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Abstract

We consider a model of a population of fixed size N undergoing selection. Each
individual acquires beneficial mutations at rate µN , and each beneficial mutation
increases the individual’s fitness by sN . Each individual dies at rate one, and when a
death occurs, an individual is chosen with probability proportional to the individual’s
fitness to give birth. Under certain conditions on the parameters µN and sN , we show
that the genealogy of the population can be described by the Bolthausen-Sznitman
coalescent. This result confirms predictions of Desai, Walczak, and Fisher (2013), and
Neher and Hallatschek (2013).
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1 Introduction

In population genetics, one is often interested in understanding the genealogical
structure of a population. That is, we take a sample of individuals from a population at
some time and trace their ancestral lines backwards in time. As we trace the ancestral
lines backwards in time, the lineages will merge until eventually all sampled individuals
are traced back to one common ancestor. For many standard population models, includ-
ing the classical Moran model [20], the genealogy of the population is best described
by a process known as Kingman’s coalescent, which was introduced in [17]. Kingman’s
coalescent is the coalescent process in which only two lineages ever merge at one time
and each pair of lineages merges at rate one.

For populations undergoing selection, Kingman’s coalescent does not always provide
an adequate description of the genealogy of the population. If one individual acquires
a beneficial mutation which then spreads rapidly to a large fraction of the population,
many ancestral lines could merge nearly at once because they all get traced back to

*Supported in part by NSF Grant DMS-1206195
†University of California, San Diego, E-mail: jschwein@math.ucsd.edu

http://www.imstat.org/ejp/
http://dx.doi.org/10.1214/17-EJP58
http://arXiv.org/abs/1507.00394
mailto:jschwein@math.ucsd.edu


Rigorous results for a population model with selection II

the individual that acquired the beneficial mutation. As a result, the genealogy of the
population is best described by a coalescent process that permits more than two lineages
to merge at one time. Such processes, known as coalescents with multiple mergers or
Λ-coalescents, were introduced by Pitman [23] and Sagitov [27] and have been studied
extensively in the probability literature in recent years. For previous work in which
coalescents with multiple mergers were used to describe the genealogy of populations
undergoing selection, see [4, 8, 9, 12, 16, 22].

In this paper, we will consider the following population model. The population has
fixed size N . Each individual independently acquires mutations at times of a Poisson
process with rate µN . All mutations are assumed to be beneficial, and the fitness of each
individual depends on how many mutations the individual has acquired, relative to the
mean of the population. More precisely, let Xj(t) be the number of individuals with j

mutations at time t, which we call type j individuals, and let

M(t) :=
1

N

∞∑
j=0

jXj(t)

be the average number of mutations carried by the individuals in the population at time
t. Then the fitness of an individual with j mutations at time t is defined to be

max
{

0, 1 + sN (j −M(t))
}
.

Note that the parameter sN measures the selective advantage that an individual gets
from each mutation. As in the Moran model, each individual independently lives for
an exponentially distributed time with mean one. When an individual dies, it gets
replaced by a new individual whose parent is chosen at random from the population.
The probability that a particular individual is chosen as the parent is proportional to that
individual’s fitness, and the new individual inherits all of its parent’s mutations.

This model was studied in great detail using nonrigorous methods by Desai and
Fisher [11], who obtained results concerning the rate of adaptation, meaning the rate at
which the mean fitness M(t) grows as a function of time, as well as the distribution of the
fitnesses of individuals in the population at a given time. See also [10, 25, 29] for related
results, and see [29] for a good summary of the literature on this model and closely
related models. The genealogy of the population in this model has been studied only
within the past few years. Desai, Walczak, and Fisher [12] argued that the genealogy of
the population can be described by a process called the Bolthausen-Sznitman coalescent,
which we will define precisely in section 2. Neher and Hallatschek [22] arrived at the
same conclusion for a slightly different model.

This model was also studied in detail in [28], which contains rigorous proofs of the
results of Desai and Fisher [11] concerning the rate of adaptation and the distribution
of fitnesses of individuals in the population. In the present paper, which is a sequel to
[28], we build on the techniques developed in [28] to provide a mathematically rigorous
description of the genealogy of the population. We confirm nonrigorous predictions of
Desai, Walczak, and Fisher [12] and show that the genealogy of the population is given
by the Bolthausen-Sznitman coalescent, under suitable conditions on the parameters sN
and µN .

The rest of this paper is organized as follows. In section 2, we state precisely our
assumptions and the main result of the paper, which is Theorem 2.1 below. In section 3,
we give a heuristic argument that explains the ideas behind why Theorem 2.1 is true,
and we make some connections with other results in the literature. In section 4, we
summarize the results from [28] that will be needed in the present paper. The remaining
sections are devoted to proving Theorem 2.1.
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2 Assumptions and main result

We first define the following two quantities, which were also used in [28] and which
are important for scaling the process correctly:

kN :=
logN

log(sN/µN )
, aN :=

log(sN/µN )

sN
. (2.1)

As we will see below, kN is the natural scale for the number of mutations because the
difference in the number of mutations carried by the fittest individual in the population
and an individual of average fitness is typically within a constant multiple of kN . Also,
we will see that aN is the natural time scale on which to study the process because the
time required to trace two randomly chosen individuals back to a common ancestor is
typically within a constant multiple of aN .

We will need the following assumptions on the parameters sN and µN , which are
identical to the three assumptions that appeared in [28]:

A1: We have lim
N→∞

kN
log(1/sN )

=∞.

A2: We have lim
N→∞

kN log kN
log(sN/µN )

= 0.

A3: We have lim
N→∞

sNkN = 0.

Dividing A3 by A1, we get
lim
N→∞

sN = 0. (2.2)

Therefore, assumptions A1 and A2 imply that

lim
N→∞

kN = lim
N→∞

aN =∞. (2.3)

Also, as noted in [28], these assumptions imply that for all a > 0, we have

lim
N→∞

µN
saN

= lim
N→∞

1

µNNa
= 0, (2.4)

which means the mutation rate µN tends to zero faster than any power of sN but more
slowly than any power of 1/N . The three assumptions will be satisfied, for example, if for

all N , we have µN = e−(logN)b with 1/2 < b < 1 and e−(logN)a ≤ sN ≤ (logN)−1/2 with
0 < a < 1− b. This example was previously given in [28].

Assumption A1 implies that the difference between the number of mutations carried
by the fittest individual and the number carried by an individual of average fitness
tends to infinity as N → ∞. Because each additional mutation adds sN to the fitness
of an individual, assumption A3 implies that the difference in fitness between these
two individuals tends to zero as N → ∞. As can be seen from Proposition 3.1 of [28],
assumption A2 ensures that mutations do not happen too fast for the analysis in this
paper and [28] to be valid. Understanding how the population evolves under faster
mutation rates is an important question for future work.

Although the parameters µN and sN depend on N , we will drop the subscripts and
write µ and s throughout the rest of the paper to lighten notation.

Before stating the main result, we need to define the Bolthausen-Sznitman coalescent,
which was introduced in [6]. The Bolthausen-Sznitman coalescent is a continuous-time
Markov chain (Π(t), t ≥ 0) taking its values in the set of partitions of {1, . . . , n}. It
is defined by the property that Π(0) = {{1}, . . . , {n}} is the partition of 1, . . . , n into
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singletons, and then whenever the partition has b blocks, each possible transition that
involves merging k of the blocks into one, where 2 ≤ k ≤ b, happens at rate

λb,k =

∫ 1

0

yk−2(1− y)b−k dy, (2.5)

and these are the only possible transitions. A more detailed construction of the
Bolthausen-Sznitman coalescent will be given shortly in section 3.1.

Theorem 2.1. Assume A1-A3 hold. Fix positive real numbers t0 and T such that t0 > 0

and T > t0 + 2. Fix a positive integer n, and sample n individuals at random from the
population at time aNT . For 0 ≤ u ≤ t0 + 1, let ΠN (u) be the partition of {1, . . . , n} such
that i and j are in the same block of the partition if and only if the ith and jth sampled
individuals have the same ancestor in the population at time aN (T − u). Then

lim
N→∞

P (ΠN (1) = {{1}, . . . , {n}}) = 1. (2.6)

Also, the finite-dimensional distributions of (ΠN (1 + u), 0 ≤ u ≤ t0) converge as N →∞
to the finite-dimensional distributions of the Bolthausen-Sznitman coalescent.

Note that Theorem 2.1 stipulates that with probability tending to one as N →∞, the
sampled individuals at time aNT will all be descended from different ancestors at time
aN (T − 1). However, as the ancestral lines are traced back further, the merging of these
ancestral lines obeys the law of the Bolthausen-Sznitman coalescent. This result also
appears in [12], where it was obtained by nonrigorous methods.

Theorem 2.1 establishes only convergence of the finite-dimensional distributions.
We do not expect convergence to hold with respect to the usual Skorohod J1 topology
on path space because for finite N , we have many pairwise mergers of ancestral lines
happening at approximately the same time, rather than the multiple mergers that appear
in the limit.

Our proof of Theorem 2.1 will also yield Proposition 2.2 below concerning the number
of mutations carried by the ancestors of the sampled individuals. Before stating this
proposition, we introduce some notation. Let q : [0,∞)→ [0,∞) be the unique bounded
function such that

q(t) =

{
et if 0 ≤ t < 1∫ t
t−1

q(u) du if t ≥ 1.
(2.7)

The existence and uniqueness of q is part of Theorem 1.1 of [28]. Also define the function
m : [0,∞)→ [0,∞) by

m∗(t) := 1 +

∫ t

0

q(u) du.

Theorem 1.2 of [28] states that if

M∗(t) := max{j : Xj(t) > 0}

denotes the number of mutations carried by the fittest individual in the population at
time t and S is a compact subset of (0,∞), then

sup
t∈S

∣∣∣∣M∗(aN t)kN
−m∗(t)

∣∣∣∣→p 0, (2.8)

and if S is a compact subset of (1,∞), we also have

sup
t∈S

∣∣∣∣M(aN t)

kN
−m∗(t− 1)

∣∣∣∣→p 0, (2.9)

where→p denotes convergence in probability as N →∞.

Proposition 2.2. Fix t0, T , and n as in Theorem 2.1, and sample n individuals at random
from the population at time aNT . For i ∈ {1, . . . , n} and t ∈ [0, aNT ], let Ui(t) be the
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number of mutations carried by the individual at time t that is the ancestor of the
individual labelled i at time aNT . Then

max
1≤i≤n

sup
T−(t0+1)≤u≤T

∣∣∣∣Ui(aNu)

kN
−m∗((T − 1) ∧ u)

∣∣∣∣→p 0.

Proposition 2.2 implies that with high probability, we have Ui(aNT ) ≈ kNm∗(T − 1),
which from (2.9) is approximately the average number of mutations of the individuals at
time aNT . As we follow the ancestral lines backwards in time, the number of mutations
does not change until we get back to approximately time aN (T − 1). Then for u ≤ T − 1,
the ancestor of the sampled individual at time aNu is close to being the fittest individual
in the population. Note that this picture was already implicit in the work of Desai,
Walczak, and Fisher [12]. The proof of Proposition 2.2 is given at the end of section 6.2.

3 Heuristics and background

3.1 The Bolthausen-Sznitman coalescent

Recall that the Bolthausen-Sznitman coalescent is the coalescent process whose
transition rates are given by (2.5). Pitman [23] showed how to construct the Bolthausen-
Sznitman coalescent from a Poisson process. We give a variation of this construction
here. Consider a Poisson process on [0,∞)× (0, 1]× [0, 1]n with intensity

dt× y−2 dy × dz1 × · · · × dzn.

Let Π(0) = {{1}, . . . , {n}} be the partition of 1, . . . , n into singletons. If (t, y, z1, . . . , zn) is
a point of the Poisson process, and if the blocks of the partition Π(t−), ranked in order
by their smallest elements, are B1, . . . , Bb, then Π(t) is the partition obtained from Π(t−)

by merging together all of the blocks Bi for which zi ≤ y.
Informally, this means that if (t, y) are the first two coordinates of a point of the

Poisson process, then at time t we have a so-called y-merger, in which each block
independently participates in the merger with probability y. If Π(t−) has b blocks,
then for 2 ≤ k ≤ b, the probability that a particular set of k blocks merges into one is
yk(1− y)b−k, which allows us to recover the formula (2.5) for the transition rates.

To see that the construction above is well-defined, note that a point (t, y, z1, . . . , zn) of
the Poisson process can only produce a merger at time t if at least two of z1, . . . , zn are
less than or equal to y. The rate at which such points appear is bounded above by∫ 1

0

y−2 ·
(
n

2

)
y2 dy <∞.

Therefore, only finitely many such points will appear in any bounded time interval, and
the construction above can be carried out by considering these points in order by their
time coordinate.

We now give a heuristic argument to explain when the Bolthausen-Sznitman coa-
lescent should be expected to describe the genealogy of a population. Note that if a
population has size S and then a new large family of size Sx suddenly appears, then the
fraction of the population belonging to the large family will be x/(1 + x). Consequently,
if we are tracing ancestral lines backwards in time, approximately a fraction x/(1 + x) of
the lineages will coalesce around the time that this family appears. That is, we will have
a y-merger with y = x/(1 + x). For the Bolthausen-Sznitman coalescent, we can see from
the Poisson process construction above that y-mergers with y ≥ x/(1 + x) occur at rate∫ 1

x/(1+x)

y−2 dy = x−1. (3.1)
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Therefore, the Bolthausen-Sznitman coalescent will describe the genealogy of a popula-
tion when families of size Sx or larger appear at a rate proportional to x−1.

3.2 A heuristic argument for Theorem 2.1

In this subsection, we give a short approximate calculation to suggest why Theorem
2.1 should be true. For j ∈ N, let

τj := inf

{
t : Xj−1(t) ≥ s

µ

}
(3.2)

be the first time that there are at least s/µ individuals in the population with j − 1

mutations. It was shown in [28] that typically no individual acquires a jth mutation until
after time τj . We write for now qj = j −M(τj), so that qj − 1 is the difference between
j − 1 and the mean number of mutations carried by the individuals in the population at
time τj . Typically qj will be of the same order of magnitude as kN , which means that
when N is large, typically qj will be large and sqj will be small.

As argued in [11, 28], shortly after time τj , the number of type j − 1 individuals in
the population is growing approximately exponentially at the rate s(qj − 1), which means
that when t is slightly larger than τj , we have

Xj−1(t) ≈ s

µ
es(qj−1)(t−τj). (3.3)

Because each type j − 1 individual independently acquires mutations at rate µ, at time
u we have type j individuals appearing due to a mutation at rate µXj−1(u). If such a
mutation happens at time u, then because type j individuals have a selective advantage
of approximately sqj over the rest of the population, the expected number of descendants
of this mutation alive at time t is approximately esqj(t−u). Therefore, using (3.3),

Xj(t) ≈
∫ t

τj

µ · s
µ
es(qj−1)(u−τj) · esqj(t−u) du = sesqj(t−τj)

∫ t

τj

e−s(u−τj) du ≈ esqj(t−τj). (3.4)

Usually, the type j individuals will belong to many small families. That is, many type
j − 1 individuals will acquire mutations, each of which will become the ancestor of only
a small fraction of the type j population. In that case, the approximation in (3.4) will be
valid. However, occasionally there can be an unusually early mutation, when a type j − 1

individual acquires a jth mutation much sooner than expected. When this occurs, the
descendants of the new type j individual can eventually constitute a significant fraction
of the type j individuals in the population. These unusually large families can lead to
multiple mergers of ancestral lines, as many lineages get traced back to the individual
that got the early mutation.

To estimate the probability that this happens, we approximate qj − 1 by qj in (3.3) to
see that at time u, mutations from type j−1 to type j are occurring at rate approximately
sesqj(u−τj). If such a mutation does occur, then the number of descendants of this
mutation behaves like a supercritical branching process with deaths at rate 1 and births
at rate 1 + sqj . Such a branching process survives with probability approximately sqj
and, conditional on survival, the size of the population after it has evolved for time t− u
is approximately

W

sqj
esqj(t−u),

where W has an exponential distribution with mean one. In particular, a successful
mutation that occurs at time

u = τj +
1

sqj
log

(
1

sqj

)
+ v
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has approximately
We−sqjvesqj(t−τj)

descendants in the population at time t. Write S = esqj(t−τj), which from (3.4) is
approximately the number of type j individuals at time t that do not come from unusually
early mutations. By integrating over the possible times when the mutation could occur,
we see that the probability that there will be a mutation that is the ancestor of at least
Sx type j individuals at time t is approximately∫ ∞
−∞

sesqj [log(1/sqj)/sqj+v] · sqj · P (We−sqjv > x) dv =

∫ ∞
−∞

sesqjve−xe
sqjv

dv =
1

qjx
. (3.5)

Inside the integral on the left-hand side, the first factor is the total rate of type j

mutations, with the number of type j − 1 individuals being approximated as in (3.3) with
qj in place of qj − 1. The second factor sqj is the probability that the mutation survives,
and the third factor is the probability that there are at least Sx descendants of this
mutation at time t. Note that the factor of x−1 on the right-hand side of (3.5) matches
the right-hand side of (3.1).

Consider now what happens when we sample n individuals from the population at
time aNT and trace their ancestral lines backwards in time. As noted in [28], one type
will dominate the population at a typical time, so with high probability, the sampled
individuals will all have the same type, which we will call type `. With high probability,
the sampled individuals will be descended from distinct type ` ancestors at time τ`+1.
Because we will see that the time between when type ` individuals originate and when
they become the dominant type in the population is approximately aN , this means the
ancestral lines will most likely not merge when they are traced back from time aNT to
time aN (T − 1), which leads to the result (2.6).

As we trace the lineages further back, with high probability they get traced back to
type `− 1 ancestors at time τ`, then to type `− 2 ancestors at time τ`−1, and so on. At
each stage of this process, there is a small probability that a group of ancestral lines will
merge together because they get traced back to an individual that acquired an unusually
early mutation. Because of the agreement between (3.1) and (3.5), these mergers follow
the same dynamics, in the limit as N →∞, as the Bolthausen-Sznitman coalescent.

The explanation given here for the appearance of the Bolthausen-Sznitman coalescent
is similar to that given by Desai, Walczak, and Fisher [12] and by Neher and Hallatschek
[22], though these authors did not work directly from the Poisson process construction
of the Bolthausen-Sznitman coalescent.

3.3 Comparison with branching Brownian motion

Theorem 2.1 resembles the main result of [4], which confirmed nonrigorous predic-
tions of Brunet, Derrida, Mueller, and Munier [8, 9] by showing that the Bolthausen-
Sznitman coalescent describes the genealogy in a different population model involving
selection. In [4], the population was modeled by branching Brownian motion with absorp-
tion, in which initially there are particles in (0,∞), each particle independently moves
according to Brownian motion with drift −νN , each particle divides into two at rate one,
and particles are killed upon reaching the origin. The particles represent individuals,
the position of a particle corresponds to the fitness of the individual, branching events
represent births, and killing at the origin models the deaths of individuals whose fitness
is too low. It was shown in [4] that if the initial configuration of particles and the drift
parameter νN are chosen so that the number of particles stays comparable to N , then
the genealogy of this population is given by the Bolthausen-Sznitman coalescent.

An important difference between the model in [4] and the model studied in the
present paper is that for branching Brownian motion with absorption, all individuals
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have the same birth rate, while individuals with low fitness are killed, which is known as
viability selection. In the model considered in the present paper, all individuals have the
same death rate, while individuals with higher fitness are more likely to give birth, which
is known as fertility selection. In part because of this difference, the two population
models behave quite differently in many respects. For example, for branching Brownian
motion with absorption, the speed of evolution is measured by the drift νN required to
maintain a stable population size, which tends to the limiting value

√
2 at the rate of

(logN)−2 as N →∞. This kind of behavior was first observed by Brunet and Derrida [7]
and was verified rigorously for other probabilistic models in [3, 19, 21]. However, as
shown in [11, 28], the population model studied in the present paper does not have this
behavior. Also, for branching Brownian motion with absorption, once the process has
evolved for a sufficient time, most particles will be close to the left boundary, as noted in
[4, 5]. This is again quite different from the results for the model studied in this paper,
where the distribution of fitnesses of individuals in the population has Gaussian-like
tails; see, for example, [2, 11, 26, 28, 29]. Finally, for branching Brownian motion with
absorption, if two particles are sampled at some time, then the time that one has to
go back to find a common ancestor of these two particles is comparable to (logN)3, as
compared with the time scaling by aN in Theorem 2.1. Yet, in spite of these differences,
the Bolthausen-Sznitman coalescent describes the genealogy in both models.

Of course, one could also formulate a discrete population model with viability selec-
tion, by adding mutations to the Moran model and making individuals with low fitness
more likely to die. One might expect such a population model to behave similarly to the
branching Brownian motion model studied in [4, 8, 9]. Likewise, one could formulate
a branching Brownian motion model with fertility selection in which particles far from
the origin are more likely to branch. Indeed, this is essentially the model studied non-
rigorously by Neher and Hallatschek [22], who conclude that the Bolthausen-Sznitman
coalescent describes the genealogy of the particles. The model studied by Neher and
Hallatschek is thus quite similar to the model studied here, but corresponds to a scenario
in which mutations occur more rapidly than what is permitted by assumptions A1-A3.
Consequently, we expect that the Bolthausen-Sznitman coalescent may still describe the
genealogy of the population even for these faster mutation rates, though much of the
heuristic discussion in Section 3.2 would no longer apply.

3.4 Connection with multitype branching processes

Consider a two-type Yule process in which type 1 individuals give birth to type 1
individuals at rate λ and to type 2 individuals at rate µ, and type 2 individuals give
birth to type 2 individuals at rate λ + s. If we say that type 2 individuals belong to
the same family when they are descended from the same mutation, then the sizes of
type 2 families at some large time t can be approximated by the points of a Poisson
process on (0,∞) with intensity Cx−1−α, where C is a constant and α = λ/(λ+ s); see
Theorem 3 of [15] and the following corollary. This implies that the total number of type 2
individuals has approximately a stable law of index α. Also, the distribution of the family
sizes, normalized to sum to one, is approximately the Poisson-Dirichlet distribution with
parameters (α, 0), which was introduced in [24]. Consequently, stable laws appeared in
the work of Durrett and Moseley [15] and Durrett, Foo, Leder, Mayberry, and Michor
[13], who studied a multitype branching process model for tumor progression, and the
Poisson-Dirichlet distribution appeared in the work of Leviyang [18], who studied the
coalescence of HIV lineages in a similar model.

If (Π(t), t ≥ 0) is the Bolthausen-Sznitman coalescent taking its values in the set of
partitions of {1, . . . , n}, then the distribution of the block sizes of Π(t), normalized to
sum to one, converges as n→∞ to the Poisson-Dirichlet distribution with parameters
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(e−t, 0), as shown in [23]. In particular, the normalized distribution of the type 2 family
sizes in the branching process model discussed above is approximately the distribution
of Π(log(1 + s/λ)). This result suggests that in models in which repeated beneficial
mutations can occur, but the selective advantage s of a single mutation tends to zero, the
Bolthausen-Sznitman coalescent could possibly describe the genealogy of the population,
under suitable conditions on the parameters. Theorem 2.1 above is a rigorous formulation
of this statement. Indeed, the work [13, 15, 18], which appeared before the work of
Desai, Walczak, and Fisher [12] and Neher and Hallatschek [22], served as the original
motivation for the present paper.

3.5 Structure of the proof

We summarize here the organization of the proof of Theorem 2.1. In section 4, we
review the results from [28] that are needed in the present paper. In section 5, we focus
on what happens as the ancestral lines are traced back from time aNT to time aN (T − 1).
First, we show in Lemma 5.1 that with high probability, the individuals sampled from
the population at time aNT will all have one of a small number of types and will have a
fitness close to the mean fitness of the population. Then in Lemma 5.2, we show that with
high probability, if a sampled individual has ` mutations at time aNT , then its ancestor
at time τ`+1 ≈ aN (T − 1) also has ` mutations, and its fitness will be close to that of the
fittest individual in the population. In Lemma 5.4, we show that it is unlikely that two
lineages will coalesce as they are traced back from time aNT to time aN (T − 1).

In section 6, we trace the lineages further back in time. The main result in this
section is Lemma 6.4, in which we show that if aN (T − (t0 + 1)) ≤ τj ≤ aN (T − 1), then
with high probability, all of the ancestors of the sampled individuals at time τj have
type j − 1. That is, if the sampled individual has type `, then its ancestor at time τ`
has type ` − 1, its ancestor at time τ`−1 has type τ`−2, and so on. Because it is also
shown in Lemma 6.1 that the random times τj can be well approximated by deterministic
times, we are able to use Lemma 6.4 to prove Proposition 2 at the end of section 6.2.
Then in section 6.3, we show that the only coalescence events that are likely to happen,
when lineages are traced back from time τj to time τj−1, are those in which two or
more lineages are traced back to an individual that acquired a jth mutation unusually
early.

In section 7, we work to understand the coalescence events that occur when an
individual acquires a jth mutation unusually early. In section 7.2, we use supercritical
branching processes to bound from above and below the number of descendants of
the individual that gets the unusually early jth mutation. The probability that some
descendants of this individual survive is bounded in Lemma 7.5, and control on the
distribution of the number of such surviving individuals is provided by Lemmas 7.6 and
7.7. Note the correspondence between the result of Lemma 7.6 and the right-hand
side of (3.5). In Lemma 7.8, we convert these results into a result about the fraction
of individuals at time τj+1 that are descended from the individual that received its
jth mutation unusually early. Finally, in section 8, we use a point process to couple
the genealogy of the sampled individuals with the Bolthausen-Sznitman coalescent,
completing the proof of Theorem 2.1.

4 Review of results from [28]

The population model considered in this paper was also studied extensively in [28],
and in the present paper, we will make heavy use of some of the results and techniques
developed in [28]. In this section, we will state the results from [28] that we will
need.
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4.1 Evolution of type j individuals

We first present some results summarizing how the type j individuals evolve. Let
ε > 0, δ > 0, and T > 1. Recall the definition of kN from (2.1), and let

k∗ :=

⌈
kN +

2kN log kN
log(s/µ)

− 1

⌉
.

Note from assumption A2 that (2kN log kN )/ log(s/µ) → 0 as N → ∞. As discussed in
[28], for j ≤ k∗, individuals of type j appear in the population very quickly. To understand
the evolution of the type j individuals for j ≥ k∗ + 1, define

b := log

(
24000T

δ2ε

)
. (4.1)

Also, define τj as in (3.2), and then set

q∗j :=

{
j − kN if aN − 2aN/kN ≤ τj ≤ aN + 2aN/kN
j −M(τj) otherwise

and
qj := max{1, q∗j }. (4.2)

Next, let

ξj := max

{
τj , τj +

1

sqj
log

(
1

sqj

)
+

b

sqj

}
, (4.3)

as in [28]. Every type j individual at time t has an ancestor that acquired a jth mutation
before time t. If this jth mutation occurred at or before time ξj , we call the individual an
early type j individual. When an individual gets its jth mutation, we call this a type j
mutation, and we call such a mutation an early type j mutation if it occurs at or before
time ξj . Let Xj,1(t) denote the number of early type j individuals at time t, and let Xj,2(t)

denote the number of other type j individuals at time t, which means

Xj(t) = Xj,1(t) +Xj,2(t).

For t ≥ 0, let
Gj(t) := s(j −M(t))− µ,

which represents the growth rate of the type j individuals in the population at time t.
For j ≥ k∗ + 1, let

γj := τj + aN . (4.4)

As noted in Proposition 3.5 of [28], this is approximately the time when type j individuals
become the dominant type in the population. Also, let

τ̃j := τj +
aN

4TkN
.

Note that this time is called τ∗j in [28]. Assumptions A1 and A2 imply that ξj ≤ τ̃j for
sufficiently large N . See Figure 1 below.

Proposition 4.1 collects several results related to how the type j individuals evolve.
The first four parts of the proposition are identical to Proposition 3.3 of [28], except
for the last statement of part 1, which comes instead from Lemma 9.18 of [28]. The
first two parts of the proposition describe how the type j individuals emerge before
time τj+1. Part 3 describes the evolution of the type j individuals after time τj+1 but
before the type j individuals start to get close to extinction. Part 4 bounds the extinction
time for the type j individuals, as well as the size of the type j population as it nears
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τj γjξj τ̃j τj+1

Figure 1: The times τj , ξj , τ̃j , τj+1, γj . Type j mutations occurring before time ξj are
“early”. There are ds/µe type j individuals by time τj+1.

extinction. Part 5 of the proposition, which is Remark 7.8 in [28], demonstrates that
nearly all individuals in the population have type j between times γj and γj+1. Finally,
part 6, which is a combination of parts 1 and 3 of Proposition 3.6 in [28], bounds the
difference between τj and τj+1.

Proposition 4.1. There exist positive constants C1 and C2, depending on δ, ε, and T ,
such that if N is sufficiently large, then the following statements all hold with probability
at least 1− ε:

1. For all j ≥ k∗ + 1 and all t ∈ [τ̃j , τj+1] ∩ [0, aNT ], we have

Xj,1(t) ≤ C1 exp

(∫ t

τj

Gj(v) dv

)
. (4.5)

Also, Xj,1(t) ≤ s/2µ for all t ≤ τ̃j ∧ aNT , and no early type j individual acquires a
type j + 1 mutation until after time τj+1 ∧ aNT . Moreover, no individual that gets a
jth mutation at or before time τj has a descendant alive in the population at time
τ̃j .

2. For all j ≥ k∗ + 1 and all t ∈ [τ̃j , τj+1] ∩ [0, aNT ], we have

(1− 4δ) exp

(∫ t

τj

Gj(v) dv

)
≤ Xj,2(t) ≤ (1 + 4δ) exp

(∫ t

τj

Gj(v) dv

)
. (4.6)

Moreover, the upper bound holds for all t ∈ [ξj , τj+1] ∩ [0, aNT ].

3. Let K = bkN/4c. For all j ≥ k∗ + 1 and all t ∈ [τj+1, γj+K ] ∩ [0, aNT ], we have

(1− δ)s
µ

exp

(∫ t

τj+1

Gj(v) dv

)
≤ Xj(t) ≤

(1 + δ)s

µ
exp

(∫ t

τj+1

Gj(v) dv

)
. (4.7)

4. For all j ≥ k∗ + 1, we have

Xj(t) ≤
k2
Ns

µ
exp

(∫ t

τj+1

Gj(v) dv

)
(4.8)

for all t ∈ [γj+K , aNT ]. Also, for all j ≥ k∗ + 1 such that γj+d17kNe < aNT , we have
Xj(t) = 0 for all t ≥ γj+d17kNe.

5. For all j ≥ k∗ + 1, we have

1

N

∞∑
i=j+1

Xi(t) ≤ C2e
−s(γj+1−t) +

s

Nµ

for all t ∈ [(4/s) log kN , γj+1] ∩ [0, aNT ] and

1

N

j−1∑
i=0

Xi(t) ≤ C2e
−s(t−γj)

for all t ∈ [γj , γj+K ] ∩ [0, aNT ].
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6. We have τk∗+1 ≤ 2aN/kN . Also, for all j ≥ k∗+1 such that either τj+2aN/kN ≤ aNT
or τj+1 ≤ aNT , we have

aN
3kN

≤ τj+1 − τj ≤
2aN
kN

. (4.9)

More precisely, ∫ τj+1/aN

τj/aN

q(t) dt ≤ 1 + 2δ

kN

and ∫ τj+1/aN

τj/aN

(q(t) + 1{t∈[1,γk∗+1/aN )}) dt ≥
1− 2δ

kN
.

Remark 4.2. Let

J := 3kNT + k∗ + 1. (4.10)

As noted in Remark 3.7 of [28], when (4.9) holds, we have

τJ > τJ − τk∗+1 ≥
aN
3kN

(J − (k∗ + 1)) ∧ aNT = aNT,

and furthermore when the statement of part 1 of Proposition 4.1 also holds, no individual
of type J + 1 or higher can appear until after time aNT .

Remark 4.3. For t ≥ 0, recall that M∗(t) = max{j : Xj(t) > 0} is the number of
mutations carried by the fittest individual at time t. As noted in Lemma 4.2 of [28], when
j ≥ k∗ + 1 and the conclusion of Proposition 4.1 holds, we have j − 1 ≤M∗(t) ≤ j + 1 for
all t ∈ [τj , τj+1).

The next proposition contains some bounds related to the quantities Gj(t) and qj that
are important for the analysis that follows. The first three parts of the proposition come
from Lemma 9.8 of [28]. Note that the times ρj which appear in Lemma 9.8 of [28] are
not needed below because (3.31) of [28] implies that ρj > aNT with high probability.
The fourth part is part of Lemma 4.5 of [28], and the fifth comes from Lemmas 9.25 and
9.26 in [28].

Proposition 4.4. There is a positive constant C3, depending on ε, δ, and T , such that
if N is sufficiently large, then the following statements all hold for all j such that
k∗ + 1 ≤ j ≤ J with probability at least 1− ε:

1. If τj > aN + 2aN/kN and t ∈ [τj , τj+1 ∧ aNT ], then s(qj − C3) ≤ Gj(t) ≤ s(qj + C3).

2. If t ∈ [τj , τj+1 ∧ aNT ], then (1− 2δ)skN ≤ Gj(t) ≤ Gj(t) + µ ≤ (e+ 2δ)skN .

3. If τj ≤ aNT , then (1− 2δ)kN ≤ qj ≤ (e+ 2δ)kN .

4. If τj+1 ≤ aNT , then exp
( ∫ τj+1

τj
Gj(v) dv

)
≤ 2s/µ.

5. If j ≥ k∗ + 1 +K, then

e
−

∫ u
τj+1

Gj(v) dv ≤
{
e−skN (u−τj+1)/5 if u ∈ [τj+1, γj−K ] ∩ [0, aNT ]

(s/µ)−kN/241 if u ∈ [γj−K , γj+K ] ∩ [0, aNT ].

Let Λ be the event that the six statements in Proposition 4.1 and the five statements of
Proposition 4.4 all hold. Note that the event Λ depends ε, δ, T , and N . Then Propositions
4.1 and 4.4 imply that

P (Λ) > 1− 2ε (4.11)

if N is sufficiently large. We now define a random time ζ, which we interpret as being
the first time that one of the statements of Proposition 4.1 or Proposition 4.4 fails to
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hold. Write X(t) = (X0(t), X1(t), . . . ), and let (Ft, t ≥ 0) denote the natural filtration of
the population process (X(t), t ≥ 0). Then define

ζ := inf{t : P (Λ|Ft) = 0}.

Since Propositions 4.1 and 4.4 only describe the behavior of the process up to time aNT ,
the event Λ is equivalent to the event {ζ > aNT}, which in turn is equivalent to the
event {ζ = ∞}. Note that the definition given here for ζ is not quite the same as the
definition in [28] because in [28] some additional properties were listed that are not
relevant for the present work, and some of the properties listed above were derived from
others. Nevertheless, the idea is the same in both papers. Namely, if t < ζ, then all of
the properties specified in Propositions 4.1 and 4.4 hold through time t.

4.2 Selective advantage of the fittest individuals

The result below, which is Theorem 1.1 of [28], gives an asymptotic result for the
difference in fitness between the fittest individual in the population and an individual of
average fitness.

Proposition 4.5. For t ≥ 0, let

Q(t) := M∗(t)−M(t). (4.12)

Assume A1-A3 hold. If S is a compact subset of (0, 1) ∪ (1,∞), then

sup
t∈S

∣∣∣∣Q(aN t)

kN
− q(t)

∣∣∣∣→p 0, (4.13)

where q is the function defined in (2.7) and→p denotes convergence in probability as
N →∞.

The next proposition collects some properties of the function q. All of these results are
part of Lemma 4.1 of [28] except for (4.15), which follows from (4.14) and the definition
of q.

Proposition 4.6. The function q defined in (2.7) is continuous on [0, 1) ∪ (1,∞), and

lim
t→∞

q(t) = 2.

Also,
1 ≤ q(t) ≤ e for all t ≥ 0 (4.14)

and if t < u with 1 /∈ (t, u], then

|q(u)− q(t)| ≤ e(u− t). (4.15)

4.3 A useful martingale

Here we review the construction of a martingale that was central to the analysis in
[28] and will be important again in the present paper. As in [28], let Fj(t) be the fitness
of a type j individual at time t, which is max{0, 1 + s(j −M(t))}, divided by the sum of
the fitnesses of all individuals in the population at time t, which is N if every individual’s
fitness is strictly positive. Remark 4.2 and assumption A3 imply that if N is sufficiently
large, then every individual’s fitness is strictly positive at time t for all t < ζ, in which
case

Fj(t) =
1 + s(j −M(t))

N
. (4.16)

To define birth and death rates, we follow closely the discussion in [28] and observe that
there are three ways that the number of type j individuals could change at time t:
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1. Each type j − 1 individual acquires a jth mutation at rate µ. Therefore, at time
t, the rate at which a type j individual appears due to a mutation is µXj−1(t−),
where we adopt the convention that X−1(t) = 0 for all t ≥ 0 so that our formulas
are valid when j = 0.

2. The number of type j individuals could increase by one at time t due to a birth. This
happens if one of the N −Xj(t−) other individuals dies at time t, which happens at
rate N −Xj(t−) because each individual dies at rate one, and if the new individual
born has type j, which happens with probability Xj(t−)Fj(t−). Therefore, we
define the birth rate

Bj(t) := (N −Xj(t))Fj(t). (4.17)

3. The number of type j individuals could decrease at time t due to a mutation or death.
The rate at which one of the type j individuals becomes type j+1 due to a mutation
is µXj(t−). Death events that reduce the number of type j individuals happen at
rate Xj(t−)(1 −Xj(t−)Fj(t−)) because there are Xj(t−) type j individuals each
dying at rate one, and when a death occurs, the probability that the new individual
born does not have type j is 1−Xj(t−)Fj(t−). Therefore, we define the death rate

Dj(t) := 1 + µ−Xj(t)Fj(t). (4.18)

For all t ≥ 0 and j ∈ Z+, let

G∗j (t) := Bj(t)−Dj(t).

One can easily check that whenever (4.16) holds, we have G∗j (t) = Gj(t). Also, as shown
in equation (6.5) of [28], whenever (4.16) holds and j ≤ J , we can see, using assumption
A3, that for sufficiently large N ,

Bj(t) +Dj(t) =
(N − 2Xj(t))(1 + s(j −M(t)))

N
+ 1 + µ ≤ 2 + sJ + µ ≤ 3. (4.19)

The result below is Proposition 5.1 of [28]. The martingale defined in this proposition
is similar to the one obtained in section 4 of [14].

Proposition 4.7. For all t ≥ 0 and j ∈ Z+, let

Zj(t) := e−
∫ t
0
G∗j (v) dvXj(t)−

∫ t

0

µXj−1(u)e−
∫ u
0
G∗j (v) dv du−Xj(0). (4.20)

Then (Zj(t), t ≥ 0) is a mean zero martingale with

Var(Zj(t)) = E

[ ∫ t

0

e−2
∫ u
0
G∗j (v) dv(µXj−1(u) +Bj(u)Xj(u) +Dj(u)Xj(u)) du

]
.

We will sometimes need to apply the result of Proposition 4.7 to only a subset of
the type j individuals in the population. If κ and γ are stopping times with respect to
(Ft, t ≥ 0) such that 0 ≤ κ ≤ γ, then for t ≥ 0 and j ∈ Z+, let Xκ,γ

j (t) be the number of
type j individuals in the population at time t that are descended from individuals that
acquired a jth mutation during the time interval (κ, γ]. Let Bκ,γj (t) and Dκ,γ

j (t) denote
the expressions on the right-hand sides of (4.17) and (4.18) with Xκ,γ

j (t) in place of Xj(t).
The result below is Corollary 5.4 of [28].

Corollary 4.8. Let κ and γ be stopping times with κ ≤ γ. For t ≥ κ, let

Zκ,γj (t) := e−
∫ t
κ
G∗j (v) dvXκ,γ

j (t)−
∫ t∧γ

κ

µXj−1(u)e−
∫ u
κ
G∗j (v) dv du.
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Then (Zκ,γj (κ+ t), t ≥ 0) is a mean zero martingale and

Var(Zκ,γj (κ+ t)|Fκ) = E

[ ∫ κ+t

κ

e−2
∫ u
κ
G∗j (v) dv(µXj−1(u)1u∈(κ,γ]

+Bκ,γj (u)Xκ,γ
j (u) +Dκ,γ

j (u)Xκ,γ
j (u)) du

∣∣∣∣Fκ].
Furthermore, if τ is a stopping time with κ ≤ τ , then (Zκ,γj ((κ+ t) ∧ τ), t ≥ 0) is a mean
zero martingale, and Var(Zκ,γj ((κ+t)∧τ)|Fκ) is obtained by replacing κ+t with (κ+t)∧τ
in the integral above.

Finally, suppose κ is a stopping time with respect to (Ft, t ≥ 0) and S is a set of type j
individuals alive at time κ. Then for t ≥ κ, let XS

j (t) be the number of type j individuals
in the population at time t that are descended from one of the individuals in the set S,
and let BSj (t) and DS

j (t) the expressions on the right-hand sides of (4.17) and (4.18) with
XS
j (t) in place of Xj(t). Then, the same reasoning used to establish Proposition 4.7 and

Corollary 4.8 yields the following corollary.

Corollary 4.9. Let κ be a stopping time, and let S be a set of type j individuals in the
population at time κ. For t ≥ κ, let

ZSj (t) := e−
∫ t
κ
G∗j (v) dvXS

j (t)−XS
j (κ).

Then (ZSj (κ+ t), t ≥ 0) is a mean zero martingale and

Var(ZSj (κ+ t)|Fκ) = E

[ ∫ κ+t

κ

e−2
∫ u
κ
G∗j (v) dv(BSj (u)XS

j (u) +DS
j (u)XS

j (u)) du

∣∣∣∣Fκ].
Furthermore, if τ is a stopping time with κ ≤ τ , then (ZSj ((κ+ t) ∧ τ), t ≥ 0) is a mean
zero martingale, and Var(ZSj ((κ+ t)∧ τ)|Fκ) is obtained by replacing κ+ t with (κ+ t)∧ τ
in the integral above.

Remark 4.10. By the Strong Markov Property of the population process (X(t), t ≥ 0),
the results of Corollaries 4.8 and 4.9 hold even when the type j is random, as long as j
is Fκ-measurable.

5 Tracing the ancestral lines back to time aN(T − 1)

The rest of the paper is devoted to the proof of Theorem 2.1. Throughout the proof,
we will fix ε > 0, δ > 0, t0 > 0, and T > t0 + 2. We will also assume that ε < 1 and

δ < max

{
1

100
,
T − (t0 + 2)

40T
,

1

19T
, ε3

}
. (5.1)

The event Λ is defined as in section 4 for these choices of ε, δ, and T , and for the
constants C1, C2, and C3 from Propositions 4.1 and 4.4.

We sample n individuals at random from the population at time aNT and randomly
label these individuals with the integers 1, . . . , n. We then trace the ancestral lines of
these individuals back to time aN (T − (t0 + 1)). Recall that if 0 ≤ u ≤ t0 − 1, then ΠN (u)

is the partition of {1, . . . , n} such that i and j are in the same block of ΠN (u) if and only if
the individuals in the sample labelled i and j have the same ancestor at time aN (T − u).

For 1 ≤ i ≤ n and 0 ≤ t ≤ aNT , recall that Ui(t) is the number of mutations carried
by the individual at time t that is the ancestor of the individual labelled i at time aNT .
For 1 ≤ i ≤ n and 1 ≤ j ≤ Ui(aNT ), let

Vi,j := inf{t : Ui(t) = j} (5.2)
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be the time when the jth mutation appears on the ith lineage. For h, i ∈ {1, . . . , n}, let

Th,i := sup{t : the hth and ith sampled individuals have the same ancestor at time t}
(5.3)

denote the coalescence time of h and i.
Throughout the rest of the paper, we use C to denote a positive constant that does

not depend on δ, ε, or T but whose value may change from line to line. Recall that the
numbered constants C1, C2, and C3 do depend on δ, ε, and T .

5.1 The types of the individuals sampled at time aNT

Part 5 of Proposition 4.1 implies that, between times γj and γj+1, the fraction of
individuals in the population having type j is very close to one, except for times very
close to the boundary of this interval. Consequently, when we take a sample from the
population at time aNT , typically either all individuals will have the same type, or else
all individuals will have one of two types. The result below is a weaker form of this
statement.

Lemma 5.1. Let

L := inf

{
j : τj ≥ aN (T − 1)− 3aN

kN

}
. (5.4)

Then

lim
N→∞

P
(
Λ ∩

{
Ui(aNT ) /∈ {L,L+ 1, . . . , L+ 9} for some i ∈ {1, . . . , n}

})
= 0.

Proof. It follows from equation (4.9) that on the event Λ, we have τL ≤ aN (T−1)−aN/kN
and τL+10 ≥ aN (T−1)+aN/3kN . Therefore, using (4.4), on Λ we have γL ≤ aNT−aN/kN
and γL+10 ≥ aNT + aN/3kN . Therefore, by part 5 of Proposition 4.1, on Λ we have

1

N

∞∑
`=L+10

X`(aNT ) ≤ C2e
−s(γL+10−aNT ) +

s

Nµ
≤ C2

(
s

µ

)−1/3kN

+
s

Nµ
, (5.5)

which tends to zero as N →∞ because (1/3kN ) log(s/µ)→∞ as N →∞ by assumption
A2, and s/(Nµ)→ 0 as N →∞ by (2.4). Likewise, by part 5 of Proposition 4.1, on Λ we
have

1

N

L−1∑
`=0

X`(aNT ) ≤ C2e
−s(aNT−γL) ≤ C2e

−saN/kN = C2

(
s

µ

)−1/kN

, (5.6)

which tends to zero as N →∞. Because the expressions in (5.5) and (5.6) both tend to
zero as N →∞, we conclude that on Λ, the fraction of individuals in the population at
time aNT having between L and L+ 9 mutations tends to one as N →∞. Because the n
individuals are sampled at random from the population, the result follows.

5.2 The types of the ancestors at time aN (T − 1)

Lemma 5.1 implies that with high probability all individuals sampled at time aNT will
have between L and L+ 9 mutations. The next result, Lemma 5.2 below, shows that for
` ∈ {L,L+ 1, . . . , L+ 9}, with high probability the type ` individuals in the sample will
all be descended from type ` individuals at time τ`+1.

Lemma 5.2. We have

lim
N→∞

P
(
Λ ∩

{
Ui(τUi(aNT )+1) 6= Ui(aNT ) for some i ∈ {1, . . . , n}

})
= 0.

Proof. Choose ` ∈ {L,L+ 1, . . . , L+ 9}. Recall from Corollary 4.8 that X
τ`+1,aNT
` (aNT )

denotes the number of type ` individuals at time aNT that are descended from an
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individual that got its `th mutation during the time interval (τ`+1, aNT ]. Equivalently,
this is the number of type ` individuals at time aNT whose ancestor in the population at
time τ`+1 does not have type `. Because each individual in the population at time aNT
has probability n/N of being in the sample, we therefore have

P
(
Λ ∩

{
Ui(τ`+1) 6= Ui(aNT ) = ` for some i ∈ {1, . . . , n}

}∣∣FaNT ) ≤ nX
τ`+1,aNT
` (aNT )1Λ

N
.

(5.7)
It suffices to show that the expected value of the right-hand side of (5.7) tends to zero as
N →∞.

By Corollary 4.8 and Remark 4.10, on Λ,

e
−

∫ aNT
τ`+1

G`(v) dv
X
τ`+1,aNT
` (aNT ) =

∫ aNT

τ`+1

µX`−1(u)e
−

∫ u
τ`+1

G`(v) dv
du+ Z

τ`+1,aNT
` (aNT ),

(5.8)
where Z

τ`+1,aNT
` (τ`+1 + t, t ≥ 0) is a mean zero martingale. Note that (4.9) implies that

on Λ, we have γ`−1+K > aNT if N is sufficiently large, and therefore from (4.7) and from
part 4 of Proposition 4.4, we get for u ∈ [τ`+1, aNT ],

µX`−1(u)e
−

∫ u
τ`+1

G`(v) dv ≤ (1 + δ)se
∫ u
τ`
G`−1(v) dv

e
−

∫ u
τ`+1

G`(v) dv

= (1 + δ)se
∫ τ`+1
τ`

G`(v) dve−s(u−τ`)

≤ 2(1 + δ)s2

µ
e−s(u−τ`).

It follows that on Λ, if N is sufficiently large,∫ aNT

τ`+1

µX`−1(u)e
−

∫ u
τ`+1

G`(v) dv
du ≤ 2(1 + δ)s

µ
e−s(τ`+1−τ`). (5.9)

Now on Λ, by (4.9), we have

e−s(τ`+1−τ`) ≤ e−aNs/3kN =

(
s

µ

)−1/3kN

. (5.10)

Also, on Λ we have aNT ∈ [τ`+1, γ`+K ] if N is sufficiently large and therefore, by (4.7),

e
−

∫ aNT
τ`+1

G`(v) dv
X`(aNT ) ≥ (1− δ)s

µ
. (5.11)

Combining (5.8), (5.9), (5.10), and (5.11), and using that X`(aNT ) ≤ N , we get that for
sufficiently large N ,

E

[
X
τ`+1,aNT
` (aNT )1Λ

N

]
≤ E

[
e
−

∫ aNT
τ`+1

G`(v) dv
X
τ`+1,aNT
` (aNT )1Λ

e
−

∫ aNT
τ`+1

G`(v) dv
X`(aNT )

]

≤ E
[

2(1 + δ)(s/µ)1−1/3kN + Z
τ`+1,aNT
` (aNT )

(1− δ)(s/µ)

]
=

2(1 + δ)

1− δ

(
s

µ

)−1/3kN

. (5.12)

Because (1/3kN ) log(s/µ)→∞ as N →∞ by assumption A2, the expression on the right-
hand side of (5.12) tends to zero as N →∞. The lemma follows by taking expectations
of both sides in (5.7).
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5.3 Coalescence between times aN (T − 1) and aNT

Our next goal is to show that for ` ∈ {L,L+ 1, . . . , L+ 9}, the type ` individuals in the
sample at time aNT all come from distinct ancestors at time τ`+1 with high probability.
That is, the lineages do not coalesce as they are traced back from time aNT to time
τ`+1. The precise statement is given in Lemma 5.4 below. Because γ`+1 − τ`+1 = aN , this
observation is very close to the statement (2.6) that none of the lineages coalesce when
they are traced back aN time units. We first establish the following preliminary lemma,
which is more general than what is needed for the proof of Lemma 5.4 but will also be
used later to prove Lemma 6.6. Note that the right-hand side of (5.14) below converges
to zero as N →∞ by (2.3) and (2.4).

Lemma 5.3. Suppose k∗ + 1 +K ≤ j ≤ J . Randomly label the type j individuals at time
τj+1 by the integers 1, 2, . . . , ds/µe. For t ≥ τj+1, let Xi

j(t) denote the number of type j
individuals at time t that are descended from the individual labelled i at time τj+1. Let
γ := γj+K ∧ ζ ∧ aNT , and let

Ri,j := sup
t∈[τj+1,γ)

Xi
j(t)

Xj(t)
. (5.13)

Then

E

[ ds/µe∑
i=1

R2
i,j

]
≤ Cµ

s2kN
. (5.14)

Proof. By Corollary 4.9 applied when S consists only of the individual labelled i at time
τj+1, for i = 1, 2, . . . , ds/µe and t ≥ τj+1, we have

Xi
j(t ∧ γ) = e

∫ t∧γ
τj+1

Gj(v) dv
(1 + Zij(t)), (5.15)

where (Zij(τj+1 + t), t ≥ 0) is a mean zero martingale. Now suppose t ∈ [τj+1, γ). Using
(5.15) and (4.7), (

Xi
j(t)

Xj(t)

)2

≤ µ2

(1− δ)2s2
(1 + Zij(t))

2.

Taking the supremum of both sides over t ∈ [τj+1, γ), then taking expectations and using
that (a+ b)2 ≤ 2a2 + 2b2, we get

E[R2
i,j ] ≤

2µ2

(1− δ)2s2

(
1 + E

[
sup

t∈[τj+1,γ)

(Zij(t))
2

])
. (5.16)

By the L2 Maximum Inequality for martingales, Corollary 4.9, and the reasoning used to
derive (4.19),

E

[
sup

t∈[τj+1,γ)

(Zij(t))
2

∣∣∣∣Fτj+1

]
≤ 4E

[ ∫ γ

τj+1

e
−2

∫ u
τj+1

Gj(v) dv · 3Xi
j(u) du

∣∣∣∣Fτj+1

]
.

Combining this result with (5.15) gives

E

[
sup

t∈[τj+1,γ)

(Zij(t))
2

∣∣∣∣Fτj+1

]
≤ 12E

[ ∫ γ

τj+1

e
−

∫ u
τj+1

Gj(v) dv
(1 + Zij(u)) du

∣∣∣∣Fτj+1

]
. (5.17)

Note that 1 + Zij(u) ≥ 0 for all u ∈ [τj+1, γ) by (5.15). Therefore, by part 5 of Proposition
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4.4 and the fact that (Zij(τj+1 + t), t ≥ 0) is a mean zero martingale,

E

[ ∫ γj−K∧γ

τj+1

e
−

∫ u
τj+1

Gj(v) dv
(1 + Zij(u)) du

∣∣∣∣Fτj+1

]
≤ E

[ ∫ ∞
τj+1

e−skN (u−τj+1)/5(1 + Zij(u)) du

∣∣∣∣Fτj+1

]
=

∫ ∞
τj+1

e−skN (u−τj+1)/5 du

=
5

skN
. (5.18)

Also, using part 5 of Proposition 4.4 again and that γ − γj−K ∧ γ ≤ (2aN/kN )(2K) ≤ aN
for sufficiently large N by (4.9),

E

[ ∫ γ

γj−K∧γ
e
−

∫ u
τj+1

Gj(v) dv
(1 + Zij(u)) du

∣∣∣∣Fτj+1

]
≤ E

[ ∫ γ

γj−K∧γ

(
s

µ

)−kN/241

(1 + Z
(i)
j (u)) du

∣∣∣∣Fτj+1

]
≤ aN

(
s

µ

)−kN/241

. (5.19)

Because skN ·aN (s/µ)−kN/241 → 0 as N →∞, as can easily be seen by taking logarithms,
equations (5.17), (5.18), and (5.19) imply that

E

[
sup

t∈[τj+1,γ)

(Zij(t))
2

∣∣∣∣Fτj+1

]
≤ 12

(
5

skN
+ aN

(
s

µ

)−kN/241)
≤ C

skN

for sufficiently large N . Therefore, using (5.16), we get for sufficiently large N ,

E

[ ds/µe∑
i=1

R2
i,j

]
≤
⌈
s

µ

⌉
2µ2

(1− δ)2s2
·
(

1 +
C

skN

)
.

The result follows because skN → 0 as N →∞ by assumption A3.

Note that in the statement of Lemma 5.4 below, we consider only the lineages labelled
1 and 2 to simplify notation. This is sufficient because individuals are sampled uniformly
at random. To bound the probability that the event in question occurs for some pair of
lineages, we may simply multiply the probability that the event occurs for the lineages 1

and 2 by
(
n
2

)
.

Lemma 5.4. We have

lim
N→∞

P
(
Λ ∩ {U1(aNT ) = U2(aNT ) = ` and T1,2 ≥ τ`+1 for some `}

)
= 0.

Proof. We know from Lemma 5.2 that with probability tending to one as N →∞, on Λ

all type ` individuals sampled at time aNT have type ` ancestors at time τ`+1. Therefore,
it suffices to show that

lim
N→∞

P
(
Λ ∩ {U1(aNT ) = U2(aNT ) = U1(τ`+1) = U2(τ`+1) = `

and T1,2 ≥ τ`+1 for some `}
)

= 0. (5.20)

That is, we need to show it is unlikely that the first two individuals in the sample are
both type ` individuals that are descended from the same type ` individual at time τ`+1.
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Randomly label the type ` individuals at time τ`+1 by the integers 1, 2, . . . , ds/µe. Let
Xi
`(t) denote the number of type ` individuals at time t descended from the ith type `

individual in the population at time τ`+1. Since each individual at time aNT is equally
likely to be sampled,

P
(
Λ ∩ {U1(aNT ) = U2(aNT ) = U1(τj+1) = U2(τj+1) = `} ∩ {T1,2 ≥ τ`+1}

∣∣FaNT )
=

ds/µe∑
i=1

Xi
`(aNT )(Xi

`(aNT )− 1)1Λ

N(N − 1)
. (5.21)

By Lemma 5.1, it suffices to consider ` ∈ {L,L+ 1, . . . , L+ 9}. Part 6 of Proposition
4.1 implies that on Λ, we have τk∗+1+K ≤ 2aN (K + 1)/kN , and therefore L ≥ k∗ + 1 +K

for sufficiently large N . Also, in view of (4.9), on Λ we have γL+9+K ≥ aNT . Therefore,
applying Lemma 5.3, and noting that the probability of a change in the population at
exactly time aNT is zero, for each fixed positive integer ` we have

E

[ ds/µe∑
i=1

Xi
`(aNT )(Xi

`(aNT )− 1)1{L≤`≤L+9}∩Λ

N(N − 1)

]
≤ E

[ ds/µe∑
i=1

R2
i,`

]
≤ Cµ

s2kN
. (5.22)

Taking expectations of both sides of (5.21) and then using (5.22) and the fact that
L+ 9 ≤ J on Λ by Remark 4.2, we get that the probability in (5.20) is bounded above by
CJµ/(s2kN ), which tends to zero as N →∞ by (2.4). Thus, (5.20) holds, which implies
the result of the lemma.

Remark 5.5. It follows from Lemmas 5.1 and 5.2 that with probability tending to one
as N → ∞, we have Ui(τL+10) = Ui(aNT ) for all i ∈ {1, . . . , n}. Note that τL+10 < aNT

on Λ for sufficiently large N by (4.9) and (5.4). Because individuals in the population
model inherit all of their parents mutations, two lineages can only coalesce if they
have the same type. That is, we must have Uh(Th,i) = Uj(Th,i) for h, i ∈ {1, . . . , n}. It
therefore follows from Lemma 5.4 that with probability tending to one as N → ∞, no
lineages coalesce as they are traced back from time aNT to time τL+10. The fact that the
probability of coalescence between times τL and τL+10 tends to zero as N →∞, which
would imply (2.6), will be established in Lemma 8.1 below.

6 Tracing the ancestral lines between times τj and τj+1

Lemmas 5.2 and 5.4 show that the type ` individuals in the sample at time aNT are
typically descended from distinct type ` ancestors at time τ`+1. In this subsection, we
consider tracing these ancestral lines back further in time. In particular, we focus on
what happens when lineages are traced back from time τj+1 to τj . We establish that with
high probability, type j individuals at time τj+1 are descended from type j− 1 individuals
at time τj , and lineages will only coalesce when many type j lineages in the population
are traced back to an individual that acquired its jth mutation before the time ξj defined
in (4.3).

6.1 Approximating τj by the fixed time τ∗j
We define here some fixed times τ∗j that approximate the random times τj . Let

τ∗k∗+1 = 0. For integers j ≥ k∗ + 1, let

τ∗j+1 := τ∗j +
aN

kNq(τ∗j /aN )
, (6.1)

where q is the function defined in (2.7). Because 1 ≤ q(u) ≤ e for all u ≥ 0 by Proposition
4.6, we have

aN
ekN

≤ τ∗j+1 − τ∗j ≤
aN
kN

. (6.2)
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For u ∈ (0, T ], let j∗(u) := max{j : τ∗j ≤ aNu} and j′(u) := max{j : τj ≤ aNu}. The lemma
below shows that τ∗j is a good approximation to τj .

Lemma 6.1. Fix u ∈ (0, T ]. On the event {ζ > aNu}, we have

|j∗(u)− j′(u)| ≤ 9δTkN . (6.3)

Likewise, let j ∈ {k∗ + 1, . . . , J}. On the event {τj < ζ ∧ aNT}, we have

|τ∗j − τj | ≤ 10δaNT. (6.4)

Proof. Suppose j ∈ {k∗ + 1, . . . , J} and τj+1 < ζ ∧ aNT . By part 6 of Proposition 4.1,

1− 2δ

kN
−
∫ τj+1/aN

τj/aN

1{u∈[1,γk∗+1/aN )} du ≤
∫ τj+1/aN

τj/aN

q(u) du ≤ 1 + 2δ

kN
. (6.5)

Therefore, if u ∈ (0, T ] and ζ > aNu, then, using that τk∗+1/aN ≤ 2/kN and u−τj′(u)/aN ≤
2/kN by part 6 of Proposition 4.1 and that q(v) ≤ e for all v ∈ [0, u] by Proposition 4.6,
we have∫ u

0

q(v) dv ≤
∫ τk∗+1/aN

0

q(u) du+
(1 + 2δ)(j′(u)− (k∗ + 1))

kN
+

∫ u

τj′(u)/aN

q(v) dv

≤ (1 + 2δ)(j′(u)− (k∗ + 1))

kN
+

4e

kN
. (6.6)

Likewise, using that γk∗+1/aN − 1 ≤ 2/kN by part 6 of Proposition 4.1, the lower bound
in (6.5) implies that ∫ u

0

q(v) dv ≥ (1− 2δ)(j′(u)− (k∗ + 1))

kN
− 2

kN
. (6.7)

By definition, ∫ τ∗j+1/aN

τ∗j /aN

q

(
τ∗j
aN

)
du =

1

kN
. (6.8)

By (4.15) and (6.2), if u ∈ [τ∗j /aN , τ
∗
j+1/aN ) and τ∗j+1/aN < ζ, then∣∣∣∣q(u)− q
(
τ∗j
aN

)∣∣∣∣ ≤ e(τ∗j+1 − τ∗j )

aN
≤ e

kN

unless 1 ∈ (τ∗j /aN , u]. Combining this observation with (6.8) and (6.2), we get(
1

kN
− e

k2
N

)
1{1/∈(τ∗j /aN ,τ

∗
j+1/aN ]} ≤

∫ τ∗j+1/aN

τ∗j /aN

q(u) du ≤ 1

kN
+

e

k2
N

. (6.9)

Now (6.2) and (6.9) imply that∫ u

0

q(v) dv =

∫ τj∗(u)/aN

τk∗+1/aN

q(v) dv +

∫ u

τj∗(u)/aN

q(v) dv

≤ (1 + e/kN )(j∗(u)− (k∗ + 1))

kN
+

e

kN
(6.10)

and ∫ u

0

q(v) dv ≥ (1− e/kN )(j∗(u)− (k∗ + 1)− 1)

kN
. (6.11)
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Combining (6.7) and (6.10) gives, for sufficiently large N ,

j′(u)− (k∗ + 1) ≤ (1 + e/kN )(j∗(u)− (k∗ + 1))

1− 2δ
+

e+ 2

1− 2δ

≤ (1 + 3δ)(j∗(u)− (k∗ + 1)) + 5.

Rearranging this expression, and using that j∗(u)− (k∗ + 1) ≤ (aNu)(ekN/aN ) ≤ eTkN
by (6.2), we get for sufficiently large N ,

j′(u)− j∗(u) ≤ 3δ(j∗(u)− (k∗ + 1)) + 5 ≤ 9δTkN . (6.12)

Likewise, combining (6.6) and (6.11), we get for sufficiently large N ,

j′(u)− (k∗ + 1) ≥ (1− e/kN )(j∗(u)− (k∗ + 1)− 1)

1 + 2δ
− 4e

1 + 2δ

≥ (1− 3δ)(j∗(u)− (k∗ + 1))− (4e+ 1).

Rearranging, and again using that j∗(u)− (k∗ + 1) ≤ eTkN , we get

j′(u)− j∗(u) ≥ −3δ(j∗(u)− (k∗ + 1))− (4e+ 1) ≥ −9δTkN . (6.13)

The result (6.3) follows from (6.12) and (6.13).
Finally, to prove (6.4), note that on the event {τj < ζ ∧ aNT}, we have j∗(τ∗j /aN ) = j

and j′(τj/aN ) = j. Therefore, using (6.3), we have

|j∗(τj/aN )− j∗(τ∗j /aN )| = |j∗(τj/aN )− j′(τj/aN )| ≤ 9δTkN .

Since |j∗(τj/aN )− j∗(τ∗j /aN )| is the number of points τ∗i that land between τj and τ∗j , it
now follows from (6.2) that for sufficiently large N ,

|τj − τ∗j | ≤ (9δTkN + 1) · aN
kN
≤ 10δaNT,

which matches (6.4).

Define the fixed positive integers

j1 := j∗(T − (t0 + 1))− b9δTkNc, j2 := j∗(T − 1 + 19/kN ) + b9δTkNc,

and let
I := {j ∈ N : j1 ≤ j ≤ j2}. (6.14)

The next result shows that, when tracing ancestral lines back from time aN (T − 1) to
time aN (T − (t0 + 1)), we only need to consider time intervals [τj , τj+1] for j ∈ I.
Lemma 6.2. On the event Λ, for sufficiently large N , we have

aN (T − (t0 + 1))− 10δaNT ≤ τ∗j1 ≤ τ
∗
j2 ≤ aN (T − 1) + 10δaNT (6.15)

and

aN +
2aN
kN

< τj1 < aN (T − (t0 + 1)). (6.16)

Also, L+ 9 ≤ j2 ≤ J and τj2+1 < aNT . Furthermore, the cardinality of I is at most 3TkN .

Proof. Throughout the proof, we will work on the event Λ. Using (6.2), we get that for
sufficiently large N ,

τ∗j1 ≥ aN (T − (t0 + 1))− (9δTkN + 1) · aN
kN
≥ aN (T − (t0 + 1))− 10δaNT
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and

τ∗j2 ≤ aN
(
T − 1 +

19

kN

)
+ (9δTkN ) · aN

kN
≤ aN (T − 1) + 10δaNT.

We have now proved (6.15).

By (6.3), we have j1 ≤ j′(T − (t0 + 1)), and thus τj1 ≤ aN (T − (t0 + 1)), which is the
upper bound in (6.16). To get the lower bound, note that (6.4) and (6.2) give

τj1 ≥ τ∗j1 − 10δaNT ≥ τ∗j∗(T−(t0+1)) − (9δTkN ) · aN
kN
− 10δaNT.

Since (6.2) implies τ∗j∗(u) ≥ aNu − aN/kN for u ∈ (0, T ], it follows, using (5.1), that for
sufficiently large N ,

τj1 ≥ aN (T − (t0 + 1))− aN
kN
− 19δaNT

> aN + aN (T − (t0 + 2)− 20δT )

≥ aN + aN

(
T − (t0 + 2)

2

)
. (6.17)

The lower bound in (6.16) follows because limN→∞ kN =∞.

Next, note that by (4.9) and (5.4), we have τL+10 ≤ aN (T − 1) + 19aN/kN . By (6.3),
we have j2 ≥ j′(T − 1 + 19/kN ), which means τj2+1 > aN (T − 1 + 19/kN ) ≥ τL+10 and
thus j2 ≥ L+ 9. Also, by (6.2), the number of times τ∗i between aN (T − 1 + 19/kN ) and
aNT is at least (kN/aN )(aN (1− 19/kN ))− 1 = kN − 20. Therefore, using (6.3),

j′(T ) ≥ j∗(T )− 9δTkN ≥ j∗(T − 1 + 19/kN ) + kN − 20− 9δTkN ≥ j2 + kN − 20− 18δTkN ,

which is greater than j2 + 1 for sufficiently large N because δ < 1/19T by (5.1). It follows
that τj2+1 < aNT .

Finally, by Remark 4.2, we have j2 + 1 ≤ J . Also, we have and j1 ≥ k∗ + 1 for
sufficiently large N by (6.17), so j2 − j1 + 1 ≤ 3TkN , which is equivalent to the last
statement of the lemma.

6.2 The types of the ancestors at time τj

Lemma 6.4 below establishes that with high probability, the type ` individuals in the
sample get traced back to type `− 1 individuals at time τ`, then to type `− 2 individuals
at time τ`−1, and so on until we have traced the lineages back to time aN (T − (t0 + 1)).
We begin with the following preliminary result.

Lemma 6.3. Let j ∈ I. Let Kj be the number of type j individuals in the population at
time τj+1 whose ancestor in the population at time τj does not have type j − 1. Then

E[Kj1{τj+1<ζ}] ≤ 5

(
s

µ

)1−1/3kN

.

Proof. By parts 1 and 6 of Proposition 4.1, on {τj+1 < ζ}, no individual of type j or
higher in the population at time τj has a descendant alive in the population at time τj+1.
Therefore, Kj is the number of type j individuals at time τj+1 whose ancestor at time
τj has type less than j − 1. Such an individual must be descended from an individual
that gets its (j − 1)st mutation after time τj . We will therefore consider the number of
type j − 1 individuals at times t ≥ τj that are descended from individuals that acquired
their (j − 1)st mutation between times τj and τj+1. Following Corollary 4.8, we denote
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the number of such individuals by X
τj ,τj+1

j−1 (t). Then, writing ζj = ζ ∧ τj+1,

e−
∫ (τj+u)∧ζj
τj

Gj−1(v) dvX
τj ,τj+1

j−1 ((τj + u) ∧ ζj)

=

∫ (τj+u)∧ζj

τj

µXj−2(w)e
−

∫w
τj
Gj−1(v) dv

dw + Z
τj ,τj+1

j−1 ((τj + u) ∧ ζj), (6.18)

where (Z
τj ,τj+1

j (τj +u), u ≥ 0) is a mean zero martingale. By (4.7), on the event {ζj > τj},
we have for t ≥ 0,∫ (τj+u)∧ζj

τj

µXj−2(w)e
−

∫w
τj
Gj−1(v) dv

du

≤
∫ (τj+u)∧ζj

τj

(1 + δ)se
∫w
τj−1

Gj−2(v) dv
e
−

∫w
τj
Gj−1(v) dv

dw

= (1 + δ)se
∫ τj
τj−1

Gj−2(v) dv

∫ (τj+u)∧ζj

τj

e−s(w−τj) dw

≤ (1 + δ)e
∫ τj
τj−1

Gj−2(v) dv. (6.19)

By (4.9) and part 4 of Proposition 4.4, on {ζj > τj} we have

e
∫ τj
τj−1

Gj−2(v) dv = e−s(τj−τj−1)e
∫ τj
τj−1

Gj−1(v) dv

≤ e−s(aN/3kN )

(
2s

µ

)
≤ 2

(
s

µ

)1−1/3kN

. (6.20)

Taking conditional expectations on both sides of (6.18) and then using (6.19) and (6.20)
gives

E
[
e−

∫ (τj+u)∧ζj
τj

Gj−1(v) dvX
τj ,τj+1

j−1 ((τj + u) ∧ ζ)
∣∣Fτj ] ≤ 2(1 + δ)

(
s

µ

)1−1/3kN

. (6.21)

For u ≥ τj , let X∗j (u) denote the the number of type j individuals in the population
at time u that got their (j − 1)st mutation after time τj . Note that Kj = X∗j (τj+1) on
{τj+1 < ζ}. By the reasoning that leads to Corollary 4.8, we get

e−
∫ u∧ζj
τj

Gj(v) dvX∗j (u ∧ ζj) =

∫ u∧ζj

τj

µX
τj ,τj+1

j−1 (w)e
−

∫w
τj
Gj(v) dv

dw + Z∗j (u ∧ ζj), (6.22)

where (Z∗j (τj+1 + u), u ≥ 0) is a mean zero martingale. By part 4 of Proposition 4.4, on
{τj+1 < ζ}, we have

e
∫ τj+1
τj

Gj(v) dv ≤ 2s

µ
.

Therefore, using that the expression in (6.22) is nonnegative,

X∗j (τj+1)1{τj+1<ζ} ≤
2s

µ

(∫ ∞
τj

µX
τj ,τj+1

j−1 (w)e
−

∫w
τj
Gj−1(v) dv

e−s(w−τj)1{w≤ζj} dw + Z∗j (ζj)

)
.

Taking conditional expectations of both sides and using Fubini’s Theorem and (6.21),

E[X∗j (τj+1)1{τj+1<ζ}|Fτj ] ≤
2s

µ

(∫ ∞
τj

2(1 + δ)µ

(
s

µ

)1−1/3kN

e−s(w−τj) dw

)
= 4(1 + δ)

(
s

µ

)1−1/3kN

.

Taking expectations of both sides gives the result of the lemma.
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Lemma 6.4. Recall the definition of I from (6.14). We have

lim
N→∞

P
(
Λ∩

{
Ui(τj) 6= j− 1 for some i ∈ {1, . . . , n} and j ∈ I with j ≤ Ui(aNT ) + 1

})
= 0.

Proof. Fix i ∈ {1, . . . , n}. Suppose Λ occurs and Ui(τj) 6= j − 1 for some j ∈ I with j ≤
Ui(aNT ) + 1. Then either Ui(τUi(aNT )+1) 6= Ui(aNT ), an event whose probability tends to
zero as N →∞ by Lemma 5.2, or else there is an integer j ∈ I with j ≤ Ui(aNT ) such
that Ui(τj) 6= j − 1 and Ui(τj+1) = j. Therefore, to prove the lemma, it suffices to show
that

lim
N→∞

∑
j∈I

P
(
Λ ∩ {Ui(τj) 6= j − 1} ∩ {Ui(τj+1) = j}

)
= 0. (6.23)

Fix j ∈ I. Recall from Lemma 6.3 that Kj is the number of type j individuals in the
population at time τj+1 whose ancestor in the population at time τj does not have type
j − 1. Note that the probability, conditional on Fτj+1

, that a randomly chosen type j

individual at time τj+1 is not descended from a type j−1 individual at time τj is Kj/ds/µe.
Also, conditional on Fτj+1

, the ds/µe type j individuals at time τj+1 are equally likely to
be the ancestor of the ith individual in the sample taken at time aNT . Therefore, since
Kj is Fτj+1

-measurable, on the event τj+1 < ζ we have

P
(
{Ui(τj) 6= j − 1} ∩ {Ui(τj+1) = j}|Fτj+1

)
= P (Ui(τj+1) = j|Fτj+1

) · Kj

ds/µe
≤ µKj

s
.

Therefore, multiplying both sides by 1{τj+1<ζ}, taking expectations, and using Lemma
6.3, we get

P
(
{Ui(τj) 6= j − 1} ∩ {Ui(τj+1) = j} ∩ {τj+1 < ζ}

)
≤ µ

s
E[Kj1{τj+1<ζ}] ≤ 5

(
s

µ

)−1/3kN

.

Since the cardinality of I is at most 3TkN by Lemma 6.2, it follows that the sum of the
probabilities on the left-hand side of (6.23) is at most

15TkN

(
s

µ

)−1/3kN

.

To check that this expression goes to zero as N →∞, we consider the logarithm. Note
that log(kN (s/µ)−1/3kN ) = log kN − (1/3kN ) log(s/µ), which tends to −∞ as N → ∞ by
assumption A2. In view of the discussion before equation (6.23), the result of the lemma
follows.

We have now developed enough tools to prove Proposition 2.2.

Proof of Proposition 2.2. It suffices to prove the result for n = 1. Define L as in (5.4). As
noted in the first sentence of the proof of Lemma 5.1, we have τL ≤ aN (T − 1) ≤ τL+10

on the event Λ. Therefore, using Remark 4.3, we have L− 1 ≤M∗(aN (T − 1)) ≤ L+ 11

on Λ. It then follows from Lemma 5.1 that

lim
N→∞

P
(
Λ ∩ {|U1(aNT )−M∗(aN (T − 1))| > 11}

)
= 0.

Combining this observation with Lemma 5.2, we get

lim
N→∞

P
(
Λ∩ {|U1(t)−M∗(aN (T − 1))| > 11 for some t ∈ [τU1(aNT )+1, aNT ]}

)
= 0. (6.24)

We next apply Lemma 6.4. Note that if U1(τj) = j − 1 for all j ∈ I with j ≤ U1(aNT ) + 1,
then because the function t 7→ U1(t) is increasing, we have U1(t) ∈ {j − 1, j} for all
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t ∈ [τj , τj+1] and all j ∈ I with j ≤ U1(aNT ). On Λ, in view of Lemma 6.2 and Remark
4.3, this statement implies that |U1(t)−M∗(t)| ≤ 2 for all t ∈ [aN (T − (t+ 1)), τU1(aNT )+1].
Therefore, Lemma 6.4 yields

lim
N→∞

P
(
Λ∩{|U1(t)−M∗(t)| > 2 for some t ∈ [aN (T −(t0 +1)), τU1(aNT )+1]}

)
= 0. (6.25)

On Λ, we have τL ≤ aN (T −1) ≤ τL+10 and therefore |M∗(t)−M∗(aN (T −1))| ≤ 12 when
τL ≤ t ≤ τL+10. Combining this observation with (6.24), (6.25), and Lemma 5.1 yields

lim
N→∞

P
(
Λ∩ {|U1(t)−M∗(t∧ aN (T − 1))| > 14 for some t ∈ [aN (T − (t0 + 1)), aNT ]}

)
= 0.

Thus, in view of (4.11) and the fact that limN→∞ kN =∞, we have

sup
T−(t+1)≤u≤T

∣∣∣∣U1(aNu)

kN
− M∗(aN (u ∧ (T − 1)))

kN

∣∣∣∣→p 0. (6.26)

The result follows from (6.26) and (2.8).

6.3 Coalescence between times τj and τj+1

We next consider the merging of ancestral lines between times τj and τj+1. It will
suffice to consider the lineages labelled 1 and 2. In view of Lemma 6.4, we may also
assume these lineages have type j at time τj+1 and type j− 1 at time τj , which will occur
with high probability. Recall the definitions of Vi,j and Th,i from (5.2) and (5.3). Also, let
Vj = min{V1,j , V2,j} and V ∗j = max{V1,j , V2,j}. Because only lineages of the same type
can coalesce, there are only three ways that these lineages could coalesce between times
τj and τj+1 (see Figure 2):

1. Two lineages at time τj+1 could be traced back to one individual that acquires its
jth mutation between times ξj and τj+1. That is, ξj < V1,j = V2,j < T1,2 ≤ τj+1.

2. Two lineages at time τj+1 could be traced back to one individual that acquires its jth
mutation before time ξj . That is, τj < V1,j = V2,j < ξj and V1,j = V2,j < T1,2 ≤ τj+1.

3. Two lineages at time τj+1 could be descended from different type j mutations
between times τj and τj+1, but then the two type j − 1 lineages could coalesce
before time τj . That is, τj ≤ T1,2 < Vj < V ∗j < τj+1.

τj ξj τj+1

Case 1
τj ξj τj+1

Case 2
τj ξj τj+1

Case 3

s s s
s

Figure 2: The three ways lineages can coalesce between times τj and τj+1. Dots
represent mutations from type j − 1 to type j.

We will now show that only coalescence events of the second type need to be consid-
ered. Lemma 6.5 rules out Case 1 above, and Lemma 6.6 rules out Case 3.

Lemma 6.5. Define the event

A′j = {U1(τj+1) = U2(τj+1) = j}
∩ {U1(τj) = U2(τj) = j − 1}

∩ {ξj < V1,j = V2,j < T1,2 < τj+1}.
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For sufficiently large N , we have

P

(
Λ ∩

⋃
j∈I

A′j

)
≤ CTe−b.

Proof. Fix j ∈ I. Let Hj be the number of type j mutations between times ξj and τj+1.
Let 0 < κ1 < κ2 < · · · < κHj denote the times at which these mutations occur. Recall that
X2,j(t) is the number of type j individuals at time t that are not early. Let Xj,2,i(u) be
the number of type j individuals at time u descended from the individual that acquires
its jth mutation at time κi. This means that

Xj,2(τj+1) =

Hj∑
i=1

Xj,2,i(τj+1).

Conditional on Xj,2,1(τj+1), . . . , Xj,2,Hj (τj+1), the probability that two randomly chosen
individuals at time τj+1 are descended from the same individual that gets its jth mutation
between times ξj and τj+1 is

1

ds/µe(ds/µe − 1)

Hj∑
i=1

Xj,2,i(τj+1)(Xj,2,i(τj+1)− 1) ≤ µ2

s2

Hj∑
i=1

Xj,2,i(τj+1)2.

Since, conditional on Fτj+1
, each of the ds/µe type j individuals at time τj+1 is equally

likely to be the ancestor of an individual in our sample at time aNT , it follows that on
τj+1 < ζ,

P (A′j |Fτj+1
) ≤ µ2

s2

Hj∑
i=1

Xj,2,i(τj+1)2. (6.27)

Therefore, multiplying both sides by 1{τj+1<ζ} and taking expectations,

P (A′j ∩ {τj+1 < ζ}) ≤ µ2

s2
E

[( Hj∑
i=1

Xj,2,i(τj+1)2

)
1{τj+1<ζ}

]
. (6.28)

We now bound the expectation on the right-hand side of (6.28). Write ζj := ζ ∧ τj+1.
By Corollary 4.9 applied with κi playing the role of κ and the single type j individual that
acquires its jth mutation at time κi playing the role of S, we get

Xj,2,i(u ∧ ζj) = e
∫ u∧ζj
κi

Gj(v) dv(1 + Zi,j(u)), (6.29)

where (Zi,j(κi + u), u ≥ 0) is a mean zero martingale. Therefore, using part 4 of
Proposition 4.4, we get that on {κi < τj+1 < ζ},

Xj,2,i(τj+1) = e
∫ τj+1
τj

Gj(v) dve
−

∫ κi
τj

Gj(v) dv
(1 + Zi,j(τj+1))

≤ 2s

µ
e
−

∫ κi
τj

Gj(v) dv
(1 + Zi,j(τj+1)). (6.30)

Corollary 4.9 combined with (4.19) and (6.29) gives that on {κi < τj+1},

Var(Zi,j(τj+1)|Fκi) ≤ 3E

[ ∫ τj+1∧ζj

κi

e
−2

∫ u
κi
Gj(v) dv

Xj,2,i(u) du

∣∣∣∣Fκi]
= 3E

[ ∫ τj+1∧ζj

κi

e
−

∫ u
κi
Gj(v) dv

(1 + Zi,j(u)) du

∣∣∣∣Fκi].
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Because k∗ + 1 ≤ j ≤ J by Lemma 6.2, it follows from part 2 of Proposition 4.4 that for
sufficiently large N , if v ∈ [τj , τj+1] and v < ζ, then Gj(v) ≥ (1− 2δ)skN . Therefore, on
{κi < τj+1},

Var(Zi,j(τj+1)|Fκi) ≤ 3E

[ ∫ ∞
κi

e−skN (1−2δ)(u−κi)(1 + Zi,j(u)) du

∣∣∣∣Fκi]
=

3

skN (1− 2δ)
. (6.31)

From (6.30) and (6.31), we get that on {κi < τj+1},

E
[
X2
j,2,i(τj+1)1{τj+1<ζ}

∣∣Fκi] ≤ 4s2

µ2
e
−2

∫ κi
τj

Gj(v) dv
(

1 +
3

skN (1− 2δ)

)
.

By assumption A3, the second term inside the parentheses dominates when N is large.
Also, by part 1 of Proposition 4.4, we have s(qj − C3) ≤ Gj(v) ≤ s(qj + C3) if τj ≤ v < ζj .
Therefore, for sufficiently large N , on {κi < τj+1},

E
[
X2
j,2,i(τj+1)1{τj+1<ζ}

∣∣Fκi] ≤ Cs

µ2kN
e−2s(qj−C3)(κi−τj). (6.32)

Next, we condition on Fτj . Using (4.7) followed by part 1 of Proposition 4.4, the rate
at which type j mutations are appearing at time u, provided that τj ≤ u < ζj , is

µXj−1(u) ≤ (1 + δ)se
∫ u
τj
Gj−1(v) dv ≤ (1 + δ)ses(qj+C3−1)(u−τj). (6.33)

Therefore, using (6.32), (6.33), and (4.9), we get that on {τj < ζ},

E

[( Hj∑
j=1

Xj,2,i(τj+1)2

)
1{τj+1<ζ}

∣∣∣∣Fτj]

≤
∫ (τj+2aN/kN )∧ζ

ξj

(1 + δ)ses(qj+C3−1)(u−τj) · Cs

µ2kN
e−2s(qj−C3)(u−τj) du

≤ Cs2

µ2kN

∫ (τj+2aN/kN )∧ζ

ξj

e−s(qj−3C3+1)(u−τj) du

≤ Cs

µ2kN (qj − 3C3 + 1)
· e−s(qj−3C3+1)(ξj−τj). (6.34)

Note that e−sqj(ξj−τj) = sqje
−b for sufficiently large N by (4.3). Also, qj ≥ (1− 2δ)kN on

{τj < ζ} for sufficiently large N by part 3 of Proposition 4.4, so

s(ξj − τj) =
1

qj

(
log

(
1

sqj

)
+ b

)
≤ 1

(1− 2δ)kN

(
log

(
1

s

)
+ b

)
→ 0 (6.35)

as N → ∞ by assumption A1. Therefore, e(3C3−1)s(ξj−τj) → 1 as N → ∞. Combining
these observations with (6.34), and using that τj+1 < ζ implies τj < ζ in view of (4.9), we
get that for sufficiently large N ,

E

[( Hj∑
j=1

Xj,2,i(τj+1)2

)
1{τj+1<ζ}

∣∣∣∣Fτj] ≤ Cs2e−b

µ2kN
. (6.36)

Finally, we can take expectations of both sides in (6.36) and combine the result with
(6.28) and the fact that the cardinality of I is at most 3kNT by Lemma 6.2 to obtain the
result of the lemma.
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Lemma 6.6. Recall that Vj = min{V1,j , V2,j}. Define the event

A∗j := {U1(τj) = U2(τj) = j − 1} ∩ {τj ≤ T1,2 < Vj < τj+1}.

Then

lim
N→∞

P

(
Λ ∩

⋃
j∈I

A∗j

)
= 0.

Proof. Fix j ∈ I. Randomly label the type j − 1 individuals at time τj by 1, 2, . . . , ds/µe.
For t ≥ τj , let Xi

j−1(t) denote the number of type j − 1 individuals at time t descended
from the type j − 1 individual labelled i at time τj .

Let Cj be the σ-field generated by the the event {Vj < ζ} and the random variables

V1,j , V2,j , X
1
j−1(Vj−), . . . , X

ds/µe
j−1 (Vj−). The only way that A∗j can occur is if the first two

lineages get traced back to distinct type j − 1 ancestors at time Vj− and then merge
between times τj and Vj−. Conditional on Cj , we know that one of the type j − 1

individuals at time Vj− will get a jth mutation at time Vj , but all of the type j − 1

individuals at time Vj− are equally likely to be ancestors of individuals in our sample at
time aNT . Therefore, using the notation from (5.13),

P (A∗j1{Vj<ζ}|Cj) ≤
( ds/µe∑

i=1

Xi
j−1(Vj−)(Xi

j−1(Vj−)− 1)

Xj−1(Vj−)(Xj−1(Vj−)− 1)

)
1{Vj<ζ} ≤

ds/µe∑
i=1

R2
i,j−1.

It follows from part 6 of Proposition 4.1 that τk∗+K+1 < (K + 1)(2aN/kN ) ≤ aN for
sufficiently large N , and therefore by (6.16), we have j1−1 ≥ k∗+ 1 +K. Thus, summing
over j ∈ I, taking expectations of both sides, and applying Lemma 5.3 and Lemma 6.2,
we get ∑

j∈I
P (A∗j ∩ {Vj < ζ}) ≤

∑
j∈I

Cµ

s2kN
≤ CµT

s2
. (6.37)

The right-hand side of (6.37) tends to zero as N →∞ by (2.4). The result of the lemma
follows because if Λ ∩A∗j occurs for some j ∈ I, then Vj < τj+1 < ζ by Lemma 6.2.

7 Coupling with a branching process between times τj and τj+1

Recall from Lemmas 6.5 and 6.6 and the discussion before Lemma 6.5 that we have
shown that all possible coalescence events have low probability, except for the possibility
that type j lineages at time τj+1 could be descended from the same type j mutation
between times τj and ξj . In this section, we study these early type j mutations in
depth. The strategy here will be to couple the descendants of these mutations with a
supercritical branching process.

7.1 Review of results on continuous-time branching processes

Consider a continuous-time birth and death process (Z(t), t ≥ 0) in which each
individual independently dies at rate ν > 0 and gives birth to a new individual at rate
λ > ν. Assume Z(0) = 1. Using results in [1], one can show that

P (Z(t) > 0) =
λ− ν

λ− νe−(λ−ν)t
, (7.1)

which is also stated as part of Lemma 9.16 of [28]. Let r denote the probability that the
population goes extinct by time t. By letting t→∞ in (7.1), we get

1− r =
λ− ν
λ

. (7.2)
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Let W (t) = e−(λ−ν)tZ(t). It is well-known (see, for example, section 7 of Chapter III
in [1]) that (W (t), t ≥ 0) is a martingale, and there is a random variable W such that

lim
t→∞

W (t) = W a.s., (7.3)

where W is zero on the event that the branching process goes extinct and is almost
surely strictly positive on the event that the branching process survives forever. In this
instance, it is also known that the conditional distribution of W given that the branching
process survives forever is the exponential distribution with rate parameter 1 − r, so
that if x ≥ 0, then

P (W > x) = (1− r)e−(1−r)x. (7.4)

This can be derived from results in [1] and is also worked out, for example, in [15].
Recall that if S has an exponential distribution with parameter λ, then E[S] = 1/λ and
E[S2] = 2/λ2. Because P (W > 0) = 1 − r, it follows that E[W ] = 1 and Var(W ) ≤
E[W 2] = 2/(1− r). We will need the following result concerning the rate of convergence
of W (t) to W .

Lemma 7.1. For all η > 0 and t > 0, we have

P (|W (t)−W | > η) ≤ 2e−(λ−ν)t

η2(1− r)
.

Proof. Conditional on Z(t), we can consider separately the descendants of the Z(t)

individuals at time t to see that

W = e−(λ−ν)t

Z(t)∑
i=1

Wi,

where the random variables W1, . . . ,WZ(t) are independent and have the same distribu-
tion as W (see section 10 in Chapter III of [1]). It follows that

E[W |Z(t)] = e−(λ−ν)tZ(t)E[W ] = W (t)

and

Var(W |Z(t)) = e−2(λ−ν)tZ(t)Var(W ) ≤ 2e−(λ−ν)tW (t)

1− r
.

Therefore, by Chebyshev’s Inequality,

P (|W −W (t)| > η|Z(t)) ≤ Var(W |Z(t))

η2
≤ 2e−(λ−ν)tW (t)

η2(1− r)
. (7.5)

Because E[W (t)] = 1, the result follows by taking expectations of both sides in (7.5).

7.2 A branching process coupling between times τj and τj+1

We will assume now that j ∈ I, where I was defined in (6.14). By Lemma 6.2, this
ensures that τj+1 < aNT on Λ. Recalling Corollary 4.8, we will let

X ′j(t) := X
τj ,ξj
j (t)

denote the number of type j individuals at time t that are descended from individuals
that acquired a jth mutation during the time interval (τj , ξj ]. Note that X ′j(t) = Xj,1(t),
as long as there are no type j mutations before time τj . We say there is a pure birth event
at time t if X ′j(t) = X ′j(t−) + 1 and a pure death event at time t if X ′j(t) = X ′j(t−) − 1.
We say there is a birth and death event at time t if one of the X ′j(t−) individuals at time
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t− gives birth and another dies, so that X ′j(t) = X ′j(t−). Let B′j(t) and D′j(t) denote the
expressions in (4.17) and (4.18) respectively with X ′j(t) in place of Xj(t). Recall from the
discussion surrounding (4.16), (4.17), and (4.18) that if t ∈ [τj , τj+1 ∧ ζ), then the rate at
which a particular type j individual gives birth as part of a pure birth event is

B′j(t) =

(
1−

X ′j(t)

N

)
(1 + s(j −M(t))), (7.6)

while the rate at which a particular type j individual is involved in a pure death event is

D′j(t) = 1 + µ−
X ′j(t)

N
(1 + s(j −M(t))). (7.7)

Also, the rate at which a particular type j individual gives birth as part of a birth and
death event and the rate at which a particular type j individual dies as part of a birth
and death event are both equal to

Oj(t) =
X ′j(t)

N
(1 + s(j −M(t))). (7.8)

We write B∗j (t) := B′j(t) +Oj(t) = 1 + s(j −M(t)) and D∗j (t) := D′j(t) +Oj(t) = 1 + µ for
the total birth and death rates respectively. The following lemma gives upper and lower
bounds on these birth and death rates. The lemma also gives a bound on the rate of type
j mutations, which will correspond to immigration in our branching process.

Lemma 7.2. There is a positive constant C4 such that for sufficiently large N , if X ′j(t) ≤
s/2µ and t ∈ [τj , τj+1 ∧ ζ), then the following hold:

1− s ≤ D′j(t) ≤ D∗j (t) = 1 + µ, (7.9)

1 + sqj − C4s ≤ B′j(t) ≤ B∗j (t) ≤ 1 + sqj + C4s, (7.10)

(1− δ)ses(qj−C4)(t−τj) ≤ µXj−1(t) ≤ (1 + δ)ses(qj+C4)(t−τj). (7.11)

Proof. Suppose X ′j(t) ≤ s/2µ and t ∈ [τj , τj+1 ∧ ζ). By (2.4), assumption A3, and the fact
that j ≤ J by Lemma 6.2, for sufficiently large N we have

Oj(t) ≤
(

s

2µN

)
(1 + s(j −M(t))) ≤

(
s

2µN

)
(1 + sJ) ≤ s. (7.12)

The result (7.9) follows immediately from equations (7.7), (7.8), and (7.12).
To bound the birth rate, note that since Gj(t) = s(j −M(t))− µ, we have

1 + µ+Gj(t)−Oj(t) = B′j(t) ≤ B∗j (t) = 1 + µ+Gj(t).

Since s(qj − C3) ≤ Gj(t) ≤ s(qj + C3) for sufficiently large N by (6.16) and part 1 of
Proposition 4.4, the inequality (7.10) now follows from (7.12) and (2.4).

Finally, if t ∈ [τj , τj+1 ∧ ζ), then since Gj−1(t) = Gj(t) − s, part 1 of Proposition 4.4
gives s(qj −C3 − 1) ≤ Gj−1(t) ≤ s(qj +C3 − 1). Now (7.11) follows from this observation
and (4.7).

We will use the bounds in Lemma 7.2 to obtain a coupling in which (X ′j(t), t ≥ τj) is
bounded between two branching processes with immigration. More specifically, we will
construct processes (X+

j (t), t ≥ 0) and (X−j (t), t ≥ 0) such that

X−j (t) ≤ X ′j(t+ τj) ≤ X+
j (t) (7.13)
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for t < κj , where

κj := inf

{
u : X+

j (u) ≥ s

2µ

}
∧
(
(τj+1 ∧ ζ)− τj

)
. (7.14)

The processes (X+
j (t), t ≥ 0) and (X−j (t), t ≥ 0) evolve according to the following rules.

First, X+
j (t) is the size at time t of a population for which, at time t:

• New immigrants appear at rate φ+
j (t) = (1 + δ)ses(qj+C4)t1{t≤ξj−τj}.

• Each individual gives birth to a new individual at rate λ+
j = 1 + s(qj + C4).

• Each individual dies at rate ν+
j = 1− s.

Likewise, for the process (X−j (t), t ≥ 0), at time t:

• New immigrants appear at rate φ−j (t) = (1− δ)ses(qj−C4)t1{t≤ξj−τj}.

• Each individual gives birth to a new individual at rate λ−j = 1 + s(qj − C4).

• Each individual dies at rate ν−j = 1 + µ.

To establish that a coupling can be achieved so that (7.13) holds, we will give an
explicit construction of the processes (X+

j (t), t ≥ 0) and (X−j (t), t ≥ 0). To do this, we
will construct a population in which individuals are colored red, yellow, and blue. We
will let X+

j (t) be the total number of individuals at time t, and we will let X−j (t) be the
total number of red individuals at time t. For t < κj , the number of individuals at time
t that are red or yellow will equal X ′j(τj + t), which we will refer to as the number of
individuals in the “original population”. We will number the individuals in our population
by the order in which they were born.

The construction will require the original population process (X(t), t ≥ 0), as well as
additional Poisson processes. For each i ∈ N, we will have Poisson processes Nb,i,j and
Nd,i,j to help construct births and deaths and an additional Poisson processes Nm,j to
handle immigration. These will be Poisson processes on [0,∞)× [0,∞) with Lebesgue
intensity, which will be independent of one another and of the original population
process. We will also need a sequence (β`,j)

∞
`=1 of independent random variables which

are uniformly distributed on (0, 1) and are independent of (X(t), t ≥ 0) and the above
Poisson processes.

We first construct our population up to time κj . Observe, as we go through the
construction, that the red population has immigration, birth, and death rates of φ−j (t),

λ−j , and ν−j respectively, the total population has immigration, birth, and death rates

of φ+
j (t), λ+

j , and ν+
j respectively, and the red and yellow individuals stay in one-to-one

correspondence with the original population. This construction is well-defined because
Lemma 7.2 ensures that the rates described below are positive and the probabilities
indicated below are between zero and one.

• If a type j mutation occurs in the original population at time τj + t, then an
immigrant appears at time t. This will be the `th change in the population for some
positive integer `. We color this immigrant red if β`,j ≤ φ−j (t−)/(µXj−1(t−)), and
otherwise we color it yellow. A blue immigrant appears at time t if the Poisson
process Nm,j has a point (t, x) with x ≤ φ+

j (t−)− µXj−1(t−).

• If the ith individual at time t− is blue, then it gives birth to a blue individual at
time t if the Poisson process Nb,i,j has a point (t, x) with x ≤ λ+

j and dies at time t

if there is a point (t, x) in Nd,i,j with x ≤ ν+
j .
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• Suppose the ith individual at time t− is red. If the corresponding individual in the
original population gives birth at time τj + t as part of a pure birth event, then the
ith individual gives birth at time t. This will be the `th change in the population for
some `, and the new individual born will be red if β`,j ≤ λ−j /B′j(t−) and otherwise
will be yellow. If the corresponding individual in the original population gives birth
at time τj + t as part of a birth and death event, then the ith individual gives birth to
a yellow individual at time t. The ith individual also gives birth to a blue individual
at time t if the Poisson process Nb,i,j has a point at (t, x) with x ≤ λ+

j −B∗j (t−).

If the corresponding individual in the original population dies at time τj + t as
part of a pure death event, then this will lead to the `th change in the population
for some `, and the ith individual dies at time t if β`,j ≤ ν+

j /D
′
j(t−) and otherwise

turns blue. If the corresponding individual in the original population dies at time
t as part of a birth and death event, then the ith individual turns blue at time
t. The ith individual also turns yellow at time t if Nd,i,j has a point at (t, x) with
x ≤ ν−j −D∗j (t−).

• Suppose the ith individual at time t− is yellow. If the corresponding individual in
the original population gives birth at time τj + t as part of either a pure birth or
a birth and death event, then a new yellow individual is born at time t. The ith
individual also gives birth to a blue individual at time t if the Poisson process Nb,i,j
has a point at (t, x) with x ≤ λ+

j −B∗j (t−).

If the corresponding individual in the original population dies at time t as part of a
pure death event, then this will be the `th change in the population for some `, and
the ith individual dies at time t if β` ≤ ν+

j /D
′
j(t−) and otherwise turns blue. If the

corresponding individual dies at time t as part of a birth and death event, then the
ith individual turns blue at time t.

At time κj , the coupling with the original population is broken, and we make all yellow
individuals blue. After time κj , the process evolves as follows:

• If κj < t ≤ ξj , then a red immigrant appears at time t if there is a point (t, x) of
Nm,j with x ≤ φ−j (t−) and a blue immigrant appears at time t if there is a point

(t, x) of Nm,j with φ−j (t) < x ≤ φ+
j (t).

• If the ith individual is blue, it gives birth to a blue individual at time t if Nb,i,j has
a point (t, x) with x ≤ λ+

j and dies at time t if there is a point (t, x) in Nd,i,j with

x ≤ ν+
j .

• Suppose the ith individual is red. Then the ith individual gives birth to a red
individual at time t if the Poisson process Nb,i,j has a point (t, x) with x ≤ λ−j and to

a blue individual at time t if Nb,i,j has a point (t, x) with λ−j < x ≤ λ+
j . Also, the ith

individual dies at time t if the Poisson process Nd,i,j has a point (t, x) with x ≤ ν+
j

and turns blue at time t if Nd,i,j has a point (t, x) with ν+
j < x ≤ ν−j .

For j ∈ I, let Hj be the σ-field generated by Fτj along with the Poisson processes
Nb,i,h, Nd,i,h, and Nm,h and the random variables β`,h for h < j. Because the immigration,
birth, and death rates φ+

j , φ−j , λ+
j , λ−j , ν+

j , and ν−j are all Hj-measurable, conditional

on Hj , the processes (X+
j (t), t ≥ 0) and (X−j (t), t ≥ 0) are continuous-time branching

processes with immigration, in which the immigration rate varies with time.
Let

τ ′j := τj +
3

sqj
log

(
1

sqj

)
.

Note that τj < ξj < τ ′j for sufficiently large N . In view of (4.9) and part 3 of Proposition
4.4, along with the fact that log(s/µ)/ log(1/skN ) → ∞ as N → ∞ by (2.4), we have
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τ ′j < τj+1 on {ζ > τ ′j} if N is sufficiently large. Lemma 7.4 below helps to bound the
probability that κj < τ ′j − τj and therefore helps to ensure that with high probability,
(7.13) holds up to time τ ′j − τj . We will need the following bound on the mean of the
branching process.

Lemma 7.3. For sufficiently large N , on {τj < ζ}, we have

E[X+
j (τ ′j − τj)|Fτj ] ≤

C

s3k4
N

log

(
1

skN

)
.

Proof. Standard calculations involving supercritical branching processes give

E[X+
j (τ ′j − τj)|Fτj ] =

∫ τ ′j−τj

0

φ+
j (u)e(λ+

j −ν
+
j )(τ ′j−τj−u) du

= (1 + δ)s

∫ ξj−τj

0

es(qj+C4)ues(qj+C4+1)(τ ′j−τj−u) du

= (1 + δ)ses(qj+C4+1)(τ ′j−τj)
∫ ξj−τj

0

e−su du.

Now s(C4 +1)(τ ′j−τj)→ 0 as N →∞ by the reasoning in (6.35), and esqj(τ
′
j−τj) = (sqj)

−3.
Also, ∫ ξj−τj

0

e−su du =
1− e−s(ξj−τj)

s
≤ ξj − τj =

1

sqj
log

(
1

sqj

)
+

b

sqj
.

Since qj ≥ (1− 2δ)kN on {τj < ζ} by part 3 of Proposition 4.4, the result follows.

Lemma 7.4. We have

lim
N→∞

P

(
Λ ∩

⋃
j∈I
{κj ≤ τ ′j − τj}

)
= 0.

Proof. In view of Lemma 6.2, for j ∈ I we have τ ′j < τj+1 < ζ on Λ. Therefore, for j ∈ I,
on Λ the only way to have κj ≤ τ ′j−τj would be to have X+

j (t) > s/2µ for some t ≤ τ ′j−τj .
Because (X+

j (t), t ≥ 0) is a submartingale, it follows from Doob’s Maximal Inequality and
Lemma 7.3 that

P (Λ ∩ {κj ≤ τ ′j − τj}|Fτj ) ≤ P
(

sup
0≤t≤τ ′j−τj

X+
j (t) >

s

2µ

∣∣∣∣Fτj)1{ζ>τj}
≤ 2µ

s
E[X+

j (τ ′j − τj)|Fτj ]1{ζ>τj}

≤ Cµ

s4k4
N

log

(
1

skN

)
. (7.15)

Summing over j ∈ I, and then using (2.4) and the fact that the cardinality of I is at most
3TkN by Lemma 6.2, we obtain the result.

7.3 The probability that a family survives

Here we use the branching process coupling introduced in the previous subsection
to obtain upper and lower bounds on the probability that an individual will acquire a
jth mutation before time ξj and have descendants surviving a long time into the future.
Note that the right-hand sides of (7.16) and (7.17) below converge to zero as N →∞ on
Λ by (2.3) and part 3 of Proposition 4.4.
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Lemma 7.5. Suppose j ∈ I, where j is possibly random, and τj is a stopping time.
Define Hj as in subsection 7.2. On the event {τj < ζ}, we have for sufficiently large N ,

(1− 2δ)eb

qj
≤ P (X−j (τ ′j − τj) > 0|Hj) ≤ P (X+

j (τ ′j − τj) > 0|Hj) ≤
(1 + 2δ)eb

qj
. (7.16)

Also, letting L−j and L+
j denote the numbers of immigrants in (X−j (t), t ≥ 0) and

(X+
j (t), t ≥ 0) respectively that have descendants alive at time τ ′j − τj , for sufficiently

large N on {τj < ζ} we have

P (L+
j ≥ 2|Hj) ≤

2e2b

q2
j

. (7.17)

Proof. Throughout the proof, we work on the event {τj < ζ}. Because X−j (t) ≤ X+
j (t)

for all t ≥ 0, the second inequality in (7.16) is obvious. We now prove the third inequality.
By (7.1), the probability that an immigrant in the branching process (X+

j (t), t ≥ 0) at
time u has descendants that survive until time τ ′j − τj is

λ+
j − ν

+
j

λ+
j − ν

+
j e
−(λ+

j −ν
+
j )(τ ′j−τj−u)

.

Now λ+
j − ν

+
j = s(qj + C4 + 1). Also, for sufficiently large N ,

τ ′j − ξj =
2

sqj
log

(
1

sqj

)
− b

sqj
≥ 3

2sqj
log

(
1

sqj

)
.

Therefore, if u < ξj − τj , then

ν+
j e
−(λ+

j −ν
+
j )(τ ′j−τj−u) ≤ (1− s)e−s(qj+C4+1)(τ ′j−ξj) ≤ e−sqj(τ

′
j−ξj) ≤ (sqj)

3/2,

which, in view of part 3 of Proposition 4.4 and assumption A3, implies that for sufficiently
large N ,

λ+
j − ν

+
j

λ+
j − ν

+
j e
−(λ+

j −ν
+
j )(τ ′j−τj−u)

≤ s(qj + C4 + 1)

1 + s(qj + C4)− (sqj)3/2
≤ s(qj + C4 + 1).

Therefore,

E[L+
j |Hj ] =

∫ ξj−τj

0

φ+
j (u) ·

λ+
j − ν

+
j

λ+
j − ν

+
j e
−(λ+

j −ν
+
j )(τ ′j−τj−u)

du

≤
∫ ξj−τj

0

(1 + δ)ses(qj+C4)u · s(qj + C4 + 1) du

= (1 + δ)s2(qj + C4 + 1)

(
es(qj+C4)(ξj−τj) − 1

s(qj + C4)

)
≤ (1 + δ)

(
qj + C4 + 1

qj + C4

)
ses(qj+C4)(ξj−τj).

Because esqj(ξj−τj) = eb/(sqj) and C4s(ξj − τj) → 0 as N → ∞ by (6.35), it follows that
for sufficiently large N ,

E[L+
j |Hj ] ≤

(1 + 2δ)eb

qj
. (7.18)

The conditional Markov’s Inequality now gives the third inequality in (7.16). Because the
conditional distribution of L+

j given Hj is Poisson, we have P (L+
j ≥ 2|Hj) ≤ (E[L+

j |Hj ])2.
Therefore, (7.17) also follows from (7.18).
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It remains to prove the first inequality in (7.16). The argument is similar to that for
the third inequality, but we will need a lower bound on the expectation. For sufficiently
large N ,

E[L−j |Hj ] =

∫ ξj−τj

0

φ−j (u) ·
λ−j − ν

−
j

λ−j − ν
−
j e
−(λ−j −ν

−
j )(τ ′j−τj−u)

du

≥
∫ ξj−τj

0

φ−j (u) ·
λ−j − ν

−
j

λ−j
du

=

∫ ξj−τj

0

(1− δ)ses(qj−C4)u · s(qj − C4)− µ
1 + s(qj − C4)

du

=
(1− δ)s2(qj − C4 − µ/s)

1 + s(qj − C4)

(
es(qj−C4)(ξj−τj) − 1

s(qj − C4)

)
≥ (1− (3/2)δ)eb

qj
. (7.19)

Because the conditional distribution of L−j given Hj is Poisson, we have

P (X−j (τ ′j − τj) > 0|Hj) = P (L−j > 0|Hj) = 1− e−E[L−j |Hj ] ≥ E[L−j |Hj ]− (E[L−j |Hj ])
2.

The first inequality in (7.16) follows from this result and (7.19).

7.4 The size of a surviving family

The lemma below bounds the probability that some individual will acquire a jth
mutation before time ξj and have at least xesqj(τ

′
j−τj) descendants alive at time τ ′j . Recall

from (4.6) and part 1 of Proposition 4.4 that esqj(τ
′
j−τj) is approximately the number of

type j individuals that we would expect there to be in the population in the absence of
such an early type j mutation. This result is the precise version of (3.5), which is the key
to understanding why the Bolthausen-Sznitman coalescent describes the genealogy of
the population.

Lemma 7.6. Fix j ∈ I, and recall the definition ofHj from subsection 7.2. For sufficiently
large N , on {τj < ζ}, we have for all x ∈ [δ/2, 2/δ],

P (X−j (τ ′j − τj) > xesqj(τ
′
j−τj)|Hj) ≥

1− 7δ

qjx
(7.20)

and for all x ∈ [e−b, 2/δ],

P (X+
j (τ ′j − τj) > xesqj(τ

′
j−τj)|Hj) ≤

1 + 7δ

qjx
. (7.21)

Proof. Throughout the proof, we work on the event {τj < ζ}. We first prove (7.21).

Suppose x ∈ [e−b, 2/δ]. If X+
j (τ ′j − τj) > xesqj(τ

′
j−τj), then either two immigrants in the

population have descendants alive at time τ ′j − τj , an event whose probability has already
been bounded above in (7.17), or else for some u ∈ (0, ξj − τj ], an immigrant arrives at

time u and has more than xesqj(τ
′
j−τj) descendants at time τ ′j − τj . Note that

|(λ+
j − ν

+
j )− sqj |(τ ′j − τj) = s(C4 + 1) · 3

sqj
log

(
1

sqj

)
→ 0 (7.22)

as N →∞ by the reasoning in (6.35). Therefore, for sufficiently large N , we have

xesqj(τ
′
j−τj) ≥ (1− δ)xe(λ+

j −ν
+
j )(τ ′j−τj). (7.23)
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Suppose an immigrant arrives at time u, and let X+
j,u(t) be the number of descendants of

this immigrant in the population at time t. For t ≥ 0, let

W+
u (t) := e−(λ+

j −ν
+
j )tX+

j,u(t+ u), (7.24)

and let W+ := limt→∞W+
u (t), which exists by (7.3). Equations (7.23) and (7.24) imply

that for the immigrant to have more than xesqj(τ
′
j−τj) descendants in the population at

time τ ′j − τj , if N is sufficiently large we must have

W+
u (τ ′j − τj − u) ≥ (1− δ)xe(λ+

j −ν
+
j )u. (7.25)

To estimate the probability that this occurs, observe that by Lemma 7.1 and (7.2)

P
(
|W+ −W+

u (τ ′j − τj − u)| > δxe(λ+
j −ν

+
j )u
)
≤

2λ+
j e
−(λ+

j −ν
+
j )(τ ′j−τj−u)

δ2x2e2(λ+
j −ν

+
j )u(λ+

j − ν
+
j )

≤ 2(1 + s(qj + C4))e−(λ+
j −ν

+
j )(τ ′j−τj)

δ2x2s(qj + C4 + 1)
.

Since e−(λ+
j −ν

+
j )(τ ′j−τj) ≤ e−sqj(τ

′
j−τj) = (sqj)

3, it follows that for sufficiently large N ,

P
(
|W+ −W+

u (τ ′j − τj − u)| > δxe(λ+
j −ν

+
j )u
)
≤ 3(sqj)

2

δ2x2
. (7.26)

Note that λ+
j − ν

+
j ≥ sqj , and (1 − δ/2)sqj ≤ (λ+

j − ν
+
j )/λ+

j ≤ (1 + δ)sqj for sufficiently
large N . Therefore, by (7.2) and (7.4), for sufficiently large N ,

P
(
W+ > (1− 2δ)xe(λ+

j −ν
+
j )u
)

=

(
λ+
j − ν

+
j

λ+
j

)
e−(1−2δ)xe

(λ
+
j
−ν+
j

)u
(λ+
j −ν

+
j )/λ+

j

≤ (1 + δ)sqje
−(1−3δ)sqjxe

sqju

. (7.27)

The probability of the event in (7.25) is bounded above by the sum of the expressions in
(7.26) and (7.27). Thus, combining this result with (7.17), we have

P (X+
j (τ ′j − τj) > xesqj(τ

′
j−τj)|Hj)

≤ 2e2b

q2
j

+

∫ ξj−τj

0

(1 + δ)ses(qj+C4)u

(
(1 + δ)sqje

−(1−3δ)sqjxe
sqju

+
3(sqj)

2

δ2x2

)
du. (7.28)

Using that esqj(ξj−τj) = eb/(sqj) and that s(ξj − τj)→ 0 as N →∞ by (6.35), we have, for
sufficiently large N , ∫ ξj−τj

0

(1 + δ)ses(qj+C4)u · 3(sqj)
2

δ2x2
du ≤ 4ebs

δ2x2
. (7.29)

Also, making the substitution y = (1−3δ)sqjxe
sqju, so that dy/du = sqjy, and using again

that s(ξj − τj)→ 0 as N →∞, for sufficiently large N we have∫ ξj−τj

0

(1 + δ)ses(qj+C4)u · (1 + δ)sqje
−(1−3δ)sqjxe

sqju

du

≤ (1 + δ)2s2qje
C4s(ξj−τj)

∫ ξj−τj

0

esqjue−(1−3δ)sqjxe
sqju

du

= (1 + δ)2s2qje
C4s(ξj−τj)

∫ (1−3δ)sqjxe
sqj(ξj−τj)

(1−3δ)sqjx

e−y

(1− 3δ)s2q2
jx

dy

≤ 1 + 6δ

qjx
. (7.30)
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From (7.28), (7.29), and (7.30), we get

P (X+
j (τ ′j − τj) > xesqj(τ

′
j−τj)|Hj) ≤

1

qjx

(
1 + 6δ +

4ebsqj
δ2x

+
2e2bx

qj

)
. (7.31)

Recall that (1− 2δ)kN ≤ qj ≤ (e+ 2δ)kN on {τj < ζ} by part 3 of Proposition 4.4. Since
kN → ∞ and skN → 0 as N → ∞ by assumptions A1 and A3 respectively, the upper
bound (7.21) follows from (7.31).

Next, we will suppose x ∈ [δ/2, 2/δ] and show (7.20) by similar arguments. We
consider only the individuals colored red in the construction given above. Suppose a red
immigrant arrives at time u. Then let X−j,u(t) denote the number of red descendants of
this immigrant at time t, and for t ≥ 0, let

W−u (t) := e−(λ−j −ν
−
j )tX−j,u(t+ u).

Let W− := limt→∞W−u (t). Because |(λ−j − ν
−
j )− sqj | → 0 as N →∞ by the reasoning in

(7.22), the reasoning that led to (7.25) implies that if

W−u (τ ′j − τj − u) ≥ (1 + δ)xe(λ−j −ν
−
j )u (7.32)

and N is large enough, then X−j (τ ′j− τj) > xesqj(τ
′
j−τj). Because s(τ ′j− τj)→ 0 as N →∞

by the reasoning in (6.35), we have

e−(λ−j −ν
−
j )(τ ′j−τj) ≤ (1 + δ)(sqj)

3

for sufficiently large N . Therefore, by the reasoning leading to (7.26), for sufficiently
large N we have

P
(
|W− −W−u (τ ′j − τj − u)| > δxe(λ−j −ν

−
j )u
)
≤ 3(sqj)

2

δ2x2
. (7.33)

Note that λ−j − ν
−
j ≤ sqj , and (1 − δ)sqj ≤ (λ−j − ν

−
j )/λ−j ≤ (1 + δ/2)sqj for sufficiently

large N . Therefore, by (7.4)

P
(
W− > (1 + 2δ)xe(λ−j −ν

−
j )u
)

=

(
λ−j − ν

−
j

λ−j

)
e−(1+2δ)xe

(λ
−
j
−ν−
j

)u
(λ−j −ν

−
j )/λ−j

≥ (1− δ)e−(1+3δ)sqjxe
sqju

. (7.34)

By using (7.33) and (7.34) to bound from below the probability in (7.32), we get that for
sufficiently large N ,

P (X−j (τ ′j − τj) > xesqj(τ
′
j−τj)|Hj)

≥
∫ ξj−τj

0

(1− δ)ses(qj−C4)

(
(1− δ)e−(1+3δ)sqjxe

sqju − 3(sqj)
2

δ2x2

)
du. (7.35)

Following the reasoning in (7.30), this time using the substitution y = (1 + 3δ)sqjxe
sqju,

we get ∫ ξj−τj

0

(1− δ)ses(qj−C4) · (1− δ)e−(1+3δ)sqjxe
sqju

du

≥ 1− 6δ

qjx

∫ (1+3δ)sqjxe
sqj(ξj−τj)

(1+3δ)sqjx

e−y dy

=
1− 6δ

qjx

(
e−(1+3δ)sqjx − e−(1+3δ)ebx

)
≥ 1− 6δ

qjx

(
1− (1 + 3δ)sqjx− e−e

bx
)
. (7.36)
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On {τj < ζ}, by part 3 of Proposition 4.4, we have sqjx ≤ 2(e+ 2δ)skN/δ → 0 as N →∞.

Also, using the definition of b from (4.1), we have e−e
bx ≤ e−12000T/(δε). Therefore, using

(7.36) to bound the first term in (7.35), and using the reasoning of (7.29) to bound the
second term, we obtain (7.20).

In view of (7.13), Lemmas 7.5 and 7.6 show that the number of early type j individ-
uals is well-approximated up to time τ ′j by a continuous-time branching process. The
result below tells us that the number of early type j individuals at time τj+1 is usually
determined, to within a small error, by the number of such individuals at time τ ′j .

Lemma 7.7. For j ∈ I, define the event

Aj :=
{∣∣e−sqj(τ ′j−τj)X ′j(τ ′j)− e− ∫ τj+1

τj
Gj(v) dvX ′j(τj+1)

∣∣ > e−b
}
. (7.37)

Then

lim
N→∞

P

(
Λ ∩

⋃
j∈I

Aj

)
= 0.

Proof. Let S be the set of individuals at time τ ′j descended from individuals that acquired
their jth mutation during the time interval (τj , ξj ], which means there are X ′j(τ

′
j) individ-

uals in the set S. Then, using the notation of Corollary 4.9 with τ ′j in place of κ, we get
that for t ≥ τ ′j ,

e
−

∫ t∧τj+1∧ζ
τ′
j

Gj(v) dv
X ′j(t ∧ τj+1 ∧ ζ) = X ′j(τ

′
j) + ZSj (t), (7.38)

where (ZSj (τ ′j + t), t ≥ 0) is a mean zero martingale. Therefore, on {τj+1 < ζ}, we have

e−sqj(τ
′
j−τj)X ′j(τ

′
j) = e

−sqj(τ ′j−τj)−
∫ τj+1

τ′
j

Gj(v) dv
X ′j(τj+1)− e−sqj(τ

′
j−τj)ZSj (τj+1)

= e
∫ τ′j
τj

(Gj(v)−sqj) dve−
∫ τj+1
τj

Gj(v) dvX ′j(τj+1)− e−sqj(τ
′
j−τj)ZSj (τj+1).

(7.39)

By (4.5), on {τj+1 < ζ}, we have e−
∫ τj+1
τj

Gj(v) dvX ′j(τj+1) ≤ C1. Also, by part 1 of
Proposition 4.4, on {τj+1 < ζ}, we have∫ τ ′j

τj

|Gj(v)− sqj | dv ≤ C3s(τ
′
j − τj), (7.40)

which tends to zero as N →∞ by the argument in (6.35). Thus, (7.39) implies that for
sufficiently large N , on {τj+1 < ζ}, we have

∣∣e−sqj(τ ′j−τj)X ′j(τ ′j)− e− ∫ τj+1
τj

Gj(v) dvX ′j(τj+1)
∣∣ ≤ e−b

2
+ e−sqj(τ

′
j−τj)|ZSj (τj+1)|. (7.41)

It remains to bound |ZSj (τj+1)|. By Corollary 4.9 and the argument leading to (4.19),

Var(ZSj (τ ′j + t)|Fτ ′j ) ≤ 3E

[ ∫ (τ ′j+t)∧τj+1∧ζ

τ ′j

e
−2

∫ u
τ′
j
Gj(v) dv

X ′j(u) du

∣∣∣∣Fτ ′j]. (7.42)

Because Gj(v) ≥ s(qj − C3) for v ∈ [τj , τj+1 ∧ ζ) by part 1 of Proposition 4.4, it follows
from equations (7.38) and (7.42), Fubini’s Theorem, and the fact that (ZSj (τ ′j + t), t ≥ 0)
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is a mean zero martingale that for sufficiently large N ,

Var(ZSj (τ ′j + t)|Fτ ′j ) ≤ 3E

[ ∫ (τ ′j+t)∧τj+1∧ζ

τ ′j

e
−

∫ u
τ′
j
Gj(v) dv

(X ′j(τ
′
j) + ZSj (t)) du

∣∣∣∣Fτ ′j]

≤ 3E

[ ∫ (τ ′j+t)∧τj+1∧ζ

τ ′j

e−s(qj−C3)(u−τ ′j)(X ′j(τ
′
j) + ZSj (t)) du

∣∣∣∣Fτ ′j]
≤ 3X ′j(τ

′
j)

∫ ∞
τ ′j

e−s(qj−C3)(u−τ ′j) du

≤
4X ′j(τ

′
j)

sqj
.

Therefore, by the L2 Maximum Inequality for martingales,

P

(∣∣ZSj (τj+1)
∣∣ > e−b

2
esqj(τ

′
j−τj)

∣∣∣∣Fτ ′j) ≤ CX ′j(τ
′
j)

sqje−2b
e−2sqj(τ

′
j−τj) = CX ′j(τ

′
j)(sqj)

5e2b. (7.43)

On {κj > τ ′j − τj}, we have X ′j(τ
′
j) ≤ X+

j (τ ′j − τj) by (7.13). Let F∗τ ′j be the σ-field

generated by Fτ ′j and the event {κj > τ ′j − τj}. Since the additional Poisson processes
Nb,i,j , Nd,i,j , and Nm,j and random variables β`,j are independent of the population
process (X(t), t ≥ 0), we have on {κj > τ ′j − τj},

P

(
|ZSj (τj+1)| > e−b

2
esqj(τ

′
j−τj)

∣∣∣∣F∗τ ′j
)
≤ CX+

j (τ ′j − τj)(skN )5e2b.

Therefore, taking conditional expectations of both sides of (7.43) with respect to Fτj and
then using Lemma 7.3 and part 3 of Proposition 4.4, we get

P

(
{κj > τ ′j − τj} ∩

{∣∣ZSj (τj+1)
∣∣ > e−b

2
esqj(τ

′
j−τj)

}∣∣∣∣Fτj)
≤ CE[X+

j (τ ′j − τj)|Fτj ](skN )5e2b

≤ C(skN )2e2b

kN
log

(
1

skN

)
. (7.44)

Using Boole’s Inequality and summing over j ∈ I, we now deduce from equations (7.41)
and (7.44) and Lemmas 6.2 and 7.4 that

P

(
Λ ∩

⋃
j∈I

Aj

)
≤ 3TkN ·

C(skN )2e2b

kN
log

(
1

skN

)
,

which tends to zero as N →∞ by assumption A3.

7.5 The fraction of individuals descended from an early mutation

To determine the genealogy of the population, it will be important to consider the
fraction of type j individuals in the population descended from an early type j mutation,
as this is an estimate of the fraction of lineages that will coalesce near the time of this
mutation. To this end, we let

Yj :=
X ′j(τj+1)

ds/µe
, (7.45)

which is the fraction of type j individuals at time τj+1 that are descended from a type j
mutation that occurred between times τj and ξj . Also, define

Y −j :=
(e−sqj(τ

′
j−τj)X−j (τ ′j − τj)− e−b) ∨ 0

((e−sqj(τ
′
j−τj)X−j (τ ′j − τj)− e−b) ∨ 0) + 1 + 4δ
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and

Y +
j :=

e−sqj(τ
′
j−τj)X+

j (τ ′j − τj) + e−b

e−sqj(τ
′
j−τj)X+

j (τ ′j − τj) + e−b + 1− 4δ
. (7.46)

Lemma 7.8. Suppose j ∈ I. For sufficiently large N , on {τj < ζ}, we have, for all
y ∈ [δ, 1− δ],

(1− y)(1− 13δ)

qjy
≤ P (Y −j ≥ y|Hj) ≤ P (Y +

j ≥ y|Hj) ≤
(1− y)(1 + 13δ)

qjy
. (7.47)

Also, defining the event Aj as in (7.37), on Acj ∩ {τj+1 < ζ} ∩ {κj > τ ′j − τj} we have

Y −j ≤ Yj ≤ Y
+
j . (7.48)

Proof. We first prove (7.47). Suppose y ∈ [δ, 1 − δ]. The middle inequality in (7.47) is
immediate. To prove the third inequality in (7.47), note that Y +

j ≥ y if and only if

e−sqj(τ
′
j−τj)X+

j (τ ′j − τj) ≥
(1 + e−b − 4δ)y − e−b

1− y
. (7.49)

Since e−b/y ≤ δ by (4.1), we see that (7.49) implies

e−sqj(τ
′
j−τj)X+

j (τ ′j − τj) ≥
(1− 5δ)y

1− y
.

Thus, by Lemma 7.6, for sufficiently large N , on the event {τj < ζ}, we have for all
y ∈ [δ, 1− δ],

P (Y +
j ≥ y|Hj) ≤ P

(
e−sqj(τ

′
j−τj)X+

j (τ ′j − τj) ≥
(1− 5δ)y

1− y

∣∣∣∣Hj) ≤ (1 + 7δ)(1− y)

(1− 5δ)qjy
,

which leads to the third inequality in (7.47). Likewise, note that Y −j ≥ y if and only if

e−sqj(τ
′
j−τj)X−j (τ ′j − τj) ≥

(1− e−b + 4δ)y + e−b

1− y
,

which, since e−b/y ≤ δ, will always hold if e−sqj(τ
′
j−τj)X+

j (τ ′j − τj) ≥ (1 + 5δ)y/(1 − y).
Therefore, by Lemma 7.6,

P (Y −j ≥ y|Hj) ≥ P
(
e−sqj(τ

′
j−τj)X+

j (τ ′j − τj) ≥
(1 + 5δ)y

1− y

∣∣∣∣Hj) ≥ (1− 7δ)(1− y)

(1 + 5δ)qjy
,

which implies the first inequality in (7.47). It remains to prove (7.48).
The last statement of part 1 of Proposition 4.1, combined with (4.9), implies that on

the event {τj+1 < ζ}, no individual that gets a jth mutation at or before time τj has a
descendant alive at time τj+1. In particular, we have X ′j(τj+1) = Xj,1(τj+1). Therefore,
using also that Xj,1(τj+1) +Xj,2(τj+1) = Xj(τj+1) = ds/µe, we get, on {τj+1 < ζ},

Yj =
Xj,1(τj+1)

Xj,1(τj+1) +Xj,2(τj+2)

=
e−

∫ τj+1
τj

Gj(v) dvXj,1(τj+1)

e−
∫ τj+1
τj

Gj(v) dvXj,1(τj+1) + e−
∫ τj+1
τj

Gj(v) dvXj,2(τj+2)
. (7.50)

By (4.6), on {τj+1 < ζ},

1− 4δ ≤ e−
∫ τj+1
τj

Gj(v) dvXj,2(τj+1) ≤ 1 + 4δ. (7.51)
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Combining (7.50), (7.51), and the definition of Aj , we get that on Acj ∩ {τj+1 < ζ},

e−sqj(τ
′
j−τj)X ′j(τ

′
j)− e−b

e−sqj(τ
′
j−τj)X ′j(τ

′
j)− e−b + 1 + 4δ

≤ Yj ≤
e−sqj(τ

′
j−τj)X ′j(τ

′
j) + e−b

e−sqj(τ
′
j−τj)X ′j(τ

′
j) + e−b + 1− 4δ

.

Combining this observation with (7.13) and noting that Yj ≥ 0, we conclude that (7.48)
holds on Acj ∩ {τj+1 < ζ} ∩ {κj > τ ′j − τj}.

8 Coupling with the Bolthausen-Sznitman coalescent

In this section, we prove Theorem 2.1 by establishing a coupling between the coa-
lescent process (ΠN (u), 0 ≤ u ≤ t0 + 1) and the Bolthausen-Sznitman coalescent. Our
strategy will involve examining the process at the times τj . A very similar idea was used
in [12] by Desai, Walczak, and Fisher.

8.1 No coalescence between times τL and aNT

Recall from Remark 5.5 that with probability tending to one as N →∞, no lineages
coalesce as they are traced back from time aNT to time τL+10. The result below shows
that the lineages are also unlikely to coalesce as they are traced back further from time
τL+10 to time τL, which implies the statement (2.6) from Theorem 2.1. As with Lemmas
5.4 and 6.5, it is sufficient to state the result for the first two lineages.

Lemma 8.1. We have

lim sup
N→∞

P
(
Λ ∩ {T1,2 ≥ τL}

)
≤ CTe−b. (8.1)

In particular, the statement (2.6) holds.

Proof. Let `1 = U1(aNT ) and `2 = U2(aNT ). Without loss of generality, suppose `1 ≤ `2.
We know from the argument in Remark 5.5 that

lim
N→∞

P
(
Λ ∩ {T1,2 ≥ τL+10}

)
= 0,

so we only need to follow these two lineages between times τL and τL+10. By Lemmas 5.2
and 6.4, we know that, outside of an event A such that limN→∞ P (Λ∩A) = 0, for i ∈ {1, 2}
we have Ui(τj+1) = j for j ∈ {L − 1, L, . . . , `i} and Ui(τj+1) = `i for j ∈ {`i, . . . , L + 9}.
When this occurs, there are only three ways that these lineages could coalesce between
times τL and τL+10, in view of the fact that only lineages of the same type can coalesce:

1. We have `1 = `2 and T1,2 ≥ τ`1+1.

2. We have `1 < `2 and τ`1+1 < T1,2 < V2,`1+1 < τ`1+2. That is, as we trace back the
ancestral lines, the second lineage gets traced back to a type `1 individual, then
coalesces with the first lineage between times τ`1+1 and τ`1+2.

3. For some j ∈ {L−1, L, . . . , `1}, two type j lineages at time τj+1 are descended from
the same type j − 1 lineage at time τj .

Lemma 5.4 bounds the probability of the first possibility above, while Lemma 6.6
bounds the probability of the second possibility. It remains only to consider the third
possibility, in which the lineages coalesce between times τj and τj+1 for j ∈ {L −
1, L, . . . , `i}. As noted in the discussion in subsection 6.3, Lemmas 6.5 and 6.6 establish
that the probability that such a coalescence event occurs without the ancestor acquiring
an early type j mutation is bounded above by CTe−b. Also, because the result of Lemma
7.5 holds even when j is random provided that τj is a stopping time, we have

P (Λ ∩ {X+
j (τ ′j − τj) > 0 for some j ∈ {L− 1, L, . . . L+ 9}) ≤ Ceb

kN
,
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where we have used also part 3 of Proposition 4.4. In view of (7.13) and Lemma 7.4, it
follows that the probability that, for some j ∈ {L− 1, L, . . . , `i}, two type j lineages at
time τj+1 are descended from an early type j mutation tends to zero as N → ∞. The
result (8.1) now follows from the bounds collected in this paragraph.

Finally, since τL < aN (T − 1) on Λ by (5.4) and (4.9), the statement (2.6) follows from
(8.1), (4.1), and the fact that ε > 0 and δ > 0 are arbitrary.

8.2 Representing the early type j mutations by a point process

Fix j ∈ I. Recall from the discussion before Lemma 6.5 that the individuals sampled at
time aNT are typically descended from type j individuals at time τj+1, and these lineages
will typically coalesce only if they are traced back to one individual that acquires its jth
mutation before time ξj . We construct in this subsection a point process that encodes
these coalescence events.

Let Λj be the event that Λ occurs and that Ui(τj) = j + 1 for all i ∈ {1, . . . , n}.
Suppose we condition on the event Λj , the random variables Y` = X ′`(τ`+1)/ds/µe and
τ` for ` ∈ I, and the partitions ΠN (T − τ`/aN ) for ` ∈ I with ` ≥ j + 1. Denote the
blocks of ΠN (T − τ`/aN ) by B`,1, . . . , B`,n` , where we rank the blocks in order by their
smallest element. By the definition of Λj , the nj+1 individuals in the population at
time τj+1 that are ancestors of individuals in the sample are all among the ds/µe type j
individuals in the population at time τj+1. However, by the symmetry in the process, all
ds/µe(ds/µe − 1) . . . (ds/µe − nj+1 + 1) possible choices of nj+1 individuals out of these
ds/µe are equally likely to be the ancestors of the individuals in the sample corresponding
to the integers in the blocks Bj+1,1, . . . , Bj+1,nj+1

respectively. Also, X ′j(τj+1) of the ds/µe
type j individuals at time τj+1 are descended from an individual that got an early type j
mutation between times τj and ξj . We call these type j individuals good.

We now construct some uniformly distributed random variables Zi,j for i ∈ {1, . . . , n}
and j ∈ I. Begin by defining random variables Z∗i,j for i ∈ {1, . . . , n} and j ∈ I which are
uniformly distributed on [0, 1] and independent of the population process (X(t), t ≥ 0)

and of one another. If j ≥ L+ 1, then let Zi,j = Z∗i,j . Likewise, if either Λj does not occur
or nj+1 < i ≤ n, then let Zi,j = Z∗i,j . Now suppose Λj occurs. For i ∈ {1, . . . , nj+1}, we
call the (i, j) ancestor the individual at time τj+1 that is the ancestor of the individuals in
the sample whose label is in the block Bj+1,i. Let K0 = 0, and for i ∈ {1, . . . , nj+1 − 1},
let Ki be the number of integers h ∈ {1, . . . , i} such that the (h, j) ancestor is good. Then,
conditioning on Ki−1 in addition to the event Λj , the random variables Y` and τ` for ` ∈ I,
and the partitions ΠN (T − τ`/aN ) for ` ∈ I with ` ≥ j + 1, the probability that the (i, j)

ancestor is good is

Pi,j :=
X ′j(τj+1)−Ki−1

ds/µe − (i− 1)
.

Let Zi,j := Z∗i,jPi,j if the (i, j) ancestor is good, and let Zi,j := Pi,j + Z∗i,j(1 − Pi,j)

otherwise. Note that Zi,j has a uniform distribution on [0, 1], and the (i, j) ancestor is
good if and only if Zi,j ≤ Pi,j . Also, the random variables Zi,j are jointly independent of
the random variables Y` and the stopping times τ` for ` ∈ I.

Let ΦN be the point process on [0, t0 + 1]× [0, 1]n+1 consisting of all of the points(
T − τj

aN
, Yj , Z1,j , . . . , Zn,j

)
such that j ∈ I, j ≤ L, and Yj > 0. We use the point process ΦN to construct a
coalescent process (Π∗N (u), 0 ≤ u ≤ t0 + 1) as follows. Let Π∗N (0) = {{1}, . . . , {n}}. For
u ∈ (0, t0 + 1], suppose (u, y, z1, . . . , zn) is a point of ΦN and Π∗N (u−) = π, where π is a
partition of {1, . . . , n} whose blocks, ordered by their smallest elements, are B1, . . . , B`.
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Then Π∗N (u) is obtained from Π∗N (u−) by merging together all of the blocks Bi for which
zi ≤ y. The result below relates the coalescent processes (ΠN (u), 0 ≤ u ≤ t0 + 1) and
(Π∗N (u), 0 ≤ u ≤ t0 + 1).

Lemma 8.2. We have

lim inf
N→∞

P

(⋂
j∈I

{
ΠN

(
T − τj

aN

)
= Π∗N

(
T − τj

aN

)})
≥ 1− Cn2ε. (8.2)

Proof. We claim that the event in (8.2) could fail to hold in the following ways:

1. Either ΠN (T − τL/aN ) 6= {{1}, . . . , {n}} or Π∗N (T − τL/aN ) 6= {{1}, . . . , {n}}.
2. The event Λj could fail to hold for some j ∈ I with j ≤ L.

3. For some j ∈ I, either the event A′j defined in the statement of Lemma 6.5 or the
event A∗j defined in the statement of Lemma 6.6 occurs.

4. For some j ∈ I, two or more individuals at time τj have descendants that got a jth
mutation before time ξj and then have type j descendants in the population at time
τj+1.

5. For some j ∈ I with j ≤ L and Yj > 0, and some i ∈ {1, . . . , n}, the random variable
Zi,j is between Pi,j and Yj .

To see that these are the only possibilities, recall from the discussion at the beginning
of subsection 6.3 that if Λ` occurs for all ` ∈ I with ` ≤ L, then unless A′j or A∗j
occurs, the only way that lineages can coalesce between times τj and τj+1 is for two
or more lineages at time τj+1 to be traced back to one individual that acquires its
jth mutation before time ξj . Unless the fourth event listed above occurs, the only
way this can happen is for a group of lineages at time τj+1 to get traced back to the
same individual that acquires its jth mutation before time ξj . In this case, suppose
ΠN (T − τj+1/aN ) = Π∗N (T − τj+1/aN ) = πj+1, and Bj+1,1, . . . , Bj+1,nj+1

are the blocks
of πj+1, ranked in order by their smallest elements. By the construction described at
the beginning of this subsection, we obtain ΠN (T − τj/aN ) by merging the blocks Bj+1,i

for which Zi,j ≤ Pi,j . We obtain Π∗N (T − τj/aN ) by merging the blocks Bj+1,i for which
Zi,j ≤ Yi,j . Therefore, we can only have ΠN (T − τj/aN ) 6= Π∗N (T − τj/aN ) if the fifth
event listed above occurs.

We thus need to bound the probabilities of the five events listed above. Recall
that P (Λc) < 2ε by (4.11). By construction, (T − τj/aN , Yj , Z1,j , . . . , Zn,j) will only be
a point of ΦN if j ≤ L, and τL < aN (T − 1) on Λ by (5.4) and (4.9). It follows that
Π∗N (T − τL/aN ) = {{1}, . . . , {n}} on Λ. Also, by Lemma 8.1, the probability that Λ occurs
and ΠN (T − τL/aN ) 6= {{1}, . . . , {n}} is at most Cn2Te−b ≤ Cn2ε in view of (4.1). By
Lemma 6.4, the probability that Λ occurs and the second event above occurs tends to
zero as N → ∞. Lemmas 6.5 and 6.6 show that the probability that Λ occurs and the
third event above occurs is at most Cn2Te−b ≤ Cn2ε. The probability that Λ occurs
and the fourth event above occurs tends to zero as N →∞ by (7.17) along with (7.13),
Lemma 7.4, and part 3 of Proposition 4.4.

It remains to bound the probability of the fifth event above. For sufficiently large N ,

|Pi,j − Yj | =
∣∣∣∣ (i− 1)X ′j(τj+1)−Ki−1ds/µe
ds/µe(ds/µe − (i− 1))

∣∣∣∣ ≤ nds/µe
ds/µe(ds/µe − (i− 1))

≤ 2nµ

s
.

Because Zi,j has a uniform distribution on [0, 1] and is independent of Yj , the probability
that Zi,j is between Pi,j and Yj is at most 2nµ/s. Therefore, using Lemma 6.2, the
probability that this occurs for some ` ∈ {1, . . . , n} and j ∈ I is at most 6n2TkNµ/s,
which tends to zero as N →∞ by (2.4) and assumption A2. The lemma follows.
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8.3 A Poisson point process derived from ΦN

In this subsection, we modify the point process ΦN to obtain a Poisson point process
Φ from which we can construct a Bolthausen-Sznitman coalescent via the technique
outlined in subsection 3.1. The random variables Zj,1, . . . , Zj,n are already independent
and uniformly distributed on [0, 1], and they will remain unchanged. However, we will
define new random variables Y ∗j that are coupled with the original random variables Yj
as well as new times T ∗j .

For j ∈ I, let Zj be a random variable having the uniform distribution on [0, 1] that
is independent of the population process. Recall the definition of the σ-field Hj from
subsection 7.2. Define the random function

Hj(y, z) := P (Y +
j < y|Hj) + zP (Y +

j = y|Hj), for all y, z ∈ [0, 1].

Also, let Fj(y) := P (Y +
j ≤ y|Hj) = Hj(y, 1), and for x ∈ [0, 1], let F−1

j (x) := sup{y :

Fj(y) ≤ x}. Then it is easy to see that almost surely

Y +
j = F−1

j (Hj(Y
+
j , Zj)). (8.3)

Note that if 0 < x < 1, then there is a random integer K(x) such that

P

(
Y +
j ≤

K(x)

ds/µe

∣∣∣∣Hj) ≤ x < P

(
Y +
j ≤

K(x) + 1

ds/µe

∣∣∣∣Hj).
Then

P (Hj(Y
+
j , Zj) ≤ x|Hj) = P

(
Y +
j ≤

K(x)

ds/µe

∣∣∣∣Hj)+ P

(
Y +
j =

K(x) + 1

ds/µe

∣∣∣∣Hj)
× P

(
Zj ≤

x− P (Y +
j ≤ K(x)/ds/µe|Hj)

P (Y +
j = (K(x) + 1)/ds/µe|Hj)

)
= x.

Therefore, the conditional distribution of Hj(Y
+
j , Zj) given Hj is uniform on [0, 1]. For

x ≥ 0, let

Kj(x) :=


e−(τ∗j+1−τ

∗
j )(1−x)/aNx if ε ≤ x ≤ 1

e−(τ∗j+1−τ
∗
j )(1−ε)/aNε if 0 ≤ x < ε

0 if x < 0

For x ∈ [0, 1], let K−1
j (x) = sup{y : Kj(y) ≤ x}. Also, let

Y ∗j := K−1
j (Hj(Y

+
j , Zj)). (8.4)

Then for all x ≥ 0, we have
P (Y ∗j ≤ x|Hj) = Kj(x). (8.5)

Note that Y ∗j never takes a value between 0 and ε, so if Y ∗j > 0, then Y ∗j ≥ ε.
We now continue with the construction of Φ. For all j ∈ I, independently of the

population process (X(t), t ≥ 0) and of all other auxiliary random variables introduced
up to this point, let T ∗j be uniformly distributed on [T − τ∗j+1/aN , T − τ∗j /aN ], and let Φ′j
be a Poisson point process on [T − τ∗j+1/aN , T − τ∗j /aN ]× [0, 1]n+1 with intensity

du× x−2 dx× dz1 × · · · × dzn.

For all j such that T ∗j ∈ [1, t0 + 1] and Y ∗j > 0, the point process Φ will include the point
(T ∗j , Y

∗
j , Zj,1, . . . , Zj,n). Also, for all j such that Y ∗j > 0, the point process Φ will include

all points of Φ′j whose first coordinate is in [1, t0 + 1] and whose second coordinate is in
the interval (ε, Y ∗j ). Finally, Φ will include all points of Φ′j whose first coordinate is in
[1, t0 + 1] and whose second coordinate is less than ε.
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Lemma 8.3. The point process Φ defined above is a Poisson point process on [1, t0 + 1]×
[0, 1]n+1 with intensity

du× x−2 dx× dz1 × · · · × dzn. (8.6)

Proof. We separately consider, for each j, the restriction of Φ to points whose first
coordinate is in the interval [T − τ∗j+1/aN , T − τ∗j /aN ]. For a Poisson point process with
intensity (8.6), the expected number of points in the region [T − τ∗j+1/aN , T − τ∗j /aN ]×
[x, 1]× [0, 1]n is (

τ∗j+1 − τ∗j
aN

)∫ 1

x

y−2 dy =
(τ∗j+1 − τ∗j )(1− x)

aNx
.

Therefore, from (8.5), we see that if x ≥ ε, then P (Y ∗j ≥ x|Hj) is the probability
that there are no points in this region. Using also that T ∗j is uniformly distributed
on [T − τ∗j+1/aN , T − τ∗j /aN ] and that the random variables Zj,1, . . . , Zj,n are uniformly
distributed on [0, 1]n, it follows that

(T ∗j , Y
∗
j , Zj,1, . . . , Zj,n)

has the same distribution as the point whose second coordinate is the largest among
points of a Poisson process with intensity (8.6) restricted to [T − τ∗j+1/aN , T − τ∗j /aN ]×
[ε, 1]× [0, 1]n. Furthermore, conditional on the event that such a Poisson process has a
point whose second coordinate is y and no point whose second coordinate is larger than
y, the distribution of the restriction of the Poisson process to [T − τ∗j+1/aN , T − τ∗j /aN ]×
[ε, y) × [0, 1]n is that of a Poisson process with intensity (8.6). It thus follows from the
construction of Φ that the restriction of Φ to [T − τ∗j+1/aN , T − τ∗j /aN ] has intensity given
by (8.6).

Finally, because of the conditioning on Hj in (8.5), the random variables Y ∗j for j ∈ I
are independent. Because the Poisson processes Φ′j are independent, it follows that the
restrictions of Φ to the intervals [T − τ∗j+1/aN , T − τ∗j /aN ] are independent. The lemma
now follows from the superposition theorem for Poisson processes.

The next step is to use the Poisson point process Φ to construct a coalescent process
(Π(u), 0 ≤ u ≤ t0 + 1). Let Π(u) = {{1}, . . . , {n}} for u ∈ [0, 1]. For u ∈ (1, t0 + 1], suppose
(u, y, z1, . . . , zn) is a point of Φ and Π(u−) = π, where π is a partition of {1, . . . , n} into the
blocks B1, . . . , B`, ordered by their smallest element. Then Π(u) is obtained from Π(u−)

by merging together all of the blocks Bi for which zi ≤ y. As discussed in subsection 3.1,
this construction is well-defined, and the process (Π(1 + u), 0 ≤ u ≤ t0) obeys the law of
the Bolthausen-Sznitman coalescent.

8.4 Comparing Yj and Y ∗j

The goal in this subsection is to prove two lemmas that establish that, with high
probability, the random variables Yj and Y ∗j are close. Lemma 8.6 bounds the probability
that either Yj or Y ∗j is greater than ε, but the other is not. Lemma 8.7 bounds the
probability that the difference between Yj and Y ∗j is more than ε2. We will need a couple
of preliminary estimates.

Lemma 8.4. For j ∈ I, let

A′′j :=

{∣∣∣∣ qjkN − q
(
τj
aN

)∣∣∣∣ > δ

}
.

Then

lim
N→∞

P

(
Λ ∩

⋃
j∈I

A′′j

)
= 0.
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Proof. Lemma 6.2 and part 1 of Proposition 4.1 imply that on Λ, the fittest individual in
the population at time τj must have either j or j − 1 mutations. It therefore follows from
(4.2) and (4.12), along with the fact that τj > aN + 2aN/kN for all j ∈ I by Lemma 6.2,
that Q(τj) must either equal qj or qj−1 on Λ for all j ∈ I. Let S = [1 + (T − (t0 + 2))/2, T ],
which is a compact subset of (1,∞). It follows from Proposition 4.5 that

sup
t∈S

∣∣∣∣Q(aN t)

kN
− q(t)

∣∣∣∣→p 0,

where→p denotes convergence in probability as N →∞. By (6.17) and Lemma 6.2, on
Λ we have τj/aN ∈ S for all j ∈ I. Therefore,

sup
j∈I

∣∣∣∣ qjkN − q
(
τj
aN

)∣∣∣∣1Λ →p 0,

which implies the lemma.

Lemma 8.5. There is a positive constant C such that if ε ≤ y ≤ 1 and j ∈ I, then on the
event {τj < ζ} ∩ (A′′j )c ∈ Hj , we have for sufficiently large N ,

(1− y)(1− CδT )

qjy
≤ P (Y ∗j ≥ y|Hj) ≤

(1− y)(1 + CδT )

qjy
.

Proof. By (6.1),∣∣∣∣τ∗j+1 − τ∗j
aN

− 1

qj

∣∣∣∣ =

∣∣∣∣ 1

kNq(τ∗j /aN )
− 1

qj

∣∣∣∣ =
1

kN

∣∣∣∣ 1

q(τ∗j /aN )
− kN

qj

∣∣∣∣. (8.7)

Also, by (4.15) and (6.4), we have on {τj < ζ} ∩ (A′′j )c,∣∣∣∣ qjkN − q
(
τ∗j
aN

)∣∣∣∣ ≤ δ +

∣∣∣∣q( τj
aN

)
− q
(
τ∗j
aN

)∣∣∣∣ ≤ δ + 10eδT. (8.8)

Therefore, using (8.7) and (8.8) along with the facts that q(τ∗j /aN ) ≥ 1 by Proposition
4.6 and that qj/kN ≥ 1 − 2δ on {τj < ζ} by part 3 of Proposition 4.4, we get that on
{τj < ζ} ∩ (A′′j )c, ∣∣∣∣τ∗j+1 − τ∗j

aN
− 1

qj

∣∣∣∣ ≤ CδT

kN
.

Because |(1− e−x)− x| ≤ x2/2 for x ≥ 0 and (6.1) holds, it follows that when ε ≤ y ≤ 1,
we have for sufficiently large N , on {τj < ζ} ∩ (A′′j )c,∣∣∣∣(1−Kj(y))− (1− y)

qjy

∣∣∣∣ ≤ 1

2

(
(τ∗j+1 − τ∗j )(1− y)

aNy

)2

+
1− y
y

∣∣∣∣τ∗j+1 − τ∗j
aN

− 1

qj

∣∣∣∣ ≤ 1− y
y
· CδT
kN

.

Because qj ≤ (e+ 2δ)kN on {τj < ζ} by part 3 of Proposition 4.4, the result follows.

Lemma 8.6. Letting 4 denote the symmetric difference between two events, for suffi-
ciently large N we have

P

(
Λ ∩

⋃
j∈I

(
{Yj ≥ ε}4{Y ∗j ≥ ε}

))
≤ CδT 2

ε
.

Proof. By Lemmas 7.8 and 8.5 and part 3 of Proposition 4.4,∣∣P (Y +
j ≥ ε|Hj)− P

(
Y ∗j ≥ ε|Hj)

∣∣ ≤ CδT

εkN
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for sufficiently large N on {τj < ζ} ∩ (A′′j )c, and the same result holds with Y −j in place

of Y +
j . Because Y −j ≤ Y

+
j , and the random variables Y +

j and Y ∗j are monotone functions
of the same uniformly distributed random variable by (8.3) and (8.4), it follows that

P ({Y +
j ≥ ε}4{Y

∗
j ≥ ε}|Hj) ≤

CδT

εkN

on {τj < ζ} ∩ (A′′j )c, and the same result holds with Y −j in place of Y +
j . Let

Ψj := Acj ∩ {τj+1 < ζ} ∩ {κj > τ ′j − τj}.

By (7.48), we have

({Y −j ≥ ε} ∩Ψj) ⊂ ({Yj ≥ ε} ∩Ψj) ⊂ ({Y +
j ≥ ε} ∩Ψj).

It follows that on {τj < ζ} ∩ (A′′j )c, we have

P
(
({Yj ≥ ε}4{Y ∗j ≥ ε}) ∩Ψj

∣∣Hj) ≤ CδT

εkN
.

The result follows by taking expectations, summing over j ∈ I, and using Lemmas 7.4,
7.7, and 8.4, along with the fact that the cardinality of I is at most 3TkN by Lemma
6.2.

Lemma 8.7. There is a positive constant C∗, not depending on ε, δ, or T , such that for
sufficiently large N , we have

P

(
Λ ∩

⋃
j∈I

(
{|Yj − Y ∗j | > C∗ε2} ∩ {Yj ≥ ε} ∩ {Y ∗j ≥ ε}

))
≤ CδT log(1/ε)

ε2
.

Proof. We first compare Y ∗j to Y +
j . In view of (8.3) and (8.4), we need to compare the

functions F−1
j and K−1

j . Suppose z ∈ (0, 1). If F−1
j (1− z) ∈ [δ, 1− δ], then (7.47) implies

that on {τj < ζ}, we have

1− 13δ

qjz + 1− 13δ
≤ F−1

j (1− z) ≤ 1 + 13δ

qjz + 1 + 13δ
.

Likewise, Lemma 8.5 implies that if K−1
j (1− z) ≥ ε, then on {τj < ζ} ∩ (A′′j )c, we have

1− Cδ
qjz + 1− Cδ

≤ K−1
j (1− z) ≤ 1 + Cδ

qjz + 1 + Cδ
.

It follows that on the event {τj < ζ}∩(A′′j )c, if F−1
j (1−z) ∈ [δ, 1−δ] and K−1

j (1−z) ∈ [ε, 1],
then

|F−1
j (1− z)−K−1

j (1− z)| ≤ Cδ. (8.9)

Because F−1
j and K−1

j are increasing functions taking their values in [0, 1], and δ < ε

by (5.1), we see that (8.9) holds on {τj < ζ} ∩ (A′′j )c as long as F−1
j (1 − z) ∈ [ε, 1] and

K−1
j (1− z) ∈ [ε, 1]. Since δ < ε2 by (5.1), it follows that there is a positive constant C∗

such that on {τj < ζ} ∩ (A′′j )c, we have

|Y +
j − Y

∗
j |1{Y ∗j ≥ε}1{Y +

j ≥ε}
≤ (C∗ − 1)ε2. (8.10)
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It remains to control the difference between Y +
j and Yj . By (7.47), on {τj < ζ},

E[Y +
j 1{Y +

j ≥ε}
− Y −j 1{Y −j ≥ε}|Hj ]

=

∫ 1

0

(
P (Y +

j 1{Y +
j ≥ε}

≥ y|Hj)− P (Y −j 1{Y −j ≥ε}
≥ y|Hj)

)
dy

=

∫ ε

0

(
P (Y +

j ≥ ε|Hj)− P (Y −j ≥ ε|Hj)
)
dy

+

∫ 1

ε

(
P (Y +

j ≥ y|Hj)− P (Y −j ≥ y|Hj)
)
dy

≤ ε · (1− ε)Cδ
qjε

+

∫ 1−δ

ε

Cδ(1− y)

qjy
dy + δ · δ(1 + Cδ)

qj(1− δ)

≤ Cδ log(1/ε)

qj
.

Let Ψj = Acj ∩ {τj+1 < ζ} ∩ {κj > τ ′j − τj}. Because Y −j ≤ Yj ≤ Y
+
j on Ψj , by (7.48),

E
[
(Y +
j 1{Y +

j ≥ε}
− Yj1{Yj≥ε})1Ψj |Hj

]
≤ Cδ log(1/ε)

qj
.

Now Markov’s Inequality implies that

P
(
{|Yj1{Yj≥ε} − Y

+
j 1{Y +

j ≥ε}
| > ε2} ∩Ψj

∣∣Hj) ≤ Cδ log(1/ε)

qjε2
.

Combining this result with (8.10) and part 3 of Lemma 4.4 gives, for sufficiently large N ,

P
(
{|Yj − Y ∗j | > C∗ε2

}
∩ {Yj ≥ ε} ∩ {Y ∗j ≥ ε} ∩Ψj ∩ (A′′j )c ∩ Λ

)
≤ Cδ log(1/ε)

kNε2
.

The result follows by summing over j and using Lemmas 7.4, 7.7, and 8.4.

8.5 Small coalescence events

Lemma 8.8 below shows that it is unlikely that lineages will coalesce between times
τj and τj+1 if Yj ≤ ε.
Lemma 8.8. For sufficiently large N , we have

P

(
Λ ∩

⋃
j∈I

({
Π∗N

(
T − τj

aN

)
6= Π∗N

(
T − τj+1

aN

)}
∩ {Yj ≤ ε}

))
≤ CTn2ε.

Proof. Suppose j ∈ I. Let Ψj = Acj ∩ {τj+1 < ζ} ∩ {κj > τ ′j − τj}, where Aj is the event
defined in Lemma 7.7 and κj is defined in (7.14). Define the σ-field Hj as in subsection
7.2. Let Gj be the σ-field generated by the σ-field Hj , the random variable Yj defined
in (7.45), and the event Ψj . Conditional on Gj , the probability that at least two of the
random variables Z1,j , . . . , Zn,j are less than or equal to Yj is at most

(
n
2

)
Y 2
j . Therefore,

on {τj < ζ}, we have

P

({
Π∗N

(
T − τj

aN

)
6= Π∗N

(
T − τj+1

aN

)}
∩ {Yj ≤ ε} ∩Ψj

∣∣∣∣Gj) ≤ (n2
)
Y 2
j 1{Yj≤ε}1Ψj .

Now take conditional expectations of both sides with respect to Hj to get that on
{τj < ζ},

P

({
Π∗N

(
T − τj

aN

)
6= Π∗N

(
T − τj+1

aN

)}
∩ {Yj ≤ ε} ∩Ψj

∣∣∣∣Hj)
≤
(
n

2

)
E
[
Y 2
j 1{Yj≤ε}1Ψj

∣∣Hj]. (8.11)
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Recall that for any nonnegative random variable X, we have E[X2] =
∫∞

0
2xP (X ≥ x) dx.

Therefore, on {τj < ζ},

E
[
Y 2
j 1{Yj≤ε}1Ψj

∣∣Hj] =

∫ ∞
0

2xP
(
Yj1{Yj≤ε}1Ψj > x

∣∣Hj) dx
≤
∫ ε

0

2xP
(
Yj1Ψj > x

∣∣Hj) dx. (8.12)

Recall from (7.48) that Yj ≤ Y +
j on Ψj . Also, from (7.13), we see that on Ψj , if Yj > 0

then X+
j (τ ′j − τj) > 0, and on {τj < ζ}, we have qj ≥ (1− 2δ)kN by part 3 of Proposition

4.4. Therefore, by Lemma 7.5,

P (Yj1Ψj > 0|Hj) ≤
Ceb

kN
. (8.13)

Also, on Ψj , if Yj > x and 3e−b ≤ x ≤ ε, it follows from (7.46) that if ε is sufficiently small,
then

e−sqj(τ
′
j−τj)X+

j (τ ′j − τj) ≥
(e−b + 1− 4δ)x− e−b

1− x
≥ x

2
.

Therefore, Lemma 7.6 implies that if ε is sufficiently small and N is sufficiently large,
and if 3e−b ≤ x ≤ ε, then

P (Yj1Ψj > x|Hj) ≤
C

kNx
. (8.14)

Dividing the integral on the right-hand side of (8.12) into two pieces and using (8.13) to
estimate the first piece and (8.14) to estimate the second piece, we get

E
[
Y 2
j 1{Yj≤ε}1Ψj

∣∣Hj] ≤ ∫ 3e−b

0

2x · Ce
b

kN
dx+

∫ ε

3e−b
2x · C

kNx
dx

≤ Ce−b

kN
+
Cε

kN

≤ Cε

kN
. (8.15)

Using (8.15) to bound the right-hand side of (8.11) and then taking expectations, we get

P

({
Π∗N

(
T − τj

aN

)
6= Π∗N

(
T − τj+1

aN

)}
∩ {Yj ≤ ε} ∩Ψj

)
≤ Cn2ε

kN
. (8.16)

The result now follows by summing over j and using Lemmas 7.4 and 7.7.

8.6 Completion of the coupling argument

Fix a positive integer d and times 0 < t1 < · · · < td ≤ t0. Recall that equation (2.6)
was established as part of Lemma 8.1. Therefore, to prove Theorem 2.1, we need to
show that the joint distribution of (ΠN (1 + t1), . . . ,ΠN (1 + td)) converges as N →∞ to
the joint distribution of (Π(1 + t1), . . . ,Π(1 + td)), where (Π(u), 0 ≤ u ≤ t0 + 1) is the
coalescent process derived from the Poisson point process Φ at the end of subsection
8.3.

Proof of Theorem 2.1. The key to the proof will be to show that with high probability,
we have

Π

(
T −

τ∗j
aN

)
= Π∗N

(
T − τj

aN

)
for all j ∈ I with j ≤ L. (8.17)

Recall that the coalescent process Π∗N was constructed from the point process ΦN in the
same way that Π was constructed from Φ. Therefore, we simply need to compare the
two constructions. If (8.17) fails to hold, then one of the following must occur:
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1. Either Π∗N (T − τL/aN ) 6= {{1}, . . . , {n}} or Π(T − τ∗L/aN ) 6= {{1}, . . . , {n}}.
2. For some j ∈ I, we have either Yj ≥ ε and Y ∗j < ε, or Yj < ε and Y ∗j ≥ ε.
3. For some j ∈ I, we have Π∗N (T − τj/aN ) 6= Π∗N (T − τj+1/aN ) and Yj < ε.

4. For some u ∈ [1, t0 + 1], we have Π(u) 6= Π(u−) but u does not equal T ∗j for any j.

5. For some j ∈ I with j ≤ L, we have Yj ≥ ε, Y ∗j ≥ ε, and Π∗N ((T − τj/aN )−) =

Π(T ∗j −), but Π∗N (T − τj/aN ) 6= Π(T ∗j ).

We now bound the probabilities of these five events. As for the first event, note
that (8.1) and (4.11) imply that P (ΠN (T − τL/aN ) 6= {{1}, . . . , {n}}) ≤ Cε + CTn2e−b.
Combining this result with Lemma 8.2 and (4.1) gives

P

(
Π∗N

(
T − τL

aN

)
6= {{1}, . . . , {n}}

)
≤ Cn2ε.

By (5.4), we have T − τL/aN ≤ 1 + 3/kN , so (6.4) implies T − τ∗L/aN ≤ 1 + 3/kN + 10δT .
Because each pair of lineages in the Bolthausen-Sznitman coalescent merges at rate 1, it
follows that for sufficiently large N ,

P

(
Π

(
T − τ∗L

aN

)
6= {{1}, . . . , {n}}

)
≤
(
n

2

)(
3

kN
+ 10δT

)
≤ Cn2δT.

It follows from Lemma 8.6, along with (4.11) and the fact that δ < ε2 by (5.1), that
the probability that the second of the five events above occurs is at most CεT 2. Likewise,
it follows from Lemma 8.8 and (4.11) that the probability that the third of the five events
occurs is bounded above by CTn2ε.

Consider next the fourth event listed above. From the construction, this can only
happen either if, for some j ∈ I, there are two points of Φ in [T − τ∗j+1/aN , T − τ∗j /aN ]×
[ε, 1]× [0, 1]n, or if there is some point (u, y, z1, . . . , zn) in Φ in which y ≤ ε but two of the
points z1, . . . , zn are less than or equal to y. Recall that if X has the Poisson distribution
with mean λ, then P (X ≥ 2) ≤ λ2. Therefore, using also (6.2), the probability that,
for some j ∈ I, there are two points of Φ in [T − τ∗j+1/aN , T − τ∗j /aN ]× [ε, 1]× [0, 1]n is
bounded above by

∑
j∈I

(
τ∗j+1 − τ∗j

aN
· 1− ε

ε

)2

≤
∑
j∈I

1

(εkN )2
≤ CT

ε2kN
,

which tends to zero as N → ∞. Note that if y is the second coordinate of a point in
Φ, the probability that two of the points z1, . . . , zn are less than or equal to y is at most(
n
2

)
y2. Therefore, the probability that there is a point (u, y, z1, . . . , zn) in Φ in which y ≤ ε

but two of the points z1, . . . , zn are less than or equal to y is bounded above by

t0

∫ ε

0

y−2 ·
(
n

2

)
y2 dy =

(
n

2

)
t0ε ≤ CTn2ε.

Finally, consider the fifth of the possibilities above, which means that the coalescence
at time T − τj/aN in the process Π∗N does not match the coalescence that occurs at
time T ∗j in the process Π. One way this could happen would be if the time interval
[T − τ∗j+1/aN , T − τ∗j /aN ] is not entirely contained in the interval [1, t0 + 1]. By (6.2) and
(6.15), the number of j ∈ I for which this interval is not contained in [1, t0 + 1] is at most
CδTkN . By Lemmas 7.4, 7.7, and 7.8, along with (4.11) and part 3 of Proposition 4.4,
the probability that Yj > ε for some such j is at most

CδTkN ·
(1− ε)(1 + 13δ)

(1− 2δ)kNε
+ 2ε ≤ CδT

ε
+ Cε.
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The other way that the coalescence at time T − τj/aN in the process Π∗N might not match
the coalescence that occurs at time T ∗j in the process Π would be if one of the random
variables Zj,1, . . . , Zj,n is between Yj and Y ∗j . By Lemma 8.7, the probability that this
happens when |Yj − Y ∗j | > ε2 is bounded above by

CδT log(1/ε)

ε2
.

Using Lemmas 7.4, 7.7, and 7.8, we see that the probability that this happens when
|Yj − Y ∗j | ≤ ε2 is at most ∑

j∈I

C

kNε
· nε2 ≤ CTnε.

Combining the bounds obtained above, we see that for sufficiently large N , the
probability that (8.17) fails to hold is bounded above by

CTn2ε+ Cn2δT + CεT 2 +
CδT log(1/ε)

ε2
. (8.18)

By Lemma 8.2, we can replace Π∗N by ΠN in (8.17) and conclude that the probability that

Π

(
T −

τ∗j
aN

)
= ΠN

(
T − τj

aN

)
for all j ∈ I with j ≤ L (8.19)

fails to hold is also bounded above by the expression in (8.18) for sufficiently large N .
Now suppose that indeed (8.19) holds and Λ occurs. Fix i ∈ {1, . . . , d}. Then there

exists j ∈ I such that T − τj+1/aN ≤ ti < T − τj/aN . By (4.9) and (6.4), for sufficiently
large N ,

T −
τ∗j
aN
≤ ti +

2

kN
+ 10δT ≤ ti + 11δT

and

T −
τ∗j+1

aN
≥ ti −

2

kN
− 10δT ≥ ti − 11δT.

Thus, as long as Π(ti−11δT ) = Π(ti+11δT ) and (8.19) holds, we must have Π(ti) = ΠN (ti).
However, because each pair of lineages in the Bolthausen-Sznitman coalescent merges
at rate one, we have

P
(
Π(ti − 11δT ) 6= Π(ti + 11δT )

)
≤
(
n

2

)
· 22δT.

Taking the union over i ∈ {1, . . . , d} and using (8.18), it follows that for sufficiently large
N ,

P (ΠN (ti) 6= Π(ti) for some i ∈ {1, . . . , d}) ≤ CTn2ε+ Cdn2δT + CεT 2 +
CδT log(1/ε)

ε2
.

Since δ < ε3 by (5.1) and ε > 0 can be chosen arbitrarily small for any fixed T , the
theorem follows.

References

[1] Athreya, K. B. and Ney, P. E.: Branching Processes. Springer-Verlag, Berlin, 1972. xi+287 pp.
MR-0373040

[2] Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K. W., Velculescu, V. E., Vogelstein,
B., and Nowak, M. A.: Genetic progression and the waiting time to cancer. PLoS Comput.
Biol. 3, (2007), 2239–2246. MR-2369267

EJP 22 (2017), paper 38.
Page 52/54

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=2369267
http://dx.doi.org/10.1214/17-EJP58
http://www.imstat.org/ejp/


Rigorous results for a population model with selection II

[3] Bérard, J. and Gouéré, J.-B.: Brunet-Derrida behavior of branching-selection particle systems
on the line. Comm. Math. Phys. 298, (2010), 323–342. MR-2669438

[4] Berestycki, J., Berestycki, N., and Schweinsberg, J.: The genealogy of branching Brownian
motion with absorption. Ann. Probab. 41, (2013), 527–618. MR-3077519

[5] Berestycki, J., Berestycki, N., and Schweinsberg, J.: Critical branching Brownian motion
with absorption: particle configurations. Ann. Inst. H. Poincaré Probab. Statist. 51, (2015),
1215–1250. MR-3414446

[6] Bolthausen, E. and Sznitman, A.-S.: On Ruelle’s probability cascades and an abstract cavity
method. Comm. Math. Phys. 197, (1998), 247–276. MR-1652734

[7] Brunet, É. and Derrida, B.: Shift in the velocity of a front due to a cutoff. Phys. Rev. E 56,
(1997), 2597–2604. MR-1473413

[8] Brunet, É., Derrida, B., Mueller, A. H., and Munier, S.: Noisy traveling waves: effect of
selection on genealogies. Europhys. Lett. 76, (2006), 1–7. MR-2299937

[9] Brunet, É., Derrida, B., Mueller, A. H., and Munier, S.: Effect of selection on ancestry:
an exactly soluble case and its phenomenological generalization. Phys. Rev. E 76, (2007),
041104. MR-2365627

[10] Brunet, É., Rouzine, I. M., and Wilke, C. O.: The stochastic edge in adaptive evolution.
Genetics 179, (2008), 603–620.

[11] Desai, M. M. and Fisher, D. S.: Beneficial mutation-selection balance and the effect of linkage
on positive selection. Genetics 176, (2007), 1759–1798.

[12] Desai, M. M., Walczak, A. M., and Fisher, D. S.: Genetic diversity and the structure of
genealogies in rapidly adapting populations. Genetics 193, (2013), 565–585.

[13] Durrett, R., Foo, J., Leder, K., Mayberry, J., and Michor, F.: Intratumor heterogeneity in
evolutionary models of tumor progression. Genetics 188, (2011), 461–477.

[14] Durrett, R. and Mayberry, J.: Traveling waves of selective sweeps. Ann. Appl. Probab. 21,
(2011), 699–744. MR-2807971

[15] Durrett, R. and Moseley, S.: Evolution of resistance and progression to disease during clonal
expansion of cancer. Theo. Pop. Biol. 77, (2010), 42–48.

[16] Durrett, R. and Schweinsberg, J.: A coalescent model for the effect of advantageous mutations
on the genealogy of a population. Stochastic Process. Appl. 115, (2005), 1628–1657. MR-
2165337

[17] Kingman, J. F. C.: The coalescent. Stochastic Process. Appl. 13, (1982), 235–248. MR-0671034

[18] Leviyang, S.: The coalescence of intrahost HIV lineages under symmetric CTL attack. Bull.
Math. Biol. 74, (2012), 1818–1856. MR-2949979

[19] Maillard, P.: Speed and fluctuations of N -particle branching Brownian motion with spatial
selection. Probab. Theory Relat. Fields 166, (2016), 1061–1173. MR-3568046

[20] Moran, P. A. P.: Random processes in genetics. Proc. Cambridge Philos. Soc. 54, (1958),
60–71. MR-0127989

[21] Mueller, C., Mytnik, L., and Quastel, J.: Effect of noise on front propagation in reaction-
diffusion equations of KPP type. Invent. Math. 184, (2011), 405–453. MR-2793860

[22] Neher, R. A. and Hallatschek, O.: Genealogies of rapidly adapting populations. Proc. Natl.
Acad. Sci. 110, (2013), 437–442.

[23] Pitman, J.: Coalescents with multiple collisions. Ann. Probab. 27, (1999), 1870–1902. MR-
1742892

[24] Pitman, J. and Yor, M.: The two-parameter Poisson-Dirichlet distribution derived from a stable
subordinator. Ann. Probab. 25, (1997), 855–900. MR-1434129

[25] Rouzine, I. M., Brunet, É., and Wilke, C. O.: The traveling-wave approach to asexual evolution:
Muller’s ratchet and speed of adaptation. Theor. Pop. Biol 73, (2008), 24–46.

[26] Rouzine, I. M., Wakeley, J., and Coffin, J. M.: The solitary wave of asexual evolution. Proc.
Natl. Acad. Sci. 100, (2003), 587–592.

[27] Sagitov, S.: The general coalescent with asynchronous mergers of ancestral lines. J. Appl.
Probab. 36, (1999), 1116–1125. MR-1742154

EJP 22 (2017), paper 38.
Page 53/54

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=2669438
http://www.ams.org/mathscinet-getitem?mr=3077519
http://www.ams.org/mathscinet-getitem?mr=3414446
http://www.ams.org/mathscinet-getitem?mr=1652734
http://www.ams.org/mathscinet-getitem?mr=1473413
http://www.ams.org/mathscinet-getitem?mr=2299937
http://www.ams.org/mathscinet-getitem?mr=2365627
http://www.ams.org/mathscinet-getitem?mr=2807971
http://www.ams.org/mathscinet-getitem?mr=2165337
http://www.ams.org/mathscinet-getitem?mr=2165337
http://www.ams.org/mathscinet-getitem?mr=0671034
http://www.ams.org/mathscinet-getitem?mr=2949979
http://www.ams.org/mathscinet-getitem?mr=3568046
http://www.ams.org/mathscinet-getitem?mr=0127989
http://www.ams.org/mathscinet-getitem?mr=2793860
http://www.ams.org/mathscinet-getitem?mr=1742892
http://www.ams.org/mathscinet-getitem?mr=1742892
http://www.ams.org/mathscinet-getitem?mr=1434129
http://www.ams.org/mathscinet-getitem?mr=1742154
http://dx.doi.org/10.1214/17-EJP58
http://www.imstat.org/ejp/


Rigorous results for a population model with selection II

[28] Schweinsberg, J.: Rigorous results for a population model with selection I: evolution of the
fitness distribution. Electron. J. Probab. 22, (2017), 1–94.

[29] Yu, F., Etheridge, A., and Cuthbertson, C.: Asymptotic behavior of the rate of adaptation. Ann.
Appl. Probab. 20, (2010), 978–1004. MR-2680555

Acknowledgments. The author thanks two referees for helpful comments.

EJP 22 (2017), paper 38.
Page 54/54

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=2680555
http://dx.doi.org/10.1214/17-EJP58
http://www.imstat.org/ejp/

	Introduction
	Assumptions and main result
	Heuristics and background
	The Bolthausen-Sznitman coalescent
	A heuristic argument for Theorem 2.1
	Comparison with branching Brownian motion
	Connection with multitype branching processes
	Structure of the proof

	Review of results from schI
	Evolution of type j individuals
	Selective advantage of the fittest individuals
	A useful martingale

	Tracing the ancestral lines back to time aN(T-1)
	The types of the individuals sampled at time aN T
	The types of the ancestors at time aN(T - 1)
	Coalescence between times aN(T-1) and aN T

	Tracing the ancestral lines between times j and j+1
	Approximating j by the fixed time j*
	The types of the ancestors at time j
	Coalescence between times j and j+1

	Coupling with a branching process between times j and j+1
	Review of results on continuous-time branching processes
	A branching process coupling between times j and j+1
	The probability that a family survives
	The size of a surviving family
	The fraction of individuals descended from an early mutation

	Coupling with the Bolthausen-Sznitman coalescent
	No coalescence between times L and aN T
	Representing the early type j mutations by a point process
	A Poisson point process derived from N
	Comparing Yj and Yj*
	Small coalescence events
	Completion of the coupling argument

	References

