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Asymptotic freeness for rectangular random matrices
and large deviations for sample covariance matrices
with sub-Gaussian tails
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Abstract

We establish a large deviation principle for the empirical spectral measure of a sample
covariance matrix with sub-Gaussian entries, which extends Bordenave and Caputo’s
result for Wigner matrices having the same type of entries [7]. To this aim, we need
to establish an asymptotic freeness result for rectangular free convolution, more
precisely, we give a bound in the subordination formula for information-plus-noise
matrices.
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1 Introduction

Throughout this paper, P(F) will denote the set of probability measures on a space
E, M, ,(R) (resp. M,, ,(C)) the set of n x p real (resp. complex) matrices, %, (C) the
set of n x n Hermitian matrices, A’ (resp. A*) the transpose (resp. transconjugate) of a
matrix A, and Tr(A) its trace. Besides, for a random variable X, X denotes the centred
variable X — IE(X). Finally, for two real numbers z, y, we denote by z A y the minimum
of x and y.

1.1 Large deviation results in random matrix theory

Let us first recall some basic facts in random matrix theory (RMT). A central object
in RMT is the empirical spectral measure of a matrix A € H,,(C), namely the probability
measure on R defined by
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Rectangular asymptotic freeness and large deviations of random matrices

1 n
pa=_— > Gxay s
k=1

where A\ (4),..., . (A) denote the eigenvalues of A.

It is well known (cf. [21]) that if X is a Wigner matrix, i.e. X € #,(C) and the
families of centred independent and identically distributed (i.i.d.) random variables
(Xj,)i<j<n, (Xjk)1<j<k<n are independent, and if the variance Var(X; ) = E|X; 2 —
E(X1,2)* equals 1, then almost surely, the spectral measure iy //m converges weakly
towards the semicircular distribution ps., i.e. for any bounded continuous f : R — R,

The semicircular distribution . is the probability measure on R defined by

1
d prse(z) = oV 4— 221 9(z)dr.

In the case of a sample covariance matrix, i.e. a matrix XX* with X € M,, ,(C)
having centred i.i.d. entries, if Var(X; ;) = 1, then almost surely, the spectral measure
pxx=/p converges weakly towards the Marcenko-Pastur distribution pyp, . with ratio c
asn,p — +oo with 2 — c € (0, +00) (cf. [18]). This probability measure on R is defined
by
(be — 2)(x — ac)

2mxc

dpnp () = max (1 - %a 0) do + 1., (2) dz
with a, = (1 — \/c)? and b, = (1 + /)%
For these two models in which the empirical spectral measure converges, we can
investigate the speed of convergence and more particularly large deviation principles.
We recall from [9] that a sequence of random variables (Z,,),>1 with values in a
topological space (E, Q) with o-Borel field B satisfies the large deviation principle (LDP)
with speed v and rate function I in the topology O if

* I : E — [0,400] is a lower semi-continuous function, i.e. the level set {z €
E | I(z) <t} is closed for every t > 0,

* v:IN — (0,+00) admits a limit equal to +oo,

» forall B € B,

1
— inf I(z) <liminf logP(Z,, € B)
z€Int(B) n—+oo U n)
1
< limsu logP(Z, € B) < — inf I(z
- n_H_(XI? U(TL) & ( ) z€Clo(B) ( )

where Int(B) and Clo(B) denote resp. the interior and the closure of B.

We also recall that the rate function I is said to be good if the level set {x € E' | I(x) < t}
is compact for every t > 0.

In [4], Ben Arous and Guionnet proved that if X is in the GUE, i.e. X is a Wigner
matrix and X1 ; (resp. Xi ) has law N(0,1) (resp. N5 (0,312)), then py, /; satisfies a
LDP in P(R) with speed n? and rate function

I(p) = %/ﬁ dp(x) — // log |z — y| du(z)duly) — ;

This result was extended to LUE matrices, i.e. sample covariance matrices X X* where
X has standard Gaussian entries, by Hiai and Petz [16]. Note that in fact, these two LDPs
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do not concern only Gaussian matrices but also more general unitarily invariant models.
They strongly rely on the fact that for the considered models, the joint distribution of the
eigenvalues has an explicit form, which is also the case in [12].

In [7], Bordenave and Caputo managed to obtain a LDP for Wigner matrices in another
case, where the distribution of the X ;’s has sub-Gaussian tails. This is remarkable
because here the joint distribution of the eigenvalues is unknown. Let us recall their
result.

Definition 1.1. For o > 0 and a € (0,+0o0], we denote by S, (a) the class of complex
random variables Z such that

lim —t “logP(|Z| >t)=a (1.1)
t—+o0

and such that |Z| and Z/|Z| are independent for large values of |Z|, i.e. there exist
to > 0 and a probability measure 9, on the unit circle $! such that for all t > t, and all
measurable sets U C $!, we have

P(Z/|Z| €U (1 2] > 1) = 9,(U) P(|Z] > 1).

In particular, a real random variable Z belongs to S, (a) if it satisfies (1.1) and there exist
to > 0 and a probability measure ¥, on {—1,1} such that forallt > to and allU C {—1,1},
we have

P(Z| >t N sign(Z2) e U) =9, (U)P(|Z] > ). (1.2)

Note that the first hypothesis implies that a random variable in S,(a) has finite
moments of all orders. Besides, the second assumption is a technical one, which is used
only when proving lower bounds, see (3.16).

Theorem 1.2 (see [7, Theorem 1.1]). Let X be a Wigner matrix. We assume that
Var(Xi12) =1, X12 € Sala), and X11 € S, (b) for some o € (0,2) and a,b € (0,+00]. Then
the spectral measure jix ./, satisfies the LDP with speed n'te/2 and good rate function

J(u) = ®(v) if there exists v € P(R) such that u = ps. By

M=) +00  otherwise

where ® : P(R) — [0, +o0] is a good rate function (see [7] for further details) and H
denotes free convolution (see Section 1.2).

Let us make a few remarks about this result. Roughly speaking, after random matrix
considerations, the proof of Theorem 1.2 consists in proving a LDP for some sparse
random graphs associated to the Wigner matrix X. Therefore, the rate function &
expresses as the supremum of functions of probability measures on graphs and it can
not be computed in general. However, in some particular cases, it is possible to compute
®(v). For example, if v is a symmetric distribution on R, b < co and the support of ¥, is
{—1,1}, then we have

O(v) = (g /\b) Mo (V) ,

where m,(v) denotes the a-th moment of v.

Theorem 1.7 below will extend Theorem 1.2 to sample covariance matrices X X* with
X11 € Sa(a) for some « € (0,2), a € (0, +00]. Note that to simplify, we will assume that
X is a real random matrix.

Let us mention here that LDPs for the top eigenvalue of Wigner matrices have
also been obtained in Ben Arous and Guionnet’s setting, see [1, p. 81], and for the
model introduced by Bordenave and Caputo in [2]. Furthermore, LDPs for the extreme
eigenvalues of sample covariance matrices have been proved in a general setting in [13].
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1.2 Deformed matrix models

After understanding the behaviour of the spectral measure of Wigner matrices or
sample covariance matrices, the question of deformations of these models has been
investigated. Several types of deformations have been studied, the main ones being
matrices of the type X + A with A € #,(C) (additive deformation), ¥'/2X X*%1/2
with ¥ € H,,(C) positive definite (multiplicative deformation) or (X + A)(X + A)* with
A € M,, ,(C) (information-plus-noise model).

A tool to study the spectral measure of a deformation is free probability, and more
particularly free convolutions. Let us recall their definitions.

Theorem 1.3 (see [17, Proposition 4.3.9]). Let A, B be two independent n x n Hermitian
random matrices such that

« either A or B is unitarily invariant, i.e. for M = A or B, for any unitary U € M, (C),
UMU™ has the same law as M,

* 14 and pp converge weakly in probability to some distributions y1; and p2 on R as
n — +00.

Then, as n — +oo, the spectral measure 44+ p converges weakly in probability to a
deterministic distribution depending only on p, and p,. This distribution is called the
free (additive) convolution of i1; and po, and is denoted by 1 B po.

A similar result also exists for the singular values of the sum of two rectangular
matrices and it is due to Benaych-Georges. The empirical singular value distribution of
a matrix A € M,, ,(C) is the probability measure on R, defined by

1 nAp
VA= > o4y
k=1
where 01(A),...,0nrp(A) denote the singular values of 4, i.e. the square roots of the

eigenvalues of the positive matrix AA* (resp. A*A) if n < p (resp. n > p).

Theorem 1.4 (see [5, Theorem 3.13]). Let A, B be two independent n x p random
matrices such that

 either A or B is bi-unitarily invariant, i.e. for M = A or B, for any unitary matrices
UeM,(C)andV € M,(C), UMV has the same law as M,

* v4 and vp converge weakly in probability to some distributions p; and ps on Ry as
n,p — 400 with % — ¢ € [0, +00).

Then, as n — +oo, the singular value distribution v p converges weakly in probability
to a deterministic distribution depending only on u1, p2, and c. This distribution is called
the rectangular free convolution with ratio ¢ of u1 and uo, and is denoted by 1 H. po.

Free convolutions can be characterized in terms of another key object in RMT, namely
Stieltjes transform. For a probability measure p on R, we call the Stieltjes transform of
p the function G, : C\ R — C defined by

Gu(2) = [ 2 duto)

z—x
for all z € C\ R. The following properties are obvious:

1

<
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and )
zZ—Zz
Gule) = Gl < ot
We will use them implicitly in this paper.

Note that the notion of Stieltjes transform is related to the resolvent one, since for a
matrix A € H,(C), we have G,,, (z) = L Tr((zI, — A)~'). Useful properties of resolvents
we will use in this paper are gathered in Appendix B.2.

Stieltjes transform allows to express subordination relations for free convolutions.
To state these relations, we need some additional notations. For i € P(R), we denote
by u? the distribution of X? when X has law p. Similarly, for u € P(R.), we denote
by /i the symmetrization of the distribution v of VX when X has law g, i.e. the
symmetric distribution on R defined by /u(B) = W for all Borel set B. We
have the following subordination formulas, the first one is due to Biane (cf. [6]) and the
second one is obtained from Dozier and Silverstein’s work [10] and from the paper [5]
by Benaych-Georges.

Proposition 1.5. e Letu € P(R) and v = p A ps.. We have

Gy(z) =G, (2 —Gu(2)) . (1.3)

e Letue P(Ry),¢c>0,andv = (\/ﬁ H. . /NMP7C)2. We have

G, (z)

T et () = O (1= Gu(@) = (1 = )1 = cGu(2))) - (1.4)

In Theorem 1.6 below, we are interested in the information-plus-noise model and we
control the distance between the spectral measure and the corresponding rectangular
free convolution, by bounding the difference between the two sides in (1.4) evaluated at
the average Stieltjes transform.

1.3 Main results

Note that in the rest of the paper, we will only consider real matrices for ease but
our results may generalize to complex matrices adapting the proofs. The main difficulty
in the complex case is to adapt the general integration by parts formula (2.21) which is
used several times in this paper, which would lead to heavier computations.

Let us define, for s,¢ > 0, the distance d,, on P(R) by

dS’t(:qu) = Ssup ‘Gu(z> - GV(Z)l , (1.5)
z2€Vs
where
R
Vs,t:{zeC | Im z > s, ‘ez’<t}. (1.6)
Im z

As the distance d defined in [7], d, ; metrizes weak convergence. Let us mention that for
all p,v € P(R), we have

dsat(:uﬂy) S min (dKS(,u7V)7W1(/J/7V)) ) (17)

where dxg and W, are respectively the Kolmogorov-Smirnov and L!-Wasserstein dis-
tances on P(R). Some key inequalities for the distance between two empirical spectral
measures are summarized in Appendix B.3.

Our first main result is the following.
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Theorem 1.6. We assume that ¢, = % is bounded below and above by two constants in
(0,400). Let ¢ > 0. There exist s,t > 0 and a constant c,, > 0 such that for any random
matrix Y € My, ,(R) with iid. entries satisfying Var(Y1 ;) = 1 and E(Y}!)) < 400, for
any deterministic matrix M € M, ,(R), and for all n large enough, we have

2
ds,t (E [(y /M) (v oM (Ve Be /P e) )

3 o 4 1 Tr(MM?)1/2
< e (B BO0LLY) (7 R
1 Tr(M M? 1/2
+ Cs,t (|Cn_6|+n+r(n5/4)) ,

where Y is the matrix whose entries are given by ij =Y —EY;).

This result allows to understand the influence of the deformation in the information-
plus-noise model. First, we can observe a decorrelation between the classical term
ﬁ and the Frobenius norm of the deformation divided by a better power of n, namely
w. It is important for us to get this precise estimate since in Section 3, we apply
Theorem 1.6 to a matrix M whose Frobenius norm is not bounded but of order /nlogn.

Besides, it is interesting to compare Theorem 1.6 to the Wigner case (cf. [7, Theorem
2.6]). Bordenave and Caputo investigated additive deformations and obtained that in this
model, the distance between the spectral measure and the corresponding free additive
convolution is bounded by ﬁ This bound is uniform in the deformation M and it
depends on the initial matrix through its moments only. In the case of sample covariance
matrices, it would have been surprising if we had obtained a better bound. Table 1 below
permits to compare Bordenave and Caputo’s results with ours in the Gaussian and the
general cases. We recall that LOE matrices are sample covariance matrices X X! where
X has standard real Gaussian entries.

In addition to this, let us mention that in [8], the authors were interested in the case
of Wigner matrices whose entries have a symmetric distribution satisfying a Poincaré
inequality, which leads to better bounds than [7].

Gaussian Non-Gaussian
Wigner Deformed (1;UE matrix Deformed Wligner matrix
matrix = _
n Vn
. Deformed LOE matrix Info-plus-noise matrix
Covariance 1 Tr(MM?H)/? 1 Tr(MMYH)Y/?
matrix BT S A e
n nb5/4 Vn n

Table 1: Bound in the subordination relation (1.3) or (1.4) for different matrix models.

Theorem 1.6 above will be used in the proof of our second main result.
Theorem 1.7. Let X € M, ,(R) be a random matrix such that ¢, = ; — ¢ € (0,+00).
We assume that Var(X; 1) = 1 and that there exist « € (0,2) and a € (0, +o0] such that
X1,1 S Sa ((l)
Then, the empirical spectral measure puxx:,, satisfies the LDP with speed nite/2 jn
P(R.), governed by the good rate function J' defined by

/ —amMaya(v)  if there exists v € P(Ry) s.t. p = (Vv B /7MMP,C)2
J'(p) = and v({0}) > max (0,1 — 1)
+00 otherwise

where my(u) = [ |2” du(x) denotes the p-th moment of a distribution .
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It is very similar to Bordenave and Caputo’s result (see Theorem 1.2), the main
difference being the explicit expression of the rate function in all cases. This is due
to the fact that here, we can achieve large deviations explicitly because all entries of
our matrix X have the same distribution, which is not the case for the Wigner matrices
considered in [7]. Consequently, a large deviation pxx:/, ~ (ﬁ H. \/M)Q can be
reached explicitly by considering the event figiag(x) diag(x)t/p ~ v, Where diag(X) is the
matrix X from which we have removed off-diagonal entries, and large deviations can be
proved directly using Schatten’s inequality, see Section 3.2. In the Wigner case, this is
not possible to do so because, roughly speaking, there are two ways to achieve large
deviations, using diagonal entries or off-diagonal entries.

Note also that contrary to J, the rate function .J’ does not depend on the support of
the law 4, appearing in Definition 1.1.

Finally, we mention that our proof does not use sparse random graphs as in Bordenave
and Caputo’s original proof [7] but it would be possible to do so (see [14, Section 4.6]).

The rest of the paper is organized as follows. In Section 2, we prove the bound for
rectangular free convolution stated in Theorem 1.6. In Section 3, we prove the large
deviation principle in Theorem 1.7. In Appendix A, we state and prove concentration
results used in Sections 2 and 3. Finally, in Appendix B, we summarize miscellaneous
inequalities and identities used throughout the paper.

2 Asymptotic freeness

This section is devoted to the proof of Theorem 1.6. This theorem is in fact a
consequence of the following, as we will see in Section 2.1.

Theorem 2.1 (Bound in subordination formula (1.4)). We assume that c¢,, = % is bounded
below and above by two constants in (0,+00). Let ¢ > 0. There exist s,t > 0 and a
function f, bounded on the domain V, ; defined by (1.6), such that for any random matrix
Y € My ,(R) with iid. entries satisfying Var(Y1,) = 1 and E(Y}!}) < +ooc, for any
deterministic matrix M € M, ,(R), for all n large enough, and for all = € Vs ;, we have

|£(Z) — (1 =cg(2)G,, 0 (2(1 = cg(z))2 -(1-c)(1 - Cg(z)))}
g ° T t\1/2
< 1) (EViaP + B ( L Te(MMY'2 >

vn n
1 Tr(MMHY?
+ f(2) ('C”_C|+n+n5/4 )

where g(z) = G“(Y/\/E+J\l)<Y/\/E+JVI)t (2) and g(z) = E(g(2)).

The proof of Theorem 2.1 follows the same lines as Bordenave and Caputo’s one for
the bound in subordination formula (1.3) for free additive convolution (see [7, Theorem
A.1]). It consists in two main steps: the Gaussian case and the general case, which is
deduced from the Gaussian case by interpolation. The starting point is also a resolvent
identity, see Proposition B.2 (ii).

However, contrary to the Wigner case, when considering the difference between
the resolvents of two covariance matrices AA* and (A + B)(A + B)*, not only does B
appear in the difference but also A. Thus, if we want to show that the difference between
the resolvents is small when B is small, we must be more careful because some new
phenomena appear.

Let us mention that in the Gaussian case, we have a better bound (see Proposition 2.3).

In the proof, we define

Y
X=—+M.

VP
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We also consider s > 2, t > 0, and along the proof, s can increase and ¢t can decrease.
Moreover, f will denote a bounded function on V; ;, which can also change from one line
to another. In particular, for all z € V; ; and = < y, since we have

x/2
|Z|m _ 1 Rez 2 11 / < 1 (t2 +1)m/2
[Imzv  |[Imzv== \ \Imz sy—= ’
we will write ]
ZIE

as soon as x < y.

Before starting the proofs, let us state a lemma we will use in the different steps.
B¢ (z,9) denotes here the ball with centre z € C and radius § > 0 for the usual distance
in C.
Lemma 2.2. For ;s € P(R) and z € C, we define

Gzt () = (1= Ah)Gu(2(1 = yh)* = (1 =7)(1 = vh)).
There exist s,t >0 and I, , € (0,1) such that
e forall p € P(R), z € Vi, and v > 0, the function ¢. ,,(.,7) is Lipschitz on B¢ (0, 1)
with constant [, ,,
e forallp € P(R), z € Vi, and h € Be (0,1), the function ¢. ,,(h,.) is Lipschitz on
[0, +00) with constant [ .

The proof of this lemma consists in simple computations and is left to the reader. Let
us mention however that it relies on the inequality
(0 —1)(0?—2) 2t(c+ 1)) |1 —~|

I >1 —
|| 2 mz( o%(c+1) o2 o

(2.1)

where n = z(1—~h)? — (1—7)(1 —~vh) and 0 = 2. This inequality is an easy consequence
of the development of Im 7. We will use it once again later.

Furthermore, note that choosing a larger s and a smaller ¢, [, ; and l;t can be as close
to 0 as wanted.

2.1 Proof of Theorem 1.6

First, let us deduce Theorem 1.6 from Theorem 2.1.

Proof. We define v = (\/fiarast Be \/finip o) ? and we consider the function Gz, defined
in Lemma 2.2. Subordination formula (1.4) can be rewritten ¢. ,, ., (G, (z2),¢c) = G, (2)
for all z € C\ R. Consequently, using Lemma 2.2, there exist s,¢ > 0 and I, ; € (0, 1) such
that forall z € V4,

l9(2) = Gu(2)| <
<

Q(Z) - (bzvlLMMt (g(z)7 C)| + |¢ZvﬂMMf (g(z), C) - (bzvlLMMt (GV (2)7 C)|
9(2) = D2y (9(2), )] + st |9(2) = Gu(2)]

thus

l9(2) — G (2)] <

From Theorem 2.1 in which we majorize f by a constant depending on s, ¢ and from the
definition (1.5) of d, ¢, we finally get

‘g(z) - ¢Z,,LL1\4]\,I’L (Q(Z),C)’ .

1- s,t

: can (1 Tr(MMHY?
Ao (Bpuxx,v) < o (Bl + B ) (ﬁ + (n))

1 Tr(MMHY/?
+ Csit |cn—c\+ﬁ+7 . O

n5/4
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2.2 The Gaussian case

In this subsection, we assume that Y] ; is a standard Gaussian. We will prove the
following bound.

Proposition 2.3. We use the same notations as in Theorem 2.1. There exist s,t > 0 and
a function f, bounded on V; ,, such that for any random matrix Y € M,, ,(R) with i.i.d.
standard Gaussian entries, for any deterministic matrix M € M, ,(R), for all n large
enough, and for all z € V,;, we have

v t\1/2
lg— (1= )Gy, . (2(1 — cg)? — (1 — &) (1 — cg))| < f(2) <|cn —d+ % + TUZ;‘/@)

To prove Proposition 2.3, we will follow and improve some computations by Dumont
et al., see [11, Appendix II]. In the proof, we will simply denote g(z) and g(z) by g and g
respectively.

Lemma 2.4 (adaptation from [20, Formula (122)]). Let Y € M,, ,(R) be a random matrix
with i.i.d. standard Gaussian entries, let M € M,, ,(R) be a deterministic matrix, and let
z € C\R. For all integer n, we have

g— 2 Te(R) = 2 Tr(AR) — % Tr(A) Te(E(S)R)

- n n

1 / n /
+ - Tr(A'R) - % Tr(A) Te(E(S)R)  (2.2)

where
S = (Zln - )()(t)_1 ,
1 —1
R = ((Z<1—Cng) - 1+Cn)In — gMMt> 7 (23)
g “eng
p(1 —cng) 1~ cng g
p(l - Cng)Q 9 ) .
and
Pl = eng) P~ cng)
1 ) .
i og EIS*X MO E(S). 25)

In this lemma, we compare g to % Tr(R) because, using the notations in Lemma 2.2,
we have L Tr(R) = ¢..u,,,,.(g:cn), 50 = Tr(R) is close to ¢., . (g,c) by Lemma 2.2.
That is interesting if we have in mind our goal, which is Proposition 2.3.

Note that the proof of Lemma 2.4 follows the same lines as [20, Formula (122)] since
it relies on the Gaussian integration by parts formula (2.20) and it uses the differentiation
formula (B.1), so we do not give it here.

However, we can observe an important difference between Formula (122) in [20] and
Lemma 2.4, namely the terms in A’. In fact, the background here is not exactly the same
as in [20]. Indeed, Vallet et al. consider complex Gaussian entries with independent real
and imaginary parts having the same distribution in the matrix Y, whereas we consider

EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
Page 9/40


http://dx.doi.org/10.1214/17-EJP4326
http://www.imstat.org/ejp/

Rectangular asymptotic freeness and large deviations of random matrices

real Gaussian entries. Consequently, some simplifications do not occur any longer and
a new term appears. Behind this phenomenon is the quantity ¢ = K; 1 + 2iK; 2 — Ka o,
where K denotes the covariance matrix of the Gaussian vector (ReY; 1,ImY7 ;). This
quantity is equal to 0 in [20] and to 1 here, that is why we have an additional term.

In the next lemma, we bound the different terms appearing in (2.2). For this, we
will use the concentration bounds (A.1) and (A.3) for the terms in A and standard
inequalities on traces and resolvents (see Propositions B.1 and B.2) for the terms in A’.
Our computations will partially follow those in [20].

Lemma 2.5. There exist s,t > 0 and a function f, bounded on V,;, such that for all Y,
M, n, and z as in Proposition 2.3, we have

1 1 Tr(MMY)/?

This lemma shows that 1 Tr(R) is a deterministic equivalent to the Stieltjes transform

rty\1/2
g(z) = L Tr(S) as soon as mﬁ# tends to 0 as n — +o0, i.e. when the perturbation

M is not too large.

We can compare this result with the bound obtained in [20, Proposition 6]. Two main
differences must be highlighted. First, as we mentioned above, the model is not exactly
the same. Indeed, we consider real Gaussian entries and not complex Gaussian entries
with independent real and imaginary parts, which produces an additional term in A’.
However, the terms in A are present in both cases, so we can compare the bounds for
these terms. In [20], the authors assume that || M || is uniformly bounded in »n and get the
bound £ (5). Here, for the terms in A, we will get the bound

” £(2) ( 1 N Tr(MMt)1/2) '

n2 nl7/8

Moreover, if we use the bound (A.2) instead of (A.3) in the proof, and if we observe that
Tr(MM?')'/? < \/n||M]||, then we get the bound fé? (1 +||M|)), which is the same as in

[20] when || M|| is uniformly bounded in n. Consequently, our bound has two advantages:
it is slightly better than the bound in [20] and it applies without any assumption on M.

Proof of Lemma 2.5. First of all, let us remark that

1
]1 . g‘ < J(2)

1
| Im 2| *

since |g| < Besides, we have

IR] < f(2) (2.6)

because on the one hand, ﬁ is a resolvent evaluated at n = z(1—c,g)*—(1—c,)(1—¢ng)
1

so its operator norm is less than T’ and on the other hand, we have the inequalities

|1 —cpg| <1+ 52 and (2.1) (we apply the latter with v = ¢,, and h = g).

[ Im z|

By Proposition B.1 (ii), it follows that

1 Tr(IE(S)R)‘ < S

n ~ | Imz|
or just
:LTr(]E(S)R)‘ < f(z). (2.7)

Note that more precise bounds can be obtained, see [20, Appendix E].

EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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We will now see how to majorize the four terms in (2.2).
Let us recall that A is defined by

A1 g Tr(s;(Mf)S* + "% BES) + — 1 F °Tr(s;(Mf) E(S)
p(]- - cng) 1- Cng g p(l - Cng)2 g

and observe that Tr(SX M) = Tr(X*SM).
We start bounding the term | Tr(A) Tr(IE(S)R)| in (2.2). First, using the Cauchy-
Schwarz inequality and the concentration bounds (A.1), (A.3), we get

In(——1 g Tr(S;(Mt)SO'
n (1 —cng)

1 1 . .
- Tr (M E [(Tr(SMX") —ETr(SMX"))(S - IES)]) ‘

= ‘ tn E[l(Tr(XtSM)IETr(XtSM))Tll(Tr(S)ETT(S))”

1-— cng n
. 1 ) 1/2 1 1/2
S m Var E TI'(X SM) Var E TI'(S)
B 1/2 1/2
4
< g (St monn)” (2529)
—Cng n n
f(z) t\1/2
< Te(MM*H)Y?2 (2.8)

where u(z) and v(z) are defined in Proposition A.1.
Next, using the identity g = + Tr(S) and (A.1), we have

1 n o n n 4 n
1 Cn % E(ss) )| = Cn? Var(g)| < cnlz|  dequ(z) < f(2) 2.9)
n 1—cng —Cng |1 —cng] n? n?
where, for the last inequality, we used the definition of u(z) to get
zZlulz
JE) ),
11— cngl
The same arguments also allow to show that
In(—— g f;Tr(S)O(Mt) ES) || < MTr(MMt)l/Q (2.10)
n p(1 —cng)? = p17/8 : .
Combining inequalities from (2.7) to (2.10) gives
Cn 1 Tr(MMHY?
S T (A) TH(E(S) B)| < £(2) (n J T @.11)

Computations are similar for the term %Tr(AR), using the additional inequalities
(2.6) and Tr(RR*)'/? < \/n||R|| (see Proposition B.1 (iv)). For instance, we have

1 ——
~TrE | Tr(SXM")SR
n

1 1 . t
I (M B [(Tr(SX M") — ETr(SXM))(S — ES)R]>|

n

EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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e 1 t 1/2 1 1/2
——— Var [ — Tr(X*SM) Var | — Tr(SR)
|1 - cng| n n

- (90””(2) Tr(MMU)m (46”“(Z> IRl Tr(RR*>”2)1/2

<
= 1 —cngl n9/4 nb/2

Cn 9¢,v(z) ; 1/2 depu(z) 5 1/2
< 11— cugl ( nd/4 Tr(MM )) n2 f(2)

f(z) t\1/2
< Te(MM)Y/2 .

Combining with

1Tr( E@Sm)]sﬂz)

n 1—cng
and

f(2) t\1/2
< s Tr(MMY)Y2,

. .
~“Tr|ec, B gTe(SXM") | E(S)R
n

which have a similar proof, we thus have

t\1/2
1 Tr(]WZ\J)) (2.12)

1
- Tr(AR)‘ < f(2) <n2 + l7/8

We have bounded the terms in Lemma 2.4 in which A appears thanks to the con-
centration bounds proved in Appendix A. We will now consider the terms in which A’
appears, in other words the terms not present in [20]. To this, we will only use inequal-
ities on traces and resolvents (see Propositions B.1 and B.2). Let us recall that A’ is
defined by

_ 1
p(1— Cng)

m : 5 B(Tr(S*XM")) E(S) .

A’ —_—
p*(1 - Cng)

E(SXM'S)+ E(25%—5)+

We bound Tr(A’) using inequalities (i)-(iv) in Proposition B.1 and Proposition B.2 (i),
(iv). We have

|Tr(SXM'S)|
< TT(SXXtS*)l/QTr(Mtss*M)l/Q
n |Z| 1/2 ¢ )2 1/2
(et (fm +1)) (st o ot
< n3/4f(z) Tr(MMt)l/Q 2.13)
) ! ! /()
- —_ t < J\Z t\1/2
- Tr <p(1 ——) E(SXM S))‘ < S Tr(MM")'Y=. (2.14)

In addition, we have

1 1 1 E 1
T —— (28?2 -8 <
n r(p(l—cng) (2 ))‘ np|1—cng|n<|lmz|2 + Imz|>

< M (2.15)
n
and using (2.13) again, we find
1 1 f(z)
“Tr (| ————— E(Tr(S2XMH))E(S) )| < Tr(MM4H)Y2. 2.16
L (o BN M) BGS) )| < L manay 2.16)
EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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Consequently, the combination of (2.7), (2.14), (2.15), and (2.16) gives

Cn 1 Tr(MM?H)Y/?
By very similar calculations, we get
1 1 Tr(MMHY/?

Finally, combining relation (2.2) with inequalities (2.11), (2.12), (2.17), and (2.18),
we get

1 TY(MMt)l/2> -

‘g_ iTI‘(R)‘ < f(2> (Tl + nb/4

Finally, the Gaussian case (Proposition 2.3) follows from Lemma 2.5 and the second
part of Lemma 2.2, since we have

CTH(R) = (1 e0g) Gy (21— cng)? — (1= ca)(1— n)).

2.3 The general case

We now only assume that Var(Y;,;) = 1 and that B(Y}!;) < +oc. Let Y e M, »(R) be
an independent random matrix such that the }A’j,k’s are i.i.d. standard Gaussians, we
define X = % + M.

Furthermore, for all u € [0, 1], inspired by Pastur and Shcherbina [19, Theorem
18.3.1], we define Y (u) = aY + VI—uY, X(u) = Yf;j + M, and S(u) = (21, —
X(u)X (u)')~"

Since Y (0) = Y and Y (1) =Y, this provides an interpolation between the Gaussian
case and the general case. The idea is that along this interpolation, the average Stieltjes
transform does not change a lot, which will allow us to bring back the general case to
the Gaussian case.

Proposition 2.6. There exist s,t > 0 and a function f, bounded on V; ;, such that for any
random matrix Y € M, ,(R) with i.i.d. entries satisfying Var(Y1,1) = 1, E(Y}};) < +o0,
and E(Y; 1) = 0, for any deterministic matrix M € M,, ,(R), for all n large enough, and
for all z € V,;, we have

B0 (4) ~ EGgg, ()] < 106) (BIVil + BOVE)

x5t

1 N Tr(MM)/?
N n '

Proof. The proof consists in four main steps. After developing EG,, _,(2) —EG,_,(2)
thanks to the interpolation, we use integration by parts formulas (see Lemma 2.7). Then,
we respectively focus on bounds for the main terms and for the rests in these integrations

by parts.

First step: Development of EG, . (2) —~EG,__,(2).

Hxxt
Let v € [0,1] and h € [—u,1 — u]. Proposition B.2 (ii), applied to A = X(u) and B =
L (Y(u+h)—Y(u)) gives

VP
S(u+h) — S(u) = S(u+ h) <X(u) (Y(“ + il/)ﬁ_ Y(“)) pACh.s ’j/)ﬁ_ Y ¥ (uyt
Y(u+h) =Y W) (Y(u+h)—Y(w))
EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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Dividing by h and taking h — 0, we get for all u € [0, 1],

S'(u) = S(u) (X(u)yi(};) + Y\/([;L)X(u)t) S(u)
1o [V VIi—uy vt Y!
0 (5 57 ) (3 )
Y Y Jayt  JT—uyt
+<2\/ﬂ_2\/1u><\/15 B +M>>S(u).
Thus we can rewrite
GMXXt (2) — Gu)?;;f, (2)
1 1
= ETrS(l)—ETrS(O)
Tt
= ﬁ/o Tr S (u) du
1t LYY VY l—u  [u \YY
= 2 )y r[S(u) 2\/1,) 2\/23+< " 1—u> N
N ET I Yyt My' MY Ly Y M? "
u l—u/ /p Vu  V1—-u  Vu  V1-u .

= Z i [S’(u)?’kYk’lY},l— 12 S(u)ikYk’lf/j’l} s
C oo '
= 3 st — ST
M= 3 |y SR Vi = ST |
£ -

1 1—u ~ ~ ~
)= > — S VeaYia — S iVl

1<ke<n VP LYY -
1<i<p
1 9 1 2 %
(V) = TS )i My Yo — =8 () p M1 Y1
1<jk<n VY —
1<I<p

and

1 1 ~

o

where S(u)3, must be read (S(u)?);x, we finally rewrite

1
2n./p

EG,. . (2)~EG,__ () = /0 VB 4 (1) + (1) + (IV) + (V) + (VD) dur. (2.19)

EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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’ Second step: Integrations by parts. ‘
Let us recall the formulas we will use below, in particular the Stein characterization of a
normal distribution (2.20).

Lemma 2.7 (see [19, Formulas (2.1.39) and (18.1.19)]). (i) Let a function F ¢

CY(R,R) and ¢ a random variable with distribution N'(0,0?). If E|F'(¢)] < +oo,
then

E((F(€) = ? B(F'(€)) . (2.20)

(ii) More generally, let p be an integer, a function F € C?**(R,R), and a real random
variable ¢. If |E|£|P*? < 400 and the derivatives F', ..., F(?*1) are bounded on R,
then

P
B AR )
E(£F(6)) —ZTE(FJ (€)) +ep (2.21)
j=0
where the x;,1’s are the cumulants of the distribution of §{ and
1+ (3+ 2p)Pt?
(p+1)!

We will apply the Gaussian (2.20) or the general (2.21) integration by parts formula
for all j, k,! in order to decompose

el S G E[EPF2IFPHY ||, Cp <

E[(T) 4+ (IT) 4+ (II1) 4+ (IV) + (V) + (VI)]

as a sum of terms that we can bound.

Note a first crucial point here. As we want to apply Theorem 1.6 to the matrices Y
and C in Section 3 in order to obtain (3.10), it will not be sufficient to use the integration
by parts formula up to order 2, that is why we will be interested in terms of order 3 in
this formula.

From now, D, ; denotes the derivation with respect to Y, ;.

Letw € [0,1], j, k € J1,nK, andAl € J1, pK. We denote by F; and G, the functions defined
by Fi(Yj1) = YiiS(u)? ), and G1(Y;1) = Yi1S(u)? .. We have

2/u
F{(Yj) = iYk,zS(U)j,k-Dj,lS(U)j,k + 8518 (W) g s

VP
F'(Y;1) = %Yk,l (D518 (u)jk)? + S(u)jk-DF 1S (u)jk) + %51‘7!@5(@1@&-%715(@&& ;
®) 2u%/?2 2 3
(Vi) = WYM (3D;1S(u) D3 S (w)jrs + S(w)j-D3 1S (w) i)
+ %(&k ((Dk,lb’(u)k,k)2 + S(u)k,k~Di,zS(u)k7k) )
and
(Vi) = N\I/?Yk,ls(u)j,k-l)j,ls(u)j,k-

Applied conditionally to the variables {Y, 4, 1 <a <n, 1 <b<p}U{Yus, (a,b) # (4, 1)},
(2.20) gives R R L R
E;(S(u)3 1 Ye Y;0) = Var(Y;)E; (G (Y)))

where EM denotes the associated conditional expectation. Similarly, from (2.21), we
have

E; i (S(u)3 1 YeY;0) = Var(Y;) By (Fy(Y;0) +

k3(Yi1)
2] B (FY (Y0)) + €1,k 5

EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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where IE;; denotes the expectation conditionally to the variables {Youp, (a,b) # (4,0} U
Yap, 1<a<n, 1<b<p}
Taking the expectation, we thus have

u ~
E | S(u)] xYiaYii — 7 _uS(U)?,kYk,lYJ,Z]
V(¥ BE(Y;0)) + P05 gy ) e ) - Var(Y;,) B(G,(Y;
= i 1Y)+ == (7 (Y50) + Blevgma) =/ 7, Var(¥i) E(G1(Y50))
k3 (Y;
= 5,0 (S0 + I B (,0) + B0
with, for all j, k,1,
1+7
ekl < E(Yity)-|F1 oo
Dividing by ,/p and summing on j, k, [, we thus have
_ 2y, Ks(Yi1)u 2
E(I) = vpE(Tr S(u)”) + i > E(Yiu(DjuS(u);k)°)
— :
(1.1) Jokol
(r2)
k3(Y11)u
+ % Z E(kalS(u)jyk.DJQ-JS(U)]‘yk)
3okl
(I.3)
2%3 Y1 1 \/> 1
]E k k- Dy lS( ) )_|_7 IE)(&‘L ',k,l) . (2.22)
R 770
(1.4)
Since S(u)? = S(u), we also have
1
E(II) = (L1) + (12) + (13) + (I4) + —= Y E(e2,x.1) (2.23)
VP gokl
with
1+7

3
2.l < E(Y )P oo -

Similarly, considering F5(Y;,;) =Y}, Y18 (u)? ik we get

B - —pE(T S(w?) + LEVIE =Y $7 BT (D s(0)))

(1I1.1) Jokl
(111.2)
3(Y; 1
1.1 \3//2 Z E(Y;,S(u)j-D7 1S (), 1 )+\7 > Elesjna), (2.24)
dikl P
(I111.3)
1
E(IV) = (IIL1) + (I11.2) + (IT1.3) + — > B(es jr1) (2.25)
VP gkl

with

1474 3 1+74 3

le3 il < B F oo and Jeajnal < B )5 |

EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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and considering F5(Y;;) = Mk_ylS(u)ik, we get

B(v) = SOVE S~ g (DS () 00%)

b Jiksl

(V.1)

+ /4/3(}/11;1)\/6 Z E(MkJS(u)j’k.DJQ»’lS(u)j7k) + Z E(gs,j,k,l) , (2.26)

gkl .kl
(V.2)
E(VI) = (V.1) + (V.2) + Y E(g6,j.5.1) (2.27)
7.k,
with
1+ 74 3 1+ 74 3
sl < E(Y{ ) IFS o and eg il < E(Y{ )P o -

We have thus rewritten (2.19) as

EG,, .(2) —EG,__,(2)

Hxxt

- \1/1,) / VE[(L2) 1 (13) + (L4) + (II12) + (II13) + (V.1) + (V.2)] du
n 0

i, * |2

3.kl

_|_

4 6
1
*E fz',j,k,l+§ €z',j,k,l> du.
(ﬁi—l =5

Third step: Bounds for the main terms. ‘
We will develop the different terms in this expression with the differentiation formulas
in Proposition B.2 (vii), and bound them thanks to inequalities on traces and resolvents
(see Propositions B.1 and B.2 again).
Because some computations are very similar, we will be interested in the terms (I.2),
(I.3), and (I.4) only.
Note that in order to simplify the notations, from now, we will denote S and X for
S(u) and X (u).
Let us start with the term (I.2). Using (B.1), we have
> E(Yiu(D;S(w);k)%)
3okl

= Z E Y (SX)2,5%, + 251 (SX) 105,657, (SX )i + VieuS2;(SX)7,]
7.k,

= B|Tr(Y(X'$)°28°%) + 2Tx((Y 0 SX)X'S diag(S5)S) + > 52,. Y Viu(SX)F,
j k,l

where o is the Hadamard product (see Appendix B.1), S°? stands for S o S, and diag(95)
is the matrix S from which we have removed off-diagonal entries. Note that it is crucial
here to rewrite precisely the terms with the Hadamard product and then to bound the
traces rather than bound directly the entries. Indeed, it allows us to get better powers
of n in the bound, which is crucial if we have in mind the large deviations in Section 3.

Using Propositions B.1, B.2, and the Cauchy-Schwarz inequality in C"?, and denoting
by y a square root of z, we have

| Te(Y(X'5)725°%) < V| X"S|2 |8 Te(YY*)/?
VP t\1/2
< ———Tr(YY"
S TPtz TV
EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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| Tr((Y 0 SX)X'S diag(S)9)|

IN

VPIX'S||| diag(S) || |S]| Te((Y 0 SX)(Y 0 SX)*)!/2

VP ty1/2
| Tm y|?| Im z|? (YY) ! ’

IN

and

Y, X)? _— Y, X)
Z JZ w(S = ‘Imz|2|1my‘z|kls el
1/2 1/2
n
_— \ 5 SX)pal?
— \Imz|2|1my\ Z k,l ZK )k,l|
k.l k.l
Tr(YY*)1/?
_ DY) exxtst)e
| Im z|2| Im y|
nTr(YYH)/2 [ n|z| n \?
|Tm z|2|Imy| \|Imz]?  |Imz]

Using also the bound (B.7), there exists a function f, bounded on V;;, independent from
Y, M, and n, such that for all z € V,;, we have

|(L2)] < [k3(Y10) /(=) E(Te(YY")!/2).

But for a centred random variable, the third cumulant equals the third moment, so this
inequality can be rewritten

(L2)] < BV f(2) E(Tr(YYH)'/?).
We adopt the same strategy for the term (I.3). Using (B.5), we get

> E(YiaS(u)jk-DF S (1))

Jiksl

Z E[Yk’lSj’kQ(Sj’ij,k + (SX)?JS]',]C + S]’J (XtSX)l’lSj’k + 2Sj’j(SX)j’l(SX)k’l)]
J.k,l

= 2 ) 8;;(SY) 0+ Te(Y(X"S)°25%%)
4yl
+308;,(5Y)u(XPSX), + 2Tr((Y 0 SX) X' diag(S)S)
7,0

so, using the previous bounds, and also

1/2
1
02 02 2
ZSJ;J'(S V)| < T V"™ ZKS Y)jal
gl 7l
— V1P TI‘(SO2YYt(SOQ)*)1/2
| Im z|
1/2
VP 1Yl #1/2
< YY
= Thwz] \Y" e M0
3/4 1/2 1/2
< 7T YY
S Tomgp YY)
EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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and

1/2
1

| Im z|

> 8587V ) (XS X ),

Jil

IN

<1 + ‘Iriz D Vb | D 1(5°2Y )l
7l

n3/4pl/2 -
(1 ’—DTrYYt 12,
| Tm 2|3 ( * Imz ( )

the same arguments as above lead to

E|Y;4?

/4

I(L3)] < F)E(Te(YY")'?).

Besides, we have

Z E(S(u)k’k.Dk,lS(u)k’k) = Z E[Sk}kQSk’k(SX)k’l]
k,l

kol
and
1/2
1
2 2
D SE(SX)ua| < Vi | D 1K)
ol el
/2
NG, vz - VAP (mlzl o m !
= <
| Tm 2|2 Tr(SXXTST)7 < [Tmz|2 \|Imz|?  |Imz|
thus we get
(L4)] < E Y11 f(2) V.
We finally have
(1.2) + (L3) + (14)] < B [Y1.43f(2) (E(Tr(YYt)l/z) + \/ﬁ) . (2.28)

Very similar computations allow to show that
|(II1.2) + (IIL3)| < B|Yy 13 f(2) B(Te(YY?)'/?)

and
(V1) 4+ (V.2)] < B|YiaPf(2)v/n Te(MMH)Y2. (2.29)

If we remember that Y;; and }71,1 have mean zero and variance 1, we have
E(Tr(YY*)Y? < /np and E(Tr(YY?))'/2 < \/np by Jensen’s inequality. Finally, we
can write
[(1.2) + (1.3) + (L.4) + (II1.2) 4 (II1.3) + (V.1) + (V.2)|
<EYi1[f(2) (n—f—\/ﬁTr(MMt)l/Q) . (2.30)

’ Fourth step: Bounds for the rests.
The only thing to be left is to bound the rests appeared in the integration by parts
formulas. We recall that for all 5, k € J1,nK, [ € J1, pK, we have

1474 3
E(Y )P oo -

le1,j,0] <

EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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Using the expression of F1(3)(Yj,l), differentiation formulas (B.1), (B.5), (B.6), and inequal-
ities (iv)-(vi) in Proposition B.2, there exists a function f, independent from Y, M, n, j, k, [,
bounded on V;;, such that

3 2
le1 gkl < f(2) B(Y) ( 573 | Vil + 6] k) :

So, using the Cauchy-Schwarz inequality in R"?, we have

ZlEslm < fREYY) ZEWMHI
]kl
< J()EM) (E(Tr(YYfW?) + Vi)
< f)EYH)n. (2.31)

s

The same bound holds for ‘Zj,k,l E(€27j7k;,l)‘. Similarly, we get

— > B(esgra) + Eeagen)| < f(2) E(Y)n (2.32)
f 7,k
and
> esimitcesni| < F(2) BV Te (MM, (2.33)

Jikl

Finally, combining relations from (2.19) to (2.33), we get

(2.34)
O

Hxxt

r £Y1/2
[EGuy i (2) ~EGugy, (2)] < f(2) (E|Y1,1|3+]E(Y14,1))< 1 +T(MM>) .

NG n

We can now conclude the proof of the general case and obtain Theorem 2.1. In
fact, in Proposition 2.6, we assumed that E(Y7 ;) = 0, so we only have to remove this
assumption.

Proof. We recall that X = X — [E(X) by definition. We also define 9(z) = EG,, .. (2),
9o(2) =EG, ., (2), and g(z) = EG,__, (2). Using the notations in Lemma 2.2, we have

HPxxt

|9(2) = (1 = cg(2)) G, e (2(1 = cg( )? = (1= c)(1—cg(2)))]
< Jg(2) = 9o (2)]| +190(2) = G| + [9(2) = b2y, (9(2), €)|
+ |¢>z G ONR @ st (90(2)€)]
+ |<z>z,ﬂMMt (90(2): ©) = Gzt (9(2), €)|
< () [9(2) = go(2)| + (L4 Ls0) [90(2) = G(2) + [G(2) = G2y (G(2), 0]
for s large enough and ¢ small enough by Lemma 2.2.

Since the matrix X — X = E(X) has rank at most 1, using the relations (1.5), (1.7),
and (B.9), we have

3\»—

|G#XXt(Z) 7Gll«)})}t( )| <dsy (HXvaNXXt) < dks (,UXXH#XXt) <

This inequality, Proposition 2.3 (the Gaussian case) applied to )A’, and Proposition 2.6
(the centred case) applied to Y permit to get finally
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9(2) — (1 = cg(2))Gp,, e (2(1 = cg(2))? = (1 = ¢)(1 — cg(2)))]|
o ) . £\1/2
< (1+ ls,t)% + f(2) (E |Y1,1|3 + E(Y1,14)) <\}ﬁ + T(‘Mi\“)

1 Tr(MMHY?

3 Large deviations

This section is devoted to the proof of Theorem 1.7. In this section, X € M,, ,(R) is a
random matrix such that ¢, = 2 — ¢ € (0, +-00). Moreover, we assume that Var(X; ;) =1
and that there exist a € (0,2) and a € (0, +o0] such that X; ; € S,(a) (see Definition 1.1).

We define

1
e(n) = logn
and we decompose the matrix X as
X
p
where A, B, C, D are the matrices defined by
.k Xk
Ajr = ﬁ 11X 1< (ogny2/e Bjk = \}5, Litogn)2/a<|X; k<e(n) P
Cip="251 D,y = Xikq
Jk = % e(n)y/p<|X;,k|<e(n)=1/p 3k = % e(n) = VP<I Xl -

This decomposition, introduced in [7], must be understood as follows. First, the matrix
A is the bulk of the matrix X/ /P because of the tail assumption (1.1), see for instance
Lemma 3.4 (ii) below. Besides, we keep in C the terms of order /P in X, which produce
large deviations as we briefly explained at the end of Introduction (note that we could
have chosen an other sequence ¢(n) going slowly to 0).

3.1 Exponential equivalences
The goal of this subsection is to prove the following.
Proposition 3.1. There exist s,t > 0 such that the random distributions pxx:, and

(VBccr Be \/NMP7C)2 are d, ;-exponentially equivalent at scale n'**/? as n — +oo, i.e.
for all § > 0, we have

lim o log P (duy (jixxespn (Vi Be Vinws)’) 2 6) = —oo.

n—-+oo n1+a/2

The strategy to prove Proposition 3.1 is similar to the one in [7]. First, we explain why
B and D do not contribute to large deviations in Lemmas 3.2 and 3.3 and then, we show
that the measures p(a+c)(a+c) and (yacer Be \/uMp,C)Q are exponentially equivalent
thanks to a conditioning and a coupling argument in which several tools are needed,
such as the concentration property (A.15) and the asymptotic freeness result stated in
Theorem 1.6. From now on, we consider s > 2 and ¢ > 0.

First, the contribution of D is negligible.

Lemma 3.2. uxxt,, and payB1c)(A+B+C)t are exponentially equivalent.

The proof is very similar to what is done in [7], the only difference being the use of
(B.9) instead of (B.8). Therefore, it will not be repeated here.
The contribution of B can also be neglected.

Lemma 3.3. uxxt/, and payc)a+c)r are exponentially equivalent.
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Proof. From Lemma 3.2, the triangle inequality, Lemma 1.2.15 in [9], and the inequalities
ds+ < Wy < Wo, it is sufficient to prove that for all § > 0,

. 1
lim ———p log P (Wa (l(A+B+C)(A+B+C)t I(A+C)(A+C)) = 0) = —00 .

n—-+oo n

From (B.11), which is the analogue of the Hoffman-Wielandt inequality (B.10) for covari-
ance matrices, it is sufficient to check that for all § > 0,

1 2 ‘
ngl_ir_loo Trar2 log IP (712 Tr((A+ B+ C)(A+ B+ C)

+ (A+C)(A+ C)t)’IY(BBt) > 6) = —00.
Let § > 0. We have
1

Tr(A+C)A+C)) <Tr((A+B+C)(A+B+C)") <Tr (

XXt>
p

using the decomposition (3.1). Thus,
2
P (n2 Tr(A+B+C)(A+B+C)' +(A+C)(A+C)")Tx(BB') > 5)

4
< P (n?p Tr(X X" Tr(BB') > 5)

IN

1 ' 9 4 " é

On the one hand, since Tr(X X?) is the sum of np i.i.d. random variables, from
Cramér’s theorem in R (see [9, Theorem 2.2.3]), we have

1
lim ——logP (- Tr(XX")> B(X? +6> — —sup (0(E(X2,)+6) — log E(efX11)) < 0
n—-+oo NP & <np ( )— ( 171) 96%1;(( ( 1,1) ) g ( ))

so, since a < 2,

. 1 1
lim a2 log P <np Tr(XX") > E(Xf,l) + 5) = —00. (3.3)

n—-+oo n
On the other hand, since 2 —> ¢, the same arguments as in [7] lead to
. 1 4 ) )
W a7z o8P <n BB = E(X)+5> - .

Finally, combining (3.2), (3.3), (3.4), and Lemma 1.2.15 in [9], we get the exponential
equivalence of px x:/p, and pa1cya+coyt- O

Before proving Proposition 3.1, we need some additional properties.
Lemma 3.4. (i) We have

1 ) N
S g P ( Tr(CC") > (logn) ) S
(ii) Defining I = {(j,k) | | X, x| > (logn)Q/a}, forall § > 0, we have

lim log P (|I| > 5n1+a/2) = —00.

n—-+oo n1+ nlta/2
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(iii) We denote by P,, the distribution of X, ; conditionally to {|X; | < (logn)*/}. Let
Z,, be a random variable with distribution P,. There exists ( > 0 such that

sup max (B(Z2). (B(27))*. B(Z1)) <.

Furthermore, the variance of Z,, denoted by o2, tends to Var(X; 1) =1 asn — +oo
and more precisely, there exists n > 0 such that

|0,72L . 1| < ne—a(logn)2/4 '
Proof. The proofs of (i) and (ii) exactly follow the proof of Lemma 2.4 in [7]. Therefore,

we will only prove (iii).
Let Z,, be a random variable with distribution P, defined as above. We have

E (X12,1 1|X1,1|<(10gn)2/“)
P(|X1.1| < (logn)?/«)

E(Z2) = E(X1, | [X141] < (logn)¥®) =

But thanks to hypothesis (1.1), Xfl is integrable, so by the dominated convergence
theorem, E (Xf1 1‘X1,1‘<(10gn)2/a) tends to E(X7 ;) as n — +oo. Besides, P(|X; | <

(logn)?/*) tends to 1, so E(Z2) tends to E(X?,) as n — +oo.
The same arguments show that E(Z;,) tends to E(X? ) as n — +oco. We can deduce
that there exists a real number ( such that

sup max (B(27),(E(Z2))*E(Z,)) <.

Moreover, we have

02 =Var(Xy1 | |X1.1] < (logn)?/®)

2
E (X]?,l 1|X1,1|<(logn)2/“> E (Xl,l 1|X1,1\<(logn)2/°‘>

P(|X11] < (logn)*/«) P(|X1,1] < (logn)*/®)

Using similar arguments, we prove that o2 tends to Var(X; ;) = 1 as n — +oo. More
precisely, we can write

2
E (X12,1 1|X1,1|<(1ogn)2/a> E (Xl,l 1\Xl,1\<(10gn)2/a>

o2 —1=

" P (|X11] < (logn)?/e) | P (|X11] < (logn)?/)
- E(XT)) + (B(X1,1))?
B (X2, 115, <o/ ) — B(XE0) P (1X1a] < (logn)?/?)
B P (| X1, < (logn)/)
E(X1,1)2 P (1X14] < (logm)*/*)” — (B (X1, 1|X111,<(10gn)2/0))2
" P (|X11] < (logn)?/«)”
B(X3) P (1X1.] = (logn)*) = B (X2, 1x, , > 1ogny2/e )
- P (| X14] < (logn)?/«)
E(X1,1)* (P (1X1.1] < (logn)>/)” ~ 1)
P (|X11] < (logn)?/)*
2E(X1,1)E(Xl,llwxl‘uzaogn)wa) E(Xm1\x1,1\zaogn)2/a)2
P (|X1a] < (logn)>/*)* P (IX1.] < (logn)?/) o)
EJP 22 (2017), paper 53. http://www.imstat.org/ejp/
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2 2
where (]E <X1,1 1‘X111‘<(10gn)2/a>) = (]E(Xl’l) -k (Xl,l 1\X1,1\2(logn)2/a)> was used to
get the last equality.

From hypothesis (1.1), for n large enough, we have

P(|X11] > (logn)¥/®) < e~ 30osm)?*
Besides,
P(|X11] < (logm)/*)? = 1 = —P(|X14] > (logn)*/) (P(|X1a| < (logm)/*) +1)
and by the Cauchy-Schwarz inequality, we have
[ (X1 113, 45 gy ) | < BOEDY2P(X ] > (logn)/ )12

and
B (X215, 5oy )| £ BOXE D)2 P(X 1] 2 (logm)?/ )12

Going back to (3.5), we have for n large enough

|U721 - 1| < 2E(X12’1)6_%(10gn)2 + QE(X?’l)l/Qe—%(logn)z + 4E(X1’1)26—%(10gn)2
+ 4| E(X171)| E(Xl271)1/267%(10gn)2 + 2E(X1271)67%(10g n)? )
Because the moments of X ; are finite, we can deduce that there exists a real number
’ n

such that
o2 —1| < ne_a(log”)2/4. O

We can now prove Proposition 3.1.

Proof of Proposition 3.1. The proof relies on a conditioning with respect to the entries
of X which are not in A and on a coupling argument to remove the dependency between
Aand C.

We use here the same notations as [7]. We denote by F the o-algebra

F=o0 {Xj,k 1‘Xj,k\2(10gn)2/q} ,

by Pr and Ex the probability and the expectation conditionally to F, and we denote by
FE and F the events

o {;Tr(cct) < (log n)Q}

and
F= {|I| < n1+a/2} ,

with I = {(j, k) | |X;.x| > (logn)*“}. Thus, the matrix C is F-measurable and the events
F and F belong to F. Moreover, from Lemma 3.4 (i)-(ii), we have

1 1
lim ———logP(E)=—-00 and lim ———=logP(F°) =—00. (3.6)

n—-+oo n1+a/2 n—-+oo n1+a/2

The idea to prove Proposition 3.1 is to get the successive exponential equivalences

Bxxt/p = pareya+oyr = Er paroyaroyr = Er parroyar+oyt

2
=P e (ae) B (i) ()t ™ (Voo e VIR
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where A’ will be defined below. Let us recall that the first one has been obtained in
Lemma 3.3.

e Conditionally to F, ,/pA is a random matrix with independent entries bounded
by (log n)2/0‘. From the concentration result (A.15) applied to Y = /pA, M = C,
r = (logn)*“ and using that o < 2, we get for all § > 0 and n large enough,

B(logn)?/« n24°
1 Pr (dot (aroyatoy, Br piiaroyaroy) = 6) < iz P ~Blogn)e

hence

1
lim mloglp (E N {dst (M(A+C)(A+C’)f EfM(A+C)(A+C' ) > (5}) —0Q. (37)

n—-+oo

e We will now use a coupling argument. We consider an independent random matrix
Y whose entries are i.i.d. with distribution P,, defined in Lemma 3.4, and we denote by
A’ the matrix defined by

VP
Consequently, ,/pA’ and Y have the same distribution and are independent from F. In
particular, we will use later that for all bounded continuous f, we have Ex(f(Y)) =

E(f(Y)).

From the inequalities (B.11) and d,: < W5, we have

A = LG mer Ajr + LG mer

ds i (atoyarcyts Aoy arrcoy )t

< % Te((A — A)(A— A Tr((A+ C)(A + C) + (A + C) (A +C))

2

2 Y2,
= 2 Z 1 ker ka Z(Aj,k +Cik)* + (A 4+ Cjp)?

3.k Jik

2
o D Vi || 2o ATk 200+ (A7)
7.k

(4,k)el

p

2
= | 2 Y| [ AN 2TRCC) + Yo AT+ >
b (4:k)el Jk gk (j,k)eT

2
4/

2 logn
a2 2 v (i

(4,k)el

IN

+Tr(CCt)> 1 > v

(4,k)el

With definition (1.5) of d,; and conditional Jensen’s inequality for the concave function
z — z'/*, we thus have

1g1pdss (Er pascoyatey Br parsoyartot)
<1plpErds: (Hatoyatoy a+cya+cy)

1/4
21p1F 4/a t Z 2 1
2 2(n(10g Tl) =+ TI‘(OC )) Er 1/J7k + —Er E l m
b e P\ Gwer
(, m)GI

because 1p, 1, and Tr(CC') are F-measurable. Since the events {(j,k) € I} are
F-measurable and Y is independent from F, we have
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Er | > 1gmer Y | =D 1gwer B = I E(Y) < (||
J.k ik

from Lemma 3.4 (iii), and similarly

E]: Z l(jvk)EI l(l,m)EI Yfk}/l?m S C|I|2 .

diklm

So we have

1g1pds: (BF patoyaroy Br pavoya+oy)

(20151 1 b
< %pf“ (2(n(logn)4/o‘ +Te(CCH)|I| + p|1|2>}
[2¢c 4/ 2\, 14+a/2 1+ e
n e} [e% «
< 3 (2 (n(logn) + n(logn) )n + cnn )}
(2, o 1rar2]
< 3 3n(logn)ont+ /2}

- 1/4 (log n)l/o‘
= (6¢cn) P yzeryry

for n large enough (we used here the fact that g > 2). It follows that for all § > 0,

. 1

N {dst (Br peatoyasor, Br parsoyarscoy) = 0}) = —co.  (3.8)
We recall here that Er H(A"+C)(A+C)t = Er M(%+C) (%+C)t.

e In addition, from (B.11), we have

4
o (A1) (300 ) ()

(59 (5+9) + (2579 (o))

2 1\° Yk 2 Y 2
— (1-—) Te(YY? L ; L ;
n2p < O'n) r( ) Z ( /P + CJ,k) + (Un\/ﬁ + CJ,k)

g,k

IN

< 2 (1 - 1)2Tr(YYt) (4 TH(CCH) + 2 (1 + UZ) T&"(YYt))

n2p On p p

so, using conditional Jensen’s inequality and doing as above, we get

1pErds, (u(}%+c)(\%+C)tau($+c)(an‘/ﬁ+c)t>

2 1/4
2 1 9 " 2 1 2
|fﬂ7 (1 - Un) <4n(log n)*ExTr(YY") + » (1 + U%) Ex(Tr(YY")?)
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1/4
2 o2 -1 \° ) 2 1\
sz (etermy) (mtowmtans e (14 5 ) i)

i_ 1 1/2 1 1/4
— (U:;an - 1)> (8((logn)2 +4¢ (1 1 (77%)) .

By Lemma 3.4 (iii), we deduce from it that for all § > 0,

1
nEI-iI-loo nlta/2 log P (&

{dsﬁf (EWzﬁc)<zﬁ+c>“E”<W+c>W+c>t) = 5}) = B9

e To finish, we define 0' Var(Yl 1) as in Lemma 3.4 (iii). Since C is F-measurable,
Y is independent from F, and L Ex(Y 1) < 2(¢ < +oo for n large enough, we can apply
Theorem 1.6 to Y/o, and C, condltlonally to F. Therefore, for n large enough, s large
enough, and ¢ small enough, we have

1pd,, (E}' ,u( +C)(Unf+c) , (Vicer Be /iinp.e) )

on P

1 o 3 1 . 4 1 Tr(cct)l/z
< Gsele (U% E|Yi1]” + %E(YM )) (\/ﬁ +
1 1 Tr(CCt)/?
Fesale {Jen el s
6/a 8/a
< e <8(log?) N 16(10g4n) ) ( 1 10gn>
g o \/ﬁ \/ﬁ
1 logn
+Cs,t |CrL_C|+ + 3/4

using that for all j € J1,nK and k € J1, pK, we have |ij| =Y — Ex(Y;x)| < 2(logn)?/e.
Therefore, for all § > 0,

1
nEI-ir-loo nlta/2 log I (E

o (ot ) ) -

e To conclude, combining equalities from (3.6) to (3.9), Lemma 3.3, and Lemma
1.2.15 in [9], for s large enough and ¢ small enough, we have for all § > 0,

2
ngr—ir-loo TL1+ Tlta/2 IOgIP <d5,t (/JJXXt/pu (\//JJCC“ B, \/NMP,C) ) > 5) = —Q. O

3.2 Large deviations for ;-

In the previous subsection, we proved that px ¢/, and (\/ucct H. \/NMP,c)Q are
exponentially equivalent. Consequently, to obtain the large deviations of px x:/, (Theo-
rem 1.7), it is sufficient to study the large deviations of ycct and to apply the contraction
principle (see [9, Theorem 4.2.1]). To this, in this subsection, we will study the large

deviations of
;. 0|C
o= (5

and prove the following, from which we will deduce the large deviations of ycct thanks
to identity (3.13) and conclude in the next subsection.
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Proposition 3.5. The measure jc satisfies the LDP with speed n'**/? in P(R), for
weak topology and good rate function ®' defined by

(3.11)

m { 8offaama() if u is symmetric and u({0}) >

+00 otherwise
where mq (1) = [ [x|* du(z) denotes the a-th moment of .

Note that ®’ is a good rate function because it is well known that for all m > 0 and
p > 0, the set

Ko = {ueP®) | [ ol dute) < m | (3.12)

is compact for weak topology. Moreover, the domain of ® can be explained thanks to
Lemma 3.6 (i).

Lemma 3.6. Let M € M,, ,(R) and

0 | M
r_
w = (o)
(i) The distribution pys is symmetric and oy ({0}) > %
(ii) We have

2 n n
= v t + (S . 3.13
IU’M Cn 1 MM 1 . 0 ( )

(iii) If M is diagonal, in the sense that only the entries M;;, 1 < j < n A p, can be
non-zero, then

nAp

1
n-+p

1 — Cn
> (Onsyy +0-m,,) + |1+Z ‘50. (3.14)

Jj=1

pnr =

The proof of this lemma relies on the identity

oy = (M)

Since it does not present any difficulty, it is left to the reader.

We also need a second lemma, which consists in two estimates for the distribution of
X1,1. These estimates come from the particular form of this distribution, see hypotheses
(1.1) and (1.2).

Lemma 3.7. (i) There exists a sequence (1n,)nen converging to 0 such that for all
x > ¢(n), we have
P(|X11| > ay/p) < e~ (@m)es™ (3.15)
(ii) We denote by S, the support of the distribution 9, defined by (1.2). There exists a
sequence (a,)nen converging to a such that for all x € R satisfying |z| > ¢(n) and
sign(z) € S,, for all v > 0, and for all n large enough, we have

X1 _ —an|e|*p/?
IP(\/]3 € (x 'y,x—i—v))ze . (3.16)

The computations to get these inequalities are explained in [7, p. 26] and are left to
the reader.

We will now prove Proposition 3.5. Let us mention that Schatten’s inequality (B.12)
will be crucial in the proof since it will allow to link the a-th moment of the spectral
measure pcs and the entries of C’.

From now on, we denote by B; ;(u, ) the ball with centre 1 € P(R) and radius § > 0
for the distance d ;.
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Proof of Proposition 3.5. Since the set of symmetric probability measures on R is closed
for weak topology, it is enough to prove the LDP on this set, see [9, Lemma 4.1.5].

Upper bound. Let i be a symmetric probability measure on R. Since the function m,,
is lower semi-continuous, there exists a continuous function s such that /(0) = 0 and

P(ucr € Bst(p,0)) < P(ma(pcr) = ma(p) — h(5))

for all § small enough. Moreover, by Schatten’s inequality (B.12) and the fact that
Zk al < (Zle ai) forallr > 1, a1,...,ar > 0, we have

i=1" —

1 e /e a/2 ] e
malper) < o <ZC§J~:|2> < Ol

j=1 \k=1 j=1 k=1
Consequently,
P(pcr € Bsi(p,0))
1
<P SO I = maln) — h(d)
n+p T
2 «
= P (C + 1)p1+a/2 Z |Xj,k| 1a(n)\/i)<\Xj,k|§a(n)*1\/ﬁ > ma(ﬂ) - h((S)
n ],k}

np

< =G (eat )P T2 (ma () —h(9)) (]E (eal‘xl’l‘a 1s<n>ﬂ<|xj,k\55<n)*1ﬁ))
for all a; € (0,a) by Chernoff’s inequality. Besides, from hypothesis (1.1), there exists

ay € (a1,a) such that for all z large enough, P(|X; 1| > x) < exp(—agz®). Let us also
recall the following integration by parts formula: for all » € P(R) and f € C'(R,R),

b b
/ f(w)dV(x)=f(a)V([aa+OO))—f(b)'/([b7+00))+/ f'@v([z, +00)) da.

Denoting by P|x, ,| the law of [ X} ;

, we thus have for n large enough,

Eexp (al\X1,1|a 16(71)\/;5<|X1.1|S5(”)_1\/15)

sm)”E
1+/ e dPx, ,|(x)
€

<
(n)vp
(n)~*
S 1 + 60‘16(,”’)04;004/2_a26(n)apa/2 + /E n \/ﬁ alaxa_lealza_azxa dx
e(n)\/p
< 14+ e—(az—ae(m)*p®/? _ M —(az—ai)e(n)*p*/?
a; —az
— 141 (aa—ane(m)p/?
a2 — ay
<

exp _ %2 —(a2—ai)e(n)*p*/?
a2 — ax
hence

IP(;J,C/ € By (,uv 5))

< exp (—a;(cn + D)p! 2 (ma () — h(8)) + —— npe(“2a1)5(n)"p"/2) .
a2 — aq
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So, for all § small enough and all a; € (0, a)

. 1 a; c+1
llm Sup 1+ /2 log]P(/’l/C, E BS t(/’(" 6)) S !
n——+00

—5W(ma(u) = h(d))
and finally

1 a c+1
li li log P(pcr € Bot(p1,6)) < —= ———mq(p). 3.17
m sup lim sup -7 log (ko € Bse(1,0)) < =5 —aaMa(p) (3.17)

In the case of a y satisfying p({0}) < 1=

7o - We have a better result. Indeed, inspired
by [16], we can observe that for all € small enough, there exists R > 0 such that

u(i-RoR) < T

Therefore,

1+¢
is a neighbourhood of i in which, for n large enough, almost surely, uc- is not. So we
have

{M' e P(R) | w/([-R,R)) < L=¢ }

1
fm i s 108 Pl € Bl = o0

(3.18)
We have obtained the upper bound of the LDP.
Lower bound. Let p € P(R) be a symmetric measure such that u({0}) C‘ . There
exists i € P(R4) such that

|1 —¢| 1Ac
= ) Id
TPl 7 P (i + (=1d)s)
where (—1Id)4ii denotes the push-forward of i by —Id

We denote by z,
define ng =

., Znap the quantiles of ;i of orders 1+711/\p7"'7 1:2%' we also
min{j € JI,n ApK | z; > e(n)}, and

, (0 | M
M‘(Mt 0

with M € M,, ,(R) defined by

i,j = x; forall j € Jng,n A pK and M; ; = 0 otherwise
From (3.14), we have
1 X 1 — ¢,
= —— Z (6n,, +0-n,,) + do
+ ‘ « 757 757 1+Cn
Besides,
201 Ac) [T 21Ac) X
o) = *d * 3.19
mal) = 2 [ el dinte) > g Ml @19

Let us also remark that by construction, ds :(u, 11as7) tends to 0 as n — 400
Let § > 0. For n large enough, we thus have

(%)

ds,t (1, parr) <

[\

(3.20)
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Using respectively (3.20), the Hoffman-Wielandt inequality (B.10) with the inequality
ds+ < W», the independence of the X ;’s, the inequalities (3.15) and (3.16), the fact that
1 <ng <nAp,and (3.19), we get for n large enough,

P(ucr € Bs,i(1,0))

1)
> (uo € By (qu 2))

> P ( - M"?) < 642)

6%(n +
, 82 (n +

N V(j, k) different, C; s, = 0)

X /52 n+p [6%2(n + p)
> J K _—
= (WE 70,1 /A PR, ( 33 8(n Ap) 8(n Ap)

n V(],k) X]‘,k‘ < €(n>\/ﬁ>
n np—(nAp—n
2 e (2 ooy
j=no
1 nAp
Z ieXP —Qp Z |Mj7j|apa/2
J=no
1
1 a (1+C)(E+c/\1)
> — _In o l4a/2
= 5 exp B T r e me (1)

Note that we can apply (3.15) and (3.16), even if it means to swap i and (— Id)ﬁ/l in order
to apply (3.16). We finally get

1 a c+1
lim inf ———07p e log P(ucr € Bsy(p,0)) > —imma(u) (3.21)

n—+oo N

forall 6 > 0.
This is the lower bound of the LDP.

Exponential tightness. Let A > 0 and m = 22‘&1:)/2 We recall that the set K, ,,

defined by (3.12) is compact. Moreover, using the computations done for the upper
bound, we have

P(uc: ¢ Ka,m) = P(ma(pcr) > m)

< exp (—a;(cn +1)ptePm + npe_(a2—a1)€(n)apa/2>

az — ay

for all a; € (0,a) and some as € (a1, a). It follows that

1 a c+1
ljlrgitig /2 logP(pcr ¢ Kam) < ~arapm= —A. (3.22)
The combination of (3.17), (3.18), (3.21), and (3.22) is the desired LDP. O
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3.3 Conclusion

To conclude this section, we show how to deduce the LDP for pxx:/, (Theorem 1.7)
from the LDP for pucs (Proposition 3.5).

Proposition 3.8. The measure ycc: satisfies the LDP with speed n'*®/? in P(R, ), for
weak topology and the good rate function ¥’ defined by

_a_ i > _ 1
W (v) = { a7z ma/Z(l/) 1fy({0}? > max (O7 1 C) . (3.23)
+00 otherwise

1 1 1
T, : (1 - (1-—)6
g 2(+cn>'u+2( cn)o
T:p— = 1+ +1 1 )
=y Ty c)

so that uccor = Ty, (per), see (3.13).
Besides, we have

Proof. We define

and

lim ds t(MC’C’ T(ILLC/)) =0. (324)

n—+oo

Indeed, let n € IN and z in the domain V ; defined by (1.6). We have

Grcor (2) = Grue) (2)]

| = dTen@ - [~ dTme)@
R

RRZ—T
1/1 1 1 1/1 1\1
= |=[=== d(u2, il R
’2<cn c)/Rz:c (MC)(x)+2(c cn)z
1 1 1
| Im z| |¢, ¢’

so, taking the upper bound on z € V; ; and the limit as n — +00, we get (3.24).

The contraction principle applied to the function 7', see [9, Theorem 4.2.1], will allow
us to conclude. Indeed, T takes its values in P(R) and is continuous for weak topology.
This strategy will make appear the good rate function ¥’ defined for all v € P(R.) by

U'(v) = inf{®'(n), pePR)s.t.v=T(u)}.

For all 11 € P(R), we have (T())({0}) = 3 (1 4+ %) u({0}) + 4 (1 — 1), hence

uioy) = 19 o @) 1“““‘”=max(o,1—1).

1+c c c

Therefore, for all v € P(R4.) such that v({0}) > max (0,1 — 1), there exists a symmetric
u € P(R) satisfying u({0}) > ‘Lfl and v = T'(i). We have in this case

ac—l—l a

W) = § s [ Jol" (o) = 2 [ ol AT G0)@) = Zzmaao)

hence ¥'(v) = —%3mq/2(v). In the case where v({0}) < max (0,1 — %), we can not find a

symmetric u € P(R) satisfying u({0}) > |}+z| and v = T(u), so ¥'(v) = +oo. Thus, we

have computed ¥’(v) for every v € P(R).

Lower bound. Let x € P(Ry) and 6 > 0. From (3.24), for n large enough, we have
dst(poct, T(puer)) < 4, hence

Plucc: € Burlp.8)) 2 P (T(uer) € Bur (13 ) -
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By Proposition 3.5 and the contraction principle, we thus have

1
iminf ——— ¢ > — i ") > =¥'(u). .
liminf s logP(uoo: € Baa(,8)) 2~ inf - W/(v) 2 —¥'(u) (3.25)

Upper bound. Let F be a closed subset of P(R.) and § > 0. From (3.24), for n large
enough, we have d; (1ucct, T(1er)) < 0, so

P(pcc: € F) < P(T(per) € FO),
where F? denotes the §-neighbourhood of F for the distance ds ¢, namely
F* = {v e P(Ry) | 3p € F, doy(u,v) < 5}

Applying the contraction principle again, we thus have
. ]- . Vi
i sup rays 0 Plucer € 1) < = Jof, W(v).

This is true for all § > 0 so, taking the limit as 6 — 0, we get (see [9, Lemma 4.1.6(a)])

. O /
lylzlgilif e logP(pect € F) < — uuellquj (v). (3.26)

Combining (3.25) and (3.26), we can conclude that pucc: satisfies the announced
LDP. O

Because rectangular free convolution is cozntinuous for weak topology, see [5, The-
orem 3.12], the function p +— (/a8 \/inp,c)" is so, therefore, by Proposition 3.8 and

the contraction principle, (y/zccr Be \/MMP?C)Q satisfies the LDP with speed n'T%/2 on
P(R,) governed by the good rate function

J' () = U'(v)  if there exists v € P(R4) such that p = (/v 8. /MMP76)2
+0o0 otherwise

Thanks to the exponential equivalence between pxx:/, and (\/ucct H. \/MMP,C)Q ob-
tained in Proposition 3.1, we can conclude that pxx:/, satisfies the same LDP, see [9,
Theorem 4.2.13], which ends the proof of Theorem 1.7.

A Concentration bounds for the information-plus-noise model

A.1 Concentration for some functions of the resolvent

In Section 2, in order to prove Lemma 2.5, we needed the following concentration
estimates.

Proposition A.1 (adaptation from [20, Lemma 8]). LetY € M,, ,(R) be a random matrix
with i.i.d. entries, let M € M,, ,(R) be a deterministic matrix and let z € C\ R.

We define X = % + M, S = (21, — XX*)~! the resolvent of XX", ¢, = %, and
0% = Var(Y11).

We assume that the distribution of Y;; has mean zero and satisfy the following
Poincaré inequality:

\V/f S Cl(R, R) s.t. E(f/(Yl,l)Q) < +00, Var(f(YM)) < 0'2 E(f/(Y171)2) .

Then, for all deterministic matrices U € M, (R) and V' € M,, ,(R), and for all integers
n,p, we have

2
Var (1 Tr(SU)> < %u(z)HUH(Tr(UUt))W (A1)
n n
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and
1 ‘ 902¢c,,
Var (nTr(X SV)) < 3 v(z)
(T(VVDY2 gy (T(VVIDYE s (Te(VV))Y/3
s (v I g CET e CUTIZY |
where
()= g
e = [Tmz[*  |Imz|3
and

(=) = ma 1 ol , 1 ol 1 2
= max .
Vi [Tm2]2” [Im 2|3 |Imz[2" \ |Imz2|2 = |Imz|

Remark A.2. * In the proof of Lemma 2.5, we apply (A.1) to U = I,, and U = R, and
we apply (A.2)toV = M.
* Since ||V < Tr(VV*)1/2, (A.2) implies

1 + 902¢c,, +

Var ( Tr(X SV)) < TMU(Z) Tr(VVY). (A.3)

n n
Having in mind the large deviations in Section 3, we want to get a bound in
Tr(MM?") in Lemma 2.5, that is why we use (A.3) instead of (A.2) in its proof.

* We get here slightly better bounds than [20]. Indeed, we can recover their results
from ours since Tr(AA?) < n||A||? (see Proposition B.1 (iv)). This improvement is
due to the fact that we used the inequality | Tr(AC)| < /n| A (Tr(CC*))/? (see
Proposition B.1 (iii)) instead of | Tr(AC)| < n||A]|.||C]].

+ If the distribution of Y; ; satisfies the Poincaré inequality with a constant C instead
of 02, then o must be replaced by C in the bounds (A.1) and (A.2).

* In the case of complex matrices Y, M, U, V, the bounds are very similar and only
the constants change.

Proof. Using the sub-additivity property of variance, the Poincaré inequality, and the
differentiation formula (B.1), we get

1 1

Var ( Tr(SU)) = Var Z =S Uk, j
" 1<jh<n

2

SO’QE Z EZLD%[,S‘,;C.U]CJ

a,b n 7,k \/ﬁ
r 2
1
=o’E Z n2p Z(SX)jbea,kUk,j + 55.a(X"S)p kUr 5
a,b .k
T
o
= 2 E 2;((SUSX)a,b +(X'SUS),a)?
T
(o2
=7 E z;(SUSX)i’b +2(SUSX)ap(X'SUS)pq + (X'SUS)E,
oL
= 07 E [Tr(SUSX (SUSX)!) 4+ 2 Te(SUSX X'SUS) + Tr(X'SUS(X!SUS)!)] .
n=p
(A.4)
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Using the resolvent identity SX X! = XX'S = 25 — In, the inequality | Tr(AB)| <
Vn'Tr(AA*)'/?|| B|| (see Proposition B.1 (iii)), and ||S|| < (see Proposition B.2 (iv)),

\Imz|
we get
I Te(SUSX(SUSX)")| = |Tr(U(2S — 1,,)SU'S?)|
1
< T t\1/2 |2 A
< VAU (e (A5
and very similarly,
1
T XXt < otz (! A
|Tx(SUS SUS)| < vn|U| Te(UU") <|Imz|4 + T 2P (A.6)
and ¥ )
t t [ < t\1/2 o
ITe(X*SUS(X'SUS))| < v/n|U| Te(UU*) <|Imz|4 + |Imz|3) . (A.7)
Combining (A.4), (A.5), (A.6) and (A.7), we conclude that
1 do*cy, 1 2| t\1/2
Var (n Tr(SU)) < Ry <|Imz|3 T 2] ) |U|| Te(UU?)Y

Let us now prove the second inequality. By the same arguments as above, we get

1 1
~Tr(XtSV) ) =V Y =X, ;
Var (TL r( S )) ar n k,]Sk,lW,J

1<k,i<n
1<j<p
2
) 1 1
< o°E - Z Doy Xy 5.SkaVig + Xijo——=Dap Sk, Vi j
a,b 7.k,

2
_ Tj'p [Z (SV)ap + (SVXLSX) 0y + (XLSVXLS), )
a,b

= ;Tp E [Tr(SV(SV)") 4+ Tr(SVX!SX(SVX'SX)") + Tr(X* SVX'S(X'SVX'S))
+2Tr(SVX'SX(SV)") + 2Tr(SVX'SVX'S) + 2 Tr(SVX'SXX'SVX'S)]. (A.8)

We will now bound these terms, always using the resolvent identities SX X! =
XXt8 =28 -1, XXtS* S*X Xt =zS* — I, inequalities (i)—(iii) in Proposition B.1,
and the bound ||5] < We get for example

\Imz|
|Te(SV(SV))| = [Te(SVV'S)| < V| V| Tr(vvt)l/QHmZ|2 (A.9)
and
I Tr(SVX'SX(SVX'SX)")|
= |Tr(V'S*’VX'(2S - 1,)SX)|
< Te(VES2VVH(S*)2V)V2 Tr(X (28 — 1,)SX XtS*(2S* — I,,)X)'/?
= Tr(V!S2VVH(S*)2V)Y2 Te(S* (28 — ) X Xt(2S — 1,,)(28 — I,,))/?
. 1/2
< (x/ﬁll‘/ll‘3\\~9*ll4Tr(VVt)“2 Tr((2S" — 1,)*(28 — 1,)*)"/?
2
< 1/4 3/2m t\1/4 |z 1
S o |2||V|| v(VVHYEn T 7| +
2
_  .3/4 3/2 t\1/4 |2 1
3|V |32 Te(VVY) (|Im22 + Tmal) (A.10)
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Very similarly, we get

2
\Tr(XfSVXtS(XtSVXtS)tM§n3/4||v3/2Tr(vvt)1/4( 12 +1) . (A1)

[Tmz]2  |Im 2|
1
TSV XS XV < nS/8vI5/4 Te(vyty3/s [ 12 A12
[THSVXSXVES) < BV OVVY P (5 * T ) A12)
1
T Xt Xt < T t\1/2 |Z| Al
I Tr(SVX'SVX'S)| < v/nl[V| Te(VV?) TP [mep) (A.13)
and finally
2
m(svatsxxtsvxis)| < vav vy (L LY e
[Imz|2  |Im 2|

Combining inequalities from (A.8) to (A.14), we finally obtain the announced bound.
O

Remark A.3. In the proof above, it is possible to improve some majorizations using the
inequality ||SX| < \Ilel where y is a square root of z (see Proposition B.2 (v)). For
instance, it allows to get

1

| Tr(XTSVXIS(XTSVXES)H)| < \/ﬁﬁ(vvt)mnvn.ﬁ
my

instead of (A.11). However, in (A.10), which is the other dominant term in (A.8), we can
not improve the power of n by this strategy.

A.2 Concentration of the empirical spectral measure

In Section 3, in order to prove Proposition 3.1, we needed the following concentration
bound.
Proposition A.4 (adaptation from [7, Theorem 2.5]). Letx > 1, Y € M,, ,(R) a random
matrix with i.i.d. entries bounded by k, M € M,, ,(R) a deterministic matrix such that
+ Te(MM?*) < x*, and s,t > 0. We assume that ¢, = 2 — ¢ € (0,+00) asn — +oo.

There exists 8 > 0 such that for all s large enough, t small enough, n large enough,

2/5
andd € {(T) ,1], we have

Bk n26°

P (dsi (1ey/yprany v ymemns By ey ypeam) = 6) < 5372 P~
(A.15)
Remark A.5. * Here « is a constant but we are interested in the dependence on x in

the bound since we apply (A.15) to a x depending on n in Section 3.
e This result remains true if Y and M are complex matrices and the entries of Y
have independent real and imaginary parts.

Proof. We will apply [15, Theorem 1.3(b)] to the (n + p) x (n + p) matrix
Y
0 t ‘ 5+ M
Y
(5 + M) ‘ 0
The matrix M is not present in [15] but it is possible to do so because

Tr(X%) < Z( +Mm) < Z 24+ = TrMMt)

Xq =

n+p
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so, thanks to the hypotheses on Y and M, we have %—i—p Tr(X,24) < 8k2. Therefore, the
argument in [15, p. 132] does not change and we can apply [15, Theorem 1.3(b)] adding
the matrix M. Consequently, there exists § > 0 such that for all n large enough and

RS [(622)2/5 , 1}, we have

P(Sl}p‘/fduxA—E/fduxA

where the supremum is taken over all bounded Lipschitz functions f such that

f(x) = f(y)
r—y

Bli —n255/ﬁx4
> 5) < me

sup |f(z)| + sup ’ <1. (A.16)
zFy

z€eR

Moreover, using (B.7), we can check that when s is large enough and ¢ is small

enough, for every z € V;,, the function f : x — ﬁ is Lipschitz, bounded, and satisfies
(A.16). Noting in addition that

1 1 1 1
/ dux , (z) = <2n/ Aty o M)y ypsanyt (T) + (n —p) >

7z — 12 n+p z—x 2

and using the definition (1.5) of d, ;, we find (A.15) even if it means to change . O

B Technical tools

In this appendix, we summarize miscellaneous results used throughout the paper.

B.1 Traces and matricial norms inequalities

For a matrix A € M,, ,(C), we denote by ||A] its operator norm associated to Eu-
clidean norms and
[Alloo = _ max _ |Ajx|.

>IN, IR

If B is an other matrix in M,, ,(C), we denote by A o B the Hadamard product of A and
B, i.e. the matrix defined by (Ao B), = A, B, . Finally, diag(A) denotes the matrix
whose entries are given by A; 1.d; ., where ¢ is the Kronecker delta.

Proposition B.1. Let A,B € M, ,(C), C € M, ,(C), D € M,(C), E € M, ,(C). We
have the following.

(i) | TH(AC)| < (Tr(AA%)/2(Tx(CC))2,
(i) | Te(AC)| < nl|A.|C],
(i) | Tr(AC)| < V| Al[(Tr(CC) 12,
(@) [|A]| < (Tr(44")2 < Vil A
(v) (Tr(AA%))2 < \/np]| Al s
(vi) || diag(D)]| = || diag(D)]lcc < [ Dllc,
(vii) |40 Blloo < [ Al Bll oo,
(vii) Ao B < [ All|BIl,
(ix) Tr((Ao B)(Ao B)*) < Tr(AA*)| B|%.

’

Most of these points are classical or easy to check. Note that the combination (iii) of
(i) and (ii) will be crucial for us and that a proof of (viii) requires the use of the matrices
A1,1 A1,2 ALp
A=
An 1 An 2 An,l’

s 3
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and

B/

BLP

Bn’p
B.2 Properties of resolvents

Let A € H,(C) and 2 € C\ R. The resolvent of A at z is the matrix R(A) = (21, — A)~L.
For A € M, ,(C), we denote by S(A) the resolvent R(AA*), or just S if no confusion can
arise.

Proposition B.2. Let A, B € M,, ,(C) and z € C\ R. We have the following.

(i) SAA* = AA*S =28 — I,,,
(i) S(A+ B) - S(A) = S(A+ B)(AB* + BA* + BB*)S(A),
(i) Gy, ,.(2)=2Tr S,

T n

@) [ISloo < ISIl < sy

[ Im 2|~

(V) [[SAllco < ISA|l < gy where y is a square root of z,
(vi) |A*SAllo < [|A*SA| <1+ |52 .

Im z

(vii) We denote by D, ; the derivation w.r.t. Re A, ;, and by 6 the Kronecker delta. For
alla,j, k € J1,nK and b,l,m € J1,pK, we have

Da,ij,k = (SA)j,bSa,k =+ Sj,a(A*S)b,k s (B.1)
Doy(SA)j1 = (SA);jp(SA)ay + Sja(A*SA)p1 + 06,154, (B.2)
Do p(A*S)1 s = (A"SA)pSak + (A"S)1,a(A"S)p ke + 06,15k » (B.3)

Da,b(A*SA)l,m = (A*SA)l,b(SA)a,m + (A*S)l,a(A*SA)b,m
+ 0p,m(A"S)10 + 05,1 (SA)am, (B.4)

Dz,ij,k = 2[Sj,aSa,k + (SA)j,b(SA)a,bSa,k + Sj,a(A*SA)bbeayk
+ S5.a(A"S)pa(A"S)p i + (SA)j pSa.a(A*S)px], (B.5)

Df’;,ij,k = 6[(SA);pS0,a5 k + 55,a(A"S)paSak + Sja(SA)apSak
+S55.050,a(A* )bk + (SA)j5(SA)2 1 Sak + Sj.a(A*S)} L (A*S)pk
+(SA); 5(SA)apSa,a(A" )bk + (SA)j 1Sa,a(A%S)b.a(A"S)p k
+85,a(A"SA)y 5 (SA)apSak + (SA)jbSa,a(A*SA)bbSak
+855,a(A"S)p,a(A*SA)ppSak + Sj,a(A"SA)b6Sa,a(A*S)bk] . (B.6)
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Most of these relations are classical or obtained by simple computations. Note
however that (v) and (vi) respectively follow from the identities

gL, | AN ([ 35" | A@L — AT A
—A 9L, )~ \(SA7 |30, — A A

and A*(zl, — AA*) YA =1, + 2(z1, — A*A)~L.
Note also that if y is a square root of z and z belongs to the domain V; ; defined by
(1.6), then we can easily prove that

2
IImyI2:ImZ< (Re2)” Rez>>s(\/t2+1—t)>0. (B.7)

2 (Im z)? ~Imz 2

B.3 Inequalities for empirical spectral measures
Proposition B.3 (Rank inequality, see [7, Lemma B.1]). Let A, B € H,,(C). We have

1
dxs(pa,pp) < - rank(A — B). (B.8)

Proposition B.4 (Rank inequality for covariance matrices, see [3, Theorem A.44]). Let
A,B e M, ,(C). We have

1
sz(,uAA*,,uBB*) S Erank(A—B). (Bg)

Proposition B.5 (Hoffman-Wielandt inequality, see [7, Lemma B.2]). Let A, B € H,,(C).
We have

1
W3 (as mp) < — Tr((A = B)?), (B.10)

where W, denotes the L?-Wasserstein distance on P(R).
Proposition B.6 (see [3, Corollary A.42]). Let A, B € M,, ,(C). We have

2
Wi(pane, ppp-) < ﬁTr(AA* + BB*) Tr((A — B)(A — B)*). (B.11)

Proposition B.7 (Schatten’s inequality, see [22, Theorem 3.32]). Let A € H,(C) and
p € (0,2]. We have

1
[l duat@ < 230 S lack| (8.12)

p/2
n n
k=

1 \j=1
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