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Abstract

We study a generalization of the notion of Gaussian free field (GFF). Although the
extension seems minor, we first show that a generalized GFF does not satisfy the
spatial Markov property, unless it is a classical GFF. In stochastic homogenization,
the scaling limit of the corrector is a possibly generalized GFF described in terms of
an “effective fluctuation tensor” that we denote by Q. We prove an expansion of Q
in the regime of small ellipticity ratio. This expansion shows that the scaling limit of
the corrector is not necessarily a classical GFF, and in particular does not necessarily
satisfy the Markov property.
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This paper is motivated by recent results in the stochastic homogenization of op-
erators of the form −∇ · a∇, where x 7→ a(x) is a random stationary field over Rd

with strong decorrelation properties, and valued in the set Sym+
d of d-by-d symmetric

positive-definite matrices. In this context, we aim to obtain a precise description of the
large-scale behavior of solutions of equations involving this operator, and in particular of
the corrector.

The corrector in the direction ξ ∈ Rd can be defined, up to an additive constant, as
the unique sub-linear function φξ : Rd → R such that −∇ ·a(ξ+∇φξ) = 0. The minimizer
in H1

0 (U) of the mapping v 7→
∫
U

(ξ +∇v) · a(ξ +∇v), where U is a large domain, offers a
finite-volume approximation of the corrector. This minimization of a random quadratic
functional suggests a parallel with gradient Gibbs measures, where a determinimistic
functional of quadratic type is used to produce a probability measure via the Gibbs
principle. Such gradient Gibbs measures are known to rescale to Gaussian free fields
(GFFs), see [20, 6, 16]. It is therefore natural to conjecture the same scaling limit for
the corrector [1].
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Gaussian free fields and stochastic homogenization

Under assumptions described more precisely below, the scaling limit of the corrector
was identified in [19, 18] as an element of a slightly larger class of random fields, which
we will call generalized GFFs (see also [8]). Intuitively, we define the generalized GFF
as the field Φ such that ∇Φ is “as close as possible” to a white noise vector field. More
precisely, a generalized GFF is a random field Φ solving

−∇ · a∇Φ = ∇ ·W, (0.1)

where a ∈ Sym+
d and W is a vector-valued white noise field with covariance matrix

Q ∈ Sym+
d . For simplicity, we will only consider such equations in the full space Rd with

d > 3, but our arguments also cover domains with suitable boundary condition, or the
addition of a massive term, with only minor modifications. We recall that a classical GFF
is a Gaussian field whose covariance function is the Green function of −∇ · b∇, for some
b ∈ Sym+

d . When a and Q are proportional, the field Φ defined by (0.1) is a classical GFF,
and thus satisfies the spatial Markov property [25].

The goal of this paper is twofold. In Section 1, we show that the Markov property does
not extend to the wider class of generalized GFFs. In fact, no generalized GFF satisfies
the Markov property, unless it is a classical GFF. Therefore, our apparently mild extension
of the notion of GFF in fact wipes out one of its fundamental properties. In Section 2, we
turn to the context of homogenization, and study the effective parameters describing the
generalized GFF arising as the scaling limit of the corrector. We prove an asymptotic
expansion for these coefficients, in the regime of small ellipticity contrast. This expansion
is of independent interest, and shows that the scaling limit of the corrector is generically
not a classical GFF, thereby justifying the relevance of the notion of generalized GFF.

We close this introduction with two remarks. First, in order to substantiate that
the definition (0.1) is consistent with the intuition that ∇Φ is chosen to be “as close
as possible” to a white noise vector field, it is simpler to discuss the case where the
underlying state space is the torus Td := [0, 1)d. Endowing the space L2(Td,Rd) with the
scalar product

(F,G) 7→
∫
Td
F · a−1G,

we denote by L2
pot(T

d) the closure in L2(Td,Rd) of the set

{a∇f : f ∈ C∞(Td)}

and denote by L2
sol(T

d) its orthogonal complement

L2
sol(T

d) := {g ∈ L2(Td,Rd) : ∀f ∈ C∞(Td),

∫
Td
∇f · g = 0},

which is the set of solenoidal (i.e. divergence-free) vector fields. This provides us with
the Helmholtz-Hodge decomposition of L2(Td,Rd) into the orthogonal sum of L2

pot(T
d)

and L2
sol(T

d). If W were smooth, this would allow us to interpret a∇Φ as the orthogonal
projection of W onto L2

pot(T
d). For non-smooth W , the intepretation remains valid by

testing and duality.

Second, we point out that although the generalized GFF fails to satisfy the Markov
property, it does satisfy a related domain decomposition property: there exists a family
of random fields (ΦA) on Rd indexed by all borel subsets A of Rd such that the following
holds for every Borel set A ⊆ Rd:

• we have Φ = ΦA + ΦAc , (Ac denotes the complement of A in Rd);

• the random fields ΦA and ΦAc are independent;
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Gaussian free fields and stochastic homogenization

• the random field ΦA is an a-harmonic function in the interior of Ac.

Indeed, these properties are easy to verify from the definition of ΦA as solving

−∇ · a∇ΦA = ∇ · (W1A).

1 Non-Markov property

In this section, we show that a generalized GFF satisfies the Markov property if and
only if it is a classical GFF.

For k, l positive integers, we write C∞c (Rk,Rl) for the space of infinitely differentiable
functions from Rk to Rl with compact support. For every U ⊆ Rk, we let C∞c (U,Rl) =

{f ∈ C∞c (Rk,Rl) : Supp f ⊆ U}, where Supp f denotes the support of f . We simply
write C∞c (U) = C∞c (U,R) and C∞c = C∞c (R). We fix d > 3 and a,Q ∈ Sym+

d . We say that
the random distribution W = (W1, . . . ,Wd) is a white noise vector field with covariance
matrix Q if for every f = (f1, . . . , fd) ∈ C∞c (Rd,Rd), the random variable

W (f) := W1(f1) + · · ·+Wd(fd)

is a centered Gaussian with variance
∫
Rd

f · Qf . We denote by (Ω,F,P) the underlying
probability space, and by E the associated expectation. Informally,

E[Wi(x)Wj(y)] = Qijδ(x− y),

where δ is the Dirac distribution. One can extend the set of admissible test functions for
W to every element of L2(Rd,Rd) by density. We define the solution Φ to (0.1) to be the
random distribution such that for every f ∈ C∞c (Rd),

Φ(f) = −W (∇(−∇ · a∇)−1f), (1.1)

where (−∇ · a∇)−1f is the unique function u tending to zero at infinity and such that
−∇ · a∇u = f . Formally integrating by parts shows the consistency between (0.1) and
(1.1). The latter makes sense since for f ∈ C∞c (Rd), the function ∇(−∇ · a∇)−1f is in
L2(Rd,Rd), as can be checked for instance using the Green representation formula.

For every open U ⊆ Rd, we define

F(U) := σ{Φ(f), f ∈ C∞c (U)}.

We simply write F := F(Rd). For every closed A ⊆ Rd, we define

F(A) :=
⋂

open U⊇A

F(U).

We enlarge the σ-algebras defined above (without changing the notation) so that they
contain all P-negligible measurable sets. We say that the field Φ is Markovian with
respect to the open set U if conditionally on F(∂U), the σ-algebras F(U) and F(U c)

are independent (where U denotes the closure of U , U c the complement of U , and
∂U = U ∩ U c).
Theorem 1.1. Let U be an open subset of Rd, U /∈ {∅,Rd}. The field Φ is Markovian
with respect to U if and only if Φ is a classical GFF.

Let L := (−∇·a∇)(−∇·Q∇)−1(−∇·a∇). It follows from (1.1) that for every f, g ∈ C∞c ,

E[Φ(f) Φ(g)] =

∫
f L−1 g. (1.2)

EJP 22 (2017), paper 28.
Page 3/21

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP51
http://www.imstat.org/ejp/
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In particular, if a and Q are proportional, then the field Φ is a classical GFF, and we
recall that in this case the Markov property is well-known. In order to prove the theorem,
it thus suffices to show that if Φ is Markovian with respect to U , then a and Q are
proportional.

To our knowledge, the rigorous study of the Markov property of random fields was
initiated with [15], where Lévy’s “Brownian motion” indexed by a multidimensional
parameter [14] is shown to be Markovian if and only if the space dimension is odd.

For random fields on discrete graphs, the Markov property is equivalent to the
locality of the “energy function” (in the Gaussian case, this is the Dirichlet form, and
more generally, we mean the logarithm of the probability density, up to a constant). This
equivalence can be checked by a direct computation for Gaussian fields, and we refer
to [10, Theorems 4.1 and 4.2] for a more general statement. It is natural to expect a
similar phenomenon in the continuum. However, a counter-example to this conjecture
was given in [23]. We will recall this counter-example in subsection 1.2. In spite of this,
relying on the fact that the field Φ is “at least as regular as white noise”, we will be able
to justify this conjecture in our context.

Prior to the counter-example of [23], incorrect proofs of the general conjecture were
published. In [22, 13], the arguments are laid down pretending that the field is defined
pointwise, and therefore the difficulty caused by the possibly low regularity of the field
is missed. The paper [9] proceeds more carefully, but is also flawed1.

The equivalence between locality of L and the Markov property was also investigated
in the framework of Dirichlet form theory [4, 24, 11]. The arguments given there rely
on potential theory, and only apply to operators satisfying the maximum principle. This
is unfortunately not the case of the operator L we consider here. In order to see this,
we can use the general result of [3], which identifies the class of integro-differential
operators satisfying the maximum principle. In our case, the operator is moreover
invariant under translation. In this setting, the results of [3] can be understood as
follows: if the operator satisfies the maximum principle, then it is the generator of a Lévy
process. Moreover, this Lévy process must have the same scale invariance as Brownian
motion, in view of the scaling properties of L. By the Lévy-Khintchine formula, it follows
that such a Lévy process must be a multiple of Brownian motion. The operator L must
therefore be of the form −∇ · b∇ for some matrix b, but we show below that this can
only happen when a and Q are proportional.

1.1 Proof of Theorem 1.1

To sum up: using some mild regularity property of the field Φ defined by (1.1), we
show that the Markov property implies that L is a local operator. We then observe that L
is not a local operator, unless a and Q are proportional. As announced in the theorem,
we will be sufficiently careful to actually only require the Markov property with respect
to one non-trivial open set.

We denote by H the Hilbert space obtained as the closure of {Φ(f), f ∈ C∞c } in
L2(Ω,F ,P). We denote by K the Hilbert space obtained by completing {L−1f, f ∈ C∞c }
with respect to the scalar product

〈f, g〉L :=

∫
fLg.

The space K is usually called the reproducing kernel Hilbert space. Note that f 7→
1there, the set M(D−) should be closed in order for [9, Lemma 1] to hold; but then the property F ∈

M(D−) =⇒ SuppF ⊆ D− used in the proof of [9, Lemma 2] is false in general.
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〈f, f〉1/2L is within multiplicative constants of the homogeneous H1 norm. By (1.2), the
spaces H and K are isometric:

Lemma 1.2. The mapping {
{Φ(f), f ∈ C∞c } → K

Φ(f) 7→ L−1f

is well-defined and extends to an isometry from H onto K.

For every open U ⊆ Rd, we let H(U) be the closure of {Φ(f), f ∈ C∞c (U)} in H, and
K(U) be the closure of {L−1f, f ∈ C∞c (U)} in K. The isometry of Lemma 1.2 induces an
isometry between H(U) and K(U). If A ⊆ Rd is a closed set, we define

H(A) :=
⋂

open U⊇A

H(U), K(A) :=
⋂

open U⊇A

K(U).

The following lemma is classical.

Lemma 1.3. Let U be an open set.
(1) The set H(U) is the set of F(U)-measurable elements of H.
(2) The map {

H → H
X 7→ E[X | F(U)]

is the orthogonal projection onto H(U).

Proof. Every element of H(U) is F(U)-measurable. Conversely, if X ∈ H(U)⊥, then for
every f1, . . . , fk ∈ C∞c (U), we have E[X Φ(fi)] = 0. Since H is a Gaussian space, this
implies that X is independent of (Φ(f1), . . . ,Φ(fk)), and thus X is independent of F(U).
We have shown

H(U)⊥ ⊆ {Y ∈ H : Y is F(U)-measurable}⊥.

Since both spaces are closed, this completes the proof of (1). Part (2) follows at once,
since for every X ∈ H, we have (X − E[X | F(U)]) ∈ H(U)⊥.

Lemma 1.4. Let H0(U) denote the orthogonal complement of H(∂U) in H(U). If Φ is
Markovian with respect to the open set U , then

H = H0(U)
⊥
⊕ H(∂U)

⊥
⊕ H0(U c).

Proof. We decompose the proof into three steps.

Step 1. We first show that

the orthogonal projection of H(U c) onto H(U) is H(∂U). (1.3)

By Lemma 1.3, it suffices to show that for every F(U c)-measurable X ∈ H,

E[X | F(∂U)] = E[X | F(U)].

We show that

E
[(
E[X | F(∂U)]− E[X | F(U)]

)2]
= 0. (1.4)

By the Markov property and the inclusion F(∂U) ⊆ F(U),

E
[
X E[X | F(U)]

∣∣F(∂U)
]

= (E[X | F(∂U)])
2
. (1.5)
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In particular,

E
[(
E[X | F(U)]

)2]
= E

[
X E[X | F(U)]

]
(1.5)
= E

[
(E[X | F(∂U)])

2
]
,

and this proves (1.4).

Step 2. We show that

H0(U)
⊥
⊕ H(∂U)

⊥
⊕ H0(U c) = H(U) +H(U c).

The equality
H0(U) +H(∂U) +H0(U c) = H(U) +H(U c)

is clear. The orthogonality of the sets on the left-hand side follows from the definition of
H0 and the previous step. In particular, the set H(U) +H(U c) is closed.

Step 3. Let f ∈ C∞c . In order to complete the proof, it suffices to see that

Φ(f) ∈ H(U) +H(U c). (1.6)

This is the step of the proof where we need to use the fact that Φ is “at least as regular
as white noise”. In more precise words, we show that we can control the quadratic form
g 7→

∫
gL−1g over local functions g by the L2 norm of g squared, and that this is sufficient

to conclude. Without loss of generality, we assume that the support of f is contained in
the unit ball B(0, 1). Let χ : R→ [0, 1] be a C∞ function such that χ = 1 on (−∞, 0] and
χ = 0 on [1,+∞), and let

χn :=

{
Rd → [0, 1]

x 7→ χ(n dist(x, U)),

where dist(x, U) denotes the distance between x and the open set U . Note that

Φ(f) = Φ(fχn) + Φ(f [1− χn]),

and that Φ(f [1− χn]) ∈ H(U c). We now argue that Φ(fχn) converges to an element of
H(U) as n tends to infinity. This would imply that Φ(f [1− χn]) converges to an element
of H(U c) and therefore complete the proof of (1.6). If the sequence (Φ(fχn)) converges
in H, then the limit is necessarily in H(U); so what needs to be argued is simply the
convergence of Φ(f [1− χn]) in H. By (1.2), for every g ∈ C∞c ,

E[Φ(g)2] =

∫
gL−1g,

so we need to check that fχn is a Cauchy sequence with respect to the seminorm

g 7→
(∫

gL−1g

) 1
2

.

Letting Λ be the largest eigenvalue of Q and h := (−∇ · a∇)−1g, we have∫
gL−1g 6 Λ

∫
|∇h|2.

Since d > 3, using the Green function representation, we obtain that there exists a
constant C <∞ (depending only on a) such that

|∇h|(x) 6 C

∫
Rd

1

|x− y|d−1
|g|(y) dy.
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By Young’s convolution inequality, the L2 norm of the function

x 7→
∫
Rd

1|x−y|61

|x− y|d−1
|g|(y) dy

is bounded by a constant times ‖g‖L2 . For functions g with support in B(0, 1), we also
have ∫

Rd

1|x−y|>1

|x− y|d−1
|g|(y) dy 6 C

‖g‖L1

1 + |x|d−1
6 C

‖g‖L2

1 + |x|d−1
.

To sum up, we have shown that there exists a constant C < ∞ such that for every
g ∈ C∞c with support in B(0, 1),(∫

gL−1g

) 1
2

6 C‖g‖L2 .

Since fχn → f in L2, this completes the proof.

Lemma 1.5. If Φ is Markovian with respect to the open set U , and if f1 ∈ C∞c (U) and
f2 ∈ C∞c (U

c
), then 〈f1, f2〉L = 0.

Proof. The isometry of Lemma 1.2 transports the decomposition of H in Lemma 1.4 into
a decomposition of K. In particular,

K(U c)⊥ ⊆ K(U).

Let f1 ∈ C∞c (U), and let S := Supp f1. Note that⋂
open O⊇Uc
O∩S=∅

K(O) = K(U c).

Let g ∈ C∞c with support disjoint from S. We have

0 =

∫
f1 g = 〈f1,L−1g〉L.

By density, we deduce that f1 ∈ K(U c)⊥ ⊆ K(U). By symmetry, we also have f2 ∈ K(U)⊥,
which completes the proof.

Lemma 1.6. Let U be an open subset of Rd, U /∈ {∅,Rd}. If a and Q are not proportional,
then there exist f1 ∈ C∞c (U), f2 ∈ C∞c (U

c
) such that 〈f1, f2〉L 6= 0.

Proof. In the Fourier domain, 〈f1, f2〉L can be written explicitly as

〈f1, f2〉L =

∫
Rd
f1(x)(−∇ · a∇)(−∇ · Q∇)−1(−∇ · a∇)f2(x)dx

=
1

(2π)d

∫
Rd
f̂1(ξ)

(ξ · aξ)2

ξ · Qξ
f̂2(ξ)dξ.

We change ξ to Q−
1
2 ξ, and then go back to physical domain, to obtain that

〈f1, f2〉L

=|Q| 12
∫
Rd

(−∇ · Q− 1
2 aQ−

1
2∇)f1(Q

1
2x)(−∆)−1(−∇ · Q− 1

2 aQ−
1
2∇)f2(Q

1
2x)dx.
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Since a and Q are not proportional, Q−
1
2 aQ−

1
2 is not a multiple of identity. By denoting

A = Q−
1
2 aQ−

1
2 , we only need to show that there exists g1, g2 whose supports are in Q

1
2U

and Q
1
2U

c
respectively and such that∫

Rd
(−∇ · A∇)g1(x)(−∆)−1(−∇ · A∇)g2(x)dx 6= 0.

For x away from the support of g2, we can write

(−∆)−1(−∇ · A∇)g2(x) =

∫
Rd
G(x− y)(−∇ · A∇g2)(y)dy

=

∫
Rd

(−∇ · A∇G)(x− y)g2(y)dy

with G the Green function of −∆. Since g1, g2 have disjoint supports, we can further
integrate by parts to obtain∫

Rd
(−∇ · A∇)g1(x)(−∆)−1(−∇ · A∇)g2(x)dx

=

∫
R2d

g1(x)K(x− y)g2(y)dydx

with K = ∇ · A∇(∇ · A∇G). By an explicit calculation, we have, for x 6= 0,

K(x)/c =
1

|x|d+2
[−dTr(A)2 − 2dTr(A2)] +

xtAxTr(A)

|x|d+4
2d(d+ 2)

+
xtA2x

|x|d+4
4d(d+ 2)− (xtAx)2

|x|d+6
d(d+ 2)(d+ 4)

(1.7)

for some constant c 6= 0. We show in Appendix A that if A is not a multiple of the
identity, then (xtAx)2/|x|2 cannot be a quadratic form. As a consequence, the function
x 7→ |x|d+6K(x) is a non-zero polynomial over Rd \ {0}. This implies that we can find
g1, g2 whose supports are in Q

1
2U and Q

1
2U

c
respectively and satisfy∫

R2d

g1(x)K(x− y)g2(y)dydx 6= 0.

The proof is complete.

Proof of Theorem 1.1. The result follows from Lemmas 1.5 and 1.6.

1.2 A counter-example with less regularity

For the reader’s convenience, we briefly recall the counter-example given in [23]. Let
X be the random distribution over R such that for every f ∈ C∞c , X(f) is a centered
Gaussian with variance

∫
R

[
f2 + (f ′)2

]
, where f ′ is the derivative of f . We let L−1f :=

f − f ′′, so that L is a convolution operator with kernel 1
2 exp(−|x− y|), and hence is not

local.

The set of admissible test functions for X can be extended to every element of the
Sobolev space W 1,2 of functions in L2 with weak derivative in L2. We recall that by
Morrey’s inequality, elements of W 1,2 are continuous functions. For every open or closed
A ⊆ R, we write

W 1,2(A) :=
{
f ∈W 1,2 : f = 0 on Ac

}
.

Note that if A is closed, then

W 1,2(A) =
⋂

open U⊇A

W 1,2(U).
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The space W 1,2 has a Hilbert space structure. We write W 1,2
perp(A) for the orthogonal

complement of W 1,2(A) in W 1,2. For every V ⊆W 1,2, we write

X(V ) := {X(f) : f ∈ V },

and check that for every open or closed A ⊆ Rd,

H(A) = X
(
W 1,2(A)

)
.

For A open or closed, denote by FH(A) the σ-algebra generated by the random variables
in H(A). We claim that for every such A, we have F(A) = FH(A). The identity is clear if
A is open. For A closed, we clearly have FH(A) ⊆ F(A). Conversely, observe that

W 1,2(A) +
⋃

open U⊇A

W 1,2
perp(U)

is dense in W 1,2 (the closure of the union above is W 1,2
perp(A)). Hence, by the martingale

convergence theorem, if Z is a bounded F -measurable random variable, then

Z = lim
open U↓A

E
[
Z |X

(
W 1,2(A) +W 1,2

perp(U)
)]
. (1.8)

If Z is F(A)-measurable, then it is independent of X(W 1,2
perp(U)). By (1.8), it is therefore

FH(A)-measurable.
Let f ∈W 1,2((−∞, 0]) and g ∈W 1,2([0,+∞)). We have

E[X(f)X(g)] =

∫
R

[fg + f ′g′] ,

where f ′, g′ ∈ L2(R) are the weak derivatives of f, g ∈ L2(R). The functions f and f ′

are supported in (−∞, 0], while g and g′ are supported in [0,+∞), so E[X(f)X(g)] = 0.
Since the spaces H((−∞, 0]) and H([0,+∞)) are Gaussian, we infer that F((−∞, 0]) and
F([0,+∞)) are independent. Moreover, F({0}) is trivial, and therefore the field X is
Markovian with respect to (−∞, 0).

Note that the field X has the regularity of the derivative of white noise. The proof of
Step 3 of Lemma 1.4 breaks down, and

H((−∞, 0]) +H([0,+∞)) 6= H,

since W 1,2((−∞, 0]) + W 1,2([0,+∞)) only contains functions that vanish at the origin,
and therefore

W 1,2((−∞, 0]) +W 1,2([0,+∞)) 6= W 1,2.

2 Homogenization and expansion of effective fluctuation tensor

We now turn to stochastic homogenization. We focus on discrete elliptic equations in
divergence form:

∇∗a(x)∇u(x) = f(x), x ∈ Zd,

with d > 3, where a : Zd → Sym+
d is a field of diagonal matrices. The entries aii(x), x ∈

Zd, i = 1, . . . , d are i.i.d. random variables defined on the probability space (Ω,F,P). We
assume that aii(x) ∈ [1− τ0, 1 + τ0] for some fixed τ0 ∈ (0, 1). Let B be the set of nearest
neighbor edges in Zd, {ei, i = 1, . . . , d} be the canonical basis, and for e = (x, x+ ei) ∈ B,
we view

a(e) := aii(x)
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as the random conductance on the edge linking x to x+ ei. The discrete gradient and
divergence for f : Zd → R and F : Zd → Rd are defined respectively by

∇f = (∇1f, . . . ,∇df), ∇∗F =

d∑
i=1

∇∗iFi,

with
∇if(x) = f(x+ ei)− f(x), ∇∗iFi = Fi(x− ei)− Fi(x).

For any e = (e, ē) ∈ B and f : Zd → R, we also write ∇f(e) = f(ē)− f(e). For any ξ ∈ Rd
and i = 1, . . . , d, we define ξ(ei) = ξi.

There exists a deterministic matrix a ∈ Sym+
d such that if α > 0 and u(ε) solves

(ε2α+∇∗a(x)∇)u(ε)(x) = ε2f(εx), x ∈ Zd,

then it was shown in [12, Theorem 4] that uε(x) := u(ε)(x/ε) (x ∈ εZd) converges in
L2(Rd × Ω) to the deterministic solution of

(α−∇ · a∇)uh(x) = f(x), x ∈ Rd,

where uε is extended to Rd as a piecewise constant function. In other words, on
large scales, the random coefficients a(x) behave like the homogeneous, deterministic
coefficients a, and the discrete heterogeneous operator ∇∗a(x)∇ is averaged as the
continuous homogeneous operator −∇ · a∇.

As was pointed out in the introduction, the corrector plays an important role in
proving the convergence of uε → uh and calculating the homogenized matrix a. The
equation of the corrector in the direction of ξ ∈ Rd says

∇∗a(x)(∇φξ(x) + ξ) = 0, x ∈ Zd. (2.1)

Since we assume d > 3, there exists a stationary zero-mean random field solving (2.1),
as was shown in [7].

From now on, we assume furthermore that

a(e) = a(ζe),

where a : R→ R is a fixed twice differentiable function with bounded first and second
derivatives (and taking values in [1− τ0, 1 + τ0]), and {ζe : e ∈ B} is a sequence of i.i.d.
standard Gaussian random variables. Under this technically convenient condition, the
large-scale behavior of the corrector is approximately a generalized GFF. More precisely,
it was shown in [19, 18] that

ε−( d2−1)φξ( ·/ε)
(law)−−−→
ε→0

Φξ, (2.2)

where Φξ solves
−∇ · a∇Φξ = ∇ ·Wξ (2.3)

for a certain white noise vector field Wξ. A heuristic derivation of (2.3) can be found in
[8, Section 1].

The Gaussian white noise vector field Wξ appearing in (2.3) has a covariance matrix
Qξ given explicitly by

[Qξ]ij =

d∑
k=1

〈
(ei +∇φi)(ek)(ξ +∇φξ)(ek)a′(ek)

(1 + L )−1a′(ek)(ej +∇φj)(ek)(ξ +∇φξ)(ek)
〉
. (2.4)
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Here 〈·〉 denotes the expectation in Ω and {φi = φei , i = 1, . . . , d} are the correctors in
the canonical directions. For sufficiently smooth functions on Ω, the weak derivative
with respect to ζe is denoted by ∂e, and its adjoint is ∂∗e = ζe − ∂e. In (2.4), we have set

L :=
∑
e∈B

∂∗e∂e,

and
a′(e) := ∂ea(e) = a′(ζe).

Note that the map ξ 7→ Qξ is quadratic. This object should thus be viewed as a four-fold
tensor, which we propose to call the effective fluctuation tensor.

The convergence of the random distribution in (2.1) to Φξ motivates our study of
generalized GFFs. Since we assume the coefficients to be i.i.d., the homogenized matrix
inherits the symmetries of the lattice, and a is thus a multiple of the identity.

The goal of this section is to obtain an expansion of Qξ in the regime of small ellipticity
contrast. This is interesting per se, e.g. as a means to compute the effective fluctuation
tensor when we expect only a small amount of random fluctuation in the underlying
medium, in which case Qξ may be replaced by the series expansion up to certain order
depending on the desired accuracy. It also allows us to give examples of environments
such that Qξ is not a multiple of the identity, which implies, in view of Theorem 1.1, that
the limiting field Φξ does not satisfy the Markov property.

Without loss of generality, we may assume that a takes the form

a(x) = Id + τb(x) (2.5)

where b is a field of diagonal matrices with 〈b〉 = 0 and ‖b‖L∞ 6 1, and τ ∈ (0, 1) is a
free parameter that we will take sufficiently small. We let δij be the Kronecker symbol,
that is, δij = 1 if i = j, and δij = 0 otherwise.

Theorem 2.1. There exists τ0 > 0 such that for every τ ∈ [0, τ0), ξ ∈ Rd and i, j = 1, . . . , d,
we have the convergent expansion

[Qξ]ij = τ2
∞∑
l=0

cξ,l,i,jτ
l,

where cξ,l,i,j can be computed explicitly as explained below, and

cξ,0,i,j = δijξ
2
i 〈b(e)2〉, (2.6)

i 6= j =⇒ cξ,1,i,j = 0, (2.7)

i 6= j and ξiξj 6= 0 =⇒ cξ,2,i,j 6= 0. (2.8)

In particular, if τ > 0 is sufficiently small and ξ 6= 0, then Qξ is not a multiple of identity.

We first perform a formal expansion of Qξ and observe that (2.6)–(2.8) should hold.
We then justify the full expansion rigorously.

2.1 A formal expansion

In view of (2.5), the corrector equation (2.1) in the direction η ∈ Rd can be rewritten
as

−∆φη = −τ∇∗b(∇φη + η),

where ∆ := −∇∗∇ is the discrete Laplacian. Formally, we can write

∇φη = −τ∇(−∆)−1∇∗b(∇φη + η).
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If the operator −τ∇(−∆)−1∇∗b is a contraction (note that τ � 1), then

η +∇φη =

∞∑
k=0

Xk,η, (2.9)

with
Xk,η = [−τ∇(−∆)−1∇∗b]kη. (2.10)

There are four factors of η + ∇φη appearing in (2.4) with η = ei, ej , ξ, which we will
replace by the expansion in (2.9). Since a′(e) = τb′(e) for any e ∈ B, we obtain an
expansion of [Qξ]ij in terms of τ written as:

[Qξ]ij = τ2
∞∑
l=0

cξ,lτ
l, (2.11)

where we suppressed the dependence of cξ,l on i, j in the notation. We emphasize that∑∞
l=0 cξ,lτ

l is an expansion of

1

τ2
[Qξ]ij =

d∑
k=1

〈
(ei +∇φi)(ek)(ξ +∇φξ)(ek)b′(ek)

(1 + L )−1b′(ek)(ej +∇φj)(ek)(ξ +∇φξ)(ek)
〉
, (2.12)

where the only τ−dependent terms are those factors of η +∇φη with η = ei, ej , ξ. The
following are simple calculations using the i.i.d. structure of the random coefficients.

We introduce some notation. Let G(x, y) be the Green function of the discrete
Laplacian −∆, and ∇∇G(x, y) be the Hessian matrix such that

[∇∇G(x, y)]ij = ∇i∇jG(x, y),

where∇i,∇j are with respect to the x, y variable respectively. For any edge e = (e, ē) ∈ B,
we also write

∇∇G(e, y) = ∇G(ē, y)−∇G(e, y).

Second order. To get the second order term, we replace all factors in (2.4) of the
form η +∇φη by X0,η = η to obtain

cξ,0 =

d∑
k=1

〈δikξkb′(ek)(1 + L )−1b′(ek)δjkξk〉

=〈b′(e)(1 + L )−1b′(e)〉
d∑
k=1

δikδjkξ
2
k = δijξ

2
i 〈b(e)2〉,

where we used [19, Proposition 3.1] in the last step.

Third order. From now on, we focus on the case i 6= j. To get the third order term,
we replace one of the four factors of η + ∇φη in (2.4) by X1,η and all other three by
X0,η = η. We write

X1,η(x) = [−τ∇(−∆)−1∇∗bη](x)

= −τ
∑
y∈Zd

∇∇G(x, y)b(y)η,

which is a vector for any x ∈ Zd. We also write

X1,η(e) = −τ
∑
y∈Zd

∇∇G(e, y) · b(y)η,
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which is a scalar for any e ∈ B. We claim that we only need to consider ei + ∇φi or
ej +∇φj . Otherwise if we replace ξ +∇φξ by X1,ξ, i.e., in (2.4)

ei(ek) +∇φi(ek) 7→ ei(ek), ej(ek) +∇φj(ek) 7→ ej(ek),

and
ξ(ek) +∇φξ(ek) 7→ −τ

∑
y∈Zd

∇∇G(ek, y) · b(y)ξ,

we observe that there is a factor of ei(ek)ej(ek) = δikδjk = 0 since i 6= j. Therefore, we
have

cξ,1 =− ξ2
k

d∑
k=1

〈
∑
y∈Zd

∇∇G(ek, y) · b(y)eib
′(ek)(1 + L )−1b′(ek)δjk〉

− ξ2
k

d∑
k=1

〈b′(ek)δik(1 + L )−1b′(ek)
∑
y∈Zd

∇∇G(ek, y) · b(y)ej〉.

For the first term on the r.h.s. of the above expression, we can write

〈∇∇G(ek, y) · b(y)eib
′(ek)(1 + L )−1b′(ek)δjk〉

=〈∇∇G(ej , y) · b(y)eib
′(ej)(1 + L )−1b′(ej)〉δjk.

Since i 6= j, it is clear that ∇∇G(ej , y) ·b(y)ei and b′(ej)(1 + L )−1b′(ej) are independent
for all y ∈ Zd, so we have the expectation equals zero because b has mean zero. The
same discussion applies to the second term, thus

cξ,1 = 0.

Fourth order. To get the fourth order term, we have multiple options. First we
consider the case when we have one factor of X2,η coming from η +∇φη. By the same
reason as before, we can not choose η = ξ, otherwise we have a factor of δikδjk = 0. If
instead we consider η = ei (the same discussion applies to ej) and write:

X2,ei(x) = τ2
∑

y,z∈Zd
∇∇G(x, y)b(y)∇∇G(y, z)b(z)ei

for x ∈ Zd or
X2,ei(e) = τ2

∑
y,z∈Zd

∇∇G(e, y) · b(y)∇∇G(y, z)b(z)ei

for e ∈ B, then the contribution to [Qξ]ij is

ξ2
j τ

4〈
∑

y,z∈Zd
∇∇G(ej , y) · b(y)∇∇G(y, z)b(z)eib

′(ej)(1 + L )−1b′(ej)〉.

By the same discussion as before, b(z)ei is independent of b′(ej)(1 + L )−1b′(ej) for all
z ∈ Zd because i 6= j. Since ∇∇G(ej , y) · b(y)∇∇G(y, z)b(z)ei is a linear combination
of bkk(y) and bii(z), the only nonzero contribution after taking the expectation is when
y = z and k = i:

ξ2
j τ

4〈
∑

y,z∈Zd
∇∇G(ej , y) · b(y)∇∇G(y, z)b(z)eib

′(ej)(1 + L )−1b′(ej)〉

=ξ2
j τ

4∇i∇iG(0, 0)
∑
y∈Zd

∇∇iG(ej , y)〈b2
i (y)b′(ej)(1 + L )−1b′(ej)〉

=ξ2
j τ

4∇i∇iG(0, 0)
∑
y∈Zd

∇∇iG(ej , y)〈b2(ei)〉〈b′(ej)(1 + L )−1b′(ej)〉
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Since ∇∇iG(ej , y) is a gradient, it follows that
∑
y∈Zd ∇∇iG(ej , y) = 0.

Now we consider the case when we have two factors of X1,η. Recall that

[Qξ]ij =

d∑
k=1

〈
(ei +∇φi)(ek)(ξ +∇φξ)(ek)a′(ek)

(1 + L )−1a′(ek)(ej +∇φj)(ek)(ξ +∇φξ)(ek)
〉
.

By symmetry, we only need to consider the following cases:

(i) =

d∑
k=1

〈X1,ei(ek)X1,ξ(ek)a′(ek)(1 + L )−1a′(ek)〉δjkξk,

(ii) =

d∑
k=1

〈X1,ei(ek)a′(ek)(1 + L )−1a′(ek)X1,ej (ek)〉ξ2
k,

(iii) =

d∑
k=1

〈X1,ei(ek)a′(ek)(1 + L )−1a′(ek)X1,ξ(ek)〉δjkξk.

Note that we do not consider replacing both factors of ξ +∇φξ since it leads to a factor
of δikδjk = 0.

For (i), we write

X1,ei(ek)X1,ξ(ek) = τ2
∑
y∈Zd

∑
z∈Zd

(∇∇G(ek, y) · b(y)ei)(∇∇G(ek, z) · b(z)ξ),

and in order to get a nonzero contribution in (i), we only need the terms with y = z and
the factor ξi, i.e.,

τ2
∑
y∈Zd

|∇∇iG(ek, y)|2|bii(y)|2ξi,

which implies

(i) =τ4ξiξj
∑
y∈Zd

|∇∇iG(ej , y)|2〈|bii(y)|2b′(ej)(1 + L )−1b′(ej)〉

=τ4ξiξj
∑
y∈Zd

|∇∇iG(ej , y)|2〈|b(ei)|2〉〈b′(ej)(1 + L )−1b′(ej)〉.

In the last step, we used the fact that a′(ej)(1 + L )−1a′(ej) is independent of bii(y) for
all y ∈ Zd.

For (ii), we write

〈X1,ei(ek)a′(ek)(1 + L )−1a′(ek)X1,ej (ek)〉

=τ4
∑

y,z∈Zd
〈∇∇G(ek, y) · b(y)eib

′(ek)(1 + L )−1b′(ek)∇∇G(ek, z) · b(z)ej〉,

and it is clear that for any k = 1, . . . , d, we have an independent factor of b(y)ei or b(z)ej
since i 6= j, thus the above expression equals to zero.

For (iii), we write

〈X1,ei(ej)a
′(ej)(1 + L )−1a′(ej)X1,ξ(ej)〉

=τ4
∑

y,z∈Zd
〈∇∇G(ej , y) · b(y)eib

′(ej)(1 + L )−1b′(ej)∇∇G(ej , z) · b(z)ξ〉.
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Similarly, we need the terms with y = z and the factor ξi, which gives

〈X1,ei(ej)a
′(ej)(1 + L )−1a′(ej)X1,ξ(ej)〉

=ξiτ
4
∑
y∈Zd
〈∇∇G(ej , y) · b(y)eib

′(ej)(1 + L )−1b′(ej)∇∇G(ej , y) · b(y)ei〉,

so

(iii) =ξiξjτ
4
∑
y∈Zd
〈∇∇G(ej , y) · b(y)eib

′(ej)(1 + L )−1b′(ej)∇∇G(ej , y) · b(y)ei〉

=ξiξjτ
4
∑
y∈Zd

|∇∇iG(ej , y)|2〈bii(y)b′(ej)(1 + L )−1b′(ej)bii(y)〉

=ξiξjτ
4
∑
y∈Zd

|∇∇iG(ej , y)|2〈b(ei)b
′(ej)(1 + L )−1b′(ej)b(ei)〉.

To summarize, the above formal calculation shows that for i 6= j,

cξ,0 = cξ,1 = 0, (2.13)

and
cξ,2 =ξiξj

∑
y∈Zd

|∇∇iG(ej , y)|2〈|b(ei)|2〉〈b′(ej)(1 + L )−1b′(ej)〉

+ ξiξj
∑
y∈Zd

|∇∇iG(ej , y)|2〈b(ei)b
′(ej)(1 + L )−1b′(ej)b(ei)〉,

(2.14)

which is non-zero if ξiξj 6= 0.

2.2 Proof of the expansion

Before proving the expansion rigorously, we introduce more notation. Let ζ =

(ζe)e∈B ∈ Ω denote the sample point, and for x ∈ Zd, we define the shift operator τx on
Ω by (τxζ)e = ζx+e, where x+ e := (x+ e, x+ ē) is the edge obtained by shifting e by x.
Since {ζe}e∈B are i.i.d., {τx}x∈Zd is a group of measure-preserving transformations. We
can define the operator

Txf(ζ) = f(τxζ)

for any measurable function f on Ω, and the generators of Tx, denoted by {Di}di=1,
are defined by Dif := Teif − f . The adjoint D∗i is defined by D∗i f := T−eif − f . We
denote the gradient on Ω by D = (D1, . . . , Dd) and the divergence D∗F :=

∑d
i=1D

∗
i Fi for

F : Ω→ Rd. The norm in Lp(Ω) is denoted by ‖ · ‖p.
Now we can formulate the corrector equation

∇∗a(x)(∇φη(x) + η) = 0 (2.15)

in the probability space as
D∗a(Dφη + η) = 0. (2.16)

We note that (2.16) holds almost surely in Ω and (2.15) holds on Zd for P−a.e. ζ. From
now on, with an abuse of notation, we regard a, φη as functions on Ω with

a(ζ) = diag({a(ζei)}i=1,...,d).

It is clear that if ζ 7→ φη(ζ) solves (2.16), then x 7→ φη(τxζ) solves (2.15).
Since a = Id + τb, (2.16) can be written as

−∆φη = −τD∗b(Dφη + η)
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with −∆ = D∗D the Laplacian on the probability space, so formally

Dφη = −τD(−∆)−1D∗b(Dφη + η).

The operator D(−∆)−1D∗ is defined by the following lemma.

Lemma 2.2. Let F = (Fi)i=1,...,d ∈ L2(Ω,Rd), φλ : Ω→ R solve

(λ−∆)φλ = D∗F,

and Ψ = (Ψi)i=1,...,d = D(−∆)−1D∗F be a weak limit of Dφλ in L2(Ω), then Ψ is the
unique function in L2(Ω,Rd) that satisfies the following three properties:

(i) 〈Ψ〉 = 0;
(ii) DiΨj = DjΨi for all i, j = 1, . . . , d;
(iii) D∗Ψ = D∗F .
Furthermore, ‖Ψ‖2 6 ‖F‖2, and Dφλ → Ψ in L2(Ω) as λ→ 0.

Proof. It is a special case of [12, Theorem 3]. The uniqueness follows from [21, Theorem
2] with minor modifications. For the strong L2(Ω) convergence, we only need to show
the convergence of 〈Dφλ ·Dφλ〉. On one hand, we have

λ〈φ2
λ〉+ 〈Dφλ ·Dφλ〉 =〈F ·Dφλ〉 → 〈F ·Ψ〉 = 〈Ψ ·Ψ〉,

where the last step comes from 〈Ψ ·DG〉 = 〈F ·DG〉 for any test function G. This implies

lim sup
λ→0

〈Dφλ ·Dφλ〉 6 〈Ψ ·Ψ〉.

On the other hand,

〈Ψ ·Ψ〉 = lim
λ→0
〈Ψ ·Dφλ〉 6 lim inf

λ→0
‖Ψ‖2‖Dφλ‖2.

Thus 〈Dφλ ·Dφλ〉 → 〈Ψ ·Ψ〉 as λ→ 0. The proof is complete.

To justify the expansion, we need L4 rather than L2 boundedness of the operator
D(−∆)−1D∗. The following lemma, whose proof is postponed to Appendix B, is the key
to justify the expansion.

Lemma 2.3. For any p ∈ (1,∞), there exists Cp > 0 such that

‖D(λ−∆)−1D∗F‖p 6 Cp‖F‖p

uniformly in F ∈ Lp(Ω,Rd) and λ ∈ [0, 1].

Proof of Theorem 2.1. We first rewrite (2.4) as

[Qξ]ij = τ2
d∑
k=1

〈
(δik +Dkφi)(ξk +Dkφξ)b

′(ek)

(1 + L )−1b′(ek)(δjk +Dkφj)(ξk +Dkφξ)
〉
. (2.17)

Recall that Dφη solves
(Id − τP)Dφη = τPη,

with
P := −D(−∆)−1D∗b.

By Lemma 2.3 and the fact that b ∈ L∞(Ω,Rd×d), for any p ∈ (1,∞) and n ∈ N+ we have

‖Pnη‖p 6 Cnp ‖η‖∞
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for some constant Cp > 0, so

Dφη = (τP + τ2P2 + . . .)η,

where the convergence is in Lp(Ω,Rd) for any p ∈ (1,∞), provided that τ < 1/Cp.
Therefore, using the fact that (1 + L )−1 is bounded from Lq(Ω) to itself for any q > 2

[19, Proposition 3.2] and b′ ∈ L∞(Ω,Rd×d), we can replace the factors ηk +Dkφη with
η = ei, ej , ξ in (2.17) by the series

ηk +Dkφη =

∞∑
n=0

τn(Pnη)k,

where (Pnη)k denotes the k−th component of Pnη with P0 = Id. Notice that we used
Lemma 2.3 for p > 4 and λ = 0. In other words, we obtain an expansion of Qξ in terms of
τ :

[Qξ]ij =

∞∑
n1,n2,n3,n4=0

τ2+n1+n2+n3+n4Qn1,n2,n3,n4(i, j, ξ)

with

Qn1,n2,n3,n4(i, j, ξ) :=

d∑
k=1

〈(Pn1ei)k(Pn2ξ)kb
′(ek)(1 + L )−1b′(ek)(Pn3ej)k(Pn4ξ)k〉.

Thus, [Qξ]ij = τ2
∑∞
l=0 cξ,lτ

l with

cξ,l =
∑

n1+...+n4=l

Qn1,n2,n3,n4(i, j, ξ).

To compute cξ,l explicitly, we define

Pλ := −D(λ−∆)−1D∗b

and

Qλn1,n2,n3,n4
(i, j, ξ) :=

d∑
k=1

〈(Pn1

λ ei)k(Pn2

λ ξ)kb
′(ek)(1 + L )−1b′(ek)(Pn3

λ ej)k(Pn4

λ ξ)k〉.

(2.18)
By Lemmas 2.2 and 2.3, it follows that

Qλn1,n2,n3,n4
(i, j, ξ)→ Qn1,n2,n3,n4(i, j, ξ)

as λ→ 0, and we have

cξ,l =
∑

n1+...+n4=l

lim
λ→0

Qλn1,n2,n3,n4
(i, j, ξ). (2.19)

With the mass regularization, we can write Pn
λ in the physical domain

Pn
λ η =(−D(λ−∆)−1D∗b)nξ

=(−1)n
∑

y1,...,yn∈Zd

(
n∏
k=1

∇∇Gλ(yk−1, yk)b(τykζ)

)
η,

(2.20)

with y0 = 0 and Gλ the Green function of λ −∆ on Zd. By plugging (2.20) into (2.18)
with n = n1, . . . , n4 and η = ei, ej , ξ, the expectation can be computed explicitly using the
i.i.d. structure of {ζe}e∈B.

To show that Qξ may not be a multiple of identity, we only need to repeat the formal
calculation in Section 2.1 verbatim with G replaced by Gλ to derive that

[Qξ]ij = cξ,2τ
4 +O(τ5)

with cξ,2 given by (2.14). The proof is complete.
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A A linear algebra lemma

Lemma A.1. Let A be a symmetric, positive-definite matrix. The following statements
are equivalent:

(i) there exists a symmetric matrix B such that

for all x ∈ Rn, (xtAx)2 = |x|2xtBx

(ii) the matrix A is a multiple of identity.

Proof. The implication (ii) =⇒ (i) is obvious. We prove the converse implication by
induction on the size n of the matrix. Letting A be an n× n matrix and assuming that
the result holds for matrices of size n− 1, we can choose x = (x1, . . . , xn−1, 0) to obtain
Aij = cδij and Bij = c2δij for some constant c > 0 with i, j = 1, . . . , n − 1. Now, for any
i < n, by considering the coefficients of x3

ixn and xix3
n, we have

2cAin = Bin, 2AnnAin = Bin,

which implies
Ain(Ann − c) = 0. (A.1)

By considering the coefficients of x2
ix

2
n and x4

n, we have

2cAnn + A2
in = c2 + Bnn, A2

nn = Bnn,

which implies
(Ann − c)2 = A2

in. (A.2)

Combining (A.1) and (A.2), we have Ann = c,Ain = 0. The proof is complete.

B D(λ−∆)−1D∗ is bounded from Lp(Ω) to itself

The goal here is to prove the boundedness of D(λ−∆)−1D∗ from Lp(Ω) to itself, and
we will borrow a deterministic estimate from [2].

For L ∈ Z+, let ΓL be a square box

ΛL = [−L,L)d ∩ Zd.

For F̃ ∈ L1(ΛL,R
d), we define the following integral operator for λ > 0:

Kλ,LF̃ = ∇(λ−∆)−1∇∗F̃ =
∑
y∈ΛL

∇∇Gλ(·, y)F̃ (y), (B.1)

where Gλ is the Green function of λ − ∆ on Zd. We claim that the following weak
type-(1, 1) estimate holds:

|{x ∈ ΛL : |Kλ,LF̃ (x)| > α}| 6 C

α

∑
x∈ΛL

|F̃ (x)| (B.2)

for some C > 0 independent of α, λ, L > 0. In [2, Lemma 4.6], (B.2) was shown with Gλ
in (B.1) replaced by the Green function of Laplacian with zero boundary condition in ΛL.
The same proof works in our case since the only ingredient we need to change in their
proof is the following bound on the triple gradient of Gλ, which was given by [2, Lemma
4.9]:

|∇y,i∇x,j∇y,kGλ(x, y)| 6 C|x− y|−d−1 (B.3)

for some C > 0 independent of λ > 0, i, j, k = 1, . . . , d.
The estimate (B.2) on the physical space can be lifted up to the probability space:
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Lemma B.1. For any F ∈ L1(Ω,Rd), we have

P(|D(λ−∆)−1D∗F | > α) 6
C

α
〈|F |〉

for some constant C > 0 independent of λ, α > 0.

Proof. We fix λ, α > 0. First, let F̃ (x) = F (τxω) for x ∈ Zd. Since F ∈ L1(Ω,Rd), for
almost every ω ∈ Ω, we have F̃ ∈ L1(ΛL,R

d) for any L ∈ Z+, so by (B.2)∑
x∈ΛL

1|Kλ,LF̃ (x)|>α 6
C

α

∑
x∈ΛL

|F̃ (x)|.

Taking expectation on both sides, we derive

1

|ΛL|
∑
x∈ΛL

P(|Kλ,LF̃ (x)| > α) 6
C

α
〈|F |〉.

We can write

1

|ΛL|
∑
x∈ΛL

P(|Kλ,LF̃ (x)| > α) =
1

|ΛL|
∑

x∈ΛL−
√
L

P(|Kλ,LF̃ (x)| > α)

+
1

|ΛL|
∑

x∈ΛL\ΛL−√L

P(|Kλ,LF̃ (x)| > α)

:=(i) + (ii).

For (ii), it is clear that

(ii) 6
|ΛL \ ΛL−

√
L|

|ΛL|
→ 0

as L→∞. For (i), we have∑
y∈Zd

∇∇Gλ(x, y)F̃ (y) = Kλ,LF̃ (x) +
∑

y∈Zd\ΛL

∇∇Gλ(x, y)F̃ (y),

then
P(|

∑
y∈Zd

∇∇Gλ(x, y)F̃ (y)| > 2α) 6 P(|Kλ,LF̃ (x)| > α)

+ P(|
∑

y∈Zd\ΛL

∇∇Gλ(x, y)F̃ (y)| > α).

By stationarity,

P(|
∑
y∈Zd

∇∇Gλ(x, y)F̃ (y)| > 2α) = P(|D(λ−∆)−1D∗F | > 2α)

is independent of x ∈ Zd. For the summation outside ΛL, we have

P(|
∑

y∈Zd\ΛL

∇∇Gλ(x, y)F̃ (y)| > α) 6
1

α
〈
∑

y∈Zd\ΛL

|∇∇Gλ(x, y)F̃ (y)|〉

6
1

α

∑
y∈Zd\ΛL

|∇∇Gλ(x, y)| → 0

as L→∞, uniformly in x ∈ ΛL−
√
L.
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Now we have

|ΛL−√L|
|ΛL|

P(|D(λ−∆)−1D∗F | > 2α)− 1

α|ΛL|
∑

x∈ΛL−
√
L

∑
y∈Zd\ΛL

|∇∇Gλ(x, y)|

6
C

α
〈|F |〉 − (ii).

By sending L→∞, we obtain

P(|D(λ−∆)−1D∗F | > 2α) 6
C

α
〈|F |〉,

which completes the proof.

Using Lemma B.1 and the fact that D(λ−∆)−1D∗ is bounded from L2(Ω,Rd) to itself,
we can apply the standard interpolation argument, e.g., [2, Theorem 4.4], to conclude
that D(λ−∆)−1D∗ is bounded from Lp(Ω,Rd) to itself for any p ∈ (1,∞).

For the case λ = 0, we only need to note that for any F ∈ L2(Ω,Rd),

D(λ−∆)−1D∗F → D(−∆)−1D∗F

in L2(Ω,Rd) as λ → 0, so by applying Fatou’s Lemma, we conclude D(−∆)−1D∗ is
bounded from Lp(Ω,Rd) to itself. The proof of Lemma 2.3 is complete.
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