvent of Q when X is Gaussian, and then to
get the anisotropic local law for a general X through a comparison with the Gaussian
case. Without (2.23), our comparison arguments cannot give the anisotropic local law
up to the optimal scale, so we can only prove the weaker bound (2.21). We will try to
remove this assumption in the future work.

Remark 3: If the entries of X are identically distributed, then it was proved in [39] that
the smallest singular value of TX − z is larger than N−1−ε with high probability for any
ε > 0. Otherwise, we need the extra bounded density condition, which is only used in
Lemma 2.23 to get a lower bound for the smallest singular value of TX − z.

We conclude this section with two examples verifying the regularity conditions of
Definition 2.4.

Example 2.7 (Bounded number of distinct eigenvalues). We suppose that n is fixed,
and that s1, . . . , sn and ρΣ({s1}), . . . , ρΣ({sn}) all converge as N →∞. We suppose that
limN ek > limN ek+1 for all k, and furthermore for all ek we have ∂2

mf(
√
ek,mc(ek)) 6= 0.

Then it is easy to check that all the edges and bulk components are regular in the sense
of Definition 2.4 for small enough ε.

Example 2.8 (Continuous limit). We suppose ρΣ is supported in some interval [a, b] ⊂
(0,∞), and that ρΣ converges in distribution to some measure ρ∞ that is absolutely
continuous and whose density satisfies τ ≤ dρ∞(E)/dE ≤ τ−1 for E ∈ [a, b]. Then
there are only a small number (which is independent of n) of connected components for
supp ρ1c, and all the edges and bulk components are regular. See the remark at the end
of Section A.1.

2.3 Hermitization and local laws for resolvents

In the following, we use the notation

Y ≡ Yz := TX − zI, (2.25)

where I is the identity matrix. Following Girko’s Hermitization technique [20], the first
step in proving the local circular law is to understand the local statistics of singular
values of Y . In this subsection, we present the main local estimates concerning the
resolvents

(
Y Y † − w

)−1
and

(
Y †Y − w

)−1
. These results will be used later to prove

Theorem 2.6.
Our local laws can be formulated in a simple, unified fashion using a 2N × 2N block

matrix, which is a linear function of X.

Definition 2.9 (Index sets). We define the index sets

I1 := {1, ..., N}, IM1 := {1, . . . ,M}, I2 := {N + 1, ..., 2N},

EJP 22 (2017), paper 60.
Page 9/77

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP76
http://www.imstat.org/ejp/


Local circular law for the product of a deterministic matrix with a random matrix

and
I := I1 ∪I2, IM := IM1 ∪I2 .

We will consistently use the latin letters i, j ∈ I1 or IM1 , greek letters µ, ν ∈ I2, and
s, t ∈ I. We label the indices of the matrices according to

X = (Xiµ : i ∈ IM1 , µ ∈ I2), T = (Tij : i ∈ I1, j ∈ IM1 ).

When M = N , we always identify IM1 with I1. For i ∈ I1 and µ ∈ I2, we introduce the
notations ī := i+N ∈ I2 and µ̄ := µ−N ∈ I1.

Definition 2.10 (Groups). For an I × I matrix A, we define the 2× 2 matrices A[ij] as

A[ij] =

(
Aij Aij̄
Aīj Aīj̄

)
. (2.26)

We shall call A[ij] a diagonal group if i = j, and an off-diagonal group otherwise.

Definition 2.11 (Linearizing block matrix). For w := E + iη ∈ C+, we define the I ×I
matrix

H(w) ≡ H(T,X, z, w) :=

(
−wI w1/2Y

w1/2Y † −wI

)
, (2.27)

where we take the branch of
√
w with positive imaginary part. Define the I × I matrix

G(w) ≡ G(T,X, z, w) := H(w)−1, (2.28)

as well as the I1 × I1 and I2 × I2 matrices

GL(w) =
(
Y Y † − w

)−1
, GR(w) =

(
Y †Y − w

)−1
. (2.29)

Throughout the rest of this paper, we frequently omit the argument w from our notations.

By Schur’s complement formula, it is easy to see that

G (w) =

(
GL w−1/2GLY

w−1/2Y †GL w−1Y †GLY − w−1I

)
=

(
w−1Y GRY

† − w−1I w−1/2Y GR
w−1/2GRY

† GR

)
.

(2.30)

Therefore a control of G immediately yields a control of the resolvents GL and GR.
In the following, we only consider the N ≤M case. The N > M case, as we will see,

will be built easily upon N ≤M case. We introduce a deterministic matrix Π, which will
turn out to be close to G with high probability.

Definition 2.12 (Deterministic limit of G). Suppose N ≤M and T has a singular decom-
position

T = UD̄V, D̄ = (D, 0), (2.31)

where D = diag(d1, d2, . . . , dN ) is a diagonal matrix. Define π[i]c to be the 2 × 2 matrix
such that (

π[i]c

)−1
=

(
−w(1 + |di|2m2c) −w1/2z

−w1/2z̄ −w(1 +m1c)

)
. (2.32)

Let Πd be the 2N × 2N matrix with (Πd)[ii] = π[i]c and all other entries being zero. Define

Π ≡ Π(Σ, z, w) :=

(
U 0

0 U

)
Πd

(
U† 0

0 U†

)
=

(
−(1 +m1c)A(Σ) w−1/2zA(Σ)

w−1/2z̄A(Σ) −(1 +m2cΣ)A(Σ)

)
,

(2.33)
where Σ = TT † and A(Σ) =

[
w(1 +m2cΣ)(1 +m1c)− |z|2

]−1
.
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Definition 2.13 (Averaged variables). Suppose N ≤ M . Define the averaged random
variables

m1 :=
1

N

∑
i∈I1

(
Σ̄G
)
ii
, m2 :=

1

N

∑
µ∈I2

(
Σ̄G
)
µµ
, (2.34)

where

Σ̄ :=

(
Σ 0

0 I

)
. (2.35)

Define π[i] to be the 2× 2 matrix such that

(
π[i]

)−1
=

(
−w(1 + |di|2m2) −w1/2z

−w1/2z̄ −w(1 +m1)

)
. (2.36)

Remark: Note that under the above definition we have

m2 =
1

N
TrGR =

1

N
TrGL,

which is the Stieltjes transform of the empirical eigenvalue density of Y Y † and Y †Y .
Moreover, we will see from the proof that m1,2c are the almost sure limits of m1,2 as
N →∞ with

m1c =
1

N

∑
i∈I1

(
Σ̄Π
)
ii
, m2c =

1

N

∑
µ∈I2

(
Σ̄Π
)
µµ
. (2.37)

The following two propositions summarize the properties of ρ1,2c and m1,2c that are
needed to understand the main results in this section. They will be proved in Appendix
A. In Fig. 2, we plot ρ2c for the example from Fig. 1 for different values of z.

| =0.5z|

| =0.75z|

| =1.2z|

| =1.5z|

Figure 2: The densities ρ2c(x, z) when |z| = 0.5, 0.75, 1.2, 1.5. Here ρΣ = 0.5δ√
2/17

+

0.5δ
4
√

2/17
.

Proposition 2.14 (Basic properties of ρ1,2c). The density ρ1c is compactly supported in
[0,∞) and the following properties regarding ρ1c hold.

(i) The support of ρ1c is
⋃

1≤k≤L(n)[e2k, e2k−1] where e1 > e2 > . . . > e2L ≥ 0. If

1 + τ ≤ |z|2 ≤ 1 + τ−1, then e2L ≥ ε for some constant ε > 0; if |z|2 ≤ 1− τ , then e2L = 0.
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(ii) Suppose [e2k, e2k−1] is a regular bulk component. For any τ ′ > 0, if x ∈ [e2k +

τ ′, e2k−1 − τ ′], then ρ1c(x) ∼ 1.
(iii) Suppose ej is a nonzero regular edge. If j is even, then ρ1c(x) ∼ √x− ej as

x→ ej from above. Otherwise if j is odd, then ρ1c(x) ∼ √ej − x as x→ ej from below.
(iv) If |z|2 ≤ 1− τ , then ρ1c(x) ∼ x−1/2 as x↘ e2L = 0.
The same results also hold for ρ2c. In addition, ρ2c is a probability density.

Proposition 2.15. The preceding proposition implies that, uniformly in w in any compact
set of C+,

|m1,2c(w)| = O(|w|−1/2). (2.38)

Moreover, if 1 + τ ≤ |z|2 ≤ 1 + τ−1, then |m1,2c(w)| ∼ 1 for w in any compact set of C+; if
|z|2 ≤ 1− τ , then |m1,2c(w)| ∼ |w|−1/2 for w in any compact set of C+.

We will consistently use the notation E + iη for the spectral parameter w. In this
paper, we regard the quantities E(w) and η(w) as functions of w and usually omit the
argument w. In the following we would like to define several spectral domains of w that
will be used in the proof.

Definition 2.16 (Spectral domains). Fix a small constant ζ > 0 which may depend on τ .
The spectral parameter w is always assumed to be in the fundamental domain

D ≡ D(ζ,N) := {w ∈ C+ : ζe2L ≤ E ≤ ζ−1, N−1+ζ |m2c|−1 ≤ η ≤ ζ−1}, (2.39)

unless otherwise indicated. Given a regular edge ek, we define the subdomain

De
k ≡ De

k(ζ, τ ′, N) := {w ∈ D(ζ,N) : |E − ek| ≤ τ ′, E ≥ 0}. (2.40)

Corresponding to a regular bulk component [e2k, e2k−1], we define the subdomain

Db
k ≡ Db

k(ζ, τ ′, N) := {w ∈ D(ζ,N) : E ∈ [e2k + τ ′, e2k−1 − τ ′]}. (2.41)

For the component outside supp ρ1c, we define the subdomain

Do ≡ Do(ζ, τ ′, N) := {w ∈ D(ζ,N) : dist(E, supp ρ1c) ≥ τ ′}. (2.42)

We also need the following domain with large η,

DL ≡ DL(ζ) := {w ∈ C+ : 0 ≤ E ≤ ζ−1, η ≥ ζ−1}, (2.43)

and the subdomain of D ∪DL,

D̂ ≡ D̂(ζ,N) := {w ∈ D(ζ,N) : η ≥ N−1/2+ζ |m2c|−1} ∪DL(ζ). (2.44)

We call S a regular domain if it is a regular De
k domain, a regular Db

k domain, a Do

domain or a DL domain.

Remark: In the definition of D, we have suppressed the explicit w-dependence. Notice
that when |z|2 < 1 − τ , since |m2c| ∼ |w|−1/2 as w → 0, we allow η ∼ |w| ∼ N−2+2ζ in
D. In the definition of De

k, the condition E ≥ 0 is only useful for the edge at 0 when
|z|2 ≤ 1− τ .

Now we are prepared to state the local laws satisfied by G defined in (2.28). Let

Ψ ≡ Ψ(w) :=

√
Im (m1c +m2c)

Nη
+

1

Nη
(2.45)

be the deterministic control parameter.
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Definition 2.17 (Local laws). Suppose N ≤M . Recall G ≡ G(T,X, z, w) defined in (2.28)
and Π ≡ Π(Σ, z, w) defined in (2.33). Let S be a regular domain.

(i) We say that the entrywise local law holds with parameters (T,X, z,S) if

[G(T,X, z, w)−Π(Σ, z, w)]st ≺ Ψ(w) (2.46)

uniformly in w ∈ S and s, t ∈ I.
(ii) We say that the anisotropic local law holds with parameters (T,X, z,S) if

G(T,X, z, w)−Π(Σ, z, w) = O≺ (Ψ(w)) (2.47)

uniformly in w ∈ S (recall Definition 2.5 (ii)).
(iii) We say that the averaged local law holds with parameters (T,X, z,S) if

|m2(T,X, z, w)−m2c(Σ, z, w)| ≺ 1

Nη
(2.48)

uniformly in w ∈ S.

The local laws for G with a general T will be built upon the following result with a
diagonal T .

Theorem 2.18 (Local laws when T is diagonal). Fix τ ≤ ||z|2 − 1| ≤ τ−1. Suppose
Assumption 2.1 holds, N = M , and T ≡ D := diag(d1, ..., dN ) is a diagonal matrix. Let S
be a regular domain. Then the entrywise local law, anisotropic local law and averaged
local law hold with parameters (D,X, z,S).

Now suppose that N ≤M and T is an N ×M matrix such that the eigenvalues of Σ

satisfy (2.4) and (2.5). Consider the singular decomposition T = UD̄V , where U is an
N ×N unitary matrix, V is an M ×M unitary matrix and D̄ = (D, 0) is an N ×M matrix
such that D = diag(d1, d2, . . . , dN ). Then we have

TX − z = UDV1X − z, (2.49)

where V1 is an N × M matrix and V2 is an (M − N) × M matrix defined through

V =

(
V1

V2

)
. If X = XGauss is Gaussian, then V1X

Gauss d
= X̃GaussU†, where X̃Gauss is

another N ×N Gaussian random matrix. Then by the definition of G in (2.28),

G(T,XGauss, z, w)
d
=

(
U 0

0 U

)
G(D, X̃Gauss, z, w)

(
U† 0

0 U†

)
. (2.50)

Since the anisotropic local law holds for G(D, X̃Gauss, z, w) by Theorem 2.18, we get
immediately the anisotropic local law for G(T,XGauss, z, w). The next theorem states
that the anisotropic local law holds for general TX provided that the anisotropic local
law holds for TXGauss.

Theorem 2.19 (Anisotropic local law when N ≤ M ). Fix τ ≤ ||z|2 − 1| ≤ τ−1. Suppose
Assumption 2.1 holds and N ≤ M . Let T = UD̄V be a singular decomposition of T ,
where D̄ = (D, 0) with D = diag(d1, d2, . . . , dN ). Let S be a regular domain. Then the
anisotropic local law and averaged local law hold with parameters (T,X, z,S ∩ D̂). If in
addition (2.23) holds, then the anisotropic local law and averaged local law hold with
parameters (T,X, z,S).

Finally we turn to the N > M case. Suppose T = UD̄V is a singular decomposition of

T , where U is an N ×N unitary matrix, V is an M ×M unitary matrix and D̄ =

(
D

0

)
is

an N ×M matrix such that D = diag(d1, d2, . . . , dM ). Let U = (U1, U2), where U1 has size
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N ×M and U2 has size N × (N −M). Following Girko’s idea of Hermitization [20], to
prove the local circular law in Theorem 2.6 when N > M , it suffices to study det(TX − z)
(see (2.52) below), for which we have

det(TX − z) = det

(
DVXU1 − z DV XU2

0 −z

)
= det(V TDTUT1 X

T − z)(−z)N−M .

(2.51)

Comparing with (2.49), we see that this case is reduced to the N ≤ M case. The
only difference is that the extra (−z)N−M term now corresponds to the N −M zero
eigenvalues of TX. Thus we make the following claim.

Claim 2.20. The N < M case of Theorem 2.6 implies the N > M case of Theorem 2.6.

2.4 Proof of Theorem 2.6

By Claim 2.20, it suffices to assume N ≤M . Our main tool will be Theorem 2.19. A
major part of the proof follows from [7, Section 5]. The following lemma collects basic
properties of stochastic domination ≺, which will be used tacitly during the proof and
throughout this paper.

Lemma 2.21 (Lemma 3.2 in [4]). (i) Suppose that ξ(u, v) ≺ ζ(u, v) uniformly in u ∈ U
and v ∈ V . If |V | ≤ NC for some constant C, then∑

v∈V
ξ(u, v) ≺

∑
v∈V

ζ(u,w)

uniformly in u.
(ii) If ξ1(u) ≺ ζ1(u) uniformly in u ∈ U and ξ2(u) ≺ ζ2(u) uniformly in u ∈ U , then

ξ1(u)ξ2(u) ≺ ζ1(u)ζ2(u)

uniformly in u ∈ U .
(iii) Suppose that Ψ(u) ≥ N−C is deterministic and ξ(u) is a nonnegative random

variable such that Eξ(u)2 ≤ NC for all u. Then if ξ(u) ≺ Ψ(u) uniformly in u, we have

Eξ(u) ≺ Ψ(u)

uniformly in u.

The Girko’s Hermitization technique [20] can be reformulated as the following (see
e.g. [22]): for any smooth function g,

1

N

N∑
i=1

g(µj) =
1

4πN

∫
∆g(z)

N∑
j=1

log(µj − z)(µ̄j − z̄)dA(z)

=
1

4πN

∫
∆g(z) log

∣∣det(Y (z)Y †(z))
∣∣ dA(z)

=
1

4πN

∫
∆g(z)

N∑
j=1

log λj(z)dA(z), (2.52)

where 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λN are the ordered eigenvalues of Y (z)Y †(z). For g = Fz0,a,
we use the new variable ξ = Na(z − z0) to write the above equation as

1

N

N∑
i=1

Fz0,a(µj) =
N−1+2a

4π

∫
(∆F )(ξ)

N∑
j=1

log λj(z)dA(ξ). (2.53)

Define the classical location γj(z) of the j-th eigenvalue of Y (z)Y †(z) by

γj(z) :=

{
supx

{∫ x
0
ρ2c(x)dx ≤ j

N

}
, if 1 ≤ j ≤ N − 1

e1, if j = N
. (2.54)
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In fact, if γj lies in the bulk, then by the positivity of ρ2c we can simply define γj through∫ γj

0

ρ2c(x)dx =
j

N
.

By Proposition 2.14, we have that for any δ > 0,∣∣∣∣∣∣
N∑
j=1

log γj(z)−N
∫ ∞

0

(log x)ρ2c(x, z)dx

∣∣∣∣∣∣
≤

N∑
j=1

N

∫ γj(z)

γj−1(z)

|log γj(z)− log x| ρ2c(x, z)dx ≤ Nδ (2.55)

for large enough N . Suppose we have the bound∣∣∣∣∣∣
∑
j

log λj −
∑
j

log γj

∣∣∣∣∣∣ ≺ N b. (2.56)

Plugging (2.55) and (2.56) into (2.53), we get

1

N

N∑
i=1

Fz0(µj) =
N2a

4π

∫
(∆F )(ξ)

∫ ∞
0

(log x)ρ2c(x, z)dxdA(ξ) +O≺(N−1+b+2a‖∆F‖L1
)

=
1

4π

∫
F (ξ)

∫ ∞
0

(log x)∆zρ2c(x, z)dxdA(ξ) +O≺(N−1+b+2a‖∆F‖L1).

Thus we obtain (2.21) if we can prove (2.56) for b = 1/2, and we obtain (2.24) if we can
prove (2.56) for b = 0 when 1 + τ ≤ |z0|2 ≤ 1 + τ−1 or when the assumption (2.23) holds.

We need the following lemma which is a consequence of Theorem 2.19. Recall (2.16)
and (2.20), the number L of the connected components is of order 1 and the number
of γj ’s in each component [e2k, e2k−1] is of order N . We define the classical number of
eigenvalues to the left of ek, 1 ≤ k ≤ 2L, as

Nk :=

⌈
N

∫ ek

0

ρ2c(x)

⌉
. (2.57)

Note that N2L = 0, N1 = N and N2k+1 = N2k, 1 ≤ k ≤ L− 1.

Lemma 2.22 (Singular value rigidity). Fix a small ε > 0.
(i) If the averaged local law holds with parameters (T,X, z,D(ζ,N) ∩ D̂(ζ,N)) for

arbitrarily small ζ, then the following estimates hold. For any e2k > 0 and N2k+N1/2+ε ≤
j ≤ N2k−1 −N1/2+ε,

|λj − γj |
γj

≺
(

min

{
j −N2k

N
,
N2k−1 − j

N

})−1/3

N−1/2. (2.58)

In the case |z|2 ≤ 1− τ with e2L = 0, we have for any N1/2+ε ≤ j ≤ N2L−1 −N1/2+ε,

|λj − γj |
γj

≺ j−1

(
N2L−1 − j

N

)−1/3

N1/2. (2.59)

Moreover, if 1 + τ ≤ |z|2 ≤ 1 + τ−1, then for any fixed 0 < c < e2L,

#{j : 0 < λj < c} ≺ 1. (2.60)

(ii) If the averaged local law holds with parameters (T,X, z,D(ζ,N)) for arbitrarily
small ζ, then the following estimates hold. For any e2k > 0 andN2k+N ε ≤ j ≤ N2k−1−N ε,

|λj − γj |
γj

≺
(

min

{
j −N2k

N
,
N2k−1 − j

N

})−1/3

N−1. (2.61)
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In the case |z|2 ≤ 1− τ with e2L = 0, we have for any N ε ≤ j ≤ N2L−1 −N ε,

|λj − γj |
γj

≺ j−1

(
N2L−1 − j

N

)−1/3

. (2.62)

Proof. The proof is similar to the proof of [7, Lemma 5.1]. See also [4, Theorem 2.10] or
[14, Theorem 7.6]

Using (2.58) and (2.59), we get that∑
N2k+N1/2+ε≤j≤N2k−1−N1/2+ε

|log λj − log γj | ≺
∑

N2k+N1/2+ε≤j≤N2k−1−N1/2+ε

|λj − γj |
γj

≺ N1/2.

(2.63)
By Theorem 2.10 of [4], there exists a constant C > 0 such that

‖X∗X‖ ≤ C with high probability. (2.64)

Thus we have
λj ≤ ‖Y ‖2 ≤ (‖T‖‖X‖+ |z|)2 ≺ 1, 1 ≤ j ≤ N. (2.65)

Together with Lemma 2.23 concerning the smallest singular value of TX − z, we get

2L∑
k=1

∑
|j−ek|<N1/2+ε

|log λj | ≺ N1/2+ε. (2.66)

Since |log γj | ≺ 1 by Proposition 2.14, we conclude

2L∑
k=1

∑
|j−ek|<N1/2+ε

|log λj − log γj | ≺ N1/2+ε. (2.67)

Combining (2.63) and (2.67), we get for any ε > 0,∑
1≤j≤N

|log λj − log γj | ≺ N1/2+ε (2.68)

for large enough N . This implies (2.56) for b = 1/2. If in addition the assumption (2.23)
holds, the averaged local law holds with parameters (T,X, z,D(ζ,N)) for arbitrarily
small ζ by Theorem 2.19. Then we can prove (2.56) for b = 0 using the better bounds
(2.61) and (2.62).

Finally we show that when |z0|2 ≥ 1 + τ , with the bounds (2.58) we can still prove the
estimate (2.56) for b = 0. By the averaged local law and the definition of γj in (2.54), we
have ∣∣∣∣∣∣

N∑
j=1

1

λj − iη
−

N∑
j=1

1

γj − iη

∣∣∣∣∣∣ ≺ 1

η
, (2.69)

uniformly in N−1/2+ε ≤ η ≤ N1/2. Taking integral of (2.69) over η from N−1/2+ε to N1/2,
we get ∣∣∣∣∣∣

N∑
j=1

log

(
λj − iN−1/2+ε

γj − iN−1/2+ε

)
−

N∑
j=1

log

(
λj − iN1/2

γj − iN1/2

)∣∣∣∣∣∣ ≺ 1. (2.70)

Then we use (2.58) and the bound (2.65) to estimate that∣∣∣∣∣∣
N∑
j=1

log

(
λj − iN1/2

γj − iN1/2

)∣∣∣∣∣∣ ≺
N∑
j=1

∣∣∣(λj − γj)N−1/2
∣∣∣ ≺ N ε.
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Thus we conclude ∣∣∣∣∣∣
N∑
j=1

log

(
λj − iN−1/2+ε

γj − iN−1/2+ε

)∣∣∣∣∣∣ ≺ N ε. (2.71)

Using γj ∼ 1, (2.60) and (2.73), we get∣∣∣∣∣∣
N∑
j=1

log

(
λj − iN−1/2+ε

γj − iN−1/2+ε

)
−

N∑
j=1

log
λj
γj

∣∣∣∣∣∣ ≺ 1 +

∣∣∣∣∣∣
∑
λj≥c

log

(
λj − iN−1/2+ε

γj − iN−1/2+ε

)
−
∑
λj≥c

log
λj
γj

∣∣∣∣∣∣
≺ 1 +

∑
λj≥c

∣∣∣(λj − γj)N−1/2+ε
∣∣∣ ≺ N2ε. (2.72)

Combing (2.71) and (2.72), we conclude (2.56) for b = 0.
If the entries of X are identically distributed, then instead of Lemma 2.23, we shall

use the results in [39] to get a lower bound for the smallest singular value of TX − z
(see Remark 3 below Theorem 2.6). In particular, the bounded density condition for the
entries of X is not needed anymore. This concludes the last statement of Theorem 2.6.

Lemma 2.23 (Lower bound on the smallest singular value). If N ≤M and the entries of
X have a density bounded by NC3 for some C3 > 0, then

| log λ1(z)| ≺ 1 (2.73)

holds uniformly for z in any fixed compact set.

Proof. We already have an upper bound for λ1; see (2.65). Hence to get (2.73), we still
need to prove that

P
(
λ1(z) ≤ e−N

ε
)
≤ N−C (2.74)

for any ε, C > 0. By (2.49), we have that

TX − z = UD(V1X −D−1U−1z) =: UDỸ (z).

Hence it suffices to control the smallest singular value of Ỹ (z), call it λ̃1(z). Notice the
columns Ỹ1, . . . , ỸN of Ỹ (z) are independent vectors. From the variational characteriza-
tion

λ̃1(z) = min
|u|=1

‖Ỹ (z)u‖2,

we can easily get

λ̃1(z)1/2 ≥ N−1/2 min
1≤k≤N

dist
(
Ỹk, span{Ỹl, l 6= k}

)
= N−1/2 min

1≤k≤N

∣∣∣〈Ỹk, uk〉∣∣∣ , (2.75)

where uk is the unit normal vector of span{Ỹl, l 6= k} and hence is independent of Ỹk. By
conditioning on uk, we get immediately that

P(λ̃1(z) ≤ N−C0) ≤ CN−C0/2+C3+3/2, (2.76)

which is a much stronger result than (2.74). Here we have used Theorem 1.2 of [34] to
conclude that 〈Ȳk, uk〉 for fixed uk has density bounded by CNC3 .

2.5 Outline of the paper

The rest of this paper is devoted to the proof of Theorem 2.18 and Theorem 2.19.
In Section 3, we collect the basic tools that we shall use in the proof. In Section 4, we
perform step (A) of the proof by proving the entrywise local law and averaged local law
in Theorem 2.18 under the assumption that T is diagonal. We first prove a weak version
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of the entrywise local law in Sections 4.1-4.3, and then improve the weak law to the
strong entrywise local law and averaged local law in Sections 4.4-4.5. In Section 5, we
perform step (B) of the proof by proving the anisotropic local law in Theorem 2.18 using
the entrywise local law proved in Section 4. Finally in Section 6 we finish the step (C)
of the proof, where using Theorem 2.18, we prove Theorem 2.19 with a self-consistent
comparison method.

The first part of Appendix A establishes the basic properties of ρ1,2c stated in Lemma
2.3 and Proposition 2.14. In Sections A.2 and A.3, we prove some key estimates about
m1,2c and the stability of the self-consistent equation (2.11) on regular domains. In
Appendix B, we prove a fluctuation averaging lemma that will be used in the proof of the
strong entrywise local law.

3 Basic tools

In this preliminary section, we collect various identities and estimates that we shall
use throughout the following.

Definition 3.1 (Minors). For J ⊂ I, we define the minor H(J) := {Hst : s, t ∈ I \ J}, and
correspondingly G(J) := {(H(J))−1

st : s, t ∈ I \ J}. Let [J ] := {s ∈ I : s ∈ J or s̄ ∈ J}. We
shall also denote H [J] := {Hst : s, t ∈ I \ [J ]} and G[J] := {(H [J])−1

st : s, t ∈ I \ [J ]}. We
will abbreviate ({s}) ≡ (s), ({s, t}) ≡ (st), [{s}] ≡ [s] and [{s, t}] = [st].

Notice that by the definition, we have H(J)
st = 0 and G(J)

st = 0 if s ∈ J or t ∈ J .

Lemma 3.2. (Resolvent identities).

(i) For i ∈ I1 and µ ∈ I2, we have

1

Gii
= −w − w

(
Y G(i)Y †

)
ii
,

1

Gµµ
= −w − w

(
Y †G(µ)Y

)
µµ
. (3.1)

For i 6= j ∈ I1 and µ 6= ν ∈ I2, we have

Gij = wGiiG
(i)
jj

(
Y G(ij)Y †

)
ij
, Gµν = wGµµG

(µ)
νν

(
Y †G(µν)Y

)
µν
. (3.2)

(ii) For i ∈ I1 and µ ∈ I2, we have

Giµ = GiiG
(i)
µµ

(
−w1/2Yiµ + w

(
Y G(iµ)Y

)
iµ

)
, (3.3)

Gµi = GµµG
(µ)
ii

(
−w1/2Y †µi + w

(
Y †G(µi)Y †

)
µi

)
. (3.4)

(iii) For r ∈ I and s, t ∈ I \ {r},

G
(r)
st = Gst −

GsrGrt
Grr

,
1

Gss
=

1

G
(r)
ss

− GsrGrs

GssG
(r)
ss Grr

. (3.5)

(iv) All of the above identities hold for G(J) instead of G for J ⊂ I.

Proof. All these identities can be proved using Schur’s complement formula. They have
been previously derived and summarized e.g. in [14, 15, 17].

Lemma 3.3. (Resolvent identities for G[ij] groups).

(i) For i ∈ I1, we have
G−1

[ii] = H[ii] −
∑
k,l 6=i

H[ik]G
[i]
[kl]H[li]. (3.6)
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For i 6= j ∈ I1, we have

G[ij] = −G[ii]

∑
k 6=i

H[ik]G
[i]
[kj] = −

∑
k 6=j

G
[j]
[ik]H[kj]G[jj] (3.7)

= −G[ii]H[ij]G
[i]
[jj] +G[ii]

∑
k,l/∈{i,j}

H[ik]G
[ij]
[kl]H[lj]G

[i]
[jj]. (3.8)

(ii) For k ∈ I1 and i, j ∈ I1 \ {k},

G
[k]
[ij] = G[ij] −G[ik]G

−1
[kk]G[kj], (3.9)

and

G−1
[ii] =

(
G

[k]
[ii]

)−1

−G−1
[ii]G[ik]G

−1
[kk]G[ki]

(
G

[k]
[ii]

)−1

. (3.10)

(iii) All of the above identities hold for G[J] instead of G for J ⊂ I.

Proof. These identities can be proved using Schur’s complement formula. The details
are left to the reader.

Next we introduce the spectral decomposition of G. Let

Y =

N∑
k=1

√
λkξkζ

†
k̄

be the singular decomposition of Y , where λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0 and {ξk}Nk=1 and
{ζk̄}Nk=1 are orthonormal bases of CI1 and CI2 respectively. Then by (2.30), we have

G (w) =

N∑
k=1

1

λk − w

(
ξkξ
†
k w−1/2

√
λkξkζ

†
k̄

w−1/2
√
λkζk̄ξ

†
k ζk̄ζ

†
k̄

)
. (3.11)

Definition 3.4 (Generalized entries). For v,w ∈ CI , s ∈ I and an I × I matrix A, we
shall denote

Avw := 〈v, Aw〉, Avs := 〈v, Aes〉, Asw := 〈es, Aw〉, (3.12)

where es is the standard unit vector.

Given vectors v ∈ CI1 and w ∈ CI2 , we always identify them with their natural

embeddings

(
v

0

)
and

(
0

w

)
in CI . The exact meanings will be clear from the

context.

Lemma 3.5. Fix τ > 0. The following estimates hold uniformly for any w ∈ D(ζ,N) ∪
DL(ζ). We have

‖G‖ ≤ Cη−1, ‖∂wG‖ ≤ Cη−2. (3.13)

Let v ∈ CI1 and w ∈ CI2 , we have the bounds∑
µ∈I2

|Gwµ|2 =
∑
µ∈I2

|Gµw|2 =
ImGww

η
, (3.14)

∑
i∈I1

|Gvi|2 =
∑
i∈I1

|Giv|2 =
ImGvv

η
, (3.15)

∑
i∈I1

|Gwi|2 =
∑
i∈I1

|Giw|2 = |w|−1
Gww + w̄ |w|−1 ImGww

η
, (3.16)

∑
µ∈I2

|Gvµ|2 =
∑
µ∈I2

|Gµv|2 = |w|−1
Gvv + w̄ |w|−1 ImGvv

η
. (3.17)

All of the above estimates remain true for G(J) instead of G for J ⊂ I.
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Proof. The estimates in (3.13) follow from (3.11). For any unit vectors x,y ∈ CI1 , we
have

|〈x, Gy〉| ≤
N∑
k=1

|〈x, ξk〉|
∣∣∣〈ξ†k,y〉∣∣∣

|λk − w|
≤ 1

η

[
N∑
k=1

|〈x, ξk〉|2
]1/2 [ N∑

k=1

∣∣∣〈ξ†k,y〉∣∣∣2
]1/2

=
1

η
.

For any unit vectors x ∈ CI1 and y ∈ CI2 , we have

|〈x, Gy〉| ≤ |w|−1/2
N∑
k=1

√
λk |〈x, ξk〉|

∣∣∣〈ζ†
k̄
,y〉
∣∣∣

|λk − w|
≤

N∑
k=1

1

2η

(
|〈x, ξk〉|2 +

∣∣∣〈ζ†
k̄
,y〉
∣∣∣2) =

1

η
,

where we have used that for w = E + iη, |w|−1/2√
λk/|λk − w| ≤ η−1. For the other two

blocks of G, we can prove similar estimates. This gives the first bound in (3.13). It is
trivial to generalize the proof to ∂wG, where η−2 comes from the (λk − w)−2 factor of
∂wG. For (3.14), we observe that

ImGww

η
=

1

η
Im

N∑
k=1

〈w, ζk̄〉 〈ζ
†
k̄
,w〉

λk − w
=

N∑
k=1

|〈w, ζk〉|2

(λk − E)
2

+ η2
,

and by (2.30),

∑
µ∈I2

|Gwµ|2 =
∑
µ∈I2

〈w, GReµ〉 〈eµ, G†Rw〉 =
〈
w, GRG

†
Rw
〉

=

N∑
k=1

|〈w, ζk〉|2

(λk − E)
2

+ η2
. (3.18)

Similarly, we can prove the identity for
∑
µ∈I2

|Gµw|2 and (3.15). For (3.16), first we can

prove that
∑
i∈I1

|Gwi|2 =
∑
i∈I1

|Giw|2 using (3.11). Then we use (2.30) and (3.18) to get

that∑
i∈I1

|Gwi|2 = |w|−1
(
GRY

†Y G†R

)
ww

= |w|−1
[
GR

(
Y †Y − w̄

)
G†R

]
ww

+ w̄ |w|−1
(
GRG

†
R

)
ww

= |w|−1
Gww + w̄ |w|−1

(
GRG

†
R

)
ww

= |w|−1
Gww + w̄ |w|−1 ImGww

η
. (3.19)

Identity (3.17) can be proved in a similar way.

The following Lemma gives useful large deviation bounds. See Theorem B.1 and
Lemmas B.2-B.4 in [13] for the proof. See also Theorem C.1 of [14].

Lemma 3.6. (Large deviation bounds) Let (X
(N)
i ), (Y

(N)
i ) be independent families of

random variables and (a
(N)
ij ), (b

(N)
i ) be deterministic complex numbers. Suppose all

entries X(N)
i and Y

(N)
i are independent and satisfy (2.2) and (2.3). Then we have the

following bounds:

∑
i

biXi ≺

(∑
i

|bi|
2

)1/2

√
N

,
∑
i,j

aijXiYj ≺

(∑
i,j

|aij |2
)1/2

N
,
∑
i 6=j

aijXiXj ≺

(∑
i 6=j
|aij |2

)1/2

N
,

(3.20)
where, for simplicity of notation, we omitted the superscript (N) in the above expressions.

If the coefficients (a
(N)
ij ) and (b

(N)
i ) depend on some parameter u, then all of the above

estimates are uniform in u.
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We have stated some basic properties of ρ1,2c and m1,2c in Lemma 2.3 and Proposition
2.14. Now we collect more estimates for m1,2c that will be used in the proof. The next
lemma is proved in Appendix A.2. For w = E + iη, we define the distance to the spectral
edge through

κ ≡ κ(E) := min
1≤k≤2L,ek>0

|E − ek|. (3.21)

Notice in the |z| < 1 case, we do not take into consideration the edge at e2L = 0.

Lemma 3.7. Fix τ > 0 and suppose τ ≤ ||z|2 − 1| ≤ τ−1. We denote w = E + iη.

Case 1 Fix τ ′ > 0. Suppose the bulk component [e2k, e2k−1] is regular in the sense of
Definition 2.4. Then for w ∈ Db

k(ζ, τ ′, N), we have

|1 +m1c| ∼ Imm1c ∼ 1, |m2c| ∼ Imm2c ∼ 1. (3.22)

Case 2 Fix τ ′ > 0. Then for w ∈ Do(ζ, τ ′, N), we have

Imm1,2c ∼ η, |1 +m1c| ∼ 1, |m2c| ∼ 1. (3.23)

Case 3 Suppose ek 6= 0 is a regular edge. Then for w ∈ De
k(ζ, τ ′, N), if τ ′ > 0 is small

enough, we have

Imm1,2c ∼

{√
κ+ η if E ∈ supp ρ1,2c

η/
√
κ+ η if E /∈ supp ρ1,2c

, |1 +m1c| ∼ 1, |m2c| ∼ 1. (3.24)

Case 4 Suppose |z|2 ≤ 1− τ so that e2L = 0. We take τ ′ > 0 to be small enough. Then for
w ∈ De

2L(ζ, τ ′, N), if Imw ≥ τ ′, we have

|1 +m1c| ∼ Imm1c ∼ 1, |m2c| ∼ Imm2c ∼ 1; (3.25)

if |w| ≤ 2τ ′, we have

m1c = i

√
t√
w

+O(1), m2c =
i
√
t√

w(t+ |z|2)
+O(1), (3.26)

for some constant t > 0, and

Imm1,2c ∼ |w|−1/2. (3.27)

Case 5 For w ∈ DL(ζ), we have

|m1c| ∼ Imm1c ∼
1

η
, |m2c| ∼ Imm2c ∼

1

η
. (3.28)

In Cases 1-4, we have ∣∣∣w (1 + sim2c) (1 +m1c)− |z|2
∣∣∣ ≥ c, (3.29)

where c > 0 is some constant that may depend on τ , τ ′ and ζ. In Case 5, we have∣∣∣w (1 + sim2c) (1 +m1c)− |z|2
∣∣∣ ≥ η, (3.30)

Note that the uniform bounds (3.29) and (3.30) guarantee that the matrix entries of
Π(w) remain bounded. We have the following Lemma, which will be proved in Appendix
A.2.
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Lemma 3.8. In Cases 1-4 of Lemma 3.7, we have

‖π[i]c‖ ≤ C|w|−1/2,
∥∥∥(π[i]c

)−1
∥∥∥ ≤ C|w|1/2, (3.31)

and in Case 5 of Lemma 3.7, we have

‖π[i]c‖ ≤ Cη−1,
∥∥∥(π[i]c

)−1
∥∥∥ ≤ Cη. (3.32)

For all the cases in Lemma 3.7,

Im Πvv ≤ CIm(m1c +m2c), (3.33)

uniformly in w and any deterministic unit vector v ∈ CI .
The self-consistent equation (2.11) can be written as

Υ(w,m1) = 0, (3.34)

where

Υ(w,m1) = m1 +
1

N

n∑
i=1

lisi(1 +m1)

[
w

(
1 + si

1 +m1

−w(1 +m1)2 + |z|2

)
(1 +m1)− |z|2

]−1

.

(3.35)
The stability of (3.34) roughly says that if Υ(w,m1) is small and m1(w′)−m1c(w

′) is small
for w′ := w + iN−10, then m1(w) −m1c(w) is small. For an arbitrary w ∈ D, we define
the discrete set

L(w) := {w} ∪ {w′ ∈ D : Rew′ = Rew, Imw′ ∈ [Imw, 1] ∩ (N−10N)}, (3.36)

Thus, if Imw ≥ 1 then L(w) = {w}, and if Imw < 1 then L(w) is a 1-dimensional lattice
with spacing N−10 plus the point w. Obviously, we have |L(w)| ≤ N10.

Definition 3.9 (Stability of (3.34)). We say that (3.34) is stable on D if the following
holds. Suppose that N−2|m1c| ≤ δ(w) ≤ (logN)−1|m1c| for w ∈ D and that δ is Lipschitz
continuous with Lipschitz constant ≤ N4. Suppose moreover that for each fixed E, the
function η 7→ δ(E + iη) is non-increasing for η > 0. Suppose that u1 : D → C is the
Stieltjes transform of a positive integrable function. Let w ∈ D and suppose that for all
w′ ∈ L(w) we have

|Υ(w, u1)| ≤ δ(w). (3.37)

Then

|u1(w)−m1c(w)| ≤ Cδ√
κ+ η + δ

, (3.38)

for some constant C > 0 independent of w and N .
We say that (3.34) is stable on DL if for 0 ≤ δ(w) ≤ (logN)−1|m1c|, (3.37) implies

|u1(w)−m1c(w)| ≤ Cδ, (3.39)

for some constant C > 0 independent of w and N .

This stability condition has previously appeared in [4, 7, 24]. In [24], for example,
the stability condition was established under various regularity assumptions. In the
following lemma, we establish the stability on each regular domain. The proof is given in
Appendix A.3. This lemma leaves the case |w|1/2 + |z|2 = o(1) alone. We will handle this
case in a different way in Section 4.5.

Lemma 3.10. Fix τ > 0 and let τ ′ > 0 be sufficiently small depending on τ . Let
τ ≤ ||z|2 − 1| ≤ τ−1.
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Case 1 Suppose the bulk component [e2k, e2k−1] is regular in the sense of Definition 2.4.
Then (3.34) is stable on Db

k(ζ, τ ′, N) in the sense of Definition 3.9.

Case 2 (3.34) is stable on Do(ζ, τ ′, N) in the sense of Definition 3.9.

Case 3 Suppose ek 6= 0 is a regular edge in the sense of Definition 2.4. Then (3.34) is
stable on De

k(ζ, τ ′, N) in the sense of Definition 3.9.

Case 4 Suppose |z|2 ≤ 1− τ so that e2L = 0. If |w|1/2 + |z|2 ≥ ε for some constant ε > 0,
then (3.34) is stable on De

2L(ζ, τ ′, N) in the sense of Definition 3.9.

Case 5 (3.34) is stable on DL(ζ) in the sense of Definition 3.9.

4 Entrywise local law when T is diagonal

In this section we prove the entrywise local law and averaged local law in Theorem
2.18 when T is diagonal. The proof is similar to the previous proofs of the entrywise
local law in e.g. [4, 5, 7, 24]. We basically follow the idea in [7], and we will provide
necessary details for the parts that are different from the previous proofs.

The main novel observation of this section is that the self-consistent equations (2.9)
and (2.10) can be “derived” from the random matrix model by an application of Schur’s
complement formula. It is helpful to give a heuristic argument here. We introduce the
conditional expectation

E[i][·] := E[· | H [i]],

i.e. the partial expectation in the randomness of the i and ī-th rows and columns of H.
For the diagonal G[ii] group, we ignore formally the random fluctuations in (3.6) to get
that

G−1
[ii] ≈ E[i]H[ii] −

∑
k,l 6=i

E[i]

(
H[ik]G

[i]
[kl]H[li]

)

=

(
−w −w1/2z

−w1/2z̄ −w

)
− w

N

∑
k

(
|di|2G[i]

k̄k̄
0

0 |dk|2G[i]
kk

)

=

(
−w −w1/2z

−w1/2z̄ −w

)
− w

(
|di|2m2 0

0 m1

)
,

(4.1)

where we used the definitions of m1 and m2 in (2.34). The 11 entry of (4.1) gives the
equation

Gii ≈
−1−m1

w (1 + |di|2m2) (1 +m1)− |z|2
, (4.2)

from which we get that

Gii

[
−w

(
1 + |di|2m2

)
+
|z|2

1 +m1

]
≈ 1.

Summing over i and using that N−1
∑
iGii = N−1

∑
µGµµ = m2, the above equation

becomes

−w (m2 +m1m2) +
|z|2m2

1 +m1
≈ 1,

which gives (2.9). Multiplying (4.2) with |di|2 and summing over i, we get the self-
consistent equation (2.10). In this section we give a justification of these approximations.

Before we start the proof, we make the following remark. In this section we mainly
focus on the domain D. On the domain DL, the proofs are much simpler and we only
describe them briefly. The parameter z can be either inside or outside of the unit circle.
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Local circular law for the product of a deterministic matrix with a random matrix

Recall Lemma 3.7 and Lemma 3.10, the domain D of w can be divided roughly into four
regions: w near a nonzero regular edge, w → 0, w in the bulk, or w outside the spectrum.
In this section we will only consider the case |z|2 ≤ 1− τ since it covers all four different
behaviors of m1,2c. Note that in this case |m1,2c(w)| ∼ |w|−1/2 for w in any compact set of
C+ by Proposition 2.15. Also due to the remark above Lemma 3.10, in Sections 4.1-4.4,
we assume |w|1/2 + |z|2 ≥ c for some c > 0. We will handle the |w|1/2 + |z|2 = o(1) case in
Section 4.5.

4.1 The self-consistent equations

To begin with, we prove the following weak version of the entrywise local law.

Proposition 4.1 (Weak entrywise law). Fix |z|2 ≤ 1 − τ and a small constant c > 0.
Suppose Assumption 2.1 holds, N = M and T ≡ D := diag(d1, ..., dN ). Then for any
regular domain S ⊂ D,

max
i,j∈I1

∥∥∥(G(w)−Π(w))[ij]

∥∥∥ ≺ 1

|w|1/2

(
|w|1/2

Nη

)1/4

(4.3)

for all w ∈ S such that |w|1/2 + |z|2 ≥ c. For w ∈ DL, we have

max
i,j∈I1

∥∥∥(G(w)−Π(w))[ij]

∥∥∥ ≺ 1

η

√
1

N
. (4.4)

For the purpose of proof, we define the following random control parameters.

Definition 4.2 (Control parameters). Suppose N = M and T ≡ D := diag(d1, ..., dN ). We
define

Λ := max
i,j∈I1

∥∥∥(G−Π)[ij]

∥∥∥ , Λo := max
i 6=j∈I1

∥∥∥(G−Π)[ij]

∥∥∥ . (4.5)

For J ⊆ I, define the averaged variables m(J)
1,2 (m[J]

1,2) by replacing G in (2.34) with G(J)

(G[J]), i.e.

m
(J)
1 :=

1

N

∑
i/∈J

|di|2G(J)
ii , m

(J)
2 :=

1

N

∑
µ/∈J

G(J)
µµ . (4.6)

The averaged error and the random control parameter are defined as

θ := |m1 −m1c|+ |m2 −m2c| and Ψθ :=

√
Im (m1c +m2c) + θ

Nη
+

1

Nη
, (4.7)

respectively.

Remark: By (2.4), we immediately get that

τ Imm
(J)
1 ≤ Imm

(J)
2 ≤ τ−1Imm

(J)
2 , (4.8)

and θ = O(Λ), since |m1 −m1c| ≤ τ−1Λ and |m2 −m2c| ≤ Λ.

We introduce the Z variables:

Z
[J]
[i] := (1− E[i])

(
G

[J]
[ii]

)−1

.

By the identity (3.6) we have

G−1
[ii] = E[i]G

−1
[ii] + Z[i] =

(
−w − w |di|2m[i]

2 −w1/2z

−w1/2z̄ −w − wm[i]
1

)
+ Z[i], (4.9)

where

Z[i] = w

(
|di|2m[i]

2 − |di|2
(
XG[i]X†

)
ii

w−1/2diXīi −
(
DXG[i]DX

)
īi

w−1/2d̄iX
†
īi
−
(
X†D†G[i]X†D†

)
īi

m
[i]
1 −

(
X†D†G[i]DX

)
ī̄i

)
. (4.10)
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Lemma 4.3. For J ⊆ I1, the following crude bound on the difference between ma and
m

[J]
a (a = 1, 2) holds: ∣∣∣ma −m[J]

a

∣∣∣ ≤ C |J |
Nη

, a = 1, 2, (4.11)

where C = C(τ) is a constant depending only on τ .

Proof. For i ∈ I1, we have

|m1 −m(i)
1 | =

1

N

∣∣∣∣∣∑
k∈I1

|dk|2
GkiGik
Gii

∣∣∣∣∣ ≤ τ−1

N |Gii|
∑
k∈I1

|Gik|2 =
τ−1

Nη

ImGii
|Gii|

≤ τ−1

Nη
(4.12)

where in the first step we used (3.5), and in the second and third steps the equality
(3.15). Similarly, using (3.5) and (3.16) we get

|m(i)
1 −m

(īi)
1 | =

1

N

∣∣∣∣∣∑
k∈I1

|dk|2
G

(i)

kī
G

(i)

īk

G
(i)

ī̄i

∣∣∣∣∣ ≤ τ−1

N |G(i)

ī̄i
|

(
G

(i)

ī̄i

|w|
+

w̄

|w|
ImG

(i)

ī̄i

η

)
≤ 2τ−1

Nη
.

By induction on the indices in [J ], we can prove (4.11) for m1. The proof for m2 is
similar.

Lemma 4.4. Suppose |z|2 ≤ 1− τ . For i ∈ I1, we have

|
(
Z[i]

)
11
| ≺ |w|

√
Imm

[i]
2

Nη
, |
(
Z[i]

)
22
| ≺ |w|

√
Imm

[i]
1

Nη
, (4.13)

|
(
Z[i]

)
st
| ≺ |w|

 |w|−1/2

√
N

+

√
|m[i]

1 |
N |w|

+

√
Imm

[i]
1

Nη

 for s 6= t ∈ {1, 2}, (4.14)

uniformly in w ∈ D ∪DL. In particular, these imply that

Z[i] ≺ |w|Ψθ, (4.15)

uniformly in w ∈ D, and
Z[i] ≺ |w|(Nη)−1/2, (4.16)

uniformly in w ∈ DL.

Proof. Applying the large deviation Lemma 3.6 to Z[i] in (4.10), we get that

∣∣∣∣∣
(
Z[i]

)
11

w

∣∣∣∣∣ ≺ 1

N

(∑
µ

∣∣∣G[i]
µµ

∣∣∣2)1/2

+

∑
µ 6=ν

∣∣∣G[i]
µν

∣∣∣2
1/2

 ≤ C

N

(∑
µ,ν

∣∣∣G[i]
µν

∣∣∣2)1/2

=
C

N

(∑
µ

ImG
[i]
µµ

η

)1/2

= C

√
Imm

[i]
2

Nη
.

where in the third step we used the equality (3.14). Similarly we can prove the bound
for

(
Z[i]

)
22

using Lemma 3.6 and (3.15). Now we consider
(
Z[i]

)
12

. First, we have

Xīi ≺ N−1/2 by (2.3). For the other part, we use Lemma 3.6 and (3.17) to get that

∣∣∣(DXG[i]DX
)
īi

∣∣∣≺ 1

N

∑
j,µ

|dj |2
∣∣∣G[i]

µj

∣∣∣2
1/2

=
1

N

∑
j

|dj |2
(
|w|−1

G
[i]
jj +

w̄

|w|
ImG

[i]
jj

η

)1/2
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≤

[
|m[i]

1 |
N |w|

+
Imm

[i]
1

Nη

]1/2

≤ C

√ |m[i]
1 |

N |w|
+

√
Imm

[i]
1

Nη

 . (4.17)

Similarly we can prove the estimate for
(
Z[i]

)
21

.
Now we prove (4.15). By the definitions (4.7) and using (4.11), we get that

∣∣(Z[i]

)
11

∣∣ ≺ |w|
√

Imm
[i]
2

Nη
= |w|

√√√√ Imm2c + Im
(
m

[i]
2 −m2

)
+ Im (m2 −m2c)

Nη
≤ C|w|Ψθ.

(4.18)

We can estimate
(
Z[i]

)
22

and the third term in (4.14) in a similar way. For the Cases 1-4

in Lemma 3.7, we have |m1c| ∼ 1 for |w| ∼ 1, Imm1c ∼ |w|−1/2 ∼ |m1c| for |w| → 0, and
η ≤ CImm1c. Thus√

|m1c|
N |w|

≤ C√
N
≤ CΨθ for |w| ∼ 1, and

√
|m1c|
N |w|

≤ C

√
Imm1c

Nη
≤ CΨθ for |w| → 0.

Then for the second term in (4.14), we have that√
|m[i]

1 |
N |w|

≤ C

(
1

Nη
+

√
θ

Nη
+

√
|m1c|
N |w|

)
≤ CΨθ.

This concludes (4.15). Finally, the estimate (4.16) follows directly from (4.13), (4.14) and
(3.13).

Lemma 4.5. Suppose |z|2 ≤ 1 − τ . Define the w-dependent event Ξ(w) := {θ ≤
|w|−1/2(logN)−1}. Then we have that for w ∈ D,

1(Ξ)m2 = 1(Ξ)

[
1 +m1

−w (1 +m1)
2

+ |z|2
+O≺(Ψθ)

]
, 1(Ξ)Υ(w,m1) ≺ 1(Ξ)Ψθ, (4.19)

where Υ is defined in (3.35). For w ∈ DL, we have

m2 =
1 +m1

−w (1 +m1)
2

+ |z|2
+O≺

(
η−1(Nη)−1/2

)
, Υ(w,m1) ≺ η−1 (Nη)

−1/2
. (4.20)

Proof. First, suppose that w ∈ D. Using (4.9), we get

G−1
[ii] = π−1

[i] + ε[i], (4.21)

where π[i] is defined in (2.36) and

ε[i] = w

(
|di|2

(
m2 −m[i]

2

)
0

0 m1 −m[i]
1

)
+ Z[i].

By (4.11) and (4.15), we have that ε[i] ≺ |w|Ψθ. Let Bi = π−1
[i] − π

−1
[i]c, where π[i]c is defined

in (2.32). By (3.31) and the definition of Ξ, we have 1(Ξ)‖Biπ[i]c‖ ≤ C(logN)−1. Thus we
have the expansion

1(Ξ)π[i] = 1(Ξ)(π−1
[i]c +Bi)

−1 = 1(Ξ)π[i]c

(
1−Biπ[i]c + (Biπ[i]c)

2 + . . .
)

= 1(Ξ)(π[i]c + εa),

(4.22)
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where εa can be estimated as 1(Ξ)‖εa‖ ≤ 1(Ξ)C|w|−1/2(logN)−1. This shows that
1(Ξ)‖π[i]‖ = 1(Ξ)O(|w|−1/2), and so 1(Ξ)

∥∥ε[i]π[i]

∥∥ ≺ 1(Ξ)|w|1/2Ψθ ≤ 1 (Ξ)CN−ζ/2 by
the definition of D in (2.39). Again we do the expansion for (4.21):

1(Ξ)G[ii] = 1(Ξ)
(
π−1

[i] + ε[i]

)−1

= 1(Ξ)π[i]

(
1 +

∞∑
l=1

(
−ε[i]π[i]

)l)
= 1(Ξ)

(
π[i] + εb

)
,

(4.23)
where 1(Ξ)‖εb‖ ≺ 1(Ξ)Ψθ. Now the 11 entry of (4.23) gives that

1(Ξ)Gii = 1(Ξ)
−1−m1

w (1 + |di|2m2) (1 +m1)− |z|2
+ 1(Ξ)O≺ (Ψθ) , (4.24)

from which we get that

1(Ξ)Gii

[
−w

(
1 + |di|2m2

)
+
|z|2

1 +m1

]
= 1(Ξ)

[
1 +O≺

(
|w|1/2Ψθ

)]
. (4.25)

Here we used that

1(Ξ)

[
−w

(
1 + |di|2m2

)
+
|z|2

1 +m1

]
= O(|w|1/2),

which follows from Lemma 3.7 and the definition of Ξ. Summing (4.25) over i, we get

1(Ξ)

[
−w (m2 +m1m2) +

|z|2m2

1 +m1

]
= 1(Ξ)

[
1 +O≺

(
|w|1/2Ψθ

)]
,

which gives

1(Ξ)m2 = 1(Ξ)
1 +m1

−w (1 +m1)
2

+ |z|2
+ 1(Ξ)O≺ (Ψθ) . (4.26)

Now plugging (4.26) into (4.24), multiplying with |di|2 and summing over i, we obtain
that

1(Ξ)m1 = 1(Ξ)

 1

N

n∑
i=1

lisi
−1−m1

w
(

1 + si
1+m1

−w(1+m1)2+|z|2

)
(1 +m1)− |z|2

+O≺ (Ψθ)

 , (4.27)

where we used (3.29) and 1(Ξ)(1 +m1) = 1(Ξ)O(|w|−1/2). This concludes the proof.
Similarly, when w ∈ DL, it is easy to prove (4.20) using the estimates (4.16) and

(3.13). Note that |m1,2| = O(η−1) by (3.13), which implies immediately the bounds

‖π[i]‖ = O(η−1) and ‖
(
π[i]

)−1 ‖ = O(η). Hence without introducing the event Ξ, we can
obtain directly

G[ii] = π[i] +O≺(η−1(Nη)−1/2). (4.28)

The rest of the proof is essentially the same.

Notice that applying Lemma 3.10 to (4.20), we obtain that |m1,2−m1,2c| ≺ η−1(Nη)−1/2.
Plugging it into (4.28), we immediately get (4.4) for w ∈ DL. This proves the entrywise
law on DL, since η−1N−1/2 ≤ CΨ by the definition (2.45) and the estimate (3.28).

4.2 The large η case

It remains to prove Proposition 4.1 on domain D. We would like to fix E and then apply
a continuity argument in η by first showing that the rough bound Λ ≤ |w|−1/2(logN)−1

in Lemma 4.5 holds for large η. To start the argument, we first need to establish the
estimates on G when η ∼ 1. The next lemma is a trivial consequence of (3.13).
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Lemma 4.6. For any w ∈ D and η ≥ c for fixed c > 0, we have the bound

max
s,t
|Gst (w)| ≤ C (4.29)

for some C > 0. This estimate also holds if we replace G with G(J) for J ⊂ I.

Lemma 4.7. Fix c > 0 and |z|2 ≤ 1− τ . We have the following estimate

max
w∈D,η≥c

Λ (w) ≺ N−1/2. (4.30)

Proof. By the previous lemma, we have |m[i]
1,2| = O(1). So by Lemma 4.4, ‖Z[i]‖ ≺ N−1/2

uniformly in η ≥ c. Then as in (4.21), we have

G[ii] =
(
π−1

[i] + ε[i]

)−1

, (4.31)

where ‖π−1
[i] ‖ = O(1) and ‖ε[i]‖ ≺ N−1/2. Notice since G[ii] = O(1), we have the estimate

πi =
(
G−1

[ii] − ε[i]
)−1

= G[ii]

(
1− ε[i]G[ii]

)−1
= O≺(1).

Then we can expand (4.31) to get that

G[ii] = πi +O≺

(
N−1/2

)
. (4.32)

The 11 and 22 entries of (4.32) lead to the equations

m1 =
1

N

N∑
i=1

|di|2
[
−w

(
1 + |di|2m2

)
+
|z|2

1 +m1

]−1

+O≺

(
N−1/2

)
, (4.33)

m2 =
1

N

N∑
i=1

[
−w (1 +m1) +

|z|2

1 + |di|2m2

]−1

+O≺

(
N−1/2

)
. (4.34)

We claim that Imm1,2 ≥ C(logN)−1 with high probability for some C > 0.
Using the spectral decomposition (3.11), we note that for l > 1,

1

N

∑
|λk−E|≥lη

|E − λk|
(λk − E)2 + η2

≤ 1

lη
,

1

N

∑
|λk−E|≤lη

|E − λk|
(λk − E)2 + η2

≤ 1

N

∑
|λk−E|≤lη

lη

(λk − E)2 + η2
≤ lImm2.

Summing up these two inequalities and optimizing l, we get

|Rem2| ≤ 2

√
Imm2

η
. (4.35)

Assume that Imm2 ≤ C(logN)−1, then by (4.8) we also have Imm1 ≤ Cτ−1(logN)−1.
From (4.35), we get |m2| ≤ C(logN)−1/2. Together with the estimate m1 = O(1), we get∣∣∣∣∣−w (1 +m1) +

|z|2

1 + |di|2m2

∣∣∣∣∣ ≤ C with high probability. (4.36)

On the other hand

Im

[
−w (1 +m1) +

|z|2

1 + |di|2m2

]
≤ −Imw = −η, (4.37)
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where we used Im[|z|2/(1 + |di|2m2)] < 0 and

Im(wm1) = Im

[
1

N

N∑
k=1

|di|2|ξk(i)|2
(
−1 +

λk
λk − w

)]
≥ 0.

With (4.36) and (4.37), we get from (4.34) that Imm2 ≥ c′ with high probability for some
c′ > 0. This contradicts Imm2 ≤ C(logN)−1. Thus we must have Imm2 ≥ C(logN)−1

with high probability, which also implies Imm1 ≥ C(logN)−1 by (4.8).
Now we can proceed as in the proof of Lemma 4.5 and get that

m2 =
1 +m1

−w (1 +m1)
2

+ |z|2
+O≺

(
N−1/2

)
, Υ(w,m1) ≺ N1/2. (4.38)

We omit the details. Applying Lemma 3.10 to (4.38), we conclude |m1,2 −m1,2c| ≺ N−1/2

uniformly in η ≥ c. By (4.32), we get ‖(G−Π)[ii]‖ ≺ N−1/2 uniformly in η ≥ c and i ∈ I1.
Finally using (3.8), Lemma 3.5 and Lemma 3.6, we can prove the off-diagonal estimate;
see (4.51) below.

4.3 Proof of the weak entrywise local law

In this subsection, we finish the proof of Proposition 4.1 on domain D. We shall fix
the real part E of w = E + iη and decrease the imaginary part η. Recall that Lemma 4.5
is based on the condition θ ≤ |w|−1/2(logN)−1. So far this is established only for large η
in (4.30). We want to show that this condition also holds for small η by using a continuity
argument.

It is convenient to introduce the random function

v(w) = max
w′∈L(w)

θ(w′)|w′|1/2
(
N Imw′

|w′|1/2

)1/4

,

where L(w) is defined in (3.36). Fix a regular domain S, ε < ζ/4 and a large constant
D > 0. Our goal is to prove that with high probability there is a gap in the range of v, i.e.

P
(
v(w) ≤ N ε, v(w) > N3ε/4

)
≤ N−D+21 (4.39)

for all w ∈ S and large enough N ≥ N(ε,D).
Suppose v(w) ≤ N ε, then it is easy to verify that

θ(w′) ≤ C|w′|−1/2(logN)−1 (4.40)

for all w′ ∈ L(w). Hence {v(w) ≤ N ε} ⊂ Ξ(w′) for all w′ ∈ S ∩ L(w). Then by (4.19), for
all w′ ∈ S∩L(w), there exists an N0 ≡ N0(ε,D) such that

P

v(w) ≤ N ε,Υ(w′) >
N ε

|w′|1/2

√
|w′|1/2

N Imw′

 ≤ N−D, (4.41)

for all N > N0. Taking the union bound we get

P

(
v(w) ≤ N ε, max

w′∈L(w)
Υ(w′)

√
N Imw′

|w′|−1/2
> N ε

)
≤ N−D+10. (4.42)

Now consider the event

Ξ1 :=

{
v(w) ≤ N ε, max

w′∈L(w)
Υ(w′)

√
N Imw′

|w′|−1/2
≤ N ε

}
. (4.43)
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We have 1(Ξ1)Υ(w′) ≤ δ (w′) for all w′ ∈ L(w) with δ (w′) := Nε

|w′|1/2

√
|w′|1/2

NImw′ . We now

apply Lemma 3.10. If κ� 1 (recall (3.21)), then |w| ∼ 1 and we have

1(Ξ1)|m1(w′)−m1c(w
′)| ≤ C

√
δ(w′) ≤ CN ε/2

(
1

N Imw′

)1/4

for all w′ ∈ L(w); if κ ≥ c > 0 for some constant c > 0, then

1(Ξ1)|m1(w′)−m1c(w
′)| ≤ Cδ(w′) ≤ C N ε

|w′|1/2

(
|w′|1/2

N Imw′

)1/2

for all w′ ∈ L(w). Combining these two cases we get

1(Ξ1)|m1(w′)−m1c(w
′)| ≤ C N ε/2

|w′|1/2

(
|w′|1/2

N Imw′

)1/4

(4.44)

for all w′ ∈ L(w). By (4.19), we have

1(Ξ1)|m2(w′)−m2c(w
′)| ≺ 1(Ξ1)|m1(w′)−m1c(w

′)|+ 1(Ξ1)Ψθ ≺
N ε/2

|w′|1/2

(
|w′|1/2

N Imw′

)1/4

,

for all w′ ∈ S∩L(w). Together with (4.44), this shows that there exists an N1 ≡ N1(ε,D)

such that

P

(
v(w) ≤ N ε, max

w′∈L(w)
Υ(w′)

√
N Imw′

|w′|−1/2
≤ N ε,

max
w′∈L(w)

θ(w′)|w′|1/2
(
N Imw′

|w′|1/2

)1/4

> N3ε/4

)
≤ N−D (4.45)

for N ≥ max{N0, N1}. Adding (4.42) and (4.45), we get

P

v(w) ≤ N ε, max
w′∈L(w)

θ(w′)|w′|1/2
(
N Imw′

|w′|1/2

)1/4

> N3ε/4

 ≤ N−D+11.

Taking the union bound over L(w) we get (4.39) for all N ≥ max{N0, N1}.
Now we conclude the proof of Proposition 4.1 by combining (4.39) with the large η

estimate (4.30). We choose a lattice ∆ ⊂ S such that |∆| ≤ N20 and for any w ∈ S there
is a w′ ∈ ∆ with |w′ − w| ≤ N−9. Taking the union bound we get

P
(
∃w ∈ ∆ : v(w) ∈ (N3ε/4, N ε]

)
≤ N−D+41. (4.46)

Since v has Lipshcitz constant bounded by, say, N6, then we have

P
(
∃w ∈ S : v(w) ∈ (2N3ε/4, N ε/2]

)
≤ N−D+41. (4.47)

Combining with (4.30), we see that there exists N2 ≡ N2(ε,D) such that for all N > N2,

P
(
∀w ∈ S : v(w) ≤ 2N3ε/4

)
≥ 1− 2N−D+41.

Since ε and D are arbitrary, the above inequality shows that v(w) ≺ 1 uniformly in w ∈ S,
or

θ(w) ≺ 1

|w|1/2

(
|w|1/2

Nη

)1/4

. (4.48)
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In particular this shows that for all w ∈ S, the event Ξ holds with high-probability.
Now using (4.23) and (4.48), we get

∥∥G[ii] − π[i]c

∥∥ ≤ ∥∥G[ii] − π[i]

∥∥+
∥∥π[i] − π[i]c

∥∥ ≺ Ψθ + θ ≺ 1

|w|1/2

(
|w|1/2

Nη

)1/4

. (4.49)

To conclude Proposition 4.1, it remains to prove the estimate for the off-diagonal G[ij]

groups. Using (4.11), it is not hard to get that∥∥∥G[J]
[ii] − π[i]c

∥∥∥ ≺ 1

|w|1/2

(
|w|1/2

Nη

)1/4

(4.50)

for any |J | ≤ l with l ∈ N fixed. Thus we have
∥∥∥G[J]

[ii]

∥∥∥ = O
(
|w|−1/2

)
and

∥∥∥∥(G[J]
[ii]

)−1
∥∥∥∥ =

O
(
|w|1/2

)
with high probability. Let i 6= j ∈ I1, using (3.8) and the above diagonal

estimates, we get that

∥∥G[ij]

∥∥ ≺ |w|−1 |w|1/2√
N

+ |w|−1

∥∥∥∥∥∥
∑

k,l/∈{i,j}

H[ik]G
[ij]
[kl]H[lj]

∥∥∥∥∥∥ ≺ Ψθ ≺
1

|w|1/2

(
|w|1/2

Nη

)1/4

,

(4.51)

where we used Lemma 3.5 and Lemma 3.6 to obtain that

|w|−1

∥∥∥∥∥∥
∑

k,l/∈{i,j}

H[ik]G
[ij]
[kl]H[lj]

∥∥∥∥∥∥=

∥∥∥∥∥
(∑

k,l/∈{i,j}Xik̄G
[ij]

k̄l̄
X†
l̄j

∑
k,l/∈{i,j}Xik̄G

[ij]

k̄l
Xlj̄∑

k,l/∈{i,j}X
†
īk
G

[ij]

kl̄
X†
l̄j

∑
k,l/∈{i,j}X

†
īk
G

[ij]
kl Xlj̄

)∥∥∥∥∥ ≺ Ψθ.

(4.52)
Its proof is very similar to the proof of Lemma 4.4, so we omit the details.

4.4 Proof of the strong enterywise local law

In this section, we finish the proof of the (strong) entrywise local law and averaged
local law in Theorem 2.18 on domain D and under the condition |w|1/2 + |z|2 ≥ c. In
Lemma 4.5, we have proved an error estimate of the self-consistent equations of m1,2

linearly in Ψθ. The core part of the proof is to improve this estimate to quadratic in Ψθ.
For the sequence of random variables Z[i], we define the averaged quantities

[Z] =
1

N

N∑
i=1

π[i]Z[i]π[i], 〈Z〉 =
1

N

N∑
i=1

|di|2π[i]Z[i]π[i].

The following Lemma gives an improvement of Lemma 4.5.

Lemma 4.8. Fix |z|2 ≤ 1− τ . Then for w ∈ D,

m2 =
1 +m1

−w (1 +m1)
2

+ |z|2
+O≺

(
|w|1/2Ψ2

θ + ‖[Z]‖+ ‖〈Z〉‖
)
, (4.53)

and
Υ(w,m1) ≺ |w|1/2Ψ2

θ + ‖[Z]‖+ ‖〈Z〉‖. (4.54)

For w ∈ DL,

m2 =
1 +m1

−w (1 +m1)
2

+ |z|2
+O≺

(
(Nη)−1 + ‖[Z]‖+ ‖〈Z〉‖

)
, (4.55)

and
Υ(w,m1) ≺ (Nη)−1 + ‖[Z]‖+ ‖〈Z〉‖. (4.56)

Proof. The proof is almost the same as the one for Lemma 4.5, we only lay out the
difference. We first consider the case w ∈ D. By Proposition 4.1, the event Ξ holds with
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high probability. Hence without loss of generality, we may assume Ξ holds throughout
the following proof. Using (3.9), we get

1

N

∑
k∈I1

(
|dk|2 0

0 1

)(
G[kk] −G

[i]
[kk]

)
=

(
|di|2 0

0 1

)
G[ii]

N
+

1

N

∑
k 6=i

(
|dk|2 0

0 1

)
G[ki]G

−1
[ii]G[ik]. (4.57)

By Proposition 4.1, (3.31) and (4.51), we have∥∥∥G[ki]G
−1
[ii]G[ik]

∥∥∥ ≺ |w|1/2Ψ2
θ.

By Lemma 3.7, it is easy to verify that
∥∥G[ii]/N

∥∥ ≤ C|w|1/2Ψ2
θ. Plugging it into (4.57), we

get ∣∣∣m[i]
1,2 −m1,2

∣∣∣ ≺ |w|1/2Ψ2
θ. (4.58)

By (4.15) and (4.58), the error εb in (4.23) is

εb = O≺(|w|1/2Ψ2
θ)− π[i]Z[i]π[i]

[
1 +O≺(|w|1/2Ψθ)

]
= O≺(|w|1/2Ψ2

θ)− π[i]Z[i]π[i].

Then following the arguments in Lemma 4.5, we can prove the desired result. For
w ∈ DL, the proof is similar by using (4.4).

In the following lemma, we shall give stronger bounds on [Z] and 〈Z〉 by keeping
track of the cancellation effects due to the average over the index i. Its proof is given in
Appendix B.

Lemma 4.9. (Fluctuation averaging) Fix |z|2 ≤ 1 − τ . Suppose Φ and Φo are positive,
N -dependent deterministic functions satisfying N−1/2 ≤ Φ,Φo ≤ N−c for some constant
c > 0. Suppose moreover that Λ ≺ |w|−1/2Φ and Λo ≺ |w|−1/2Φo. Then for w ∈ D,

‖[Z]‖+ ‖〈Z〉‖ ≺ |w|−1/2
Φ2
o. (4.59)

Now we finish the proof of the entrywise local law and averaged local law on the
domain D. By Proposition 4.1, we can take

Φo = |w|1/2
√

Im(m1c +m2c) + |w|−3/8(Nη)−1/4

Nη
, Φ =

(
|w|1/2

Nη

)1/4

,

in Lemma 4.9, with Λo ≺ Ψθ ≺ |w|−1/2Φo and Λ ≺ Ψθ + θ ≺ |w|−1/2Φ. Then (4.54) gives

Υ(w,m1) ≺ |w|
1/2Im(m1c +m2c) + |w|1/4(Nη)−1/4

Nη
.

Using the stability Lemma 3.10, we get

|m1−m1c| ≺
|w|1/2Im(m1c +m2c)

Nη
√
κ+ η

+
|w|1/8

(Nη)5/8
≺ 1

Nη
+
|w|1/8

(Nη)5/8
≺ |w|−1/2

(
|w|1/2

Nη

)1/2+1/8

.

Here if
√
κ+ η ≥ (logN)−1, we use

|w|1/2Im(m1c +m2c)

Nη
√
κ+ η

≤ C logN

Nη
≺ 1

Nη
;

if
√
κ+ η ≤ (logN)−1, we have Im(m1c +m2c) = O(

√
κ+ η), which also gives that

|w|1/2Im(m1c +m2c)

Nη
√
κ+ η

≺ 1

Nη
.
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We then use (4.53) to get that

θ ≺ |m1 −m1c|+
|w|1/2Im(m1c +m2c) + |w|1/4(Nη)−1/4

Nη
≺ |w|−1/2

(
|w|1/2

Nη

)1/2+1/8

.

(4.60)
Repeating the previous steps with the new estimate (4.60), we get the bound

θ ≺ |w|−1/2

(
|w|1/2

Nη

)∑l
k=1 1/2k+1/2l+2

after l iterations. This implies the averaged local law θ ≺ (Nη)−1 since l can be arbitrarily
large. Finally as in (4.49) and (4.51), we have for i 6= j ∈ I1,

∥∥G[ii] − π[i]c

∥∥+
∥∥G[ij]

∥∥ ≺ Ψθ + θ ≺

√
Im(m1c +m2c)

Nη
+

1

Nη
.

This concludes the proof of the entrywise local law and averaged local law on domain D

when |w|1/2 + |z|2 ≥ c.
When w ∈ DL, we have proved the entrywise law (see the remark after (4.28)). Also

we can prove a similar estimate as in Lemma 4.9, which implies

m2 =
1 +m1

−w (1 +m1)
2

+ |z|2
+O≺

(
(Nη)−1

)
, Υ(w,m1) ≺ (Nη)−1. (4.61)

The averaged local law then follows from Lemma 3.10. We leave the details to the
reader.

4.5 Proof of Theorem 2.18 when |z| and |w| are small

In the previous proof, we did not include the case where |w|1/2 + |z|2 ≤ ε for some
sufficiently small constant ε > 0. The only reason is that Lemma 3.10 does not apply in
this case. We deal with this problem in this subsection.

The main idea of this subsection is to use a different set of self-consistent equations,
which has the desired stability when |w| and |z| are small. Multiplying (4.24) with |di|2
and summing over i, we get

1(Ξ)m1 = 1(Ξ)

[
1

N

n∑
i=1

lisi
−1−m1

w (1 + sim2) (1 +m1)− |z|2
+O≺ (Ψθ)

]
. (4.62)

Recall that Σ := DD† = D†D. We introduce a new matrix

H̃(w) :=

(
−wΣ−1 w1/2(X −D−1z)

w1/2(X −D−1z)† −wI

)
, (4.63)

and define G̃ := H̃−1. By Schur’s complement formula, the upper left block of G̃ is

G̃L =
[
(X −D−1z)(X −D−1z)† − wΣ−1

]−1
,

and the lower right block is

G̃R =
[
(X −D−1z)†Σ(X −D−1z)− w

]−1
=
[
(DX − z)†(DX − z)− w

]−1
= GR.

Now we write m1,2 in another way as

m1 =
1

N
Tr
[
D†
(
Y Y † − w

)−1
D
]

=
1

N
Tr G̃L, (4.64)
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m2 =
1

N
Tr G̃R =

1

N
Tr
[
(X −D−1z)†Σ(X −D−1z)− w

]−1

=
1

N
Tr
[
(X −D−1z)(X −D−1z)†Σ− w

]−1
=

1

N
Tr
(

Σ−1G̃L

)
. (4.65)

We apply the arguments in the proof of Lemma 4.5 to H̃, and obtain that

G̃−1
[ii] =

(
−w|di|−2 − wm2 −w1/2zd−1

i

−w1/2z̄d̄−1
i −w − wm1

)
+O≺(|w|Ψθ), (4.66)

from which we get that

1(Ξ)G̃ii = 1(Ξ)

[
−1−m1

w(|di|−2 +m2)(1 +m1)− |z|2|di|−2
+O≺(Ψθ)

]
.

Plugging this into (4.65), we get

1(Ξ)m2 = 1(Ξ)

[
1

N

n∑
i=1

li
si

−1−m1

w(s−1
i +m2)(1 +m1)− |z|2s−1

i

+O≺(Ψθ)

]
. (4.67)

We take the equations in (4.62) and (4.67) as our new self-consistent equations, namely,

1(Ξ)f1(m1,m2) = 1(Ξ)O(Ψθ), 1(Ξ)f2(m1,m2) = 1(Ξ)O(Ψθ), (4.68)

where

f1(m1,m2) := m1 +
1

N

∑
i

lisi
1 +m1

w (1 + sim2) (1 +m1)− |z|2
, (4.69)

f2(m1,m2) := m2 +
1

N

∑
i

li
1 +m1

w(1 + sim2)(1 +m1)− |z|2
. (4.70)

According to the following lemma, this system of self-consistent equations are stable
when |w| and |z|2 are small enough.

Lemma 4.10. Suppose that N−2|w|−1/2 ≤ δ(w) ≤ (logN)−1|w|−1/2 for w ∈ D. Suppose
u1,2 : D→ C are Stieltjes transforms of positive integrable functions such that

max {|f1(u1, u2)(w)| , |f2(u1, u2)(w)|} ≤ δ(w).

Then there exists an ε > 0 such that if |w|1/2 + |z|2 ≤ ε, we have

|u1(w)−m1c(w)|+ |u2(w)−m2c(w)| ≤ Cδ, (4.71)

for some constant C > 0 independent of w, z and N .

Proof. The proof depends on the estimate of the Jacobian at (m1c,m2c). By (3.26) and
(A.35), we have

m1c =
i
√
t0 +O(|w|1/2 + |z|2)√

w
, m2c =

it
−1/2
0 +O(|w|1/2 + |z|2)√

w
,

where t0 = (N−1
∑n
i=1 li/si)

−1. Then we can calculate that

det

(
∂1f1 ∂2f1

∂1f2 ∂2f2

)
u1,2=m1,2c

= det

(
1 +O(|z|2) t0 +O(|w|1/2 + |z|2)

O(|z|2) 2 +O(|w|1/2 + |z|2)

)
= 2+O(|w|1/2+|z|2).

We can conclude the stability by expanding f1,2(u1, u2) around (m1c,m2c) and using a
fixed point argument as in the proof of Lemma 3.10 in Section A.3.

With this stability lemma, we can repeat all the arguments in the previous subsections
to conclude the entrywise local law and averaged local law when |w|1/2 + |z|2 ≤ ε.
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5 Anisotropic local law when T is diagonal

In this section we prove the anisotropic local law in Theorem 2.18 when T is diagonal.
The basic idea of the proof follows from [4, section 5], and the core part of our proof is a
novel way to perform the combinatorics. By the Definition 2.17 (ii) and Definition 2.5 (ii),
it suffices to prove the following proposition for generalized entries of G.

Proposition 5.1. Fix |z|2 ≤ 1 − τ and suppose that the assumptions of Theorem 2.18
hold. Then for any regular domain S ⊆ D,

|〈u, (G(w)−Π(w))v〉| ≺ Ψ (5.1)

uniformly in w ∈ S and any deterministic unit vectors u,v ∈ CI .
It is equivalent to prove that∑

i,j∈I1

u†[i]
(
G[ij] −Π[ij]

)
v[j] ≺ Ψ, u[i] :=

(
ui
uī

)
, v[j] :=

(
vj
vj̄

)
. (5.2)

By the entrywise local law,∣∣∣∣∣∣
∑
i,j

u†[i]
(
G[ij] −Π[ij]

)
v[j]

∣∣∣∣∣∣
≤
∑
i

∥∥G[ii] −Π[ii]

∥∥ ∣∣u[i]

∣∣ ∣∣v[i]

∣∣+

∣∣∣∣∣∣
∑
i 6=j

u†[i]G[ij]v[j]

∣∣∣∣∣∣ ≺ Ψ +

∣∣∣∣∣∣
∑
i 6=j

u†[i]G[ij]v[j]

∣∣∣∣∣∣ .
Thus to show (5.2), it suffices to prove∣∣∣∣∣∣

∑
i 6=j

u†[i]G[ij]v[j]

∣∣∣∣∣∣ ≺ Ψ. (5.3)

Note that with the entrywise local law, one can only get that∣∣∣∣∣∣
∑
i 6=j

u†[i]G[ij]v[j]

∣∣∣∣∣∣ ≺ Ψ‖u‖1‖v‖1 ≤ NΨ,

using ‖u‖1 ≤ N1/2‖u‖2 and ‖v‖1 ≤ N1/2‖v‖2. In particular, this estimate of the `1 norm
is sharp when u,v are delocalized, i.e. their entries have size of order N−1/2.

The estimate (5.3) follows from the Markov’s inequality if we can prove the following
lemma.

Lemma 5.2. Suppose the assumptions in Proposition 5.1 hold. For any p ∈ 2N, we have

E

∣∣∣∣∣∣
∑
i6=j

u†[i]G[ij]v[j]

∣∣∣∣∣∣
p

≺ Ψp.

The proof of Lemma 5.2 is based on the polynomialization method developed in [4,
section 5]. For simplicity, we only consider the case with w ∈ D and |z|2 ≤ 1− τ in this
section. If w ∈ DL or 1 + τ ≤ |z|2 ≤ 1 + τ−1, the proof is almost the same.

5.1 Rescaling and partition of indices

For our purpose, it is convenient to define the rescaled matrix

R(J) := w1/2G(J), (5.4)

for any J ⊂ I with |J | ≤ l for some fixed l. Consequently we define the control parameter
Φ

Φ = |w|1/2 Ψ. (5.5)
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By the entrywise law, for w ∈ D,

R
(J)
[ii] = O≺(1),

(
R

(J)
[ii]

)−1

= O≺(1), R
(J)
[ij] = O≺(Φ) for i 6= j, (5.6)

under the above scaling. Now to prove Lemma 5.2, it is equivalent to prove

E

∣∣∣∣∣∣
∑
i 6=j

u†[i]R[ij]v[j]

∣∣∣∣∣∣
p

≺ Φp. (5.7)

We expand the product in (5.7) as∣∣∣∣∣∣
∑
i 6=j

u†[i]R[ij]v[j]

∣∣∣∣∣∣
p

=
∑

ik 6=jk∈I1

p/2∏
k=1

u†[ik]R[ikjk]v[jk] ·
p∏

k=p/2+1

u†[ik]R[ikjk]v[jk].

Formally, we regard {i1, ..., ip, j1, ..., jp} as the set of 2p (index) variables that take values
in I1. Let Bp be the collection of all partitions of {i1, ..., ip, j1, ..., jp} such that ik, jk are
not in the same block for all k = 1, ..., p. For Γ ∈ Bp, let n(Γ) be the number of its blocks
and define a set of I1-valued variables as

L(Γ) := {b1, ..., bn(Γ)}. (5.8)

Now it is convenient to regard Γ as a symbol-to-symbol function,

Γ : {i1, ..., ip, j1, ..., jp} → L(Γ), (5.9)

such that each Γ−1 (bk) is a block of the partition. Then we can rewrite the sum as∣∣∣∣∣∣
∑
i 6=j

u†[i]R[ij]v[j]

∣∣∣∣∣∣
p

=
∑

Γ∈Bp

∗∑
bl∈I1,

l=1,...,n(Γ)

p/2∏
k=1

u†[Γ(ik)]R[Γ(ik)Γ(jk)]v[Γ(jk)] ·
p∏

k=p/2+1

u†[Γ(ik)]R[Γ(ik)Γ(jk)]v[Γ(jk)],

(5.10)

where
∑∗ denotes the summation subject to the condition that the values of b1, ...bn are

ordered as b1 < b2 < . . . < bn. We pick one term from the above summation and denote

∆(Γ) :=

p/2∏
k=1

u†[Γ(ik)]R[Γ(ik)Γ(jk)]v[Γ(jk)] ·
p∏

k=p/2+1

u†[Γ(ik)]R[Γ(ik)Γ(jk)]v[Γ(jk)]. (5.11)

Notations: For any bk ∈ L, we can define a corresponding I2-valued variable b̄k in the
obvious way, and we denote

[L] := {b1, ..., bn, b1, ..., bn}. (5.12)

For notational convenience, we will also use letters i, j, k, l to denote the symbols in L.

5.2 String and string operators

During the proof we will frequently use the following resolvent identities for rescaled
matrix R. They follow immediately from Lemma 3.3.

Lemma 5.3 (Resolvent identities for R[ij] groups). For k /∈ J and i, j ∈ I1 \ J ∪ {k}, we
have
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R
[J]
[ij] = R

[Jk]
[ij] +R

[J]
[ik]

(
R

[J]
[kk]

)−1

R
[J]
[kj], (5.13)(

R
[J]
[ii]

)−1

=
(
R

[Jk]
[ii]

)−1

−
(
R

[J]
[ii]

)−1

R
[J]
[ik]

(
R

[J]
[kk]

)−1

R
[J]
[ki]

(
R

[Jk]
[ii]

)−1

, (5.14)(
R

[J]
[ii]

)−1

= w−1/2H
[J]
[ii] − w

−1
∑

l,l′ /∈J∪{i}

H
[J]
[il]R

[Ji]
[ll′]H

[J]
[l′i]. (5.15)

Furthermore, for i 6= j and L defined in (5.8), we have

R
[L\{ij}]
[ij] = R

[L\{ij}]
[ii] S[ij]R

[L\{j}]
[jj] , with S[ij] = −w−1/2H[ij] + w−1

∑
k,l/∈L

H[ik]R
[L]
[kl]H[lj].

(5.16)

In this section, we expand the R variables in ∆(Γ) using the identities in Lemma 5.3.
During the expansion, we need to distinguish carefully between an algebraic expression
and its value as a random variable.

Definition 5.4 (Strings). Let A be an alphabet containing all symbols that may appear

during the expansion, such as R[J]
[ij],

(
R

[J]
[ij]

)−1

, S[ij], u
†
[i] and v[j] for J ⊂ L(Γ). We define a

string s to be a formal expression consisting of the symbols from A, and denote by JsK
the random variable represented by it. Let M be the collection of all possible strings.
We denote an empty string by ∅.

Given a string s, after an expansion of R’s in it, we will get a different string s′.
However, they represent the same random variable JsK = Js′K. During the proof, we will
identify more elements of A (see the symbols in (5.32)).

To perform the expansions in a systematical way, we define the following operators

acting on strings. We call the symbols R[J]
[ij],

(
R

[J]
[ij]

)−1

to be maximally expanded if

J ∪ {i, j} = L. We call a string s to be maximally expanded if all the R symbols in s is
maximally expanded.

Definition 5.5 (String operators). (i) Define an operator τ (k)
0 for Ω ∈M, in the following

sense. Find the first R[J]
[ij] in Ω such that k /∈ J ∪ {i, j}, or the first

(
R

[J]
[ii]

)−1

such that

k /∈ J ∪ {i}. If R[J]
[ij] is found, replace it with R

[Jk]
[ij] ; if

(
R

[J]
[ii]

)−1

is found, replace it with(
R

[Jk]
[ii]

)−1

; if neither is found, τ (k)
0 (Ω) = Ω and we say that τ (k)

0 is trivial for Ω.

(ii) Define an operator τ
(k)
1 for Ω ∈ M, in the following sense. Find the first

R
[J]
[ij] in Ω such that k /∈ J ∪ {i, j}, or the first

(
R

[J]
[ii]

)−1

such that k /∈ T ∪ {i}. If

R
[J]
[ij] is found, replace it with R

[J]
[ik]

(
R

[J]
[kk]

)−1

R
[J]
[kj]; if

(
R

[J]
[ii]

)−1

is found, replace it with

−
(
R

[J]
[ii]

)−1

R
[J]
[ik]

(
R

[J]
[kk]

)−1

R
[J]
[ki]

(
R

[Jk]
[ii]

)−1

; if neither is found, τ (k)
1 (Ω) = ∅ and we say that

τ
(k)
1 is null for Ω.

(iii) Define an operator ρ for Ω ∈ M, in the following sense. Find each maximally
expanded off-diagonal R[L\{ij}]

[ij] in Ω and replace it with R[L\{ij}]
[ii] S[ij]R

[L\{j}]
[jj] . If nothing

is found, ρ(Ω) = Ω.

According to Lemma 5.3, for any Ω ∈M we have
r(
τ

(k)
0 + τ

(k)
1

)
(Ω)

z
= JΩK , Jρ(Ω)K = JΩK . (5.17)

Definition 5.6. Define the function Fd−max : M → N (where the subscript “d-max”
stands for “distance to being maximally expanded”) through

Fd−max

(
R

[J]
[ij]

∗)
= |L\ (J ∪ {i, j})| ,
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where ∗ could be 1 or −1, and

Fd−max(Ω) =
∑

R variables in Ω

Fd−max(R).

Define another function Foff : M → N with Foff(Ω) being the number of off-diagonal
symbols in Ω.

By off-diagonal symbols, we mean the terms of the form Ast with s /∈ {t, t̄} or A[ij]

with i 6= j, e.g. R
[J]
[ij] and S[ij] with i 6= j. Later we will define other types of off-

diagonal symbols (see (5.32)). Note that a R symbol is maximally expanded if and only if
Fd−max(R) = 0 and a string Ω is maximally expanded if and only if Fd−max(Ω) = 0. The
next two lemmas are almost trivial by Definition 5.5.

Lemma 5.7. Fix k ∈ L. If τ (k)
0 (Ω) = Ω and τ (k)

1 (Ω) = ∅,

Fd−max

(
τ

(k)
0 (Ω)

)
= Fd−max(Ω), Fd−max

(
τ

(k)
1 (Ω)

)
= 0; (5.18)

otherwise,

Fd−max

(
τ

(k)
0 (Ω)

)
= Fd−max(Ω)− 1, Fd−max

(
τ

(k)
1 (Ω)

)
≤ Fd−max(Ω) + 4n(Γ). (5.19)

For ρ, we have

Fd−max (ρ(Ω)) = Fd−max(Ω) + a, (5.20)

where a is the number of maximally expanded off-diagonal R’s in Ω.

Lemma 5.8. Fix k ∈ L. For any Ω ∈M, we have

Foff

(
τ

(k)
0 (Ω)

)
= Foff(Ω), Foff (ρ(Ω)) = Foff(Ω), (5.21)

and

Foff(Ω) + 1 ≤ Foff

(
τ

(k)
1 (Ω)

)
≤ Foff(Ω) + 2 if τ

(k)
1 (Ω) 6= ∅. (5.22)

5.3 Expansion of the strings

For simplicity of notations, throughout the rest of this section we omit the complex
conjugates on the right hand side of (5.11) (if we keep the complex conjugates, the proof
is the same but with slightly heavier notations). Suppose the right hand side of (5.11)
is represented by a string Ω∆. Given a binary word w = a1a2...am with ai ∈ {0, 1}, we
define the operation

(Ω∆)w := ρτ (bm)
am · · · ρτ (b2)

a2
ρτ (b1)
a1

(Ω∆) (5.23)

where bqn+r := br (recall (5.8)) for any 1 ≤ r ≤ n and q ∈ N. So a binary word w uniquely
determines an operator composition. By (5.17), J(Ω∆)w0K + J(Ω∆)w1K = J(Ω∆)wK and so
we get ∑

|w|=m

J(Ω∆)wK = JΩ∆K

for any m ≥ 1, where |w| denotes the length of w.

Lemma 5.9. Given any w such that |w| = (n2 + 1)(p+ 6l0) and (Ω∆)w 6= ∅, then either
Foff((Ω∆)w) ≥ l0 := (8/ζ + 2) p, or (Ω∆)w is maximally expanded.

Proof. We use m0 to denote the number of 0’s in w, and m1 to denote the number of
1’s. Furthermore, we use m(0)

0 to denote the number of 0’s corresponding to the trivial

τ0’s, and m(1)
0 to denote the number of 0’s corresponding to the non-trivial τ0’s. Assume
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Foff((Ω∆)w) < l0 and (Ω∆)w is not maximally expanded. By (5.21) and (5.22), we have
m1 ≤ l0 − p ≤ l0. By (5.18)-(5.20), we have

Fd−max((Ω∆)w) ≤ Fd−max(Ω∆) + l0 + 4nm1 −m(1)
0 .

Then with Fd−max(Ω∆) = np, we get a rough bound m(1)
0 +m1 < n(p+6l0). By pigeonhole

principle, there are at least n 0’s in a row in w that correspond to trivial τ0’s. This
indicates that (Ω∆)w is maximally expanded, which gives a contradiction.

Lemma 5.10. There exists constants Cp,l0 , Cp,ζ > 0 such that

∑
Γ∈Bp

∗∑
bl∈I1,

l=1,...,n(Γ)

∣∣∣∣∣∣∣∣∣E
∑

|w|=(n2+1)(p+6l0),
Foff ((Ω∆(Γ))w)≥l0

q
(Ω∆(Γ))w

y

∣∣∣∣∣∣∣∣∣ ≺ Cp,l0N
2pΦl0 ≤ Cp,ζΦp. (5.24)

Proof. The first bound is due to the fact that each summand is of the order O≺(Φl0) and
there are at most N2p of them. For the second bound, we used Φ ≤ CN−ζ/2.

This lemma shows that all the strings with sufficiently many off-diagonal symbols
contribute at most Φp. It remains to handle the maximally expanded strings. Define a
diagonal symbol as

S[ii] := −
(

0 diXīi

d̄iX
†
īi

0

)
+ w−1

∑
k,l/∈L

H[ik]R
[L]
[kl]H[li], (5.25)

such that (
R

[L\{i}]
[ii]

)−1

=

(
−w1/2 −z
−z̄ −w1/2

)
− S[ii]. (5.26)

Notice all the R symbols in a maximally expanded string are diagonal. We taylor expand
R

[L\{i}]
[ii] as

R
[L\{i}]
[ii] =

[
w−1/2π−1

[i]c +
(
S[ii] −Bi

)]−1

=

l0−1∑
k=0

π̃ic
[(
S[ii] −Bi

)
π̃ic
]k

+O≺
(
Φl0
)
, (5.27)

where π̃[i]c := w1/2π[i]c, Bi :=

(
w1/2|di|2m2c 0

0 w1/2m1c

)
, and for the error term,

S[ii] −Bi = w−1/2Z
[L\{i}]
[i] + w1/2

(
|di|2(m2c −m[L]

2 ) 0

0 m1c −m[L]
1

)
≺ Φ

by (4.15) and the averaged local law. Now for all maximally expanded (Ω∆)w with
|w| = (n2 + 1)(p+ 6l0), denote by σ J(Ω∆)wK the expression after plugging in (5.26) and
(5.27) without the tail terms. Similar to Lemma 5.10, we have

∑
Γ∈Bp

∗∑
bl∈I1,

l=1,...,n(Γ)

∣∣∣∣∣∣∣∣∣E
∑

|w|=(n2+1)(p+6l0),
(Ω∆)w maximally expanded

(q
(Ω∆(Γ))w

y
− σ

q
(Ω∆(Γ))w

y)
∣∣∣∣∣∣∣∣∣ ≺ Cp,ζΦ

p.

From the above bound and Lemmas 5.9, 5.10, we see that to prove (5.7), it suffices to
show

∑
Γ∈Bp

∗∑
bl∈I1,

l=1,...,n(Γ)

∣∣∣∣∣∣∣∣∣E
∑

|w|=(n2+1)(p+6l0),
(Ω∆)w maximally expanded

σ
q
(Ω∆(Γ))w

y

∣∣∣∣∣∣∣∣∣ ≺ Cp,ζΦ
p. (5.28)
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We write σ J(Ω∆)wK as a sum of monomials in terms of S[ij]:

σ J(Ω∆)wK =
∑
i

M(w,∆(Γ), i), (5.29)

where i is an index to label these monomials. Note that after plugging (5.29) into (5.28),
the number of summands M(w,∆(Γ), i) inside the expectation depends only on p and ζ.
Thus to show (5.28), it suffices to prove the following lemma.

Lemma 5.11. Fix any Γ ∈ Bp and binary word w with |w| = (n2 + 1)(p+ 6l0). Suppose
(Ω∆)w is maximally expanded. Let M(w,∆(Γ)) be a monomial in σ

q
(Ω∆(Γ))w

y
. Then we

have
∗∑

bl∈I1,l=1,...,n(Γ)

|EM(w,∆(Γ))| ≺ Cp,ζΦp (5.30)

for some constant Cp,ζ that only depends on p and ζ.

For the rest of this section, we fix a Γ ∈ Bp and a maximally expanded (Ω∆(Γ))w with
|w| = (n2 + 1)(p+ 6l0). Then we fix a monomial M(w,∆(Γ)) in σ

q
(Ω∆(Γ))w

y
. Let ΩM be

the string form of M(w,∆(Γ)) in terms of S[ij]. It is not hard to see that

Foff (ΩM ) = Foff ((Ω∆)w) . (5.31)

Now we decompose S[ij] as

S[ij] = SXij̄ + SXīj + SRij̄ + SRij + SRīj̄ + SRīj , (5.32)

where we define the following symbols in A:

SXij̄ := diXij̄

(
0 1

0 0

)
, SXīj := d̄iX

†
īj

(
0 0

1 0

)
, (5.33)

SRij̄ :=
∑
k,l/∈L

didlXik̄Xlj̄

(
0 R

[L]

k̄l

0 0

)
, SRij :=

∑
k,l/∈L

did̄lXik̄X
†
l̄j

(
R

[L]

k̄l̄
0

0 0

)
, (5.34)

SRīj̄ :=
∑
k,l/∈L

d̄idlX
†
īk
Xlj̄

(
0 0

0 R
[L]
kl

)
, SRīj :=

∑
k,l/∈L

d̄id̄lX
†
īk
X†
l̄j

(
0 0

R
[L]

kl̄
0

)
. (5.35)

We expand the S[ij]’s in M(w,∆(Γ)) using (5.32), and write M(w,∆(Γ)) as a sum of
monomials in terms of SXst and SRst:

M(w,∆(Γ)) =
∑
i

Q(w,∆(Γ), i), (5.36)

where i is an index to label these monomials. Again it is not hard to see that

Foff (ΩQ) = Foff (ΩM ) = Foff ((Ω∆)w) . (5.37)

Since the number of summands in (5.36) is independent of N , to prove (5.30) it suffices
to show

∗∑
bl∈I1,l=1,...,n(Γ)

|EQ(w,∆(Γ))| ≺ Cp,ζΦp (5.38)

for any monomial Q(w,∆(Γ)) in (5.36). Throughout the following, we fix a Q(w,∆(Γ))

with nonzero expectation, and denote by ΩQ the string form of Q(w,∆(Γ)) in terms of
SXst and SRst. Notice the R variables in SRst are maximally expanded. As a result, the
SXst variables are independent of SRst variables in Q(w,∆(Γ)). Therefore we make the
following observation: if SXst appears as a symbol in ΩQ, then ΩQ contains at least two of
them.
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Definition 5.12. Recall Γ defined in (5.9). Let h be the number of blocks of Γ whose
size is 1, i.e.

h :=

n(Γ)∑
l=1

1
(∣∣Γ−1(bl)

∣∣ = 1
)
. (5.39)

For l = 1, ..., n, define

Il :=
∣∣{i1, . . . , ip} ∩ Γ−1(bl)

∣∣ , Jl :=
∣∣{j1, . . . , jp} ∩ Γ−1(bl)

∣∣ .
Lemma 5.13. Suppose for any b1, ..., bn taking distinct values in I1,

|EQ(w,∆(Γ))| ≺ CN−h/2Φp
n∏
l=1

∣∣u[bl]

∣∣Il ∣∣v[bl]

∣∣Jl (5.40)

holds for some constant C independent of N . Then the estimate (5.38) holds.

Proof. By Cauchy-Schwarz inequality,

N∑
k=1

∣∣u[k]

∣∣a ∣∣v[k]

∣∣b ≤{N1/2 if a+ b = 1

1 if a+ b ≥ 2
.

Then using h =
n∑
l=1

1 (Il + Jl = 1) , we get

∗∑
bl∈I1,l=1,...,n(Γ)

|EQ(w,∆(Γ))| ≺ CΦpN−h/2
n∏
l=1

∑
bl∈I1

∣∣u[bl]

∣∣Il ∣∣v[bl]

∣∣Jl ≤ CΦp.

Hence it suffices to prove (5.40). The key is to extract the N−h/2 factor from
EQ(w,∆(Γ)). For this purpose, we need to keep track of the indices in L during
the expansion.

Definition 5.14. Define a function Fin : L×M→ N with Fin(l,Ω) giving the number of
times l or l̄ appears as an index of an off-diagonal R or S symbol in Ω.

The following lemma follows immediately from Definition 5.5 and the expansions we
have done to obtain ΩQ from (Ω∆)w.

Lemma 5.15. (1) For any string Ω, if τ (k)
0 is not trivial for Ω, then

Fin

(
l, τ

(k)
0 (Ω)

)
= Fin(l,Ω), Fin

(
l, τ

(k)
1 (Ω)

)
= Fin(l,Ω) + a, a ∈ {0, 2}. (5.41)

(2) For any string Ω,
Fin (l, ρ(Ω)) = Fin(l,Ω). (5.42)

(3) For any maximally expanded (Ω∆)w,

Fin(l,ΩQ) = Fin(l, (Ω∆)w). (5.43)

Let ΩXQ be the substring of ΩQ containing only SX symbols, and ΩRQ be the substring
of ΩQ containing only SR symbols. Define

V := {l ∈ L| Fin(l,Ω∆) = 1}, (5.44)

and
V0 := {l ∈ L| Fin(l,Ω∆) = 1 and Fin(l,ΩXQ ) = 0}, (5.45)

V1 := {l ∈ L| Fin(l,Ω∆) = 1 and Fin(l,ΩXQ ) ≥ 2}. (5.46)

Recall the observation above Definition 5.12, we have V = V0 ∪ V1 and

h = |V| = |V0|+ |V1|.
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Let nX be the number of off-diagonal SX symbols in ΩXQ and nR be the number of off-
diagonal SR symbols in ΩRQ. Note that no := nX + nR is the total number of off-diagonal
symbols in ΩQ.

5.4 Introduction of graphs and conclusion of the proof

We introduce graphs to conclude the proof of (5.40). We use a connected graph to
represent the string ΩQ, call it by GQ0. The indices in [L] are represented by black nodes
in GQ0. The SXst or SRst symbols in ΩQ are represented by edges connecting the nodes
s and t. We also define colors for the nodes and edges, where the color set for nodes
is {black, white} and the color set for edges is {SX , SR, X,R}. In GQ0, all the nodes are
black, all SX edges are assigned SX color and all SR edges are assigned SR color. We
show a possible graph in Fig. 3. In this subsection, we identify an index with its node
representation, and a symbol with its edge representation.

Definition 5.16. Define function deg on the nodes set [L] such that deg(l) gives the
number of SR edges connecting to the node l.

By Lemma 5.15, we see that for any l ∈ V0,

Fin(l,ΩQ) ≡ deg(l) + deg(l̄) ≡ 1 (mod 2). (5.47)

Hence

|V0| =
∑
l∈V0

[Fin (l,ΩQ) mod 2] ≤
∑
l∈V0

[
(deg(l) mod 2) +

(
deg(l̄) mod 2

)]
. (5.48)

Now we expand the SR edges. Take the SR
ij̄

edge as an example (recall (5.34)). We

replace the SR
ij̄

edge with an R-group, defined as following. We add two white colored

nodes to represent the summation indices k̄, l /∈ [L], two X-colored edges to represent

Xik̄ and Xlj̄ , and an R-colored edge connecting k̄ and l to represent

(
0 R

[L]

k̄l

0 0

)
. We call

the subgraph consisting of the three new edges and their nodes an R-group. If i = j,
we call it a diagonal R-group; otherwise, call it an off-diagonal R-group. We expand
all the SR edges in GQ0 into R-groups and call the resulting graph GQ1. For example,
after expanding the SR edges in Fig. 3, we get the graph in Fig. 4. In the graph GQ1,
the R edges, X edges and SX edges are mutually independent, since the R symbols are
maximally expanded, and the white nodes are different from the black nodes.

b1

b1

b2

b2

b3

b3

SR

SX

Figure 3: An example of the graph GQ0.

Notice that each white node represents a summation index. As we have done for the
black nodes, we first partition the white nodes into blocks and then assign values to the
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b1

b1

b2

b2

b3

b3

R

X

SX

Figure 4: The resulting graph GQ1 after expanding each SR in Fig. 3 into R-groups.

blocks when doing the summation. Let W be the set of all white nodes in GQ1, and let
W be the collection of all partitions of W . Fix a partition γ ∈ W and denote its blocks by
W1, ...,Wm(γ). If two white nodes of some off-diagonal R-group happen to lie in the same
block, then we merge the two nodes into one diamond white node (Fig. 5a). All the other
white nodes are called normal (Fig. 5b). Let n(d)

R be the number of diamond nodes (which
is ≤ the number of diagonal R-edges in GQ1). Then we trivially have (recall Definition
5.16)

# of white nodes = −n(d)
R +

n∑
k=1

[
deg (bk) + deg(b̄k)

]
. (5.49)

(a) Diamond white node.

(b) Normal white nodes.

Figure 5: Two types of white nodes

By (5.48), there are at least |V0| black nodes with odd deg in [V0] (where [V0] is defined
in the obvious way). WLOG, we may assume these nodes are b1, ..., b|V0|. To have nonzero
expectation, each white block must contain at least two white nodes. Therefore for each
k = 1, ..., |V0|, there exists a block connecting to bk which contains at least 3 white nodes.
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Call such a block W (bk), and denote by A(bk) the set of the adjacent white nodes to bk
in W (bk). Be careful that the W (bk)’s or A(bk)’s are not necessarily distinct. WLOG, let
W1, ...,Wd be the distinct blocks among all W (bk)’s. Define

V00 := {bk| A(bk) has no normal white nodes, 1 ≤ k ≤ |V0|},

and
V01 := {bk| A(bk) has at least one normal white node, 1 ≤ k ≤ |V0|}.

The following lemma gives the key estimates we need.

Lemma 5.17. For any partition γ ∈ W,

m(γ) ≤
−|V00| − |V01|/2− n(d)

R +
∑n
k=1

[
deg (bk) + deg(b̄k)

]
2

, (5.50)

and
nX + nR ≥ p+ |V1|+ |V00|, nX ≥ |V1|, n

(d)
R ≥ |V00|. (5.51)

Proof. The second inequality of (5.51) can be proved easily through

|V1| ≤
∣∣{k ∈ L|Fin(k,ΩXQ ) ≥ 2}

∣∣ ≤ nX .
Notice for bk ∈ V0, A(bk) contains at least three diamond white nodes, while each of the

white node is shared by another bl. Thus we trivially have |V00| ≤ n(d)
R .

Now we prove (5.50). A diamond white node is connected to two black nodes and a
normal white node is connected to one black node. Hence a diamond white node belongs
to two sets A(bk1), A(bk2), and a normal white node belongs to exactly one set A(bk).
Therefore for each i = 1, ..., d, if Wi contains exactly one A(bk), then

|Wi| ≥ 3 ≥ 2 + 1V01
(bk) +

1V00
(bk)

2
.

Otherwise if Wi contains more than one A(bk), then

|Wi| ≥
∑

bk:A(bk)⊆Wi

(
2 · 1V01

(bk) +
3

2
· 1V00

(bk)

)
≥ 2 +

∑
bk:A(bk)⊆Wi

(
1V01

(bk) +
1V00(bk)

2

)
.

Here the first inequality can be understood as following. For each black node bk with
A(bk) ⊆Wi, we count the number of white nodes in A(bk) and add them together. During
the counting, we assign weight-1 to a normal white node and weight-1/2 to a diamond
white node (since it is shared by two different black nodes). If bk ∈ V00, there are at
least three diamond white nodes in A(bk) with total weight ≥ 3/2; if bk ∈ V01, there are
at least one normal white node and two other white nodes in A(bk) with total weight
≥ 2. Thus

∑
bk:A(bk)⊆Wi

(2 · 1V01
(bk) + 3/2 · 1V00

(bk)) is smaller than the number of white
nodes in Wi. Then summing |Wi| over i, we get

d∑
i=1

|Wi| ≥ 2d+ |V01|+
|V00|

2
.

For the other m− d blocks, each of them contains at least two white nodes. Therefore

2m+ |V01|+
|V00|

2
≤

d∑
i=1

|Wi|+ 2(m− d) ≤ −n(d)
R +

n∑
k=1

[
deg (bk) + deg(b̄k)

]
,

where we used (5.49) in the last step. This proves (5.50).
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For bk ∈ V00, A(bk) contains at least three white nodes from off-diagonal R-groups,

V00 ⊆{bk ∈ L| Fin(bk,Ω∆) = 1 and Fin(bk,Ω
R
Q) ≥ 3} =: V2.

Recall Lemma 5.15, only τ (k)
1 can increase Fin. Thus w contains τ (bk)

1 for each bk ∈ V1∪V2

(recall the definition of V1 in (5.46)). Therefore by (5.22), (5.37) and the fact that V00

and V1 are disjoint, we have

nX + nR = Foff((Ω∆)w) ≥Foff(Ω∆) + |V1 ∪ V2| ≥ p+ |V1|+ |V00|.

This proves the first inequality of (5.51).

Now we prove (5.40). By (2.3) and (5.6), a diagonal R edge contributes 1, an off-
diagonal R edge contributes Φ, and an SX or X edge contributes N−1/2. Denote

U =

n∏
l=1

∣∣u[bl]

∣∣Il ∣∣v[bl]

∣∣Jl .
Then using Lemma 2.21, we get

|EQ(w,∆(Γ))|

≺ CU
(
N−1/2

)nX ∑
γ∈W

∗∑
γ(W1),...,γ(Wm)∈I \L

ΦnR−n
(d)
R

n∏
k=1

(
N−1/2

)deg(bk)+deg(b̄k)

≤ CUN−nX/2
∑
γ∈W

Nm−

n∑
k=1

deg(bk)+deg(b̄k)

2 ΦnR−n
(d)
R

≤ CUN−nX/2
∑
γ∈W

N
−|V01|−|V00|/2−n(d)

R
2 ΦnR−n

(d)
R

≤ CUN−h/2
∑
γ∈W

N−(nX−|V1|)/2N−(n
(d)
R −|V00|)/2ΦnR−n

(d)
R

≤ CUN−h/2
∑
γ∈W

ΦnX+nR−|V1|−|V00| ≤ CUN−h/2Φp,

where in the third step we used (5.50), in the fourth step h = |V| = |V1|+ |V00|+ |V01|,
in the fifth step N−1/2 ≤ Φ and (5.51), and in the last step (5.51). Thus we have proved
(5.40), which concludes the proof of Proposition 5.1.

6 Anisotropic local law: self-consistent comparison

In this section we prove Theorem 2.19. We first prove the anisotropic and averaged lo-
cal laws under the vanishing third moment assumption (2.23). When η ≥ N−1/2+ζ |m2c|−1,
the anisotropic and averaged local laws can be established without assuming (2.23). For
convenience, we only consider the case with w ∈ D and |z|2 ≤ 1− τ in this section. The
proof for the other cases is very similar.

Following the notations in the arguments between Theorems 2.18 and 2.19, we have

H(TX − z, w) = T

(
−w(D†D)−1 w1/2(V1X − (UD)−1z)

w1/2(V1X − (UD)−1z)† −wI

)
T
†
,

T :=

(
UD 0

0 I

)
. (6.1)
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Now we define

G(w) := |w|1/2
(

−w(D†D)−1 w1/2
(
V1X − (UD)−1z

)
w1/2

(
V1X − (UD)−1z

)† −wI

)−1

= |w|1/2T †GT.

(6.2)
Since T is invertible and ‖T‖ + ‖T−1‖ ≤ τ−1 by (2.4), to prove the anisotropic law in
Theorem 2.19, it suffices to show that for all deterministic unit vectors u,v ∈ CI ,〈

u,
(
G(w)− Π̃(w)

)
v
〉
≺ Φ(w), (6.3)

where

Π̃(w) := |w|1/2T †Π(w)T , Φ(w) := |w|1/2Ψ(w). (6.4)

Notice we have ‖Π̃‖ = O(1) by (3.31). By the anisotropic local law in Theorem 2.18
and the remark around (2.50), if X = XGauss is Gaussian, then (6.3) holds. Hence for a
general X, it suffices to prove that〈

u,
(
G(X,w)− G(XGauss, w)

)
v
〉
≺ Φ(w). (6.5)

Similar to Lemma 3.5, we can prove the following estimates for G.

Lemma 6.1. For i ∈ IM1 , we define vi = V1ei ∈ CI1 , i.e. vi is the i-th column vector of
V1. Let u ∈ CI1 and w ∈ CI2 , then we have for some constant C > 0,∑

µ∈I2

|Gwµ|2 = |w|1/2 ImGww

η
, (6.6)

∑
i∈IM1

|Guvi |
2 ≤ C|w|1/2 ImGuu

η
, (6.7)

∑
i∈IM1

|Gwvi |
2 ≤ C

(
|w|−1/2 |Gww|+ |w|1/2

ImGww

η

)
, (6.8)

∑
µ∈I2

|Guµ|2 ≤ C
(
|w|−1/2 |Guu|+ |w|1/2

ImGuu
η

)
. (6.9)

6.1 Self-consistent comparison

Our proof basically follows the arguments in [24, Section 7] with some minor modifi-
cations. Thus we will omit some details during the proof. By polarization, it suffices to
prove the following proposition. In fact, we can obtain the more general bound (6.3) by
applying (6.10) to the vectors u + v and u + iv, respectively.

Proposition 6.2. Fix |z|2 ≤ 1 − τ and suppose that the assumptions of Theorem 2.19
hold. If (2.23) holds or η ≥ N−1/2+ζ |m2c|−1, then for any regular domain S ⊆ D,〈

v,
(
G(w)− Π̃(w)

)
v
〉
≺ Φ(w) (6.10)

uniformly in w ∈ S and any deterministic unit vectors v ∈ CI .
We first assume that (2.23) holds. Then we will show how to modify the arguments

to prove the η ≥ N−1/2+ζ |m2c|−1 case. The proof consists of a bootstrap argument from
larger scales to smaller scales in multiplicative increments of N−δ, where

δ ∈
(

0,
ζ

2C0

)
, (6.11)
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with C0 > 0 being a universal constant that will be chosen large enough in the proof. For
any η ≥ |m1c|−1

N−1+ζ , we define

ηl := ηNδl for l = 0, ..., L− 1, ηL := 1. (6.12)

where L ≡ L(η) := max
{
l ∈ N| ηNδ(l−1) < 1

}
. Note that L ≤ 2δ−1.

By (3.13), the function w 7→ G(w)− Π̃(w) is Lipschitz continuous in S with Lipschitz
constant bounded by CN3. Thus to prove (6.10) for all w ∈ S, it suffices to show that
(6.10) holds for all w in some discrete but sufficiently dense subset Ŝ ⊂ S. We will use
the following discretized domain Ŝ.

Definition 6.3. Let Ŝ be an N−10-net of S such that |Ŝ| ≤ N20 and

E + iη ∈ Ŝ⇒ E + iηl ∈ Ŝ for l = 1, ..., L(η).

The bootstrapping is formulated in terms of two scale-dependent properties (Am)
and (Cm) defined on the subsets

Ŝm :=
{
w ∈ Ŝ | Imw ≥ N−δm

}
.

(Am) For all w ∈ Ŝm, all deterministic unit vector v, and all X satisfying (2.2)-(2.3), we
have

ImGvv(w) ≺ |w|1/2Im [m1c(w) +m2c(w)] +NC0δΦ(w). (6.13)

(Cm) For all w ∈ Ŝm, all deterministic unit vector v, and all X satisfying (2.2)-(2.3), we
have ∣∣∣Gvv(w)− Π̃vv(w)

∣∣∣ ≺ NC0δΦ(w). (6.14)

It is trivial to see that property (A0) holds. Moreover, it is easy to observe the following
result.

Lemma 6.4. For any m, property (Cm) implies property (Am).

Proof. This result follows from (3.33).

The key step is the following induction result.

Lemma 6.5. For any 1 ≤ m ≤ 2δ−1, property (Am−1) implies property (Cm).

Combining Lemmas 6.4 and 6.5, we conclude that (6.14) holds for all w ∈ Ŝ. Since δ
can be chosen arbitrarily small under the condition (6.11), we conclude that (6.10) holds
for all w ∈ Ŝ, and Proposition 6.2 follows. What remains now is the proof of Lemma 6.5.
Denote

Fv(X,w) =
∣∣∣Gvv(X,w)− Π̃vv(w)

∣∣∣ . (6.15)

By Markov’s inequality, it suffices to prove the following lemma.

Lemma 6.6. Fix p ∈ 2N and m ≤ 2δ−1. Suppose that the assumptions of Proposition 6.2,
(2.23) and property (Am−1) hold. Then we have

EF pv (X,w) ≤
(
NC0δΦ(w)

)p
(6.16)

for all w ∈ Ŝm and all deterministic unit vectors v.

In the following, we focus on proving Lemma 6.6. First, in order to make use of the
assumption (Am−1), which has spectral parameters in Ŝm−1, to get some estimates for
spectral parameters in Ŝm, we shall use the following rough bounds for Gxy.
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Lemma 6.7. For any w = E + iη ∈ S and x,y ∈ CI , we have

∣∣∣Gxy(w)− Π̃xy(w)
∣∣∣ ≺N2δ

L(η)∑
l=1

[ImGx1x1
(E + iηl) + ImGx2x2

(E + iηl)

+ImGy1y1
(E + iηl) + ImGy2y2

(E + iηl)] + ‖x‖2‖y‖2,

where x =

(
x1

x2

)
and y =

(
y1

y2

)
for x1,y1 ∈ CI1 and x2,y2 ∈ CI2 , and ηl is defined

in (6.12).

Proof. The proof is similar to the one for [24, Lemma 7.12].

Recall that for a given family of complex square random matrices A, we use A = O≺(ζ)

to mean |〈v, Aw〉| ≺ ζ‖v‖2‖w‖2 uniformly for all deterministic vectors v and w (see
Definition 2.5 (ii)).

Lemma 6.8. Suppose (Am−1) holds, then

G(w)− Π̃(w) = O≺(N2δ) (6.17)

and

ImGvv ≤ N2δ
[
|w|1/2Im (m1c(w) +m2c(w)) +NC0δΦ(w)

]
(6.18)

for all w ∈ Ŝm and all deterministic unit vector v.

Proof. Let w = E + iη ∈ Ŝm. Then E + iηl ∈ Ŝm−1 for l = 1, . . . , L(η), and (6.13) gives
ImGvv(w) ≺ 1. The estimate (6.17) now follows immediately from Lemma 6.7. To prove
(6.18), we remark that if s(w) is the Stieltjes transform of any positive integrable function
on R, the map η 7→ ηIm s(E + iη) is nondecreasing and the map η 7→ η−1Im s(E + iη) is
nonincreasing. We apply them to |w|−1/2Im Gvv(E + iη) and Imm1,2c(E + iη) to get for

w1 = E + iη1 ∈ Ŝm−1,

ImGvv(w) ≤ Nδ |w|1/2

|w1|1/2
ImGvv(w1)

≺ Nδ

[
|w|1/2Im (m1c(w1) +m2c(w1)) +NC0δ

|w|1/2

|w1|1/2
Φ(w1)

]
≤ N2δ

[
|w|1/2Im (m1c(w) +m2c(w)) +NC0δΦ(w)

]
,

where we used Φ(w) := |w|1/2Ψ(w) and the fact that η 7→ Ψ(E + iη) is nonincreasing,
which is clear from the definition (2.45).

Now we apply the self-consistent comparison method introduced in [24, Section 7] to
prove Lemma 6.6. To organize the proof, we divide it into two small subsections.

6.1.1 Interpolation and expansion

Definition 6.9 (Interpolating matrices). Introduce the notation X0 := XGauss and X1 :=

X. Let ρ0
iµ and ρ1

iµ be the laws of X0
iµ and X1

iµ, respectively, for i ∈ IM1 and µ ∈ I2. For
θ ∈ [0, 1], we define the interpolated law

ρθiµ := (1− θ)ρ0
iµ + θρ1

iµ.
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We shall work on the probability space consisting of triples (X0, Xθ, X1) of independent
IM1 × I2 random matrices, where the matrix Xθ = (Xθ

iµ) has law∏
i∈IM1

∏
µ∈I2

ρθiµ(dXθ
iµ). (6.19)

For λ ∈ R, i ∈ IM1 and µ ∈ I2, we define the matrix Xθ,λ
(iµ) through

(
Xθ,λ

(iµ)

)
jν

:=

{
Xθ
iµ if (j, ν) 6= (i, µ)

λ if (j, ν) = (i, µ)
.

We also introduce the matrices

Gθ(w) := G
(
Xθ, w

)
, Gθ,λ(iµ)(w) := G

(
Xθ,λ

(iµ), w
)
,

according to (6.2) and the Definition 2.11.

We shall prove Lemma 6.6 through interpolation matrices Xθ between X0 and X1. It
holds for X0 by the anisotropic law in Theorem 2.18 (see the remark above (6.5)).

Lemma 6.10. Lemma 6.6 holds if X = X0.

Using (6.19) and fundamental calculus, we get the following basic interpolation
formula.

Lemma 6.11. For F : RI
M
1 ×I2 → C we have

d

dθ
EF (Xθ) =

∑
i∈IM1

∑
µ∈I2

[
EF

(
X
θ,X1

iµ

(iµ)

)
− EF

(
X
θ,X0

iµ

(iµ)

)]
(6.20)

provided all the expectations exist.

We shall apply Lemma 6.11 with F (X) = F pv (X,w) for Fv(X,w) defined in (6.15). The
main work is devoted to proving the following self-consistent estimate for the right-hand
side of (6.20).

Lemma 6.12. Fix p ∈ 2N and m ≤ 2δ−1. Suppose (2.23) and (Am−1) holds, then we
have∑

i∈IM1

∑
µ∈I2

[
EF pv

(
X
θ,X1

iµ

(iµ)

)
− EF pv

(
X
θ,X0

iµ

(iµ)

)]
= O

(
(NC0δΦ)p + EF pv (Xθ, w)

)
(6.21)

for all θ ∈ [0, 1], all w ∈ Ŝm, and all deterministic unit vector v.

Combining Lemmas 6.10, 6.11 and 6.12 with a Grönwall argument, we can conclude
the proof of Lemma 6.6 and hence Proposition 6.2.

In order to prove Lemma 6.12, we compare X
θ,X0

iµ

(iµ) and X
θ,X1

iµ

(iµ) via a common Xθ,0
(iµ),

i.e. under the assumptions of Lemma 6.12, we will prove∑
i∈IM1

∑
µ∈I2

[
EF pv

(
X
θ,Xuiµ
(iµ)

)
− EF pv

(
Xθ,0

(iµ)

)]
= O

(
(NC0δΦ)p + EF pv (Xθ, w)

)
(6.22)

for all u ∈ {0, 1}, all θ ∈ [0, 1], all w ∈ Ŝm, and all deterministic unit vector v.
Underlying the proof of (6.22) is an expansion approach which we will describe below.

Throughout the rest of the proof, we suppose that (Am−1) holds. Also the rest of the
proof is performed at a single w ∈ Ŝm. Define the IM × IM (recall Definition 2.9) matrix
∆λ

(iµ) through (
∆λ

(iµ)

)
st

:= λδisδµt + λδitδµs, i ∈ IM1 , µ ∈ I2. (6.23)
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Then we have for any λ, λ′ ∈ R and K ∈ N,

Gθ,λ
′

(iµ) = Gθ,λ(iµ) +

K∑
k=1

αk Gθ,λ(iµ)

(
V∆λ−λ′

(iµ) V
† Gθ,λ(iµ)

)k
+ αK+1 Gθ,λ

′

(iµ)

(
V∆λ−λ′

(iµ) V
† Gθ,λ(iµ)

)K+1

,

(6.24)

where V :=

(
V1 0

0 I

)
and α := w1/2

|w|1/2 . The following result provides a priori bounds for

the entries of Gθ,λ(iµ).

Lemma 6.13. Suppose that y is a random variable satisfying |y| ≺ N−1/2. Then

Gθ,y(iµ)−Π̃ = O≺(N2δ) (6.25)

for all i ∈ IM1 and µ ∈ I2.

Proof. See [24, Lemma 7.14].

In the following, for simplicity of notations, we introduce f(iµ)(λ) := F pv (Xθ,λ
(iµ)). We

use f (n)
(iµ) to denote the n-th derivative of f(iµ). By Lemma 6.13 and expansion (6.24) we

get the following result.

Lemma 6.14. Suppose that y is a random variable satisfying |y| ≺ N−1/2. Then for fixed
n ∈ N, ∣∣∣f (n)

(iµ)(y)
∣∣∣ ≺ N2δ(n+p). (6.26)

By this lemma, the Taylor expansion of f(iµ) gives

f(iµ)(y) =

4p∑
n=0

yn

n!
f

(n)
(iµ)(0) +O≺(Φp), (6.27)

provided C0 is chosen large enough in (6.11). Therefore we have for u ∈ {0, 1},

EF pv

(
X
θ,Xuiµ
(iµ)

)
− EF pv

(
Xθ,0

(iµ)

)
= E

[
f(iµ)

(
Xu
iµ

)
− f(iµ)(0)

]
= E f(iµ)(0) +

1

2N
E f

(2)
(iµ)(0) +

4p∑
n=4

1

n!
E f

(n)
(iµ)(0)E

(
Xu
iµ

)n
+O≺(Φp),

where we used that Xu
iµ has vanishing first and third moments and its variance is 1/N .

Thus to show (6.22), we only need to prove for n = 4, 5, ..., 4p,

N−n/2
∑
i∈IM1

∑
µ∈I2

∣∣∣E f (n)
(iµ)(0)

∣∣∣ = O
(
(NC0δΦ)p + EF pv (Xθ, w)

)
, (6.28)

where we used (2.3). In order to get a self-consistent estimate in terms of the matrix Xθ

on the right-hand side of (6.28), we want to replace Xθ,0
(iµ) in f(iµ)(0) := F pv (Xθ,0

(iµ)) with

Xθ = X
θ,Xθ(iµ)

(iµ) .

Lemma 6.15. Suppose that

N−n/2
∑
i∈IM1

∑
µ∈I2

∣∣∣E f (n)
(iµ)(X

θ
iµ)
∣∣∣ = O

(
(NC0δΦ)p + EF pv (Xθ, w)

)
(6.29)

holds for n = 4, ..., 4p, Then (6.28) holds for n = 4, ..., 4p.

EJP 22 (2017), paper 60.
Page 50/77

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP76
http://www.imstat.org/ejp/


Local circular law for the product of a deterministic matrix with a random matrix

Proof. From (6.27) we can get

f
(l)
(iµ)(0) = f

(l)
(iµ)(y)−

4p−l∑
n=1

yn

n!
f

(l+n)
(iµ) (0) +O≺(N l/2Φp). (6.30)

The result follows by repeatedly applying (6.30). The details can be found in [24, Lemma
7.16].

6.1.2 Conclusion of the proof with words

What remains now is to prove (6.29). For simplicity, we abbreviate Xθ ≡ X for the
remainder of the proof. In order to exploit the detailed structure of the derivatives on
the left-hand side of (6.29), we introduce the following algebraic objects.

Definition 6.16 (Words). Given i ∈ IM1 and µ ∈ I2. Let W be the set of words of
even length in two letters {i,µ}. We denote the length of a word w ∈ W by 2n(w)

with n(w) ∈ N. We use bold symbols to denote the letters of words. For instance,
w = t1s2t2s3 · · · tnsn+1 denotes a word of length 2n. Define Wn := {w ∈ W : n(w) = n}
to be the set of words of length 2n. We require that each word w ∈ Wn satisfies that
tlsl+1 ∈ {iµ,µi} for all 1 ≤ l ≤ n.

Next we assign each letter ∗ its value [∗] through [i] := vi, [µ] := µ, where vi ∈ CI1 is
defined in Lemma 6.1 and is regarded as a summation index. Note that it is important
to distinguish the abstract letter from its value, which is a summation index. Finally, to
each word w we assign a random variable Av,i,µ(w) as follows. If n(w) = 0 we define

Av,i,µ(w) := Gvv−Π̃vv.

If n(w) ≥ 1, say w = t1s2t2s3 · · · tnsn+1, we define

Av,i,µ(w) := Gv[t1] G[s2][t2] · · · G[sn][tn] G[sn+1]v . (6.31)

Notice the words are constructed such that, by (6.24),(
∂

∂Xiµ

)n (
Gvv − Π̃vv

)
= (−α)nn!

∑
w∈Wn

Av,i,µ(w)

for n = 0, 1, 2, . . ., with which we get that(
∂

∂Xiµ

)n
F pv (X) = (−α)nn!

∑
n1+···+np=n

p/2∏
r=1

1

nr!nr+p/2!

×

 ∑
wr∈Wnr

∑
wr+p/2∈Wnr+p/2

Av,i,µ(wr)Av,i,µ(wr+p/2)

 .

Then to prove (6.29), it suffices to show that

N−n/2
∑
i∈IM1

∑
µ∈I2

∣∣∣∣∣∣E
p/2∏
r=1

Av,i,µ(wr)Av,i,µ(wr+p/2)

∣∣∣∣∣∣ = O
(
(NC0δΦ)p + EF pv (Xθ, w)

)
(6.32)

for 4 ≤ n ≤ 4p and all words w1, ..., wp ∈ W satisfying n(w1) + · · ·+ n(wp) = n. To avoid
the unimportant notational complications associated with the complex conjugates, we in
fact prove that

N−n/2
∑
i∈IM1

∑
µ∈I2

∣∣∣∣∣E
p∏
r=1

Av,i,µ(wr)

∣∣∣∣∣ = O
(
(NC0δΦ)p + EF pv (Xθ, w)

)
. (6.33)
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The proof of (6.32) is essentially the same but with slightly heavier notations. Treating
empty words separately, we find it suffices to prove

N−n/2
∑
i∈IM1

∑
µ∈I2

E

∣∣∣∣∣Ap−qv,i,µ(w0)

q∏
r=1

Av,i,µ(wr)

∣∣∣∣∣ = O
(
(NC0δΦ)p + EF pv (Xθ, w)

)
(6.34)

for 4 ≤ n ≤ 4p, 1 ≤ q ≤ p, and wr such that n(w0) = 0,
∑
r n(wr) = n and n(wr) ≥ 1 for

r ≥ 1.
To estimate (6.34) we introduce the quantity

Rs := |Gvvs |+ |Gvsv|. (6.35)

for s ∈ I, where as a convention we let vµ = eµ for µ ∈ I2.

Lemma 6.17. For w ∈ W we have the rough bound

|Av,i,µ(w)| ≺ N2δ(n(w)+1). (6.36)

Furthermore, for n(w) ≥ 1 we have

|Av,i,µ(w)| ≺ (R2
i +R2

µ)N2δ(n(w)−1). (6.37)

For n(w) = 1 we have better bound

|Av,i,µ(w)| ≺ RiRµ. (6.38)

Proof. (6.36) follows immediately from the rough bound (6.17) and definition (6.31).
For (6.37), we break Av,i,µ(w) into Gv[t1](G[s2][t2] · · · G[sn][tn])

1/2 times
(G[s2][t2] · · · G[sn][tn])

1/2 G[sn+1]v and use Cauchy-Schwarz inequality. (6.38) follows from
the constraint t1 6= s2 in the definition (6.31).

By pigeonhole principle, if n ≤ 2q−2 there exists at least two words wr with n(wr) = 1.
Therefore by Lemma 6.17 we have∣∣∣∣∣Ap−qv,i,µ(w0)

q∏
r=1

Av,i,µ(wr)

∣∣∣∣∣
≺ N2δ(n+q)F p−qv (X)

(
1(n ≥ 2q − 1)(R2

i +R2
µ) + 1(n ≤ 2q − 2)R2

iR2
µ

)
. (6.39)

By Lemma 6.1, we have

1

N

∑
i∈IM1

R2
i +

1

N

∑
µ∈I2

R2
µ ≺
|w|1/2ImGvv +η|w|−1/2 |Gvv|

Nη

≺ N2δ |w|Im(m1c +m2c) + |w|1/2NC0δΦ

Nη
≺ N (C0+2)δΦ2, (6.40)

where in the second step we used the two bounds in Lemma 6.8, |w|−1/2η = O(|w|Imm1c)

by Lemma 3.7, and in the last step the definition of Φ. Using the same method we can
get

1

N2

∑
i∈IM1

∑
µ∈I2

R2
iR2

µ ≺
(
N (C0+2)δΦ2

)2

. (6.41)

Plugging (6.40) and (6.41) into (6.39), we get that the left-hand side of (6.34) is bounded
by

N−n/2+2N2δ(n+q+2)EF p−qv (X)

(
1(n ≥ 2q − 1)

(
NC0δ/2Φ

)2

+ 1(n ≤ 2q − 2)
(
NC0δ/2Φ

)4
)
.
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Using Φ & N−1/2, we find that the left hand side of (6.34) is bounded by

N2δ(n+q+2)EF p−qv (X)

(
1(n ≥ 2q − 1)

(
NC0δ/2Φ

)n−2

+ 1(n ≤ 2q − 2)
(
NC0δ/2Φ

)n)
≤ EF p−qv (X)

(
1(n ≥ 2q − 1)

(
NC0δ/2+12δΦ

)n−2

+ 1(n ≤ 2q − 2)
(
NC0δ/2+12δΦ

)n)
where we used that q ≤ n and n ≥ 4. Choose C0 ≥ 25, then by (6.11) we have
NC0δ/2+12δ ≤ Nζ/2 and hence NC0δ/2+12δΦ ≤ 1. Moreover, if n ≥ 4 and n ≥ 2q − 1, then
n ≥ q + 2. Therefore we conclude that the left-hand side of (6.34) is bounded by

EF p−qv (X)
(
NC0δΦ

)q
. (6.42)

Now (6.34) follows from Holder’s inequality. This concludes the proof of (6.29), and
hence of (6.22), and hence of Lemma 6.5. This finishes the proof of Proposition 6.2 under
the assumption (2.23).

In the rest of this section, we prove Proposition 6.2 when η ≥ N−1/2+ζ |m2c|−1 without
assuming (2.23). In this case, we can verify that

Φ ≤ N−1/4−ζ/2. (6.43)

Following the previous arguments, we see that it suffices to prove the estimate (6.29) for
n = 3. In other words, we need to prove the following lemma.

Lemma 6.18. Fix 1 ≤ m ≤ 2δ−1 and p ∈ 2N. Let w ∈ Ŝm ∩ D̂ (recall (2.44)) and suppose
(Am−1) holds. Then we have

N−3/2
∑
i∈IM1

∑
µ∈I2

∣∣∣E f (3)
(iµ)(X

θ
iµ)
∣∣∣ = O

(
(NC0δΦ)p + EF pv (Xθ, w)

)
. (6.44)

Proof. The main new ingredient of the proof is a further iteration step at a fixed w.
Suppose

G − Π̃ = O≺(N2δφ) (6.45)

for some φ ≤ 1. By the a priori bound (6.17), (6.45) holds for φ = 1. Assuming (6.45), we
shall prove a self-improving bound of the form

N−3/2
∑
i∈IM1

∑
µ∈I2

∣∣∣E f (3)
(iµ)(X

θ
iµ)
∣∣∣ = O

(
(NC0δΦ)p + (N−ζ/4φ)p + EF pv (Xθ, w)

)
. (6.46)

Once (6.46) is proved, we can use it iteratively to get an increasingly accurate bound
for the left hand side of (6.14). After each step, we obtain a better a priori bound (6.45)
where φ is reduced by N−ζ/4. Hence after O(ζ−1) iterations we can get (6.44).

As in Section 6.1.2, to prove (6.46) it suffices to show

N−3/2

∣∣∣∣∣∣
∑
i∈IM1

∑
µ∈I2

Ap−qv,i,µ(w0)

q∏
r=1

Av,i,µ(wr)

∣∣∣∣∣∣ ≺ F p−qv (X)(N (C0−1)δΦ +N−ζ/2φ)q, (6.47)

which follows from the bound

N−3/2

∣∣∣∣∣∣
∑
i∈IM1

∑
µ∈I2

q∏
r=1

Av,i,µ(wr)

∣∣∣∣∣∣ ≺ (N (C0−1)δΦ +N−ζ/2φ)q. (6.48)

Each of the three cases q = 1, 2, 3 can be proved as in [24, Lemma 12.7], and we leave
the details to the reader. This concludes Lemma 6.18.
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6.2 Averaged local law for TX

In this section we prove the averaged local law in Theorem 2.19. Again for conve-
nience, we only consider the case with w ∈ D and |z|2 ≤ 1− τ . First we assume (2.23)
holds. The anisotropic local law proved in the previous section gives a good a priori
bound. In analogy to (6.15), we define

F̃ (X,w) : = |w|1/2|m2(w)−m2c(w)| =

∣∣∣∣∣ 1

N

∑
ν∈I2

Gνν(w)− |w|1/2m2c(w)

∣∣∣∣∣ .
Since Φ2 = O(|w|1/2/(Nη)), it suffices to prove that F̃ ≺ Φ2. Following the argument in
Section 6.1, analogous to (6.29), we only need to prove that

N−n/2
∑
i∈IM1

∑
µ∈I2

∣∣∣∣E( ∂

∂Xiµ

)n
F̃ p(X)

∣∣∣∣ = O
(

(NδΦ2)p + EF̃ p(X)
)

(6.49)

for all n = 4, ..., 4p. Here δ > 0 is an arbitrary positive constant. Analogously to (6.33), it
suffices to prove that for n = 4, ..., 4p,

N−n/2
∑
i∈IM1

∑
µ∈I2

∣∣∣∣∣E
p∏
r=1

(
1

N

∑
ν∈I2

Aeν ,i,µ(wr)

)∣∣∣∣∣ = O
(

(NδΦ2)p + EF̃ p(X)
)

(6.50)

for
∑
r n(wr) = n. The only difference in the definition of Av,i,µ(w) is that when n(w) = 0,

we define
Av,i,µ(w) := Gvv−|w|1/2m2c.

Similar to (6.35) we define

Rν,s := |Gνvs |+ |Gvsν |. (6.51)

By the anisotropic local law, G −Π̃ = O≺(Φ). Hence combining with Lemma 6.1 and
(3.33), we get

1

N

∑
ν∈I2

R2
ν,s ≺

|w|1/2ImGvsvs +η|w|−1/2 |Gvsvs |
Nη

≺ |w|Im(m1c +m2c) + |w|1/2Φ

Nη
= O(Φ2).

(6.52)
Since G = O≺(1) by the anisotropic local law, we have∣∣∣∣∣ 1

N

∑
ν∈I2

Aeν ,i,µ(w)

∣∣∣∣∣ ≺ 1

N

∑
ν∈I2

(
R2
ν,i +R2

ν,µ

)
≺ Φ2 for n(w) ≥ 1. (6.53)

Following (6.53), for n ≥ 4, the left-hand side of (6.50) is bounded by

E F̃ p−q(X)(Φ2)q.

Applying Holder’s inequality, we conclude the proof.
Then we prove the averaged local law when η ≥ N−1/2+ζ |m2c|−1. It suffices to prove

N−3/2

∣∣∣∣∣∣
∑
i∈IM1

∑
µ∈I2

E

(
∂

∂Xiµ

)3

F̃ p(X)

∣∣∣∣∣∣ = O

((
NδΦ2

)p
+

(
N−c0/2

Nη

)p
+ EF̃ p(X)

)
, (6.54)

for some small constant c0 > 0. Analogous to the above arguments, it reduces to show
that

N−3/2

∣∣∣∣∣∣
∑
i∈IM1

∑
µ∈I2

q∏
r=1

(
1

N

∑
ν∈I2

Aeν ,i,µ(wr)

)∣∣∣∣∣∣ = O≺

(
Φ2q +

(
N−c0

Nη

)q)
, (6.55)
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where q is the number of words with nonzero length. Again we can prove the three cases
q = 1, 2, 3 as in [24, Lemma 12.8], and we leave the details to the reader. This concludes
the averaged local law.

A Properties of ρ1,2c and Stability of (2.11)

A.1 Proof of Lemma 2.3 and Proposition 2.14

We now prove Lemma 2.3. First is a technical lemma for f defined in (2.15).

Lemma A.1. For w > 0 and |z| > 0, f can be written as

f(
√
w,m) = −

√
w +m+ w−1/2 +

1

N

n∑
i=1

lisi

(
Ai

m− ai
+

Bi
m− bi

+
Ci

m+ ci

)
, (A.1)

where we have the following estimates for the poles and the coefficients,

max

(
|z|, si + |z|2√

w

)
< ai <

si + |z|2√
w

+ |z|, an < an−1 < . . . < a1, (A.2)

0 < b1 < b2 < . . . < bn < min

(
|z|, |z|

2

√
w

)
, (A.3)

−(si + |z|2) +
√

(si + |z|2)2 + 4w|z|2
2
√
w

< ci < |z|, c1 < c2 < . . . < cn, (A.4)

and

0 < Ai ≤ 2
si + |z|2 +

√
w|z|

w
, 0 < Bi ≤ 2

si + |z|2 +
√
w|z|

w
, 0 < Ci ≤

si + |z|2 +
√
w|z|

w
.

(A.5)

Proof. The proof is based on basic algebraic arguments. Let

pi =
√
wm3 − (si + |z|2)m2 −

√
w|z|2m+ |z|4.

It is easy to verify that

∆ = 18(si + |z|2)w|z|6 + 4(si + |z|2)3|z|4 + (si + |z|2)2w|z|4 + 4w2|z|6 − 27w|z|8 > 0.

Thus pi has three distinct real roots. By the form of pi, we see that there are two positive
roots and one negative root, call them ai > bi > 0 > −ci. Now we perform the partial
fraction expansion for the rational functions in (2.15):

m2 − |z|2√
wm3 − (si + |z|2)m2 −

√
w|z|2m+ |z|4

=
A′i

m− ai
+

B′i
m− bi

− C ′i
m+ ci

, (A.6)

where

A′i =
a2
i − |z|2√

w(ai − bi)(ai + ci)
, B′i =

b2i − |z|2√
w(bi − ai)(bi + ci)

, C ′i =
−c2i + |z|2√

w(ci + ai)(ci + bi)
. (A.7)

We take si = 0 in pi and call the resulting polynomial as

p0 =
√
wm3 − |z|2m2 −

√
w|z|2m+ |z|4 =

√
w

(
m− |z|

2

√
w

)(
m2 − |z|2

)
,

which has roots m = ±|z|, |z|2/
√
w. By (2.7), we have p1 < p2 < . . . < pn < p0 for all

m 6= 0. Comparing the graphs of pi’s (as cubic functions of m) for 0 ≤ i ≤ n, we get that

max

(
|z|, |z|

2

√
w

)
< an < an−1 < . . . < a1, 0 < b1 < b2 < . . . < bn < min

(
|z|, |z|

2

√
w

)
, (A.8)
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and
0 < c1 < c2 < . . . < cn < |z|. (A.9)

Thus we get (A.3). By these bounds, we see that a2
i − |z|2 > 0, b2i − |z|2 < 0 and

−c2i + |z|2 > 0, which, by (A.7), give that A′i > 0, B′i > 0 and C ′i > 0. Plugging (A.6) into
f , we get immediately (A.1) with Ai = A′iai, Bi = B′ibi and Ci = C ′ici. The w−1/2 term
can be obtained by comparing the coefficients of the m3 terms in (2.15) and using the
normalization condition (2.8).

Now we compare pi with p′i :=
√
wm3 − (si + |z|2)m2 −

√
w|z|2m, which has roots

m = 0,
(si + |z|2)±

√
(si + |z|2)2 + 4w|z|2
2
√
w

.

Since p′i < pi for all m, we get

ai <
(si + |z|2) +

√
(si + |z|2)2 + 4w|z|2
2
√
w

<
si + |z|2√

w
+ |z|, (A.10)

and

ci >
−(si + |z|2) +

√
(si + |z|2)2 + 4w|z|2

2
√
w

. (A.11)

Combining (A.9) and (A.11), we get (A.4). Then we compare pi with p′′i :=
√
wm3 − (si +

|z|2)m2, which has roots w = 0, (si + |z|2)/
√
w. Note that p′′i > pi for m > |z|2/

√
w, which

gives ai > (si+ |z|2)/
√
w since ai > |z|2/

√
w. Combining this bound with (A.8) and (A.10),

we get (A.2).
Finally we estimate the coefficients Ai, Bi and Ci. Using (A.7) and (A.2)-(A.4), we

first can estimate that

A′i =
(ai − |z|)(ai + |z|)√
w(ai − bi)(ai + ci)

≤ ai + |z|√
w(ai + ci)

≤ 2√
w
,

B′i =
(|z|+ bi)(|z| − bi)√
w(ai − bi)(bi + ci)

≤ |z|+ bi√
w(bi + ci)

≤ 2
si + |z|2 +

√
w|z|

w|z|
,

C ′i =
(|z| − ci)(ci + |z|)√
w(ci + ai)(ci + bi)

≤ |z| − ci√
w(ci + bi)

≤ si + |z|2 +
√
w|z|

w|z|
,

with which we can get that

Ai = A′iai ≤
2√
w

(
si + |z|2√

w
+ |z|

)
= 2

si + |z|2 +
√
w|z|

w
, (A.12)

Bi = B′ibi ≤ 2
si + |z|2 +

√
w|z|

w|z|
|z| = 2

si + |z|2 +
√
w|z|

w
, (A.13)

Ci = C ′ici ≤
si + |z|2 +

√
w|z|

w|z|
|z| = si + |z|2 +

√
w|z|

w
. (A.14)

This completes the proof.

In (A.1), it is sometimes convenient to reorder the terms and rename the constants to
write f as

f(m) = −
√
w +m+ w−1/2 +

1

N

2n∑
k=1

C+
k

m− xk
+

1

N

n∑
l=1

C−l
m+ yl

. (A.15)

where all the constants C+
k and C−l are positive and chosen such that

0 < x1 < x2 < . . . < x2n, 0 < y1 < y2 < . . . < yn. (A.16)
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Clearly, f is smooth on the 3n+ 1 open intervals of R defined by

I−n := (−∞,−yn), I−k := (−yk+1,−yk) (k = 1, . . . , n− 1), I0 := (−y1, x1),

Ik := (xk, xk+1) (k = 1, . . . , 2n− 1), I2n := (x2n,+∞).

Next, we introduce the multiset C of critical points of f (as a function of m), using the
conventions that a nondegenerate critical point is counted once and a degenerated
critical point twice. First we will prove the following elementary lemma about the
structure of C (see Fig. 6 and Fig. 7).

Lemma A.2. (Critical points) We have |C ∩ I−n| = |C ∩ I2n| = 1 and |C ∩ Ik| ∈ {0, 2} for
k = −n+ 1, . . . , 2n− 1.

Proof. We omit the dependence of f on w for now. By (A.15) we have

f ′(m) = 1− 1

N

2n∑
k=1

C+
k

(m− xk)
2 −

1

N

n∑
l=1

C−l
(m+ yl)

2 ,

and

f ′′(m) =
1

N

2n∑
k=1

2C+
k

(m− xk)
3 +

1

N

n∑
l=1

2C−l
(m+ yl)

3 .

We see that f ′′ is decreasing on all the intervals Ik for k = −n+ 1, . . . , 2n− 1. Thus there
is at most one point m ∈ Ik such that f ′′(m) = 0. We conclude that f has at most two
critical points on Ik. By the boundary conditions of f ′ on ∂Ik, we get |C ∩ Ik| ∈ {0, 2} for
k = −n + 1, . . . , 2n − 1. For m < −yn, we have f ′′(m) < 0, while for m > x2n, we have
f ′′(m) > 0. By the boundary conditions of f ′ on ∂I−n and ∂I2n, we see that f ′ decreases
from 1 to −∞ when m increases from −∞ to −yn, while f ′ increases from −∞ to 1 when
m increases from x2n to +∞. Hence we conclude that each of the intervals (−∞,−yn)

and (x2n,+∞) contains a unique critical point in it, i.e. |C ∩ I−n| = |C ∩ I2n| = 1.

From this lemma, we deduce that |C| = 2p is even. We denote by z2p the critical
point in I−n, z1 the critical point in I2n, and z2 ≥ . . . ≥ z2p−1 the 2p− 2 critical points in
I−n+1 ∪ . . . ∪ I2n−1. For k = 1, . . . , 2p, we define the critical values hk := f(zk). The next
lemma is crucial in establishing the basic properties of ρ1c (see e.g. Fig. 6).

Lemma A.3. (Orderings of the critical values) The critical values are ordered as h1 ≥
h2 ≥ . . . ≥ h2p. Furthermore, there is an absolute constant C0 > 0 independent of τ such
that hk ∈ [−C0(τ−1|w|−1/2 + |z|)−

√
w,C0(τ−1|w|−1/2 + |z|)−

√
w] for k = 1, . . . , 2p.

Proof. Notice for the equation (2.14), if we multiply both sides with the product of all
denominators in f , we get a polynomial equation Pw(m) = 0 with Pw being a polynomial
of degree 3n + 1. An immediate consequence is that for any fixed w > 0 and E ∈ R,
f(
√
w,m) = E can have at most 3n+ 1 roots in m. This fact will be useful in the proof of

this lemma and Lemma 2.3.
For i = −n, . . . , 2n, define the subset Ji(w) := {m ∈ Ii : ∂mf(

√
w,m) > 0}. From

Lemma A.2, we deduce that if i = −n+ 1, . . . , 2n− 1, then Ji 6= ∅ if and only if Ii contains
two distinct critical points of f , in which case Ji is an interval. Moreover, we have
J−n = (−∞, z2p) and J2n = (z1,+∞). Next, we observe that for any −n ≤ i < j ≤ 2n,
we have f(Ji) ∩ f(Jj) = ∅. Otherwise if there were E ∈ f(Ji) ∩ f(Jj), we would have
|{x : f(x) = E}| > 3n + 1. We hence conclude that the sets f(Ji), −n ≤ i ≤ 2n can be
strictly ordered. The claim h1 ≥ h2 ≥ . . . ≥ h2p is now reformulated as

f(Ji) < f(Jj) whenever i < j and Ji, Jj 6= ∅. (A.17)
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To prove (A.17), we use a continuity argument. Let t ∈ (0, 1] and introduce

f t(m) = −
√
w +m+ w−1/2 +

t

N

2n∑
k=1

C+
k

m− xk
+

t

N

n∑
l=1

C−l
m+ yl

.

It is easy to check (A.17) holds for small enough t > 0. We claim that

Ji 6= ∅ ⇒ J ti 6= ∅ for all t ∈ (0, 1]. (A.18)

This is trivial for i = −n, 2n. Recall that for −n+ 1 ≤ i ≤ 2n− 1, J ti 6= ∅ is equivalent to
Ii containing two distinct critical points. Moreover, ∂t∂mf t(m) < 0 in I−n+1 ∪ . . . ∪ I2n−1,
from which we deduce that the number of distinct critical points in each Ii, i = −n +

1, . . . , 2n− 1, does not decreases as t decreases. This proves (A.18).
Next, suppose that there exist i < j such that Ji, Jj 6= ∅ and f(Ji) > f(Jj). From

(A.18), we deduce that J ti , J
t
j 6= ∅ for all t ∈ (0, 1]. By a simple continuity argument, we

get that f t(J ti ) > f t(J tj ) for all t ∈ (0, 1]. However, this is impossible for small enough t
as explained before (A.18). This concludes the proof of (A.17).

To prove the second statement of Lemma A.3, we only need to show that h1 ≤
C0(τ−1|w|−1/2 + |z|) −

√
w and h2p ≥ −C0(τ−1|w|−1/2 + |z|) −

√
w for some absolute

constant C0. We only give the proof for h1; the proof for h2p is similar. At z1, we have

f(z1) +
√
w ≤ (z1 + yn)

[
1 +

1

N

2n∑
k=1

C+
k

(z1 − xk)
2 +

1

N

n∑
l=1

C−l
(z1 + yl)

2

]
+ w−1/2

= 2(z1 + yn) + w−1/2,

where we used

0 = f ′(z1) = 1− 1

N

2n∑
k=1

C+
k

(z1 − xk)
2 −

1

N

n∑
l=1

C−l
(z1 + yl)

2 . (A.19)

Now we would like to estimate z1 + yn. Again using (A.19), we have that

1

N

2n∑
k=1

C+
k

(z1 − x2n)
2 +

1

N

n∑
l=1

C−l
(z1 − x2n)

2 ≥ 1.

Then by (A.5) we get

z1 − x2n ≤

√√√√ 1

N

2n∑
k=1

C+
k +

1

N

n∑
l=1

C−l ≤
√

5
τ−1 + |z|2 +

√
w|z|

w
.

Using the above estimates and (A.2)-(A.4), we obtain that

f(z1) ≤ 2

(√
5
τ−1 + |z|2 +

√
w|z|

w
+
s1 + |z|2√

w
+ 2|z|

)
+ w−1/2 −

√
w

≤ C0(τ−1|w|−1/2 + |z|)−
√
w.

for some constant C0 > 0 that does not depend on τ .

Proof of Lemma 2.3. Let J(w) :=
⋃2n
i=−n Ji(w). Given w > 0 such that 0 ∈ f(J(w)), then

the set {m ∈ R : f(
√
w,m) = 0} has 3n+ 1 points. Since f(

√
w,m) = 0 has at most 3n+ 1

solutions in m, we deduce that mc(w) is real and hence m1c(w) is also real. Since m1c is
the Stieltjes transform of ρ1c, we conclude that w /∈ supp ρ1c. On the other hand, suppose
w > 0 and 0 /∈ f (J(w)). Then the set of preimages {m ∈ R : f(

√
w,m) = 0} = {m ∈

R : Pw(m) = 0} has 3n− 1 points. Since Pw(m) is a degree 3n+ 1 polynomial with real
coefficients, we conclude that Pw has a unique root with positive imaginary part. By the
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Figure 6: The graphs of f(
√
w,m) for the example from Figure 1, i.e. ρΣ = 0.5δ√

2/17
+

0.5δ
4
√

2/17
. We take |z| = 1.5, and w = 10 and 0.01 in the upper and lower graphs,

respectively. In the lower graph, we only plot the five branches near m = 0. The
remaining two branches are far away.

uniqueness of the solution of Pw+iη in C+ (Lemma 2.2) and the continuity of the roots of
Pw+iη in η, we conclude that Immc(w) > 0 and hence Imm1c(w) > 0 by taking η ↘ 0, i.e.
w ∈ supp ρ1c. In sum, we get

supp ρ1c = {w > 0 : 0 /∈ f (J(w))}. (A.20)

From Lemma A.3, we see that there exists an absolute constant C1 > 0 such that if
w ≥ C1τ

−1, then h1(ω) ≤ C0(τ−1|w|−1/2 + |z|)−
√
w < 0. Hence fix w ≥ C1τ

−1, we have
0 ∈ f(J2n(w)) and w /∈ supp ρ1c (see the upper graphs in Fig. 6 and Fig. 7). This shows
that ρ1c is compactly supported in [0, C1τ

−1]. Now we decrease w so that w < s1 + |z|2 +1.
Then using (A.2), we have

h1(w) > z1 + w−1/2 −
√
w >

s1 + |z|2 + 1− w√
w

> 0.

By continuity, there must be some 0 < w < Cτ−1 such that 0 /∈ f (J(w)). Thus supp ρ1c 6=
∅. By (A.20), it is not hard to see that supp ρ1c is a disjoint union of (countably many)
closed intervals,

supp ρ1c =
⋃
k

[e2k, e2k−1], (A.21)
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Figure 7: The graphs of f(
√
w,m) for the example from Figure 1, i.e. ρΣ = 0.5δ√

2/17
+

0.5δ
4
√

2/17
. We take |z| = 0.5, and w = 6 and 0.01 in the upper and lower graphs,

respectively. In the lower graph, we only plot the five branches near m = 0. The
remaining two branches are far away.

where C1τ
−1 ≥ e1 ≥ e2 ≥ . . .. Furthermore, for ei to be a boundary point, we must have

that 0 is a critical value of f(
√
ei,m), i.e. there is a unique critical point m = mc(ei) such

that

f(
√
ei,mc(ei)) = 0, ∂mf(

√
ei,mc(ei)) = 0. (A.22)

Notice the two equations in (A.22) are equivalent to two polynomial equations in (
√
w,m)

with order 3n+ 1 and 6n, respectively. By Bézout’s theorem, there are at most finitely
many solutions to the equations (A.22). Hence there are finitely many ei’s, call them
e1 ≥ . . . ≥ e2L, where L ≡ L(n) ∈ N. The statement about e2L follows from Lemma A.4
below. This concludes Lemma 2.3.

Lemma A.4. If 1 + τ ≤ |z|2 ≤ 1 + τ−1, there is a constant ε(τ) > 0 so that e2L ≥ ε(τ). If
|z|2 ≤ 1− τ , e2L = 0 and ρ1c(x) ∼ x−1/2 when x↘ 0.

By this lemma, the behavior of the leftmost edge e2L changes essentially when z

crosses the unit circle. From the following proof, we will see that the singularity happens
at |z|2 = N−1

∑n
i=1 lisi. Thus the fact that the singular circle has radius 1 is due to our

normalization (2.5) for T .
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Proof of Lemma A.4. We first study the equation (2.14) when w ↘ 0 in the case 1 + τ ≤
|z|2 ≤ 1 + τ−1. We calculate the derivative of f as

∂mf(
√
w,m) = 1 +

1

N

n∑
i=1

lisi
m2 − |z|2√

wm3 − (si + |z|2)m2 −
√
w|z|2m+ |z|4

− m

N

n∑
i=1

lisi

√
w
(
m2 − |z|2

)2
+ 2si|z|2m

[
√
wm3 − (si + |z|2)m2 −

√
w|z|2m+ |z|4]

2 . (A.23)

Recall the definition of Ji in the proof of Lemma A.3. It is easy to see that J0 6= ∅ for
all w > 0, since ∂mf(

√
w, 0) = 1− |z|−2 > 0 (see the lower graph in Fig. 6). Call the end

points of J0 as zk(w) > 0 and zk+1(w) < 0. By the definition of I0, we have zk < b1 < |z|.
Suppose zk = o(|z|) as w → 0, then (A.23) gives that 0 = 1− |z|−2 + o(1), which gives a
contradiction. Thus zk ∼ |z| as w → 0. Now using ∂mf(

√
w, zk) = 0, we can estimate that

f(
√
w, zk) = −

√
w +

z2
k

N

n∑
i=1

lisi

√
w
(
z2
k − |z|2

)2
+ 2si|z|2zk

[
√
wz3

k − (si + |z|2)z2
k −
√
w|z|2zk + |z|4]

2

≥ −
√
w +

1

N

n∑
i=1

lisi
2si|z|2z3

k

|z|8
≥ c−

√
w (A.24)

for some constant c > 0 independent of w, where in the second step we used that
√
wz3

k − (si + |z|2)z2
k −
√
w|z|2zk + |z|4 > 0, and

√
wz3

k − (si + |z|2)z2
k −
√
w|z|2zk < 0

which come from the fact that 0 < zk < bi < |z| for all 1 ≤ i ≤ n. By (A.24), we
can find ε small enough such that f(

√
w, zk) > 0 for all 0 < w ≤ ε. In this case,

0 ∈ f(J0(w)) and hence w /∈ supp ρ1c. In fact, it is not hard to see that there is a solution
m0 =

√
w|z|2/(|z|2−1)+o(

√
w) ∈ I0 such that f(

√
w,m0) = 0 and ∂mf(

√
w,m0) > 0. This

proves the first statement of Lemma A.4.
Now we study equation (2.14) when |z|2 ≤ 1− τ and w → 0. For later purpose, we

allow w to be complex and prove a more general result than what we need for this lemma.
Let w = 0 in the equation (2.14), we get m = 0 or

0 = 1 +
1

N

n∑
i=1

lisi
m2 − |z|2

−(si + |z|2)m2 + |z|4
. (A.25)

We define

g(x) := 1 +
1

N

n∑
i=1

lisi
x− |z|2

−(si + |z|2)x+ |z|4
=
|z|2

N

n∑
i=1

li
−x+ |z|2 − si

−(si + |z|2)x+ |z|4
. (A.26)

It is easy to see that g is smooth and decreasing on the intervals defined through

K1 :=

(
−∞, |z|4

s1 + |z|2

)
, Kn+1 :=

(
|z|4

sn + |z|2
,∞
)
,

and

Ki :=

(
|z|4

si−1 + |z|2
,
|z|4

si + |z|2

)
, i = 2, . . . , n.

By the boundary values of g on these intervals, we see that g(x) has exactly one zero on
intervals Ki for i = 1, . . . , n, and has no zero on Kn+1. Since g(x) = 0 is equivalent to a
polynomial equation of order n, it has at most n solutions. We conclude that all of its
solutions are real. Obviously, the zeros on the intervals Ki are positive for i = 2, . . . , n.
Now we study the zero on K1. Observe that g(0) = 1− |z|−2 < 0 (as |z|2 ≤ 1− τ ), hence
the zero on K1 is negative, call it −t. Moreover, it is easy to verify that g(−τ−1) > 0

using (A.26), so t < τ−1. If |z|2 ≥ τ/2, then by the concavity of g on the K1, we get
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t ≥ g(0)

g′(0)
≥ |z|

4(1− |z|2)

s1
≥ τ4

4
. (A.27)

In the case |z|2 ≤ τ/2, we have |z|2 − sn ≤ −τ/2 and g(|z|2 − sn) ≤ 0 by (A.26). Hence we
have

− t ≤ |z|2 − sn ≤ −τ/2. (A.28)

Combining (A.27) and (A.28), we get that cτ4 ≤ t ≤ τ−1 for some constant c > 0.
Now we return to the self-consistent equation (2.14). The previous discussion shows

that

f(0, i
√
t) = 0, with t ≥ cτ4.

It is easy to see that there exist constants c1, τ ′ > 0 such that∣∣−(si + |z|2)m2 + |z|4 +
√
w
(
m3 − |z|2m

)∣∣ ≥ c1 for |m− i
√
t| ≤ τ ′. (A.29)

First we consider the case |z| ≥ ε > 0. Expanding f(
√
w,m) around (0, i

√
t) and using

(A.29), we get

0 = ∂√wf(0, i
√
t)
√
w + ∂mf(0, i

√
t)(m− i

√
t) + o(

√
w) + o(m− i

√
t). (A.30)

By (A.23), the partial derivative

∂√wf(
√
w,m) = −1− m2

N

n∑
i=1

lisi

(
m2 − |z|2

)2
[−(si + |z|2)m2 + |z|4 +

√
w (m3 − |z|2m)]

2 , (A.31)

and (A.29), we obtain that
∣∣∂√wf(0, i

√
t)
∣∣ ≤ C and

∂mf(0, i
√
t) =

t

N

n∑
i=1

lisi
2si|z|2

[(si + |z|2)t+ |z|4]
2 ≥ c2 (A.32)

for some constant c2 > 0. Using (A.32), we get from (A.30) that

m− i
√
t = O(

√
w), if |z| ≥ ε. (A.33)

Then assume that |z|2 < ε for sufficiently small ε. From g(−t) = 0 and (A.26), we get
that

1

N

n∑
i=1

li
t+ |z|2 − si

(si + |z|2)t+ |z|4
= 0. (A.34)

From the leading order term, we get t−1 = t−1
0 +O(|z|2), where t0 :=

(
N−1

∑
i li/si

)−1
.

Expanding (A.34) up to the first order of |z|2, we get

t = t0 +

(
t20
N

∑
i

li
s2
i

− 2

)
|z|2 +O(|z|4). (A.35)

Now we write equation (2.14) as

F (
√
w,m) = 0, (A.36)

where F (
√
w,m) := f(

√
w,m)/m. Expanding F around (0, i

√
t) and using (A.29), we get

0 =∂√wF (0, i
√
t)
√
w + ∂mF (0, i

√
t)(m− i

√
t) + ∂m∂√wF (0, i

√
t)(m− i

√
t)
√
w
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+
1

2
∂2√

wF (0, i
√
t)w +

1

2
∂2
mF (0, i

√
t)(m− i

√
t)2 + o(w, |m− i

√
t|2, |m− i

√
t|
√
w).

(A.37)

We can calculate that (the partial derivatives of F can be obtained using (A.23) and
(A.31))

∂mF (
√
w, i
√
t) = −2i|z|2 + 2

√
wt0

t
3/2
0

+ o(|z|2,
√
w), (A.38)

∂√wF (
√
w, i
√
t) =

(
i|z|2 + 2

√
wt0
) √t0
N

n∑
j=1

lj
s2
j

+ o(|z|2,
√
w). (A.39)

From (A.38) and (A.39), we get that

∂mF (0, i
√
t) = −2i|z|2

t
3/2
0

+ o(|z|2), ∂√wF (0, i
√
t) =

i|z|2
√
t0

N

n∑
j=1

lj
s2
j

+ o(|z|2),

∂m∂√wF (0, i
√
t) = − 2

t0
+O(|z|2), ∂2√

wF (0, i
√
t) =

2t0
N

n∑
j=1

lj
s2
j

+O(|z|2),

∂2
mF (0, i

√
t) = O(|z|2).

Plugging the above results into (A.37), we get that

0 =

 i|z|2√t0 +
√
wt0

N

n∑
j=1

lj
s2
j

+ o(|z|2)

√w +

[
−2

i|z|2 +
√
wt0

t
3/2
0

+ o(|z|2)

]
(m− i

√
t)

+ o(w, |m− i
√
t|2, |m− i

√
t|
√
w). (A.40)

Observing that
∣∣i|z|2√t0 +

√
wt0
∣∣ ∼ |z|2 +

√
|w|, we get

m− i
√
t =

 t20
2N

n∑
j=1

lj
s2
j

+O(|w|1/2 + |z|2)

√w, if |z| < ε. (A.41)

Combing (A.33) and (A.41), we get that if |z|2 < 1− τ , m = i
√
t+O(

√
w) when w → 0.

In particular, this shows that |m| ≈ Imm ∼ 1 when w → 0. Finally, we conclude the proof
of Lemma A.4 by using that m1c(w) = mc(w)w−1/2 − 1.

To prove Proposition 2.14, we need the following lemma, which is a consequence of
the edge regularity conditions (2.18) and (2.19).

Lemma A.5. Suppose ek 6= 0 is a regular edge. Then |m1c(w)−m1c(ek)| ∼ |w− ek|1/2 as
w → ek and minl 6=k |el − ek| ≥ δ for some constant δ > 0.

Proof. Denote mk := mc(ek) and let w → ek. Note that by Lemma 2.3 and Lemma A.4, if
ek 6= 0, we have

ε′ ≤ ek ≤ Cτ−1, (A.42)

for some constant ε′ > 0. Then we expand f around (
√
ek,mk) to get that

0 =∂√wf(
√
ek,mk)(

√
w −
√
ek) +

1

2
∂2
mf(
√
ek,mk)(mc(w)−mk)2

+O
[
|
√
w −
√
ek|2 + |mc(w)−mk|3 + |

√
w −
√
ek||mc(w)−mk|

]
, (A.43)

where by (A.31),

∂√wf(
√
ek,mk) = −1− m2

k

N

n∑
i=1

lisi

(
m2
k − |z|2

)2
ek(mk − ai)2(mk − bi)2(mk + ci)2

, (A.44)
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and by (A.1),

∂2
mf(
√
ek,mk) =

2

N

n∑
i=1

lisi

[
Ai

(mk − ai)3
+

Bi
(mk − bi)3

+
Ci

(mk + ci)3

]
. (A.45)

Applying (A.2)-(A.5), (A.42) and the conditions (2.18)-(2.19) to (A.44) and (A.45), we get
that

1 ≤
∣∣∂√wf(

√
ek,mk)

∣∣ ≤ C1, ε ≤
∣∣∂2
mf(
√
ek,mk)

∣∣ ≤ C2 (A.46)

for some C1, C2 > 0. Similarly, if |w− ek| ≤ τ ′ and |mc(w)−mk| ≤ τ ′ for some sufficiently
small τ ′, using the condition (2.18) we can get that

max
{∣∣∂3

mf(
√
w,mc(w))

∣∣ , ∣∣∣∂2√
wf(
√
w,mc(w))

∣∣∣ , ∣∣∂m∂√wf(
√
w,mc(w))

∣∣} ≤ C3. (A.47)

Plugging them into equation (A.43), for |w − ek| ≤ τ ′ and |mc(w) − mk| ≤ τ ′, we get
|mc(w)−mk| ∼ |

√
w −√ek|1/2 and

−∂√wf(
√
ek,mk)(

√
w−
√
ek)+O(|

√
w−
√
ek|3/2) =

1

2
∂2
mf(
√
ek,mk)(mc(w)−mk)2. (A.48)

By (A.42), we immediately get that |
√
w −√ek| ∼ |w − ek| and |mc(w)−mk| ∼ |m1c(w)−

m1c(ek)|, which proves the first part of the lemma. By (A.48), if w is real and |w−ek| ≤ τ ′,
we have that

mc(w)−mk =

[−2∂√wf(
√
ek,mk)

∂2
mf(
√
ek,mk)

+O(|
√
w −
√
ek|1/2)

]1/2 (√
w −
√
ek
)1/2

. (A.49)

Thus in a sufficiently small interval U = [ek − δ, ek + δ], mc(w) has positive imaginary
part for w on one side of ek, while mc(w) is real for w on the other side. Hence U does
not contain another edge. This shows that minl 6=k |el − ek| ≥ δ.

Proof of Proposition 2.14. The properties of ρ1c have been proved in Lemmas 2.3, A.4
and A.5, and included in Definition 2.4. Since supp ρ2c = supp ρ1c by the discussion
after Lemma 2.2, we immediately get property (i) for ρ2c. The conclusion ρ2c being a
probability measure is due to the definition of m2 in (2.34) and the fact that m2c is the
almost sure limit of m2.

The properties (ii) and (iv) for ρ2c can be easily obtained by plugging m1c into (2.9).
To prove the property (iii) for ρ2c, we need to know the behavior of Imm2c(w) when
w → ej along the real line. By (2.9), it suffices to prove that if |x− ej | ≤ τ ′ for some small
enough τ ′ > 0, then ∣∣−w(1 +m1c)

2 + |z|2
∣∣ =

∣∣m2
c − |z|2

∣∣ ≥ ε
for some constant ε > 0. Suppose that

∣∣m2
c(w)− |z|2

∣∣ = o(1). Then plugging mc into
∂mf(

√
w,mc) in (A.23), and using condition (2.18) and Lemma A.5, we get that

∂mf(
√
w,mc(w)) = −1 +O(|m2

c − |z|2|). (A.50)

Again using condition (2.18) and Lemma A.5, we can bound ∂√w∂mf(
√
w,mc(w)) and

∂2
mf(
√
w,mc(w)) for w near ej . Thus we shall have that

0 = ∂mf(
√
ej ,mc(ej)) = ∂mf(

√
w,mc(w))+O(|w−ej |1/2) = −1+O(|m2

c−|z|2|+|w−ej |1/2).

(A.51)
This gives a contradiction. Thus we must have a lower bound for

∣∣m2
c − |z|2

∣∣.
Remark: Here we add a small remark on Example 2.8. Given the assumptions in Example
2.8, it is easy to see that f can only take critical values on intervals I−n, I0, In and
I2n, since max{|ai − ai−1|, |bi − bi−1|, |ci − ci−1|} → 0 in this case. Thus the number of
connected components of supp ρ1c is independent of n, and all the edges and the bulk
components are regular as in Example 2.7.
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A.2 Proof of Lemmas 3.7 and 3.8

We first prove Lemma 3.7. We consider the five cases separately.

Case 1: For w = E + iη ∈ Db
k(ζ, τ ′, N), we have

m1c(w) =

∫
R

ρ1c(x)

x− (E + iη)
dx, Imm1c(w) =

∫
R

ρ1c(x, z)η

(x− E)2 + η2
dx. (A.52)

By the regularity condition of Definition 2.4 (ii), we get immediately Imm1c ∼ 1. Since
Imm1c ≤ |1 + m1c| ≤ C by Proposition 2.15, we get |1 + m1c| ∼ 1. Notice wm1c can be
expressed as

wm1c(w) =

∫
R

wρ1c(x, z)

x− w
dx = −

∫
R

ρ1c(x, z)dx+

∫
R

xρc(x, z)

x− w
dx.

By the same argument as above and using the fact that x ≥ τ ′ for x ∈ [e2k + τ ′, e2k−1− τ ′],
we get

Im(wm1c) = Im

∫
R

xρ1c(x, z)

x− w
dx ∼ 1.

Since the imaginary parts of −w and |z|2/(1 +m1c) are both negative, we get

Im

[
−w(1 +m1c) +

|z|2

1 +m1c

]
≤ −Im(wm1c). (A.53)

Using the bounds for m1c and Imm1c proved above, it is easy to see that∣∣∣∣−w(1 +m1c) +
|z|2

1 +m1c

∣∣∣∣ = O(1). (A.54)

Equations (A.53) and (A.54) together give that Imm2c ∼ 1 and |m2c| ∼ 1 by (2.9).
Similarly, we can also prove that

wm2c =

[
−(1 +m1c) +

|z|2

w(1 +m1c)

]−1

∈ C+

and Im(wm2c) ∼ 1. Then (3.29) follows from the bound

Im

(
w + siwm2c −

|z|2

1 +m1c

)
≥ siIm(wm2c).

Case 2: For w = E + iη ∈ Do(ζ, τ ′, N), using (A.52) and dist(E, supp ρ1,2c) ≥ τ ′, we
immediately get Imm1,2c ∼ η. Now we prove the other estimates.

We first prove (3.29). If η ∼ 1, the proof is the same as in Case 1. Hence we assume
η ≤ c′, where c′ ≡ c′(τ, τ ′) > 0 is sufficiently small. Recall the definitions of D and Do in
(2.39) and (2.42), we always have E ∼ 1 in this case.

We shall prove that

min
i
{|mc(w)− ai(w)|, |mc(w)− bi(w)|, |mc(w) + ci(w)|} ≥ ε′, (A.55)

for some constant ε′. This leads immediately to (3.29) since∣∣∣∣∣w
(

1 + si
1 +m1c

−w(1 +m1c)2 + |z|2

)
(1 +m1c)− |z|2

∣∣∣∣∣ =

∣∣∣∣∣
√
w(mc − ai)(mc − bi)(mc + ci)

−m2
c + |z|2

∣∣∣∣∣ .
(A.56)
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For pi =
√
Em3−(si+ |z|2)m2−

√
E|z|2m+ |z|4, it is not hard to prove that the roots ai(E),

bi(E) and −ci(E) decrease as E increase. Since E /∈ supp ρ1c, we have m1c(E) ∈ R and

dm1c(E)

dE
=

∫
R

ρ1c(x, z)

(x− E)2
dx ≥ 0.

So m1c(E) (and hence mc(E)) increases as E increases. Suppose ek is the smallest edge
that is bigger than E, then for ai(E) bigger than mc(E), we have that

ai(E)−mc(E) ≥ ai(ek)−mc(ek) + ε′(τ ′) ≥ ε′(τ ′), (A.57)

by using |E − ek| ≥ τ ′ (see (2.42)). On the other hand, If ek−1 is the largest edge value
that is smaller than E, then for ai(E) smaller than mc(E), we have that

mc(E)− ai(E) ≥ mc(ek−1)− ai(ek−1) + ε′(τ ′) ≥ ε′(τ ′). (A.58)

Applying the same arguments to bi(E) and −ci(E), we get

min
i
{|mc(E)− ai(E)|, |mc(E)− bi(E)|, |mc(E) + ci(E)|} ≥ ε′ (A.59)

for E ∈ (e2k+1, e2k) for some k. Now we are only left with the case E < e2L, the
rightmost edge, when |z|2 ≥ 1 + τ . In this case, we have seen that 0 < mc(E) < bi(E)

for all i in the proof of Lemma A.4. Thus we can use (A.57) to get lower bounds for
|mc(E) − ai(E)| and |mc(E) − bi(E)|. Since ci(E) ∼ 1 in this case (by (A.4) and using
E, |z| ∼ 1), |mc(E) + ci(E)| ≥ ε is trivial. Again we get the estimate (A.59).

Then we consider w = E + iη with η ≤ c′. First, it is easy to check that ai(E + iη),
bi(E + iη) and ci(E + iη) are continuous in η. On the other hand for mc(E + iη), we have

|∂wm1c(w)| =
∣∣∣∣∫
R

ρ1c(x, z)

(x− w)2
dx

∣∣∣∣ ≤ C (A.60)

by the condition dist(E, supp ρ1c) ≥ τ ′. Thus we immediately get |mc(E + iη)−mc(E)| =
O(η). Hence as long as c′ is small enough, (A.55) still holds true, which further gives
(3.29).

Now we show that |1+m1c| ∼ 1 for w ∈ Do and η ≤ c′. In fact, if |mc| can be arbitrarily
small, then by (3.29) we get that

f(
√
w,mc) = −

√
w +O(mc) 6= 0,

which gives a contradiction. Finally we have |m2c| ∼ 1 for w ∈ Do and η ≤ c′ by
Proposition 2.15.

Case 3: For a regular edge ek 6= 0, we always have ek ≥ ε for some ε > 0 by Lemma A.4.
Thus we always have |w| ∼ 1 for w = E + iη ∈ De

k(ζ, τ ′, N) as long as τ ′ is sufficiently
small. If η ∼ 1, then

√
κ+ η ∼ η/

√
κ+ η ∼ 1 and the proof is the same as in Case 1. Now

we pick τ ′ small and consider the case η ≤ τ ′. By the regularity assumption (2.18) and
Lemma A.5, we have

min
1≤i≤n

{|mc(w)− ai(w)|, |mc(w)− bi(w)|, |mc(w) + ci(w)|} ≥ ε/2 (A.61)

uniformly in w ∈ {w ∈ De
k(ζ, τ ′, N) : κ(w) + η(w) ≤ 2τ ′}, provided τ ′ is sufficiently

small. The above bound implies (3.29). If mc(w) → 0, then using (3.29) we get from
f(
√
w,mc) = 0 that −

√
w +O(mc) = 0, which gives a contradiction. Thus we must have

|1 +m1c| ∼ |mc| ∼ 1. To show |m2c| ∼ 1, we can use Proposition 2.15.
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We still need to prove the estimates for Imm1,2c when η ≤ τ ′. Recall the expansion
(A.48) around ek and equation (A.49), where both ∂√wf(

√
ek,mk) and ∂2

mf(
√
ek,mk) are

real (as ek and mk are real). Suppose k is odd, then Immc(E) = 0 for E ↘ ek (i.e.
E /∈ suppρc) and Immc(E) > 0 for E ↗ ek (i.e. E ∈ suppρc). Thus (A.49) gives

mc(w)−mk = Ck(w)(w − ek)1/2 +Dk(w),

with Ck > 0, Ck ∼ 1, |Dk| = O(|w − ek|) and ImDk = O(η). Then for E ≥ ek, we have

Immc(E + iη) ∼ Im(κ+ iη)1/2 +O(η) ∼ η√
κ+ η

,

and for E ≤ ek, we have

Immc(E + iη) ∼ Im(−κ+ iη)1/2 +O(η) ∼
√
κ+ η.

If k is even, the proof is the same except that in this case, we have

mc(w)−mk = Ck(w)(ek − w)1/2 +Dk(w).

For m1c(w) and m2c(w), we get the conclusion by noticing w ≈ ek and

Imm1c = Im
(
w−1/2mc

)
∼ Immc(w), Imm2c = Im

[
mc√

w(−m2
c + |z|2)

]
∼ Immc(w),

where we used that |m2
c −|z|2| ∼ 1 as observed in the proof of Proposition 2.14 in Section

A.1.

Case 4: Again if η ∼ 1, the proof is the same as in Case 1. If |w| ≤ 2τ ′ for small enough τ ′,
in the proof of Lemma A.4, we have seen that mc = i

√
t+O(

√
w), which gives the first

equation in (3.26). Plugging it into (2.9), we get the second equation in (3.26). Taking
the imaginary part, we obtain (3.27). Finally using (3.26), we can verify (3.29) easily.

Case 5: For w = E + iη ∈ DL(ζ,N), the bounds for m1,2 and Imm1,2 in (3.28) follows
from (A.52) directly.

Proof of Lemma 3.8. The estimates (3.31) and (3.32) follow immediately from (2.32),
(3.29) and (3.30). For (3.33), we can write

Πvv =

〈
v,

(
U 0

0 U

)
Πd

(
U† 0

0 U†

)
v

〉
= (Πd)uu =

N∑
i=1

〈
u[i], π[i]cu[i]

〉
,

where

u :=

(
U† 0

0 U†

)
v, u[i] :=

(
ui
uī

)
.

To control Im Πvv, it is enough to bound
〈
u[i], π[i]cu[i]

〉
for each i.

We first consider Cases 1-4 of Lemma 3.7. By the definition of π[i]c in (2.32), we get

Imπii,c = Im

[
−w(1 + |di|2m2c) +

|z|2

1 +m1c

]−1

≤ C

|w|
Im

[
w(1 + |di|2m2c)−

|z|2

1 +m1c

]
=

C

|w|

[
(1 + |di|2Rem2c)Imw + |di|2(Rew)Imm2c +

|z|2

|1 +m1c|2
Imm1c

]
,

where in the second step we used (3.29) and |1 + m1c| ∼ |w|−1/2. In the first three
cases of Lemma 3.7, we have |w| ∼ 1 and Imw = O(Imm1c), which give that Imπii,c ≤
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CIm(m1c +m2c). In case 4 of Lemma 3.7, we use |Imw|+ |Rew|+ |1 +m1c|−2 = O(|w|)
and Imm1,2c ∼ |w|−1/2 to get that Imπii,c ≤ CIm(m1c +m2c). Similarly, we can get the
bound Imπī̄i,c ≤ CIm(m1c +m2c). Finally we can estimate the following term using
similar methods,

Im
(
ūīuiπīi,c + ūiuīπīi,c

)
= 2Re (ūiuīz) Im

{
w−1/2

[
w(1 + |di|2m2c)(1 +m1c)− |z|2

]−1
}

≤ CRe (ūiuīz) Im(m1c +m2c) ≤ C
(
|ui|2 + |uī|2

)
Im(m1c +m2c).

Combining the above estimates we get Im
〈
u[i], π[i]cu[i]

〉
≤ C|u[i]|2Im(m1c +m2c), which

implies (3.33). For the Case 5 of Lemma 3.7, we use (3.28) and (3.32) to get

Im
〈
u[i], π[i]cu[i]

〉
≤ |u[i]|2‖π[i]c‖ ≤ C|u[i]|2Im(m1c +m2c).

This completes the proof.

A.3 Proof of Lemma 3.10 and Lemma 2.2

We first prove Lemma 3.10. During the proof, we also use the following equivalent
definition of the stability expressed in terms of m =

√
w(1 + m1), u =

√
w(1 + u1) and

f(
√
w,m). Suppose the assumptions in Definition 3.9 holds. Let w ∈ D and suppose that

for all w′ ∈ L(w) we have |f(
√
w, u)| ≤ |w|1/2δ(w). Then

|u(w)−mc(w)| ≤ C|w|1/2δ√
κ+ η + δ

. (A.62)

Case 1: We take over the notations in Definition 3.9 and abbreviate R := f(
√
w, u), so

that |R| ≤ |w|1/2δ. Then we write the equation f(
√
w, u)− f(

√
w,mc) = R as

α(u−mc)
2 + β(u−mc) = R, (A.63)

where using (A.1), α and β can be expressed as

α :=
1

N

n∑
i=1

lisi

[
Ai

(u− ai)(mc − ai)2
+

Bi
(u− bi)(mc − bi)2

+
Ci

(u+ ci)(mc + ci)2

]
, (A.64)

and

β := 1− 1

N

n∑
i=1

lisi

[
Ai

(mc − ai)2
+

Bi
(mc − bi)2

+
Ci

(mc + ci)2

]
= ∂mf(

√
w,mc). (A.65)

We shall prove that
|α|+ |∂uα| ≤ C, |β| ∼ 1, (A.66)

for w ∈ Db
k and u satisfying |u −mc| ≤ (logN)−1/3. If |u −mc| ≤ (logN)−1/3, we also

have Imu ∼ 1. By (3.29), we have

min
i
{|mc − ai|, |mc − bi|, |mc + ci|} ≥ ε (A.67)

for some ε > 0. Replacing the mc in (3.29) with u, we also get that

min
i
{|u− ai|, |u− bi|, |u+ ci|} ≥ ε′ (A.68)

for some ε′ > 0. Using (A.67) and (A.68), we get immediately that |α|+ |∂uα|+ |β| ≤ C.
What remains is the proof of the lower bound |β| ≥ c. If Imw ≥ ε for some constant ε > 0,
the lower bound follows from Lemma A.6 below. If Imw ≤ ε for a sufficiently small ε > 0,
the lower bound follows from Lemma A.7 below. Now given the estimate (A.66), it is
easy to prove (A.62) with a fixed point argument. This proves the stability of (3.34).
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Lemma A.6. Suppose that Imw ∼ 1 and |mc| ∼ Immc ∼ 1. Then |∂mf(
√
w,mc)| ≥ c for

some constant c > 0.

Proof. Using (2.13), mc =
√
w(1 +m1c) and the conditions Imw ∼ 1, Immc ∼ 1, we can

get that∣∣∣∣∂√wf(
√
w,mc)

∂mf(
√
w,mc)

∣∣∣∣ =

∣∣∣∣ ∂mc

∂
√
w

∣∣∣∣ ≤ C ⇒ ∣∣∂√wf(
√
w,mc)

∣∣ ≤ C ∣∣∂mf(
√
w,mc)

∣∣ , (A.69)

for some constant C > 0. Now we assume that |∂mf(
√
w,mc)| can be arbitrarily small.

Then
∣∣∂√wf(

√
w,mc)

∣∣ can also be arbitrarily small. Denote a := ∂mf(
√
w,mc) and

b := ∂√wf(
√
w,mc). Using (A.23) and (A.31), we get that

a =

√
w

mc
− mc

N

n∑
i=1

lisi

√
w
(
m2
c − |z|2

)2
+ 2si|z|2mc

[−(si + |z|2)m2
c + |z|4 +

√
w (m3

c − |z|2mc)]
2 (A.70)

and

b = −1− m2
c

N

n∑
i=1

lisi

(
m2
c − |z|2

)2
[−(si + |z|2)m2

c + |z|4 +
√
w (m3

c − |z|2m)]
2 . (A.71)

Using (A.70) and (A.71), we can get that

(
√
wmc − |z|2)|z|2

mc
b− 1

2
(m2

c − |z|2)(mca−
√
wb) =

(|z|2 −
√
wmc)(m

2
c + |z|2)

mc
, (A.72)

where we used the equation f(
√
w,mc) = 0 in the derivation. By our assumption, the

left-hand side of (A.72) can be arbitrarily small. For the right-hand side of (A.72), we
have |mc| ∼ 1 and |

√
wmc − |z|2| ∼ 1 (since Im (

√
wmc) = Im (w + wm1c) ∼ 1). Then if

|mc − i|z|| ≥ c′ for some constant c′ > 0, we have |m2 + |z|2| ∼ 1, and hence∣∣∣∣ (√wmc − |z|2)|z|2

mc
b− 1

2
(m2

c − |z|2)(mca−
√
wb)

∣∣∣∣ ∼ 1,

which gives a contradiction. Thus we must have a lower bound |∂mf(
√
w,mc)| ≥ c if

|m− i|z|| ≥ c′.
We still need to deal with the case with |mc − i|z|| ≤ c′ for some sufficiently small c′.

Notice |z| ∼ 1 in this case. It is easy to calculate that

∂f

∂
√
w

(
√
w, i|z|) = −1 +

|z|2

N

n∑
k=1

lksk
4|z|4

[(sk + |z|2)|z|2 + |z|4 − 2i
√
w|z|3]

2 . (A.73)

Denote Lk := (sk + |z|2)|z|2 + |z|4 − 2i
√
w|z|3. Since i

√
w = i(x + iy) = ix − y for some

x, y > 0 and x, y ∼ 1, we have ReLk > 0, ImLk < 0 and |ReLk|, |ImLk| ∼ 1. In particular,
this gives that ImL2

k < 0 and |ImL2
k| ∼ 1. Thus each fraction 4|z|4/L2

k in (A.73) has
positive imaginary part of order 1. Therefore∣∣∣∣ ∂f∂

√
w

(
√
w, i|z|)

∣∣∣∣ ≥ Im

[
∂f

∂
√
w

(
√
w, i|z|)

]
∼ 1.

Then by (A.69), we get that |∂mf(
√
w, i|z|)| ≥ c for some c > 0. Using (3.29), it is easy to

see that
∂mf(

√
w,mc) = ∂mf(

√
w, i|z|) +O(|mc − i|z||).

Thus in the case |mc − i|z|| ≤ c′, we still have |∂mf(
√
w,mc)| ≥ c/2, provided that c′ is

sufficiently small.
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Lemma A.7. Suppose that w ∈ Db
k and Imw ≤ ε. Then for sufficiently small ε > 0, we

have |∂mf(
√
w,mc)| ∼ 1.

Proof. By (3.22) and (3.29), we have ∂√w∂mf(w,mc) = O(1) and ∂2
mf(w,mc) = O(1).

Denote w = E + iη. Taking the imaginary part of the following equation

0 = f(
√
E,mc(E)) = −

√
E +mc + E−1/2 +

1

N

n∑
i=1

lisi

(
Ai

mc − ai
+

Bi
mc − bi

+
Ci

mc + ci

)
,

(A.74)
and noticing that Ai, Bi, Ci and ai, bi, ci are all positive real numbers for real E, we get

1

N

n∑
i=1

lisi

(
Ai

|mc − ai|2
+

Bi
|mc − bi|2

+
Ci

|mc + ci|2

)
= 1. (A.75)

Using the above equation, we get

∂mf(
√
E,mc(E)) = 1− 1

N

n∑
i=1

lisi

[
Ai

(mc − ai)2
+

Bi
(mc − bi)2

+
Ci

(mc + ci)2

]

=
1

N

n∑
i=1

lisi

[
Ai

|mc− ai|2
− Ai

(mc− ai)2
+

Bi
|mc− bi|2

− Bi
(mc− bi)2

+
Ci

|mc + ci|2
− Ci

(mc + ci)2

]
.

(A.76)

We look at, for example, the term

Ai
|mc − ai|2

− Ai
(mc − ai)2

=
Ai

|mc − ai|2
(1− e−2iθi),

where mc − ai := |mc − ai|eiθi . Using Immc ∼ 1, it is easy to see that Re(1− e−2iθi) ≥ c′
for some constant c′ > 0. Applying the same estimates to the B,C terms in (A.76), we
get ∣∣∣∂mf(

√
E,mc(E))

∣∣∣ ≥ Re
[
∂mf(

√
E,mc(E))

]
≥ c (A.77)

for some constant c > 0.
Now for w = E + iη with η ≤ ε, we can expand ∂mf(

√
w,mc(w)) around

∂mf(
√
E,mc(E)):

∂mf(
√
w,mc(w)) = ∂mf(E,mc(E)) +O(η),

where we used (3.29). Combing with (A.77), we get |∂mf(w,mc(w))| ∼ 1 for small enough
ε.

Case 2: We mimic the argument in the proof of Case 1. We see that it suffices to prove
|α|+ |∂uα| ≤ C and |β| ∼ 1 for α, β defined in (A.64) and (A.65) and |u−mc| ≤ (logN)−1/3.
Using (3.29), it is not hard to prove that |α| + |∂uα| + |β| ≤ C. What remains is the
proof of the lower bound |β| ≥ c. For the Imw ∼ 1 case, the bound follows from Lemma
A.6. We are left with the case where E = Rew ∼ 1 and η = Imw → 0. Using (2.13),
mc =

√
w(1 +m1c), |w| ∼ 1 and dist(E, supp ρ1c) ≥ τ ′, we can get that∣∣∣∣∂√wf(

√
w,mc)

∂mf(
√
w,mc)

∣∣∣∣ =

∣∣∣∣ ∂mc

∂
√
w

∣∣∣∣ ≤ C
for some constant C > 0. Thus it suffices to prove that

∣∣∂√wf(
√
w,mc)

∣∣ has a lower
bound. Using (A.31) and noticing that mc(E) ∈ R, we get

∂√wf(
√
E,mc(E)) = −1− m2

c

N

n∑
i=1

lisi

(
m2
c − |z|2

)2[
−(si + |z|2)m2

c + |z|4 +
√
E (m3

c − |z|2mc)
]2 ≤ −1.
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Expanding ∂√wf(
√
w,mc(w)) around ∂√wf(

√
E,mc(E)), using (3.29) and |mc(E + iη)−

mc(E)| ∼ η, we get for η small∣∣∂√wf(
√
w,mc)

∣∣ ≥ 1 +O(η) ≥ c.

This concludes the proof for Case 2.

Case 3: The case Imw ≥ τ ′ can be proved with the same method as in the proof of case
1. Hence we only consider the case |w − ek| ≤ 2τ ′ in the following. Note that |w| ∼ 1 in
this case. Suppose

|w − ek| ≤ 2τ ′, |u−mc| ≤ (logN)−1/3. (A.78)

Then we claim that
|α| ∼ 1, |β| ∼

√
κ+ η (A.79)

for small enough τ ′. Using (A.78), (3.29), (2.19) and Lemma A.5, we can get that

α =
1

2
∂2
mf(
√
ek,mc(ek)) +O(|w − ek|1/2 + (logN)−1/3) ∼ 1.

To prove the estimate for β, we use (2.17), (3.29) and Lemma A.5 to get that

β =

∫ w

ek

d

dw′
∂mf(

√
w′,mc(w

′))dw′

=

∫ w

ek

∂√w′∂mf(
√
w′,mc(w

′))

2
√
w′

dw′ +

∫ w

ek

∂2
mf(
√
w′,mc(w

′))
dmc(w

′)

dw′
dw′

=

∫ w

ek

∂√w∂mf(
√
ek,mc(ek)) +O(|w − ek|1/2)

2
√
w′

dw′

+

∫ mc(w)

mc(ek)

[
∂2
mf(
√
ek,mc(ek)) +O(|w − ek|1/2)

]
dm

= ∂2
mf(
√
ek,mk)(mc(w)−mc(ek)) +O(|w − ek|). (A.80)

Thus we conclude for small enough τ ′ that

|β| ∼ |w − ek|1/2 ∼
√
κ+ η.

With the estimate (A.79), we now proceed as in the proof of [4, Lemma 4.5], by
solving the quadratic equation (A.63) for u−mc explicitly. We select the correct solution
by a continuity argument using that (A.62) holds by assumption at z + iN−10. The
second assumption of (A.78) is obtained by continuity from the estimate on |u−mc| at
the neighboring point z + iN−10. We refer to [4, Lemma 4.5] for the full details. This
concludes the proof for Case 3.

Case 4: The case when Imw ≥ τ ′ can be proved using the same method as in the
proof of Case 1. Now we are left with the case |w| ≤ 2τ ′ for some sufficiently small τ ′.
First we assume |z| ≥ c > 0 for some small c > 0. Then mimicking the argument in
the proof of Case 1, we see that it suffices to prove |α| + |∂uα| ≤ C and |β| ∼ 1 when
|u−mc| ≤ (logN)−1/3. Using (3.29), it is not hard to prove that |α|+ |∂uα|+ |β| ≤ C. The
lower bound |β| ≥ c can be obtained easily from (A.32).

Then suppose |z|2 < c, but |w|1/2 + |z|2 ≥ ε. According to (A.38) and using that∣∣i|z|2 +
√
wt0
∣∣ ∼ |w|1/2 + |z|2, we can verify that

β = ∂mf(
√
w,mc(w)) ∼ |w|1/2 + |z|2 ∼ 1.

With (3.29), it is easy to check that

∂2
mf(
√
w, ξ) = O(1), ∂3

mf(
√
w, ξ) = O(1),
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for |ξ −mc| ≤ (logN)−1/3, from which we get that |α|+ |∂uα| = O(1). With a fixed point
argument, we conclude (A.62).

Case 5: Again we following the arguments in the proof of Case 1. However, instead
of f(

√
w,m), we shall study Υ(w,m1) in (3.35) directly. We take over the notations in

Definition 3.9 and abbreviate R := Υ(w, u1), so that |R| ≤ δ. Then we write the equation
Υ(w, u1)−Υ(w,m1c) = R as

α(u1)(u1 −m1c)
2 + β(u1 −m1c) = R, (A.81)

where we used the same symbols as in (A.63) for notational convenience. As in Case 1,
we have β = ∂m1

Υ(w,m1c), and we can estimate that |α| + |∂u1
α| ≤ C for w ∈ DL and

u1 satisfying |u1 −m1c| � |m1c|. Now to conclude (3.39), it suffices to prove |β| ∼ 1 for
w ∈ DL. In fact with (3.35), we can obtain that

β = 1 +O
(
η−1

)
∼ 1,

for η ≥ ζ−1. This concludes the proof.

Proof of Lemma 2.2. The fact that ρ1c has compact support follows from Lemma 2.3; ρ1c

being integrable follows from Lemma A.4. Note that in proving Lemmas 2.3 and A.4,
we do not make use of the regularity assumptions in Definition 2.4. It remains to show
that for fixed w ∈ C+ and |z| 6= 1, there exists a unique m1c(w) ∈ C+ satisfying equation
(2.11). This follows from the proof of Case 1 in this section under the extra condition
η ∼ 1. Again, we do not need the regularity assumptions for the proof, because η−1

provides a nice bound for the Stieltjes transforms in the global region with η ∼ 1.

Remark: The estimate (3.29) has been used repeatedly during the proof of Lemma 3.10.
Here we remark that it also gives the stability of the regularity conditions in Definition
2.4 under perturbations of |z| and ρΣ. For example, we define the shifted empirical
spectral density

ρΣ,t :=
1

N ∧M

N∧M∑
i=1

δσi+t, (A.82)

and the associated mc(w, t) and function f(
√
w,m, t). Given a regular edge ek, we have

that

f(
√
ek,mk, t = 0) = 0, ∂mf(

√
ek,mk, t = 0) = 0,

where we denote mk := mc(ek). We have the Jacobian

J := det

(
∂√wf ∂mf

∂√w∂mf ∂2
mf

)
(
√
w,m,t)=(

√
ek,mk,0)

= ∂√wf(
√
ek,mk, 0)∂2

mf(
√
ek,mk, 0).

By (A.31), we have
∣∣∂√wf(

√
ek,mk, 0)

∣∣ ≥ 1. Combining with (2.19), we get |J | ≥ ε. Using
(3.29), we can verify that ∂tf(

√
ek,mk, 0) = O(1) and ∂t∂mf(

√
ek,mk, 0) = O(1). Thus if

we regard ek and mk as functions of t, then ∂tmk(t = 0) = O(1) and ∂tek(t = 0) = O(1)

by the implicit function theorem. Then it is easy to verify

∂2
mf
(√

ek(t),mc(ek, t)
)

= ∂2
mf (
√
ek,mc(ek)) +O(t),

|mc(ek, t)− ai(ek, t)| = |mc(ek)− ai(ek)|+O(t),

and similar estimates for |mc − bi| and |mc + ci|. Thus if Definition 2.4 (i) holds for some
ρΣ, then it holds for all ρΣ,t provided that t is small enough.
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Now given a regular bulk component [e2k, e2k−1] and E ∈ [e2k + τ ′, e2k−1 − τ ′]. Differ-
entiating the equation f(

√
E,mc(E, t), t) = 0 in t yields

∂tmc(E, t) = − ∂tf(
√
E,mc(E, t), t)

∂mf(
√
E,mc(E, t), t)

.

By (3.29), we find that ∂tf(
√
E,mc(E), 0) = O(1), while by (A.66), |∂mf(

√
E,mc(E), 0)| =

β ∼ 1. Thus ∂tmc(E, 0) = O(1). A simple extension of this argument shows that
mc(E, t) = mc(E) + O(t) and hence Immc(E, t) is bounded from below by some c′ =

c′(τ, τ ′). Thus we conclude that if Definition 2.4 (ii) holds for some ρΣ, then it holds for
all ρΣ,t with t in some fixed small interval around zero. Obviously, the above arguments
also work for |z| perturbation.

B Proof of Lemma 4.9

Our proof of (4.59) is an extension of [4, Lemma 4.9], [7, Lemma 7.3] and [14,
Theorem 4.7]. Here we only prove the bound for ‖[Z]‖. The proof for ‖〈Z〉‖ is exactly the
same. For i ∈ I1, we define Pi := E[i] and Qi := 1− Pi. Recall that Z[i] = QiG

−1
[ii]. Hence

we need to prove

[Z] =
1

N

N∑
i=1

π[i]

(
QiG

−1
[ii]

)
π[i] ≺ |w|

−1/2
Φ2
o,

for w ∈ D. For J ⊂ I, we define π[J]
[i] by replacing m1,2 in (2.36) with m[J]

1,2 defined in (4.6).

As in (4.58), we can prove that |m[i]
1,2 −m1,2| ≺ |w|−1/2

Φ2
o, which further gives that

[Z] =
1

N

N∑
i=1

π
[i]
[i]

(
QiG

−1
[ii]

)
π

[i]
[i] +O≺

(
|w|−1/2

Φ2
o

)
=

1

N

N∑
i=1

Qi

(
π

[i]
[i]G

−1
[ii]π

[i]
[i]

)
+O≺

(
|w|−1/2

Φ2
o

)
.

Thus if we abbreviate Bi := |w|1/2Qi
(
π

[i]
[i]G

−1
[ii]π

[i]
[i]

)
, it suffices to prove that B :=

N−1
∑
iBi ≺ Φ2

o. We will estimate B by bounding the p-th moment of its norm by
Φ2p
o for p = 2n ∈ 2N, i.e. E‖B‖p ≺ Φ2p

o . The lemma then follows from the Markov’s
inequality. Using ‖KK†‖ = ‖K‖2, we have that

Tr(BB†)n ≥
∥∥BB†∥∥n = ‖B‖2n .

Thus it suffices to prove that

ETr(BB†)p/2 ≺ Φ2p
o , for p = 2n. (B.1)

This estimate can be proved with the same method as in [14, Appendix B], with the only
complication being that π[i] is random and depends on i. In principle, this can be handle
by using (3.9) and (3.10) to put any indices j, k, ... ∈ I1 (that we wish to include) into the
superscripts of π[i]. This leads to a minor modification of the proof in [14, Appendix B].
Here we describe the basic ideas of the proof, without writing down all the details.

The proof is based on a decomposition of the space of random variables using Ps and
Qs. It is evident that Ps and Qs are projections, Ps +Qs = 1 and all of these projections
commute with each other. For a set J ⊂ I, we denote PJ :=

∏
s∈J Ps and QJ :=

∏
s∈J Qs.

Let p = 2n and introduce the shorthand notation B̃ks := Bks for odd s ≤ p and B̃ks := B†ks
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for even s ≤ p. Then we get

ETr(BB†)p/2 =
1

Np

∑
k1,k2,...,kp

ETr
p∏
s=1

B̃ks =
1

Np

∑
k1,k2,...,kp

ETr
p∏
s=1

(
p∏
r=1

(Pkr +Qkr )B̃ks

)
.

(B.2)
Introducing the notations k = (k1, k2, . . . , kp) and {k} = {k1, k2, . . . , kp}, we can write

ETr(BB†)p/2 =
1

Np

∑
k

∑
I1,...,Ip⊂{k}

ETr
p∏
s=1

(
PIcsQIsB̃ks

)
. (B.3)

Following the arguments in [14, Appendix B], one can see that to conclude (B.1) it
suffices to prove that for k ∈ I,

‖QIBk‖ ≺ Φ|I|o . (B.4)

As in [14, Appendix B], it is not hard to prove that for k ∈ I,

|w|−1/2
∥∥∥QIG−1

[kk]

∥∥∥ ≺ Φ|I|o , and |w|−1/2
∥∥∥QI\{k}G−1

[kk]

∥∥∥ ≺ Φ|I|o if |I| ≥ 2. (B.5)

Now we extend the proof to obtain the estimate (B.4). For the case |I| = 1 (i.e. I = {k}),

‖Bk‖ = |w|1/2‖π[i]
[i]Z[k]π

[i]
[i]‖ ≤ |w|

−1/2‖Z[k]‖ ≺ Φo,

where we used ‖Z[k]‖ ≺ |w|1/2Φo, which can be proved with the same arguments as in
Lemma 4.4. For the case |I| ≥ 2, WLOG, we may assume k = 1 and I = {1, . . . , t} with
t ≥ 2. It is enough to prove that

|w|1/2
∥∥∥Qt . . . Q2Q1π

[1]
[1]G

−1
[11]π

[1]
[1]

∥∥∥ ≺ Φto. (B.6)

We take t = 3 as an example to describe the ideas for the proof of (B.6). Using (3.9), we
get

π
[1]
[1] = π

[12]
[1] + |w|1/2ε[1]

11π
[12]
[1] A1π

[12]
[1] + |w|1/2ε[1]

1̄1̄
π

[12]
[1] A2π

[12]
[1] + error1,2, (B.7)

where ε[1]
11 and ε[1]

1̄1̄
are the upper left and lower right entries of

ε
[1]
[1] := |w|1/2

G[1]
[22]

N
+

1

N

∑
k/∈{1,2}

G
[1]
[k2]

(
G

[1]
[22]

)−1

G
[1]
[2k]

 ≺ Φ2
o,

A1,2 are deterministic matrices with operator norm O(1), and ‖error1,2‖ ≺ |w|−1/2Φ4
o.

Then we get

π
[1]
[1]G

−1
[11]π

[1]
[1] = π

[12]
[1] G

−1
[11]π

[12]
[1] + |w|1/2ε[1]

11π
[12]
[1] A1π

[12]
[1] G

−1
[11]π

[12]
[1] + |w|1/2ε[1]

1̄1̄
π

[12]
[1] A2π

[12]
[1] G

−1
[11]π

[12]
[1]

+ |w|1/2π[12]
[1] G

−1
[11]ε

[1]
11π

[12]
[1] A1π

[12]
[1] + |w|1/2π[12]

[1] G
−1
[11]ε

[1]

1̄1̄
π

[12]
[1] A2π

[12]
[1] +O≺(|w|−1/2Φ4

o).

(B.8)

We first handle the π[12]
[1] G

−1
[11]π

[12]
[1] term. By (B.5), we have

Q2π
[12]
[1] G

−1
[11]π

[12]
[1] = π

[12]
[1]

(
Q2G

−1
[11]

)
π

[12]
[1] ≺ |w|

−1/2Φ2
o.

For the remaining term, we first expand π[12]
[1] = π

[123]
[1] +O≺(|w|−1/2Φ2

o) and use (B.5) to
get

Q3Q2π
[12]
[1] G

−1
[11]π

[12]
[1] = π

[123]
[1]

(
Q3Q2G

−1
[11]

)
π

[123]
[1] +O≺

(
|w|−1/2Φ4

o

)
≺ |w|−1/2Φ3

o.
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Then we deal with the second terms in (B.8). We first expand ε[1]
[1] = e

[3]
[1] +O≺(Φ3

o), where

e
[3]
[1] := |w|1/2

G[13]
[22]

N
+

1

N

∑
k/∈{1,2,3}

G
[13]
[k2]

(
G

[13]
[22]

)−1

G
[13]
[2k]

 .

Using the similar arguments as above, we get

Q3|w|1/2e[3]
11π

[12]
[1] A1π

[12]
[1] G

−1
[11]π

[12]
[1] = |w|1/2e[3]

11π
[123]
[1] A1π

[123]
[1]

(
Q3G

−1
[11]

)
π

[123]
[1] +O≺(|w|−1/2Φ4

o)

≺ |w|−1/2Φ4
o.

Thus we have
Q2Q3|w|1/2ε[1]

11π
[12]
[1] A1π

[12]
[1] G

−1
[11]π

[12]
[1] ≺ |w|

−1/2Φ3
o.

Obviously this kind of estimate works for the rest of the terms in (B.8). This proves (B.6)
when t = 3.

We can continue in this manner for a general t. At the l-th step, we expand the leading
order terms using (3.9) and (3.10), and after applying Ql . . . Q3Q2 on them, the number
of Φo factors increases by one at each step by (B.5). Trough induction we can prove
(B.6). In fact the expansions can be performed in a systematic way using the method in
[14, Appendix B], and we leave the details to the reader. Also we remark that similar
techniques are used in the proof of anisotropic local law in Section 5, and we choose to
present the details there (in fact the proof here is much easier than the one in Section 5).
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