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Asymptotic freeness for rectangular random matrices
and large deviations for sample covariance matrices

with sub-Gaussian tails
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Abstract

We establish a large deviation principle for the empirical spectral measure of a sample
covariance matrix with sub-Gaussian entries, which extends Bordenave and Caputo’s
result for Wigner matrices having the same type of entries [7]. To this aim, we need
to establish an asymptotic freeness result for rectangular free convolution, more
precisely, we give a bound in the subordination formula for information-plus-noise
matrices.
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1 Introduction

Throughout this paper, P(E) will denote the set of probability measures on a space
E,Mn,p(R) (resp. Mn,p(C)) the set of n × p real (resp. complex) matrices, Hn(C) the
set of n× n Hermitian matrices, At (resp. A∗) the transpose (resp. transconjugate) of a
matrix A, and Tr(A) its trace. Besides, for a random variable X, X̊ denotes the centred
variable X − E(X). Finally, for two real numbers x, y, we denote by x ∧ y the minimum
of x and y.

1.1 Large deviation results in random matrix theory

Let us first recall some basic facts in random matrix theory (RMT). A central object
in RMT is the empirical spectral measure of a matrix A ∈ Hn(C), namely the probability
measure on R defined by
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Rectangular asymptotic freeness and large deviations of random matrices

µA =
1

n

n∑
k=1

δλk(A) ,

where λ1(A), . . . , λn(A) denote the eigenvalues of A.
It is well known (cf. [21]) that if X is a Wigner matrix, i.e. X ∈ Hn(C) and the

families of centred independent and identically distributed (i.i.d.) random variables
(Xj,j)1≤j≤n, (Xj,k)1≤j<k≤n are independent, and if the variance Var(X1,2) = E |X1,2 −
E(X1,2)|2 equals 1, then almost surely, the spectral measure µX/√n converges weakly
towards the semicircular distribution µsc, i.e. for any bounded continuous f : R→ R,

lim
n→+∞

∫
R

f dµX/
√
n =

∫
R

f d µsc .

The semicircular distribution µsc is the probability measure on R defined by

dµsc(x) =
1

2π

√
4− x2 1[−2,2](x) dx .

In the case of a sample covariance matrix, i.e. a matrix XX∗ with X ∈ Mn,p(C)

having centred i.i.d. entries, if Var(X1,1) = 1, then almost surely, the spectral measure
µXX∗/p converges weakly towards the Marcenko-Pastur distribution µMP,c with ratio c
as n, p→ +∞ with n

p → c ∈ (0,+∞) (cf. [18]). This probability measure on R is defined
by

dµMP,c(x) = max

(
1− 1

c
, 0

)
δ0 +

√
(bc − x)(x− ac)

2πxc
1[ac,bc](x) dx

with ac = (1−
√
c)2 and bc = (1 +

√
c)2.

For these two models in which the empirical spectral measure converges, we can
investigate the speed of convergence and more particularly large deviation principles.

We recall from [9] that a sequence of random variables (Zn)n≥1 with values in a
topological space (E,O) with σ-Borel field B satisfies the large deviation principle (LDP)
with speed v and rate function I in the topology O if

• I : E → [0,+∞] is a lower semi-continuous function, i.e. the level set {x ∈
E | I(x) ≤ t} is closed for every t ≥ 0,

• v : N→ (0,+∞) admits a limit equal to +∞,

• for all B ∈ B,

− inf
x∈Int(B)

I(x) ≤ lim inf
n→+∞

1

v(n)
logP(Zn ∈ B)

≤ lim sup
n→+∞

1

v(n)
logP(Zn ∈ B) ≤ − inf

x∈Clo(B)
I(x)

where Int(B) and Clo(B) denote resp. the interior and the closure of B.

We also recall that the rate function I is said to be good if the level set {x ∈ E | I(x) ≤ t}
is compact for every t ≥ 0.

In [4], Ben Arous and Guionnet proved that if X is in the GUE, i.e. X is a Wigner
matrix and X1,1 (resp. X1,2) has law N (0, 1) (resp. N 2

(
0, 1

2I2
)
), then µX/

√
n satisfies a

LDP in P(R) with speed n2 and rate function

I(µ) =
1

2

∫
x2 dµ(x)−

∫∫
log |x− y| dµ(x)dµ(y)− 3

4
.

This result was extended to LUE matrices, i.e. sample covariance matrices XX∗ where
X has standard Gaussian entries, by Hiai and Petz [16]. Note that in fact, these two LDPs
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Rectangular asymptotic freeness and large deviations of random matrices

do not concern only Gaussian matrices but also more general unitarily invariant models.
They strongly rely on the fact that for the considered models, the joint distribution of the
eigenvalues has an explicit form, which is also the case in [12].

In [7], Bordenave and Caputo managed to obtain a LDP for Wigner matrices in another
case, where the distribution of the Xj,k’s has sub-Gaussian tails. This is remarkable
because here the joint distribution of the eigenvalues is unknown. Let us recall their
result.

Definition 1.1. For α > 0 and a ∈ (0,+∞], we denote by Sα(a) the class of complex
random variables Z such that

lim
t→+∞

−t−α logP(|Z| ≥ t) = a (1.1)

and such that |Z| and Z/|Z| are independent for large values of |Z|, i.e. there exist
t0 > 0 and a probability measure ϑa on the unit circle S1 such that for all t ≥ t0 and all
measurable sets U ⊂ S1, we have

P(Z/|Z| ∈ U ∩ |Z| ≥ t) = ϑa(U)P(|Z| ≥ t) .

In particular, a real random variable Z belongs to Sα(a) if it satisfies (1.1) and there exist
t0 > 0 and a probability measure ϑa on {−1, 1} such that for all t ≥ t0 and all U ⊂ {−1, 1},
we have

P(|Z| ≥ t ∩ sign(Z) ∈ U) = ϑa(U)P(|Z| ≥ t) . (1.2)

Note that the first hypothesis implies that a random variable in Sα(a) has finite
moments of all orders. Besides, the second assumption is a technical one, which is used
only when proving lower bounds, see (3.16).

Theorem 1.2 (see [7, Theorem 1.1]). Let X be a Wigner matrix. We assume that
Var(X1,2) = 1, X1,2 ∈ Sα(a), and X1,1 ∈ Sα(b) for some α ∈ (0, 2) and a, b ∈ (0,+∞]. Then
the spectral measure µX/√n satisfies the LDP with speed n1+α/2 and good rate function

J(µ) =

{
Φ(ν) if there exists ν ∈ P(R) such that µ = µsc �ν
+∞ otherwise

where Φ : P(R) → [0,+∞] is a good rate function (see [7] for further details) and �
denotes free convolution (see Section 1.2).

Let us make a few remarks about this result. Roughly speaking, after random matrix
considerations, the proof of Theorem 1.2 consists in proving a LDP for some sparse
random graphs associated to the Wigner matrix X. Therefore, the rate function Φ

expresses as the supremum of functions of probability measures on graphs and it can
not be computed in general. However, in some particular cases, it is possible to compute
Φ(ν). For example, if ν is a symmetric distribution on R, b <∞ and the support of ϑb is
{−1, 1}, then we have

Φ(ν) =
(a

2
∧ b
)
mα(ν) ,

where mα(ν) denotes the α-th moment of ν.
Theorem 1.7 below will extend Theorem 1.2 to sample covariance matrices XX∗ with

X1,1 ∈ Sα(a) for some α ∈ (0, 2), a ∈ (0,+∞]. Note that to simplify, we will assume that
X is a real random matrix.

Let us mention here that LDPs for the top eigenvalue of Wigner matrices have
also been obtained in Ben Arous and Guionnet’s setting, see [1, p. 81], and for the
model introduced by Bordenave and Caputo in [2]. Furthermore, LDPs for the extreme
eigenvalues of sample covariance matrices have been proved in a general setting in [13].
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Rectangular asymptotic freeness and large deviations of random matrices

1.2 Deformed matrix models

After understanding the behaviour of the spectral measure of Wigner matrices or
sample covariance matrices, the question of deformations of these models has been
investigated. Several types of deformations have been studied, the main ones being
matrices of the type X + A with A ∈ Hn(C) (additive deformation), Σ1/2XX∗Σ1/2

with Σ ∈ Hn(C) positive definite (multiplicative deformation) or (X +A)(X +A)∗ with
A ∈Mn,p(C) (information-plus-noise model).

A tool to study the spectral measure of a deformation is free probability, and more
particularly free convolutions. Let us recall their definitions.

Theorem 1.3 (see [17, Proposition 4.3.9]). Let A, B be two independent n×n Hermitian
random matrices such that

• either A or B is unitarily invariant, i.e. for M = A or B, for any unitary U ∈Mn(C),
UMU∗ has the same law as M ,

• µA and µB converge weakly in probability to some distributions µ1 and µ2 on R as
n→ +∞.

Then, as n → +∞, the spectral measure µA+B converges weakly in probability to a
deterministic distribution depending only on µ1 and µ2. This distribution is called the
free (additive) convolution of µ1 and µ2, and is denoted by µ1 � µ2.

A similar result also exists for the singular values of the sum of two rectangular
matrices and it is due to Benaych-Georges. The empirical singular value distribution of
a matrix A ∈Mn,p(C) is the probability measure on R+ defined by

νA =
1

n ∧ p

n∧p∑
k=1

δσk(A) ,

where σ1(A), . . . , σn∧p(A) denote the singular values of A, i.e. the square roots of the
eigenvalues of the positive matrix AA∗ (resp. A∗A) if n ≤ p (resp. n ≥ p).
Theorem 1.4 (see [5, Theorem 3.13]). Let A, B be two independent n × p random
matrices such that

• either A or B is bi-unitarily invariant, i.e. for M = A or B, for any unitary matrices
U ∈Mn(C) and V ∈Mp(C), UMV has the same law as M ,

• νA and νB converge weakly in probability to some distributions µ1 and µ2 on R+ as
n, p→ +∞ with n

p → c ∈ [0,+∞).

Then, as n→ +∞, the singular value distribution νA+B converges weakly in probability
to a deterministic distribution depending only on µ1, µ2, and c. This distribution is called
the rectangular free convolution with ratio c of µ1 and µ2, and is denoted by µ1 �c µ2.

Free convolutions can be characterized in terms of another key object in RMT, namely
Stieltjes transform. For a probability measure µ on R, we call the Stieltjes transform of
µ the function Gµ : C \R→ C defined by

Gµ(z) =

∫
R

1

z − x
dµ(x)

for all z ∈ C \R. The following properties are obvious:

|Gµ(z)| ≤ 1

| Im z|
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Rectangular asymptotic freeness and large deviations of random matrices

and

|Gµ(z)−Gµ(z′)| ≤ |z − z′|
| Im z|.| Im z′|

.

We will use them implicitly in this paper.

Note that the notion of Stieltjes transform is related to the resolvent one, since for a
matrix A ∈ Hn(C), we have GµA(z) = 1

n Tr((zIn −A)−1). Useful properties of resolvents
we will use in this paper are gathered in Appendix B.2.

Stieltjes transform allows to express subordination relations for free convolutions.
To state these relations, we need some additional notations. For µ ∈ P(R), we denote
by µ2 the distribution of X2 when X has law µ. Similarly, for µ ∈ P(R+), we denote
by
√
µ the symmetrization of the distribution ν of

√
X when X has law µ, i.e. the

symmetric distribution on R defined by
√
µ(B) = ν(B)+ν(−B)

2 for all Borel set B. We
have the following subordination formulas, the first one is due to Biane (cf. [6]) and the
second one is obtained from Dozier and Silverstein’s work [10] and from the paper [5]
by Benaych-Georges.

Proposition 1.5. • Let µ ∈ P(R) and ν = µ� µsc. We have

Gν(z) = Gµ (z −Gν(z)) . (1.3)

• Let µ ∈ P(R+), c ≥ 0, and ν =
(√
µ�c

√
µMP,c

)2
. We have

Gν(z)

1− cGν(z)
= Gµ

(
z(1− cGν(z))2 − (1− c)(1− cGν(z))

)
. (1.4)

In Theorem 1.6 below, we are interested in the information-plus-noise model and we
control the distance between the spectral measure and the corresponding rectangular
free convolution, by bounding the difference between the two sides in (1.4) evaluated at
the average Stieltjes transform.

1.3 Main results

Note that in the rest of the paper, we will only consider real matrices for ease but
our results may generalize to complex matrices adapting the proofs. The main difficulty
in the complex case is to adapt the general integration by parts formula (2.21) which is
used several times in this paper, which would lead to heavier computations.

Let us define, for s, t > 0, the distance ds,t on P(R) by

ds,t(µ, ν) = sup
z∈Vs,t

|Gµ(z)−Gν(z)| , (1.5)

where

Vs,t =

{
z ∈ C | Im z > s,

∣∣∣∣Re z

Im z

∣∣∣∣ < t

}
. (1.6)

As the distance d defined in [7], ds,t metrizes weak convergence. Let us mention that for
all µ, ν ∈ P(R), we have

ds,t(µ, ν) ≤ min (dKS(µ, ν),W1(µ, ν)) , (1.7)

where dKS and W1 are respectively the Kolmogorov-Smirnov and L1-Wasserstein dis-
tances on P(R). Some key inequalities for the distance between two empirical spectral
measures are summarized in Appendix B.3.

Our first main result is the following.
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Rectangular asymptotic freeness and large deviations of random matrices

Theorem 1.6. We assume that cn = n
p is bounded below and above by two constants in

(0,+∞). Let c ≥ 0. There exist s, t > 0 and a constant cs,t > 0 such that for any random
matrix Y ∈ Mn,p(R) with i.i.d. entries satisfying Var(Y1,1) = 1 and E(Y 4

1,1) < +∞, for
any deterministic matrix M ∈Mn,p(R), and for all n large enough, we have

ds,t

(
Eµ(Y/

√
p+M)(Y/

√
p+M)t ,

(√
µMMt �c

√
µMP,c

)2)
≤ cs,t

(
E |Y̊1,1|3 + E(Y̊1,1

4
)
)( 1√

n
+

Tr(MM t)1/2

n

)
+ cs,t

(
|cn − c|+

1

n
+

Tr(MM t)1/2

n5/4

)
,

where Y̊ is the matrix whose entries are given by Y̊j,k = Yj,k − E(Yj,k).

This result allows to understand the influence of the deformation in the information-
plus-noise model. First, we can observe a decorrelation between the classical term

1√
n

and the Frobenius norm of the deformation divided by a better power of n, namely

Tr(MMt)1/2

n . It is important for us to get this precise estimate since in Section 3, we apply
Theorem 1.6 to a matrix M whose Frobenius norm is not bounded but of order

√
n log n.

Besides, it is interesting to compare Theorem 1.6 to the Wigner case (cf. [7, Theorem
2.6]). Bordenave and Caputo investigated additive deformations and obtained that in this
model, the distance between the spectral measure and the corresponding free additive
convolution is bounded by 1√

n
. This bound is uniform in the deformation M and it

depends on the initial matrix through its moments only. In the case of sample covariance
matrices, it would have been surprising if we had obtained a better bound. Table 1 below
permits to compare Bordenave and Caputo’s results with ours in the Gaussian and the
general cases. We recall that LOE matrices are sample covariance matrices XXt where
X has standard real Gaussian entries.

In addition to this, let us mention that in [8], the authors were interested in the case
of Wigner matrices whose entries have a symmetric distribution satisfying a Poincaré
inequality, which leads to better bounds than [7].

Gaussian Non-Gaussian

Wigner
matrix

Deformed GUE matrix
1

n

Deformed Wigner matrix
1√
n

Covariance
matrix

Deformed LOE matrix
1

n
+

Tr(MM t)1/2

n5/4

Info-plus-noise matrix
1√
n

+
Tr(MM t)1/2

n

Table 1: Bound in the subordination relation (1.3) or (1.4) for different matrix models.

Theorem 1.6 above will be used in the proof of our second main result.

Theorem 1.7. Let X ∈ Mn,p(R) be a random matrix such that cn = n
p → c ∈ (0,+∞).

We assume that Var(X1,1) = 1 and that there exist α ∈ (0, 2) and a ∈ (0,+∞] such that
X1,1 ∈ Sα(a).
Then, the empirical spectral measure µXXt/p satisfies the LDP with speed n1+α/2 in
P(R+), governed by the good rate function J ′ defined by

J ′(µ) =


a

cα/2
mα/2(ν) if there exists ν ∈ P(R+) s.t. µ =

(√
ν �c

√
µMP,c

)2
and ν({0}) ≥ max

(
0, 1− 1

c

)
+∞ otherwise

where mp(µ) =
∫
R
|x|p dµ(x) denotes the p-th moment of a distribution µ.
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Rectangular asymptotic freeness and large deviations of random matrices

It is very similar to Bordenave and Caputo’s result (see Theorem 1.2), the main
difference being the explicit expression of the rate function in all cases. This is due
to the fact that here, we can achieve large deviations explicitly because all entries of
our matrix X have the same distribution, which is not the case for the Wigner matrices
considered in [7]. Consequently, a large deviation µXXt/p ∼

(√
ν �c

√
µMP,c

)2
can be

reached explicitly by considering the event µdiag(X) diag(X)t/p ∼ ν, where diag(X) is the
matrix X from which we have removed off-diagonal entries, and large deviations can be
proved directly using Schatten’s inequality, see Section 3.2. In the Wigner case, this is
not possible to do so because, roughly speaking, there are two ways to achieve large
deviations, using diagonal entries or off-diagonal entries.

Note also that contrary to J , the rate function J ′ does not depend on the support of
the law ϑa appearing in Definition 1.1.

Finally, we mention that our proof does not use sparse random graphs as in Bordenave
and Caputo’s original proof [7] but it would be possible to do so (see [14, Section 4.6]).

The rest of the paper is organized as follows. In Section 2, we prove the bound for
rectangular free convolution stated in Theorem 1.6. In Section 3, we prove the large
deviation principle in Theorem 1.7. In Appendix A, we state and prove concentration
results used in Sections 2 and 3. Finally, in Appendix B, we summarize miscellaneous
inequalities and identities used throughout the paper.

2 Asymptotic freeness

This section is devoted to the proof of Theorem 1.6. This theorem is in fact a
consequence of the following, as we will see in Section 2.1.

Theorem 2.1 (Bound in subordination formula (1.4)). We assume that cn = n
p is bounded

below and above by two constants in (0,+∞). Let c ≥ 0. There exist s, t > 0 and a
function f , bounded on the domain Vs,t defined by (1.6), such that for any random matrix
Y ∈ Mn,p(R) with i.i.d. entries satisfying Var(Y1,1) = 1 and E(Y 4

1,1) < +∞, for any
deterministic matrix M ∈Mn,p(R), for all n large enough, and for all z ∈ Vs,t, we have∣∣g(z)− (1− cg(z))GµMMt (z(1− cg(z))2 − (1− c)(1− cg(z)))

∣∣
≤ f(z)

(
E |Y̊1,1|3 + E(Y̊1,1

4
)
)( 1√

n
+

Tr(MM t)1/2

n

)
+ f(z)

(
|cn − c|+

1

n
+

Tr(MM t)1/2

n5/4

)
,

where g(z) = Gµ(Y/
√
p+M)(Y/

√
p+M)t

(z) and g(z) = E(g(z)).

The proof of Theorem 2.1 follows the same lines as Bordenave and Caputo’s one for
the bound in subordination formula (1.3) for free additive convolution (see [7, Theorem
A.1]). It consists in two main steps: the Gaussian case and the general case, which is
deduced from the Gaussian case by interpolation. The starting point is also a resolvent
identity, see Proposition B.2 (ii).

However, contrary to the Wigner case, when considering the difference between
the resolvents of two covariance matrices AA∗ and (A + B)(A + B)∗, not only does B
appear in the difference but also A. Thus, if we want to show that the difference between
the resolvents is small when B is small, we must be more careful because some new
phenomena appear.

Let us mention that in the Gaussian case, we have a better bound (see Proposition 2.3).
In the proof, we define

X =
Y
√
p

+M .

EJP 22 (2017), paper 53.
Page 7/40

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP4326
http://www.imstat.org/ejp/


Rectangular asymptotic freeness and large deviations of random matrices

We also consider s > 2, t > 0, and along the proof, s can increase and t can decrease.
Moreover, f will denote a bounded function on Vs,t, which can also change from one line
to another. In particular, for all z ∈ Vs,t and x < y, since we have

|z|x

| Im z|y
=

1

| Im z|y−x

((
Re z

Im z

)2

+ 1

)x/2
<

1

sy−x
(t2 + 1)x/2 ,

we will write
|z|x

| Im z|y
≤ f(z)

as soon as x < y.
Before starting the proofs, let us state a lemma we will use in the different steps.

BC(z, δ) denotes here the ball with centre z ∈ C and radius δ > 0 for the usual distance
in C.

Lemma 2.2. For µ ∈ P(R) and z ∈ C, we define

φz,µ : (h, γ) 7→ (1− γh)Gµ(z(1− γh)2 − (1− γ)(1− γh)) .

There exist s, t > 0 and ls,t, l′s,t ∈ (0, 1) such that

• for all µ ∈ P(R), z ∈ Vs,t, and γ ≥ 0, the function φz,µ(., γ) is Lipschitz on BC
(
0, 1

s

)
with constant ls,t,

• for all µ ∈ P(R), z ∈ Vs,t, and h ∈ BC
(
0, 1

s

)
, the function φz,µ(h, .) is Lipschitz on

[0,+∞) with constant l′s,t.

The proof of this lemma consists in simple computations and is left to the reader. Let
us mention however that it relies on the inequality

| Im η| ≥ Im z

(
(σ − 1)(σ2 − 2)

σ2(σ + 1)
− 2t(σ + 1)

σ2

)
− |1− γ|

σ
(2.1)

where η = z(1− γh)2− (1− γ)(1− γh) and σ = s
γ . This inequality is an easy consequence

of the development of Im η. We will use it once again later.
Furthermore, note that choosing a larger s and a smaller t, ls,t and l′s,t can be as close

to 0 as wanted.

2.1 Proof of Theorem 1.6

First, let us deduce Theorem 1.6 from Theorem 2.1.

Proof. We define ν =
(√
µMMt �c

√
µMP,c

)2
and we consider the function φz,µMMt defined

in Lemma 2.2. Subordination formula (1.4) can be rewritten φz,µMMt (Gν(z), c) = Gν(z)

for all z ∈ C \R. Consequently, using Lemma 2.2, there exist s, t > 0 and ls,t ∈ (0, 1) such
that for all z ∈ Vs,t,∣∣g(z)−Gν(z)

∣∣ ≤ ∣∣g(z)− φz,µMMt (g(z), c)
∣∣+

∣∣φz,µMMt (g(z), c)− φz,µMMt (Gν(z), c)
∣∣

≤
∣∣g(z)− φz,µMMt (g(z), c)

∣∣+ ls,t
∣∣g(z)−Gν(z)

∣∣
thus ∣∣g(z)−Gν(z)

∣∣ ≤ 1

1− ls,t
∣∣g(z)− φz,µMMt (g(z), c)

∣∣ .
From Theorem 2.1 in which we majorize f by a constant depending on s, t and from the
definition (1.5) of ds,t, we finally get

ds,t (EµXXt , ν) ≤ cs,t
(
E |Y̊1,1|3 + E(Y̊1,1

4
)
)( 1√

n
+

Tr(MM t)1/2

n

)
+ cs,t

(
|cn − c|+

1

n
+

Tr(MM t)1/2

n5/4

)
.
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2.2 The Gaussian case

In this subsection, we assume that Y1,1 is a standard Gaussian. We will prove the
following bound.

Proposition 2.3. We use the same notations as in Theorem 2.1. There exist s, t > 0 and
a function f , bounded on Vs,t, such that for any random matrix Y ∈Mn,p(R) with i.i.d.
standard Gaussian entries, for any deterministic matrix M ∈ Mn,p(R), for all n large
enough, and for all z ∈ Vs,t, we have

∣∣g − (1− cg)GµMMt (z(1− cg)2 − (1− c)(1− cg))
∣∣ ≤ f(z)

(
|cn − c|+

1

n
+

Tr(MM t)1/2

n5/4

)
.

To prove Proposition 2.3, we will follow and improve some computations by Dumont
et al., see [11, Appendix II]. In the proof, we will simply denote g(z) and g(z) by g and g
respectively.

Lemma 2.4 (adaptation from [20, Formula (122)]). Let Y ∈Mn,p(R) be a random matrix
with i.i.d. standard Gaussian entries, let M ∈Mn,p(R) be a deterministic matrix, and let
z ∈ C \R. For all integer n, we have

g − 1

n
Tr(R) =

1

n
Tr(∆R)− cn

n2
Tr(∆) Tr(E(S)R)

+
1

n
Tr(∆′R)− cn

n2
Tr(∆′) Tr(E(S)R) (2.2)

where
S = (zIn −XXt)−1 ,

R =

(
(z(1− cng)− 1 + cn)In −

1

1− cng
MM t

)−1

, (2.3)

∆ =
1

p(1− cng)
E

(
˚︷ ︸︸ ︷

Tr(SXM t)S̊

)
+

cnz

1− cng
E(̊gS)

+
cn

p(1− cng)2
E

(
g̊

˚︷ ︸︸ ︷
Tr(SXM t)

)
E(S) , (2.4)

and

∆′ =
1

p(1− cng)
E(SXM tS) +

1

p(1− cng)
E(zS2 − S)

+
1

p2(1− cng)2
E(Tr(S2XM t))E(S) . (2.5)

In this lemma, we compare g to 1
n Tr(R) because, using the notations in Lemma 2.2,

we have 1
n Tr(R) = φz,µMMt (g, cn), so 1

n Tr(R) is close to φz,µMMt (g, c) by Lemma 2.2.
That is interesting if we have in mind our goal, which is Proposition 2.3.

Note that the proof of Lemma 2.4 follows the same lines as [20, Formula (122)] since
it relies on the Gaussian integration by parts formula (2.20) and it uses the differentiation
formula (B.1), so we do not give it here.

However, we can observe an important difference between Formula (122) in [20] and
Lemma 2.4, namely the terms in ∆′. In fact, the background here is not exactly the same
as in [20]. Indeed, Vallet et al. consider complex Gaussian entries with independent real
and imaginary parts having the same distribution in the matrix Y , whereas we consider
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Rectangular asymptotic freeness and large deviations of random matrices

real Gaussian entries. Consequently, some simplifications do not occur any longer and
a new term appears. Behind this phenomenon is the quantity ζ = K1,1 + 2iK1,2 −K2,2,
where K denotes the covariance matrix of the Gaussian vector (ReY1,1, ImY1,1). This
quantity is equal to 0 in [20] and to 1 here, that is why we have an additional term.

In the next lemma, we bound the different terms appearing in (2.2). For this, we
will use the concentration bounds (A.1) and (A.3) for the terms in ∆ and standard
inequalities on traces and resolvents (see Propositions B.1 and B.2) for the terms in ∆′.
Our computations will partially follow those in [20].

Lemma 2.5. There exist s, t > 0 and a function f , bounded on Vs,t, such that for all Y ,
M , n, and z as in Proposition 2.3, we have∣∣∣∣g − 1

n
TrR

∣∣∣∣ ≤ f(z)

(
1

n
+

Tr(MM t)1/2

n5/4

)
.

This lemma shows that 1
n Tr(R) is a deterministic equivalent to the Stieltjes transform

g(z) = 1
n Tr(S) as soon as Tr(MMt)1/2

n5/4 tends to 0 as n→ +∞, i.e. when the perturbation
M is not too large.

We can compare this result with the bound obtained in [20, Proposition 6]. Two main
differences must be highlighted. First, as we mentioned above, the model is not exactly
the same. Indeed, we consider real Gaussian entries and not complex Gaussian entries
with independent real and imaginary parts, which produces an additional term in ∆′.
However, the terms in ∆ are present in both cases, so we can compare the bounds for
these terms. In [20], the authors assume that ‖M‖ is uniformly bounded in n and get the
bound f(z)

n2 . Here, for the terms in ∆, we will get the bound

f(z)

(
1

n2
+

Tr(MM t)1/2

n17/8

)
.

Moreover, if we use the bound (A.2) instead of (A.3) in the proof, and if we observe that
Tr(MM t)1/2 ≤

√
n‖M‖, then we get the bound f(z)

n2 (1 + ‖M‖), which is the same as in
[20] when ‖M‖ is uniformly bounded in n. Consequently, our bound has two advantages:
it is slightly better than the bound in [20] and it applies without any assumption on M .

Proof of Lemma 2.5. First of all, let us remark that∣∣∣∣ 1

1− cng

∣∣∣∣ ≤ f(z)

since |g| ≤ 1
| Im z| . Besides, we have

‖R‖ ≤ f(z) (2.6)

because on the one hand, R
1−cng is a resolvent evaluated at η = z(1−cng)2−(1−cn)(1−cng)

so its operator norm is less than 1
| Im η| , and on the other hand, we have the inequalities

|1− cng| ≤ 1 + cn
| Im z| and (2.1) (we apply the latter with γ = cn and h = g).

By Proposition B.1 (ii), it follows that∣∣∣∣ 1n Tr(E(S)R)

∣∣∣∣ ≤ f(z)

| Im z|

or just ∣∣∣∣ 1n Tr(E(S)R)

∣∣∣∣ ≤ f(z) . (2.7)

Note that more precise bounds can be obtained, see [20, Appendix E].
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We will now see how to majorize the four terms in (2.2).
Let us recall that ∆ is defined by

∆ =
1

p(1− cng)
E

(
˚︷ ︸︸ ︷

Tr(SXM t)S̊

)
+

cnz

1− cng
E(̊gS) +

cn
p(1− cng)2

E

(
g̊

˚︷ ︸︸ ︷
Tr(SXM t)

)
E(S)

and observe that Tr(SXM t) = Tr(XtSM).
We start bounding the term

∣∣ cn
n2 Tr(∆) Tr(E(S)R)

∣∣ in (2.2). First, using the Cauchy-
Schwarz inequality and the concentration bounds (A.1), (A.3), we get∣∣∣∣∣ 1n Tr

(
1

p(1− cng)
E

(
˚︷ ︸︸ ︷

Tr(SXM t)S̊

))∣∣∣∣∣
=

∣∣∣∣ 1n Tr

(
1

p(1− cng)
E
[
(Tr(SMXt)− ETr(SMXt))(S − ES)

])∣∣∣∣
=

∣∣∣∣ cn
1− cng

E

[
1

n
(Tr(XtSM)− ETr(XtSM))

1

n
(Tr(S)− ETr(S))

]∣∣∣∣
≤ cn
|1− cng|

Var

(
1

n
Tr(XtSM)

)1/2

Var

(
1

n
Tr(S)

)1/2

≤ cn
|1− cng|

(
9cnv(z)

n9/4
Tr(MM t)

)1/2(
4cnu(z)

n2

)1/2

≤ f(z)

n17/8
Tr(MM t)1/2 , (2.8)

where u(z) and v(z) are defined in Proposition A.1.
Next, using the identity g = 1

n Tr(S) and (A.1), we have∣∣∣∣ 1n Tr

(
cnz

1− cng
E(̊gS)

)∣∣∣∣ =

∣∣∣∣ cnz

1− cng
Var(g)

∣∣∣∣ ≤ cn|z|
|1− cng|

4cnu(z)

n2
≤ f(z)

n2
(2.9)

where, for the last inequality, we used the definition of u(z) to get

|z|u(z)

|1− cng|
≤ f(z) .

The same arguments also allow to show that∣∣∣∣∣ 1n Tr

(
cn

p(1− cng)2
E

(
g̊

˚︷ ︸︸ ︷
Tr(SXM t)

)
E(S)

)∣∣∣∣∣ ≤ f(z)

n17/8
Tr(MM t)1/2 . (2.10)

Combining inequalities from (2.7) to (2.10) gives∣∣∣ cn
n2

Tr(∆) Tr(E(S)R)
∣∣∣ ≤ f(z)

(
1

n2
+

Tr(MM t)1/2

n17/8

)
. (2.11)

Computations are similar for the term 1
n Tr(∆R), using the additional inequalities

(2.6) and Tr(RR∗)1/2 ≤
√
n‖R‖ (see Proposition B.1 (iv)). For instance, we have∣∣∣∣∣ 1n TrE

(
˚︷ ︸︸ ︷

Tr(SXM t)S̊R

)∣∣∣∣∣
=

∣∣∣∣ 1n Tr

(
1

p(1− cng)
E
[
(Tr(SXM t)− ETr(SXM t))(S − ES)R

])∣∣∣∣
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≤ cn
|1− cng|

Var

(
1

n
Tr(XtSM)

)1/2

Var

(
1

n
Tr(SR)

)1/2

≤ cn
|1− cng|

(
9cnv(z)

n9/4
Tr(MM t)

)1/2(
4cnu(z)

n5/2
‖R‖Tr(RR∗)1/2

)1/2

≤ cn
|1− cng|

(
9cnv(z)

n9/4
Tr(MM t)

)1/2(
4cnu(z)

n2
f(z)2

)1/2

≤ f(z)

n17/8
Tr(MM t)1/2 .

Combining with ∣∣∣∣ 1n Tr

(
cnz

1− cng
E(̊gSR)

)∣∣∣∣ ≤ f(z)

n2

and ∣∣∣∣∣ 1n Tr

(
cnE

(
g̊

˚︷ ︸︸ ︷
Tr(SXM t)

)
E(S)R

)∣∣∣∣∣ ≤ f(z)

n17/8
Tr(MM t)1/2 ,

which have a similar proof, we thus have∣∣∣∣ 1n Tr(∆R)

∣∣∣∣ ≤ f(z)

(
1

n2
+

Tr(MM t)1/2

n17/8

)
. (2.12)

We have bounded the terms in Lemma 2.4 in which ∆ appears thanks to the con-
centration bounds proved in Appendix A. We will now consider the terms in which ∆′

appears, in other words the terms not present in [20]. To this, we will only use inequal-
ities on traces and resolvents (see Propositions B.1 and B.2). Let us recall that ∆′ is
defined by

∆′ =
1

p(1− cng)
E(SXM tS) +

1

p(1− cng)
E(zS2−S) +

1

p2(1− cng)2
E(Tr(S2XM t))E(S) .

We bound Tr(∆′) using inequalities (i)–(iv) in Proposition B.1 and Proposition B.2 (i),
(iv). We have∣∣Tr(SXM tS)

∣∣
≤ Tr(SXXtS∗)1/2 Tr(M tSS∗M)1/2

≤
(

n

| Im z|

(
|z|
| Im z|

+ 1

))1/2( √
p

| Im z|.| Im z|
‖M‖Tr(MM t)1/2

)1/2

≤ n3/4f(z) Tr(MM t)1/2 (2.13)

so ∣∣∣∣ 1n Tr

(
1

p(1− cng)
E(SXM tS)

)∣∣∣∣ ≤ f(z)

n5/4
Tr(MM t)1/2 . (2.14)

In addition, we have∣∣∣∣ 1n Tr

(
1

p(1− cng)
E(zS2 − S)

)∣∣∣∣ ≤ 1

np|1− cng|
n

(
|z|
| Im z|2

+
1

| Im z|

)
≤ f(z)

n
(2.15)

and using (2.13) again, we find∣∣∣∣ 1n Tr

(
1

p2(1− cng)2
E(Tr(S2XM t))E(S)

)∣∣∣∣ ≤ f(z)

n5/4
Tr(MM t)1/2 . (2.16)
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Consequently, the combination of (2.7), (2.14), (2.15), and (2.16) gives∣∣∣ cn
n2

Tr(∆′) Tr(E(S)R)
∣∣∣ ≤ f(z)

(
1

n
+

Tr(MM t)1/2

n5/4

)
. (2.17)

By very similar calculations, we get∣∣∣∣ 1n Tr(∆′R)

∣∣∣∣ ≤ f(z)

(
1

n
+

Tr(MM t)1/2

n5/4

)
. (2.18)

Finally, combining relation (2.2) with inequalities (2.11), (2.12), (2.17), and (2.18),
we get ∣∣∣∣g − 1

n
Tr(R)

∣∣∣∣ ≤ f(z)

(
1

n
+

Tr(MM t)1/2

n5/4

)
.

Finally, the Gaussian case (Proposition 2.3) follows from Lemma 2.5 and the second
part of Lemma 2.2, since we have

1

n
Tr(R) = (1− cng)GµMMt (z(1− cng)2 − (1− cn)(1− cng)) .

2.3 The general case

We now only assume that Var(Y1,1) = 1 and that E(Y 4
1,1) < +∞. Let Ŷ ∈Mn,p(R) be

an independent random matrix such that the Ŷj,k’s are i.i.d. standard Gaussians, we

define X̂ = Ŷ√
p +M .

Furthermore, for all u ∈ [0, 1], inspired by Pastur and Shcherbina [19, Theorem
18.3.1], we define Y (u) =

√
uY +

√
1− uŶ , X(u) = Y (u)√

p + M , and S(u) = (zIn −
X(u)X(u)t)−1.

Since Y (0) = Ŷ and Y (1) = Y , this provides an interpolation between the Gaussian
case and the general case. The idea is that along this interpolation, the average Stieltjes
transform does not change a lot, which will allow us to bring back the general case to
the Gaussian case.

Proposition 2.6. There exist s, t > 0 and a function f , bounded on Vs,t, such that for any
random matrix Y ∈ Mn,p(R) with i.i.d. entries satisfying Var(Y1,1) = 1, E(Y 4

1,1) < +∞,
and E(Y1,1) = 0, for any deterministic matrix M ∈Mn,p(R), for all n large enough, and
for all z ∈ Vs,t, we have∣∣EGµXXt (z)− EGµX̂X̂t (z)∣∣ ≤ f(z)

(
E |Y1,1|3 + E(Y 4

1,1)
)( 1√

n
+

Tr(MM t)1/2

n

)
.

Proof. The proof consists in four main steps. After developing EGµXXt (z)− EGµX̂X̂t (z)
thanks to the interpolation, we use integration by parts formulas (see Lemma 2.7). Then,
we respectively focus on bounds for the main terms and for the rests in these integrations
by parts.

First step: Development of EGµXXt (z)− EGµX̂X̂t (z).
Let u ∈ [0, 1] and h ∈ [−u, 1 − u]. Proposition B.2 (ii), applied to A = X(u) and B =

1√
p (Y (u+ h)− Y (u)) gives

S(u+ h)− S(u) = S(u+ h)

(
X(u)

(
Y (u+ h)− Y (u)

√
p

)t
+
Y (u+ h)− Y (u)

√
p

X(u)t

+
Y (u+ h)− Y (u)

√
p

(
Y (u+ h)− Y (u)

√
p

)t)
S(u) .
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Dividing by h and taking h→ 0, we get for all u ∈ [0, 1],

S′(u) = S(u)

(
X(u)

Y ′(u)t
√
p

+
Y ′(u)
√
p
X(u)t

)
S(u)

=
1
√
p
S(u)

((√
uY
√
p

+

√
1− uŶ
√
p

+M

)(
Y t

2
√
u
− Ŷ t

2
√

1− u

)

+

(
Y

2
√
u
− Ŷ

2
√

1− u

)(√
uY t
√
p

+

√
1− uŶ t
√
p

+M t

))
S(u) .

Thus we can rewrite

GµXXt (z)−GµX̂X̂t (z)

=
1

n
TrS(1)− 1

n
TrS(0)

=
1

n

∫ 1

0

TrS′(u) du

=
1

2n
√
p

∫ 1

0

Tr

[
S(u)2

[
2
Y Y t
√
p
− 2

Ŷ Ŷ t
√
p

+

(√
1− u
u
−
√

u

1− u

)
Y Ŷ t
√
p

+

(√
1− u
u
−
√

u

1− u

)
Ŷ Y t
√
p

+
MY t√
u
− MŶ t√

1− u
+
YM t

√
u
− Ŷ M t

√
1− u

]]
du .

Denoting by

(I) = TrS(u)2

[
Y Y t
√
p
−
√

u

1− u
Y Ŷ t
√
p

]

=
∑

1≤j,k≤n
1≤l≤p

1
√
p

[
S(u)2

j,kYk,lYj,l −
√

u

1− u
S(u)2

j,kYk,lŶj,l

]
,

(II) =
∑

1≤j,k≤n
1≤l≤p

1
√
p

[
S(u)2

j,kYk,lYj,l −
√

u

1− u
S(u)2

j,kŶk,lYj,l

]
,

(III) =
∑

1≤j,k≤n
1≤l≤p

1
√
p

[√
1− u
u

S(u)2
j,kYk,lŶj,l − S(u)2

j,kŶk,lŶj,l

]
,

(IV) =
∑

1≤j,k≤n
1≤l≤p

1
√
p

[√
1− u
u

S(u)2
j,kŶk,lYj,l − S(u)2

j,kŶk,lŶj,l

]
,

(V) =
∑

1≤j,k≤n
1≤l≤p

1√
u
S(u)2

j,kMk,lYj,l −
1√

1− u
S(u)2

j,kMk,lŶj,l ,

and

(VI) =
∑

1≤j,k≤n
1≤l≤p

1√
u
S(u)2

j,kYk,lMj,l −
1√

1− u
S(u)2

j,kŶk,lMj,l ,

where S(u)2
j,k must be read (S(u)2)j,k, we finally rewrite

EGµXXt (z)−EGµX̂X̂t (z) =
1

2n
√
p

∫ 1

0

E[(I) + (II) + (III) + (IV) + (V) + (VI)] du . (2.19)
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Second step: Integrations by parts.
Let us recall the formulas we will use below, in particular the Stein characterization of a
normal distribution (2.20).

Lemma 2.7 (see [19, Formulas (2.1.39) and (18.1.19)]). (i) Let a function F ∈
C1(R,R) and ξ a random variable with distribution N (0, σ2). If E |F ′(ξ)| < +∞,
then

E (ξF (ξ)) = σ2E (F ′(ξ)) . (2.20)

(ii) More generally, let p be an integer, a function F ∈ Cp+1(R,R), and a real random
variable ξ. If E |ξ|p+2 < +∞ and the derivatives F ′, . . . , F (p+1) are bounded on R,
then

E (ξF (ξ)) =

p∑
j=0

κj+1

j!
E(F (j)(ξ)) + εp (2.21)

where the κj+1’s are the cumulants of the distribution of ξ and

|εp| ≤ CpE |ξ|p+2.‖F (p+1)‖∞ , Cp ≤
1 + (3 + 2p)p+2

(p+ 1)!
.

We will apply the Gaussian (2.20) or the general (2.21) integration by parts formula
for all j, k, l in order to decompose

E[(I) + (II) + (III) + (IV) + (V) + (VI)]

as a sum of terms that we can bound.
Note a first crucial point here. As we want to apply Theorem 1.6 to the matrices Y

and C in Section 3 in order to obtain (3.10), it will not be sufficient to use the integration
by parts formula up to order 2, that is why we will be interested in terms of order 3 in
this formula.

From now, Da,b denotes the derivation with respect to Ya,b.
Let u ∈ [0, 1], j, k ∈ J1, nK, and l ∈ J1, pK. We denote by F1 and G1 the functions defined

by F1(Yj,l) = Yk,lS(u)2
j,k and G1(Ŷj,l) = Yk,lS(u)2

j,k. We have

F ′1(Yj,l) =
2
√
u

√
p
Yk,lS(u)j,k.Dj,lS(u)j,k + δj,kS(u)2

k,k ,

F ′′1 (Yj,l) =
2u

p
Yk,l

(
(Dj,lS(u)j,k)2 + S(u)j,k.D

2
j,lS(u)j,k

)
+

4
√
u

√
p
δj,kS(u)k,k.Dk,lS(u)k,k ,

F
(3)
1 (Yj,l) =

2u3/2

p3/2
Yk,l

(
3Dj,lS(u)j,k.D

2
j,lS(u)j,k + S(u)j,k.D

3
j,lS(u)j,k

)
+

6u

p
δj,k

(
(Dk,lS(u)k,k)2 + S(u)k,k.D

2
k,lS(u)k,k

)
,

and

G′1(Ŷj,l) =
2
√

1− u
√
p

Yk,lS(u)j,k.Dj,lS(u)j,k .

Applied conditionally to the variables {Ya,b, 1 ≤ a ≤ n, 1 ≤ b ≤ p} ∪ {Ŷa,b, (a, b) 6= (j, l)},
(2.20) gives

Êj,l(S(u)2
j,kYk,lŶj,l) = Var(Ŷj,l)Êj,l(G

′
1(Ŷj,l)) ,

where Êj,l denotes the associated conditional expectation. Similarly, from (2.21), we
have

Ej,l(S(u)2
j,kYk,lYj,l) = Var(Yj,l)Ej,l(F

′
1(Yj,l)) +

κ3(Yj,l)

2
Ej,l(F

′′
1 (Yj,l)) + ε1,j,k,l ,
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Rectangular asymptotic freeness and large deviations of random matrices

where Ej,l denotes the expectation conditionally to the variables {Ya,b, (a, b) 6= (j, l)} ∪
{Ŷa,b, 1 ≤ a ≤ n, 1 ≤ b ≤ p}.

Taking the expectation, we thus have

E

[
S(u)2

j,kYk,lYj,l −
√

u

1− u
S(u)2

j,kYk,lŶj,l

]
= Var(Yj,l)E(F ′1(Yj,l)) +

κ3(Yj,l)

2
E(F ′′1 (Yj,l)) + E(ε1,j,k,l)−

√
u

1− u
Var(Ŷj,l)E(G′1(Ŷj,l))

= δj,k E(S(u)2
k,k) +

κ3(Yj,l)

2
E(F ′′1 (Yj,l)) + E(ε1,j,k,l)

with, for all j, k, l,

|ε1,j,k,l| ≤
1 + 74

6
E(Y 4

1,1).‖F (3)
1 ‖∞ .

Dividing by
√
p and summing on j, k, l, we thus have

E(I) =
√
pE(TrS(u)2)︸ ︷︷ ︸

(I.1)

+
κ3(Y1,1)u

p3/2

∑
j,k,l

E(Yk,l(Dj,lS(u)j,k)2)︸ ︷︷ ︸
(I.2)

+
κ3(Y1,1)u

p3/2

∑
j,k,l

E(Yk,lS(u)j,k.D
2
j,lS(u)j,k)︸ ︷︷ ︸

(I.3)

+
2κ3(Y1,1)

√
u

p

∑
k,l

E(S(u)k,k.Dk,lS(u)k,k)︸ ︷︷ ︸
(I.4)

+
1
√
p

∑
j,k,l

E(ε1,j,k,l) . (2.22)

Since S(u)t = S(u), we also have

E(II) = (I.1) + (I.2) + (I.3) + (I.4) +
1
√
p

∑
j,k,l

E(ε2,j,k,l) (2.23)

with

|ε2,j,k,l| ≤
1 + 74

6
E(Y 4

1,1).‖F (3)
1 ‖∞ .

Similarly, considering F3(Yk,l) = Ŷj,lS(u)2
j,k, we get

E(III) = −√pE(TrS(u)2)︸ ︷︷ ︸
(III.1)

+
κ3(Y1,1)

√
u(1− u)

p3/2

∑
j,k,l

E(Ŷj,l(Dk,lS(u)j,k)2)︸ ︷︷ ︸
(III.2)

+
κ3(Y1,1)

√
u(1− u)

p3/2

∑
j,k,l

E(Ŷj,lS(u)j,k.D
2
k,lS(u)j,k)︸ ︷︷ ︸

(III.3)

+
1
√
p

∑
j,k,l

E(ε3,j,k,l) , (2.24)

E(IV) = (III.1) + (III.2) + (III.3) +
1
√
p

∑
j,k,l

E(ε4,j,k,l) (2.25)

with

|ε3,j,k,l| ≤
1 + 74

6
E(Y 4

1,1).‖F (3)
3 ‖∞ and |ε4,j,k,l| ≤

1 + 74

6
E(Y 4

1,1).‖F (3)
3 ‖∞ ,
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and considering F5(Yj,l) = Mk,lS(u)2
j,k, we get

E(V) =
κ3(Y1,1)

√
u

p

∑
j,k,l

E(Mk,l(Dj,lS(u)j,k)2)︸ ︷︷ ︸
(V.1)

+
κ3(Y1,1)

√
u

p

∑
j,k,l

E(Mk,lS(u)j,k.D
2
j,lS(u)j,k)︸ ︷︷ ︸

(V.2)

+
∑
j,k,l

E(ε5,j,k,l) , (2.26)

E(VI) = (V.1) + (V.2) +
∑
j,k,l

E(ε6,j,k,l) (2.27)

with

|ε5,j,k,l| ≤
1 + 74

6
E(Y 4

1,1).‖F (3)
5 ‖∞ and |ε6,j,k,l| ≤

1 + 74

6
E(Y 4

1,1).‖F (3)
5 ‖∞ .

We have thus rewritten (2.19) as

EGµXXt (z)− EGµX̂X̂t (z)

=
1

n
√
p

∫ 1

0

E[(I.2) + (I.3) + (I.4) + (III.2) + (III.3) + (V.1) + (V.2)] du

+
1

2n
√
p

∫ 1

0

E

∑
j,k,l

(
1
√
p

4∑
i=1

εi,j,k,l +

6∑
i=5

εi,j,k,l

) du .
Third step: Bounds for the main terms.

We will develop the different terms in this expression with the differentiation formulas
in Proposition B.2 (vii), and bound them thanks to inequalities on traces and resolvents
(see Propositions B.1 and B.2 again).

Because some computations are very similar, we will be interested in the terms (I.2),
(I.3), and (I.4) only.

Note that in order to simplify the notations, from now, we will denote S and X for
S(u) and X(u).

Let us start with the term (I.2). Using (B.1), we have∑
j,k,l

E(Yk,l(Dj,lS(u)j,k)2)

=
∑
j,k,l

E
[
Yk,l(SX)2

j,lS
2
j,k + 2Yk,l(SX)j,lSj,kSj,j(SX)k,l + Yk,lS

2
j,j(SX)2

k,l

]
= E

[
Tr(Y (XtS)◦2S◦2) + 2 Tr((Y ◦ SX)XtS diag(S)S) +

∑
j

S2
j,j .
∑
k,l

Yk,l(SX)2
k,l

]
where ◦ is the Hadamard product (see Appendix B.1), S◦2 stands for S ◦ S, and diag(S)

is the matrix S from which we have removed off-diagonal entries. Note that it is crucial
here to rewrite precisely the terms with the Hadamard product and then to bound the
traces rather than bound directly the entries. Indeed, it allows us to get better powers
of n in the bound, which is crucial if we have in mind the large deviations in Section 3.

Using Propositions B.1, B.2, and the Cauchy-Schwarz inequality in Cnp, and denoting
by y a square root of z, we have

|Tr(Y (XtS)◦2S◦2)| ≤ √
p‖XtS‖2.‖S‖2 Tr(Y Y t)1/2

≤
√
p

| Im y|2| Im z|2
Tr(Y Y t)1/2 ,
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|Tr((Y ◦ SX)XtS diag(S)S)| ≤ √
p‖XtS‖.‖ diag(S)‖.‖S‖Tr((Y ◦ SX)(Y ◦ SX)∗)1/2

≤
√
p

| Im y|2| Im z|2
Tr(Y Y t)1/2 ,

and ∣∣∣∣∣∣
∑
j

S2
j,j .
∑
k,l

Yk,l(SX)2
k,l

∣∣∣∣∣∣ ≤ n

| Im z|2| Im y|
∑
k,l

|Yk,l(SX)k,l|

≤ n

| Im z|2| Im y|

∑
k,l

Y 2
k,l

1/2∑
k,l

|(SX)k,l|2
1/2

=
nTr(Y Y t)1/2

| Im z|2| Im y|
Tr(SXXtS∗)1/2

≤ nTr(Y Y t)1/2

| Im z|2| Im y|

(
n|z|
| Im z|2

+
n

| Im z|

)1/2

.

Using also the bound (B.7), there exists a function f , bounded on Vs,t, independent from
Y , M , and n, such that for all z ∈ Vs,t, we have

|(I.2)| ≤ |κ3(Y1,1)|f(z)E(Tr(Y Y t)1/2) .

But for a centred random variable, the third cumulant equals the third moment, so this
inequality can be rewritten

|(I.2)| ≤ E |Y1,1|3f(z)E(Tr(Y Y t)1/2) .

We adopt the same strategy for the term (I.3). Using (B.5), we get∑
j,k,l

E(Yk,lS(u)j,k.D
2
j,lS(u)j,k)

=
∑
j,k,l

E[Yk,lSj,k.2(Sj,jSj,k + (SX)2
j,lSj,k + Sj,j(X

tSX)l,lSj,k + 2Sj,j(SX)j,l(SX)k,l)]

= 2E

∑
j,l

Sj,j(S
◦2Y )j,l + Tr(Y (XtS)◦2S◦2)

+
∑
j,l

Sj,j(S
◦2Y )j,l(X

tSX)l,l + 2 Tr((Y ◦ SX)XtS diag(S)S)


so, using the previous bounds, and also∣∣∣∣∣∣

∑
j,l

Sj,j(S
◦2Y )j,l

∣∣∣∣∣∣ ≤ 1

| Im z|
√
np

∑
j,l

|(S◦2Y )j,l|2
1/2

=

√
np

| Im z|
Tr(S◦2Y Y t(S◦2)∗)1/2

≤
√
np

| Im z|

(√
n
‖Y ‖
| Im z|4

Tr(Y Y t)1/2

)1/2

≤ n3/4p1/2

| Im z|3
Tr(Y Y t)1/2
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and ∣∣∣∣∣∣
∑
j,l

Sj,j(S
◦2Y )j,l(X

tSX)l,l

∣∣∣∣∣∣ ≤ 1

| Im z|

(
1 +

∣∣∣ z

Im z

∣∣∣)√np
∑

j,l

|(S◦2Y )j,l|2
1/2

≤ n3/4p1/2

| Im z|3
(

1 +
∣∣∣ z

Im z

∣∣∣)Tr(Y Y t)1/2 ,

the same arguments as above lead to

|(I.3)| ≤ E |Y1,1|3

n1/4
f(z)E(Tr(Y Y t)1/2) .

Besides, we have∑
k,l

E(S(u)k,k.Dk,lS(u)k,k) =
∑
k,l

E[Sk,k.2Sk,k(SX)k,l]

and∣∣∣∣∣∣
∑
k,l

S2
k,k(SX)k,l

∣∣∣∣∣∣ ≤ 1

| Im z|2
√
np

∑
k,l

|(SX)k,l|2
1/2

=

√
np

| Im z|2
Tr(SXXtS∗)1/2 ≤

√
np

| Im z|2

(
n|z|
| Im z|2

+
n

| Im z|

)1/2

thus we get

|(I.4)| ≤ E |Y1,1|3f(z)
√
n .

We finally have

|(I.2) + (I.3) + (I.4)| ≤ E |Y1,1|3f(z)
(
E(Tr(Y Y t)1/2) +

√
n
)
. (2.28)

Very similar computations allow to show that

|(III.2) + (III.3)| ≤ E |Y1,1|3f(z)E(Tr(Ŷ Ŷ t)1/2)

and

|(V.1) + (V.2)| ≤ E |Y1,1|3f(z)
√
nTr(MM t)1/2 . (2.29)

If we remember that Y1,1 and Ŷ1,1 have mean zero and variance 1, we have

E(Tr(Y Y t))1/2 ≤ √np and E(Tr(Ŷ Ŷ t))1/2 ≤ √np by Jensen’s inequality. Finally, we
can write

|(I.2) + (I.3) + (I.4) + (III.2) + (III.3) + (V.1) + (V.2)|

≤ E |Y1,1|3f(z)
(
n+
√
nTr(MM t)1/2

)
. (2.30)

Fourth step: Bounds for the rests.
The only thing to be left is to bound the rests appeared in the integration by parts
formulas. We recall that for all j, k ∈ J1, nK, l ∈ J1, pK, we have

|ε1,j,k,l| ≤
1 + 74

6
E(Y 4

1,1).‖F (3)
1 ‖∞ .
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Using the expression of F (3)
1 (Yj,l), differentiation formulas (B.1), (B.5), (B.6), and inequal-

ities (iv)–(vi) in Proposition B.2, there exists a function f , independent from Y,M, n, j, k, l,
bounded on Vs,t, such that

|ε1,j,k,l| ≤ f(z)E(Y 4
1,1)

(
u3/2

p3/2
|Yk,l|+

u

p
δj,k

)
.

So, using the Cauchy-Schwarz inequality in Rnp, we have

1
√
p

∣∣∣∣∣∣
∑
j,k,l

E(ε1,j,k,l)

∣∣∣∣∣∣ ≤ f(z)E(Y 4
1,1)

1

p

∑
k,l

E |Yk,l|+
√
n


≤ f(z)E(Y 4

1,1)
(
E(Tr(Y Y t)1/2) +

√
n
)

≤ f(z)E(Y 4
1,1)n . (2.31)

The same bound holds for 1√
p

∣∣∣∑j,k,l E(ε2,j,k,l)
∣∣∣. Similarly, we get

1
√
p

∣∣∣∣∣∣
∑
j,k,l

E(ε3,j,k,l) + E(ε4,j,k,l)

∣∣∣∣∣∣ ≤ f(z)E(Y 4
1,1)n (2.32)

and ∣∣∣∣∣∣
∑
j,k,l

ε5,j,k,l + ε6,j,k,l

∣∣∣∣∣∣ ≤ f(z)E(Y 4
1,1)
√
nTr(MM t)1/2 . (2.33)

Finally, combining relations from (2.19) to (2.33), we get

∣∣EGµXXt (z)− EGµX̂X̂t (z)∣∣ ≤ f(z)
(
E |Y1,1|3 + E(Y 4

1,1)
)( 1√

n
+

Tr(MM t)1/2

n

)
. (2.34)

We can now conclude the proof of the general case and obtain Theorem 2.1. In
fact, in Proposition 2.6, we assumed that E(Y1,1) = 0, so we only have to remove this
assumption.

Proof. We recall that X̊ = X − E(X) by definition. We also define g(z) = EGµXXt (z),
g◦(z) = EGµX̊X̊t (z), and ĝ(z) = EGµ

X̂X̂t
(z). Using the notations in Lemma 2.2, we have∣∣g(z)− (1− cg(z))GµMMt (z(1− cg(z))2 − (1− c)(1− cg(z)))

∣∣
≤

∣∣g(z)− g◦(z)
∣∣+ |g◦(z)− ĝ(z)|+

∣∣ĝ(z)− φz,µMMt (ĝ(z), c)
∣∣

+
∣∣φz,µMMt (ĝ(z), c)− φz,µMMt (g◦(z), c)

∣∣
+
∣∣φz,µMMt (g◦(z), c)− φz,µMMt (g(z), c)

∣∣
≤ (1 + ls,t)

∣∣g(z)− g◦(z)
∣∣+ (1 + ls,t) |g◦(z)− ĝ(z)|+

∣∣ĝ(z)− φz,µMMt (ĝ(z), c)
∣∣

for s large enough and t small enough by Lemma 2.2.
Since the matrix X − X̊ = E(X) has rank at most 1, using the relations (1.5), (1.7),

and (B.9), we have∣∣GµXXt (z)−GµX̊X̊t (z)∣∣ ≤ ds,t (µXXt , µX̊X̊t) ≤ dKS

(
µXXt , µX̊X̊t

)
≤ 1

n
.

This inequality, Proposition 2.3 (the Gaussian case) applied to Ŷ , and Proposition 2.6
(the centred case) applied to Y̊ permit to get finally
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∣∣g(z)− (1− cg(z))GµMMt (z(1− cg(z))2 − (1− c)(1− cg(z)))
∣∣

≤ (1 + ls,t).
1

n
+ f(z)

(
E |Y̊1,1|3 + E(Y̊1,1

4
)
)( 1√

n
+

Tr(MM t)1/2

n

)
+ f(z)

(
|cn − c|+

1

n
+

Tr(MM t)1/2

n5/4

)
.

3 Large deviations

This section is devoted to the proof of Theorem 1.7. In this section, X ∈Mn,p(R) is a
random matrix such that cn = n

p → c ∈ (0,+∞). Moreover, we assume that Var(X1,1) = 1

and that there exist α ∈ (0, 2) and a ∈ (0,+∞] such that X1,1 ∈ Sα(a) (see Definition 1.1).
We define

ε(n) =
1

log n

and we decompose the matrix X as

X
√
p

= A+B + C +D , (3.1)

where A,B,C,D are the matrices defined by

Aj,k =
Xj,k√
p

1|Xj,k|<(logn)2/α Bj,k =
Xj,k√
p

1(logn)2/α≤|Xj,k|≤ε(n)
√
p

Cj,k =
Xj,k√
p

1ε(n)
√
p<|Xj,k|≤ε(n)−1√p Dj,k =

Xj,k√
p

1ε(n)−1√p<|Xj,k| .

This decomposition, introduced in [7], must be understood as follows. First, the matrix
A is the bulk of the matrix X/

√
p because of the tail assumption (1.1), see for instance

Lemma 3.4 (ii) below. Besides, we keep in C the terms of order
√
p in X, which produce

large deviations as we briefly explained at the end of Introduction (note that we could
have chosen an other sequence ε(n) going slowly to 0).

3.1 Exponential equivalences

The goal of this subsection is to prove the following.

Proposition 3.1. There exist s, t > 0 such that the random distributions µXXt/p and(√
µCCt �c

√
µMP,c

)2
are ds,t-exponentially equivalent at scale n1+α/2 as n → +∞, i.e.

for all δ > 0, we have

lim
n→+∞

1

n1+α/2
logP

(
ds,t

(
µXXt/p,

(√
µCCt �c

√
µMP,c

)2) ≥ δ) = −∞ .

The strategy to prove Proposition 3.1 is similar to the one in [7]. First, we explain why
B and D do not contribute to large deviations in Lemmas 3.2 and 3.3 and then, we show
that the measures µ(A+C)(A+C)t and

(√
µCCt �c

√
µMP,c

)2
are exponentially equivalent

thanks to a conditioning and a coupling argument in which several tools are needed,
such as the concentration property (A.15) and the asymptotic freeness result stated in
Theorem 1.6. From now on, we consider s > 2 and t > 0.

First, the contribution of D is negligible.

Lemma 3.2. µXXt/p and µ(A+B+C)(A+B+C)t are exponentially equivalent.

The proof is very similar to what is done in [7], the only difference being the use of
(B.9) instead of (B.8). Therefore, it will not be repeated here.

The contribution of B can also be neglected.

Lemma 3.3. µXXt/p and µ(A+C)(A+C)t are exponentially equivalent.
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Proof. From Lemma 3.2, the triangle inequality, Lemma 1.2.15 in [9], and the inequalities
ds,t ≤W1 ≤W2, it is sufficient to prove that for all δ > 0,

lim
n→+∞

1

n1+α/2
logP

(
W2

(
µ(A+B+C)(A+B+C)t , µ(A+C)(A+C)t

)
≥ δ
)

= −∞ .

From (B.11), which is the analogue of the Hoffman-Wielandt inequality (B.10) for covari-
ance matrices, it is sufficient to check that for all δ > 0,

lim
n→+∞

1

n1+α/2
logP

(
2

n2
Tr((A+B + C)(A+B + C)t

+ (A+ C)(A+ C)t) Tr(BBt) ≥ δ

)
= −∞ .

Let δ > 0. We have

Tr((A+ C)(A+ C)t) ≤ Tr((A+B + C)(A+B + C)t) ≤ Tr

(
1

p
XXt

)
using the decomposition (3.1). Thus,

P

(
2

n2
Tr((A+B + C)(A+B + C)t + (A+ C)(A+ C)t) Tr(BBt) ≥ δ

)
≤ P

(
4

n2p
Tr(XXt) Tr(BBt) ≥ δ

)
≤ P

(
1

np
Tr(XXt) ≥ E(X2

1,1) + δ

)
+ P

(
4

n
Tr(BBt) ≥ δ

E(X2
1,1) + δ

)
. (3.2)

On the one hand, since Tr(XXt) is the sum of np i.i.d. random variables, from
Cramér’s theorem in R (see [9, Theorem 2.2.3]), we have

lim
n→+∞

1

np
logP

(
1

np
Tr(XXt)≥ E(X2

1,1) + δ

)
= − sup

θ∈R

(
θ(E(X2

1,1) + δ)− logE(eθX1,1)
)
< 0

so, since α < 2,

lim
n→+∞

1

n1+α/2
logP

(
1

np
Tr(XXt) ≥ E(X2

1,1) + δ

)
= −∞ . (3.3)

On the other hand, since n
p → c, the same arguments as in [7] lead to

lim
n→+∞

1

n1+α/2
logP

(
4

n
Tr(BBt) ≥ δ

E(X2
1,1) + δ

)
= −∞ . (3.4)

Finally, combining (3.2), (3.3), (3.4), and Lemma 1.2.15 in [9], we get the exponential
equivalence of µXXt/p and µ(A+C)(A+C)t .

Before proving Proposition 3.1, we need some additional properties.

Lemma 3.4. (i) We have

lim
n→+∞

1

n1+α/2
logP

(
1

n
Tr(CCt) > (log n)2

)
= −∞ .

(ii) Defining I = {(j, k) | |Xj,k| ≥ (log n)2/α}, for all δ > 0, we have

lim
n→+∞

1

n1+α/2
logP

(
|I| ≥ δn1+α/2

)
= −∞ .
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Rectangular asymptotic freeness and large deviations of random matrices

(iii) We denote by Pn the distribution of X1,1 conditionally to {|X1,1| < (log n)2/α}. Let
Zn be a random variable with distribution Pn. There exists ζ > 0 such that

sup
n∈N

max
(
E(Z2

n), (E(Z2
n))2,E(Z4

n)
)
≤ ζ .

Furthermore, the variance of Zn, denoted by σ2
n, tends to Var(X1,1) = 1 as n→ +∞

and more precisely, there exists η > 0 such that

|σ2
n − 1| ≤ ηe−a(logn)2/4 .

Proof. The proofs of (i) and (ii) exactly follow the proof of Lemma 2.4 in [7]. Therefore,
we will only prove (iii).

Let Zn be a random variable with distribution Pn defined as above. We have

E(Z2
n) = E(X2

1,1 | |X1,1| < (log n)2/α) =
E
(
X2

1,1 1|X1,1|<(logn)2/α

)
P(|X1,1| < (log n)2/α)

.

But thanks to hypothesis (1.1), X2
1,1 is integrable, so by the dominated convergence

theorem, E
(
X2

1,1 1|X1,1|<(logn)2/α

)
tends to E(X2

1,1) as n → +∞. Besides, P(|X1,1| <
(log n)2/α) tends to 1, so E(Z2

n) tends to E(X2
1,1) as n→ +∞.

The same arguments show that E(Z4
n) tends to E(X4

1,1) as n→ +∞. We can deduce
that there exists a real number ζ such that

sup
n∈N

max
(
E(Z2

n), (E(Z2
n))2,E(Z4

n)
)
≤ ζ .

Moreover, we have

σ2
n = Var(X1,1 | |X1,1| < (log n)2/α)

=
E
(
X2

1,1 1|X1,1|<(logn)2/α

)
P(|X1,1| < (log n)2/α)

−

E
(
X1,1 1|X1,1|<(logn)2/α

)
P(|X1,1| < (log n)2/α)

2

.

Using similar arguments, we prove that σ2
n tends to Var(X1,1) = 1 as n → +∞. More

precisely, we can write

σ2
n − 1 =

E
(
X2

1,1 1|X1,1|<(logn)2/α

)
P
(
|X1,1| < (log n)2/α

) −
E

(
X1,1 1|X1,1|<(logn)2/α

)
P
(
|X1,1| < (log n)2/α

)
2

− E(X2
1,1) + (E(X1,1))2

=
E
(
X2

1,1 1|X1,1|<(logn)2/α

)
− E(X2

1,1)P
(
|X1,1| < (log n)2/α

)
P
(
|X1,1| < (log n)2/α

)
+
E(X1,1)2P

(
|X1,1| < (log n)2/α

)2 − (E(X1,1 1|X1,1|<(logn)2/α

))2

P
(
|X1,1| < (log n)2/α

)2
=
E(X2

1,1)P
(
|X1,1| ≥ (log n)2/α

)
− E

(
X2

1,1 1|X1,1|≥(logn)2/α

)
P
(
|X1,1| < (log n)2/α

)
+
E(X1,1)2

(
P
(
|X1,1| < (log n)2/α

)2 − 1
)

P
(
|X1,1| < (log n)2/α

)2
+

2E(X1,1)E
(
X1,1 1|X1,1|≥(logn)2/α

)
P
(
|X1,1| < (log n)2/α

)2 −
E
(
X1,1 1|X1,1|≥(logn)2/α

)2

P
(
|X1,1| < (log n)2/α

)2 (3.5)
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where
(
E
(
X1,1 1|X1,1|<(logn)2/α

))2

=
(
E(X1,1)− E

(
X1,1 1|X1,1|≥(logn)2/α

))2

was used to

get the last equality.
From hypothesis (1.1), for n large enough, we have

P(|X1,1| ≥ (log n)2/α) ≤ e− a2 (logn)2

.

Besides,

P(|X1,1| < (log n)2/α)2 − 1 = −P(|X1,1| ≥ (log n)2/α)
(
P(|X1,1| < (log n)2/α) + 1

)
and by the Cauchy-Schwarz inequality, we have∣∣∣E(X1,1 1|X1,1|≥(logn)2/α

)∣∣∣ ≤ E(X2
1,1)1/2P(|X1,1| ≥ (log n)2/α)1/2

and ∣∣∣E(X2
1,1 1|X1,1|≥(logn)2/α

)∣∣∣ ≤ E(X4
1,1)1/2P(|X1,1| ≥ (log n)2/α)1/2 .

Going back to (3.5), we have for n large enough

|σ2
n − 1| ≤ 2E(X2

1,1)e−
a
2 (logn)2

+ 2E(X4
1,1)1/2e−

a
4 (logn)2

+ 4E(X1,1)2e−
a
2 (logn)2

+ 4|E(X1,1)|E(X2
1,1)1/2e−

a
4 (logn)2

+ 2E(X2
1,1)e−

a
2 (logn)2

.

Because the moments of X1,1 are finite, we can deduce that there exists a real number η
such that

|σ2
n − 1| ≤ ηe−a(logn)2/4 .

We can now prove Proposition 3.1.

Proof of Proposition 3.1. The proof relies on a conditioning with respect to the entries
of X which are not in A and on a coupling argument to remove the dependency between
A and C.

We use here the same notations as [7]. We denote by F the σ-algebra

F = σ
{
Xj,k 1|Xj,k|≥(logn)2/α

}
,

by PF and EF the probability and the expectation conditionally to F , and we denote by
E and F the events

E =

{
1

n
Tr(CCt) ≤ (log n)2

}
and

F =
{
|I| < n1+α/2

}
,

with I = {(j, k) | |Xj,k| ≥ (log n)2/α}. Thus, the matrix C is F -measurable and the events
E and F belong to F . Moreover, from Lemma 3.4 (i)–(ii), we have

lim
n→+∞

1

n1+α/2
logP(Ec) = −∞ and lim

n→+∞

1

n1+α/2
logP(F c) = −∞ . (3.6)

The idea to prove Proposition 3.1 is to get the successive exponential equivalences

µXXt/p ≈ µ(A+C)(A+C)t ≈ EF µ(A+C)(A+C)t ≈ EF µ(A′+C)(A′+C)t

= EF µ( Y√
p+C

)(
Y√
p+C

)t ≈ EF µ( Y
σn
√
p+C

)(
Y

σn
√
p+C

)t ≈ (√µCCt �c √µMP,c

)2
,
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where A′ will be defined below. Let us recall that the first one has been obtained in
Lemma 3.3.

• Conditionally to F ,
√
pA is a random matrix with independent entries bounded

by (log n)2/α. From the concentration result (A.15) applied to Y =
√
pA, M = C,

κ = (log n)2/α and using that α < 2, we get for all δ > 0 and n large enough,

1E PF
(
ds,t

(
µ(A+C)(A+C)t ,EF µ(A+C)(A+C)t

)
≥ δ
)
≤ β(log n)2/α

δ3/2
exp

(
− n2δ5

β(log n)8/α

)
hence

lim
n→+∞

1

n1+α/2
logP

(
E ∩

{
ds,t

(
µ(A+C)(A+C)t ,EF µ(A+C)(A+C)t

)
≥ δ
})

= −∞ . (3.7)

• We will now use a coupling argument. We consider an independent random matrix
Y whose entries are i.i.d. with distribution Pn defined in Lemma 3.4, and we denote by
A′ the matrix defined by

A′j,k = 1(j,k)/∈I Aj,k + 1(j,k)∈I
Yj,k√
p
.

Consequently,
√
pA′ and Y have the same distribution and are independent from F . In

particular, we will use later that for all bounded continuous f , we have EF (f(Y )) =

E(f(Y )).
From the inequalities (B.11) and ds,t ≤W2, we have

ds,t(µ(A+C)(A+C)t , µ(A′+C)(A′+C)t)
4

≤ 2

n2
Tr((A−A′)(A−A′)t) Tr((A+ C)(A+ C)t + (A′ + C)(A′ + C)t)

=
2

n2

∑
j,k

1(j,k)∈I
Y 2
j,k

p

∑
j,k

(Aj,k + Cj,k)2 + (A′j,k + Cj,k)2


=

2

n2p

 ∑
(j,k)∈I

Y 2
j,k

∑
j,k

A2
j,k + 2C2

j,k + (A′j,k)2


=

2

n2p

 ∑
(j,k)∈I

Y 2
j,k

∑
j,k

A2
j,k + 2 Tr(CCt) +

∑
j,k

A2
j,k +

∑
(j,k)∈I

Y 2
j,k

p


≤ 2

n2p

2

 ∑
(j,k)∈I

Y 2
j,k

(np (log n)4/α

p
+ Tr(CCt)

)
+

1

p

 ∑
(j,k)∈I

Y 2
j,k

2
 .

With definition (1.5) of ds,t and conditional Jensen’s inequality for the concave function
x 7→ x1/4, we thus have

1E 1F ds,t
(
EF µ(A+C)(A+C)t ,EF µ(A′+C)(A′+C)t

)
≤1E 1F EF ds,t

(
µ(A+C)(A+C)t , µ(A′+C)(A′+C)t

)
≤

21E 1F
n2p

2(n(log n)4/α + Tr(CCt))EF

 ∑
(j,k)∈I

Y 2
j,k

+
1

p
EF

 ∑
(j,k)∈I
(l,m)∈I

Y 2
j,kY

2
l,m





1/4

because 1E , 1F , and Tr(CCt) are F -measurable. Since the events {(j, k) ∈ I} are
F -measurable and Y is independent from F , we have
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EF

∑
j,k

1(j,k)∈I Y
2
j,k

 =
∑
j,k

1(j,k)∈I E(Y 2
j,k) = |I|.E(Y 2

1,1) ≤ ζ|I|

from Lemma 3.4 (iii), and similarly

EF

 ∑
j,k,l,m

1(j,k)∈I 1(l,m)∈I Y
2
j,kY

2
l,m

 ≤ ζ|I|2 .
So we have

1E 1F ds,t
(
EF µ(A+C)(A+C)t ,EF µ(A′+C)(A′+C)t

)
≤

[
2ζ 1E 1F
n2p

(
2(n(log n)4/α + Tr(CCt))|I|+ 1

p
|I|2
)]1/4

≤
[

2ζcn
n3

(
2
(
n(log n)4/α + n(log n)2

)
n1+α/2 + cnn

1+α
)]1/4

≤
[

2ζcn
n3

.3n(log n)4/αn1+α/2

]1/4

= (6ζcn)
1/4 (log n)1/α

n1/4−α/8

for n large enough (we used here the fact that 4
α > 2). It follows that for all δ > 0,

lim
n→+∞

1

n1+α/2
logP (E ∩ F

∩
{
ds,t

(
EF µ(A+C)(A+C)t ,EF µ(A′+C)(A′+C)t

)
≥ δ
})

= −∞ . (3.8)

We recall here that EF µ(A′+C)(A′+C)t = EF µ( Y√
p+C

)(
Y√
p+C

)t .
• In addition, from (B.11), we have

ds,t

(
µ(

Y√
p+C

)(
Y√
p+C

)t , µ(
Y

σn
√
p+C

)(
Y

σn
√
p+C

)t
)4

≤ 2

n2
Tr

((
1− 1

σn

)2
Y Y t

p

)

×Tr

((
Y
√
p

+ C

)(
Y
√
p

+ C

)t
+

(
Y

σn
√
p

+ C

)(
Y

σn
√
p

+ C

)t)

≤ 2

n2p

(
1− 1

σn

)2

Tr(Y Y t)

∑
j,k

(
Yj,k√
p

+ Cj,k

)2

+

(
Yj,k
σn
√
p

+ Cj,k

)2


≤ 2

n2p

(
1− 1

σn

)2

Tr(Y Y t)

(
4 Tr(CCt) +

2

p

(
1 +

1

σ2
n

)
Tr(Y Y t)

)
so, using conditional Jensen’s inequality and doing as above, we get

1E EF ds,t

(
µ(

Y√
p+C

)(
Y√
p+C

)t , µ(
Y

σn
√
p+C

)(
Y

σn
√
p+C

)t
)

≤

[
2

n2p

(
1− 1

σn

)2(
4n(log n)2EF Tr(Y Y t) +

2

p

(
1 +

1

σ2
n

)
EF (Tr(Y Y t)2)

)]1/4
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≤

[
2

n2p

(
σ2
n − 1

σn(σn + 1)

)2(
4n(log n)2.npζ +

2

p

(
1 +

1

σ2
n

)
.n2p2ζ

)]1/4

=

(
σ2
n − 1

σn(σn + 1)

)1/2(
8ζ(log n)2 + 4ζ

(
1 +

1

σ2
n

))1/4

.

By Lemma 3.4 (iii), we deduce from it that for all δ > 0,

lim
n→+∞

1

n1+α/2
logP (E ∩{

ds,t

(
EF µ( Y√

p+C
)(

Y√
p+C

)t ,EF µ( Y
σn
√
p+C

)(
Y

σn
√
p+C

)t
)
≥ δ
})

= −∞ . (3.9)

• To finish, we define σ2
n = Var(Y1,1) as in Lemma 3.4 (iii). Since C is F -measurable,

Y is independent from F , and 1
σ4
n
EF (Y 4

1,1) ≤ 2ζ < +∞ for n large enough, we can apply

Theorem 1.6 to Y/σn and C, conditionally to F . Therefore, for n large enough, s large
enough, and t small enough, we have

1E ds,t

(
EF µ( Y

σn
√
p+C

)(
Y

σn
√
p+C

)t , (√µCCt �c √µMP,c

)2)
≤ cs,t 1E

(
1

σ3
n

E |Y̊1,1|3 +
1

σ4
n

E(Y̊1,1
4
)

)(
1√
n

+
Tr(CCt)1/2

n

)
+ cs,t 1E

(
|cn − c|+

1

n
+

Tr(CCt)1/2

n5/4

)
≤ cs,t

(
8(log n)6/α

σ3
n

+
16(log n)8/α

σ4
n

)(
1√
n

+
log n√
n

)
+ cs,t

(
|cn − c|+

1

n
+

log n

n3/4

)
using that for all j ∈ J1, nK and k ∈ J1, pK, we have |Y̊j,k| = |Yj,k − EF (Yj,k)| ≤ 2(log n)2/α.
Therefore, for all δ > 0,

lim
n→+∞

1

n1+α/2
logP (E ∩{

ds,t

(
EF µ( Y

σn
√
p+C

)(
Y

σn
√
p+C

)t , (√µCCt �c √µMP,c

)2) ≥ δ}) = −∞ . (3.10)

• To conclude, combining equalities from (3.6) to (3.9), Lemma 3.3, and Lemma
1.2.15 in [9], for s large enough and t small enough, we have for all δ > 0,

lim
n→+∞

1

n1+α/2
logP

(
ds,t

(
µXXt/p,

(√
µCCt �c

√
µMP,c

)2) ≥ δ) = −∞ .

3.2 Large deviations for µC′

In the previous subsection, we proved that µXXt/p and
(√
µCCt �c

√
µMP,c

)2
are

exponentially equivalent. Consequently, to obtain the large deviations of µXXt/p (Theo-
rem 1.7), it is sufficient to study the large deviations of µCCt and to apply the contraction
principle (see [9, Theorem 4.2.1]). To this, in this subsection, we will study the large
deviations of

C ′ =

(
0 C

Ct 0

)
and prove the following, from which we will deduce the large deviations of µCCt thanks
to identity (3.13) and conclude in the next subsection.
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Proposition 3.5. The measure µC′ satisfies the LDP with speed n1+α/2 in P(R), for
weak topology and good rate function Φ′ defined by

Φ′(µ) =

{
a
2

c+1
c1+α/2mα(µ) if µ is symmetric and µ({0}) ≥ |1−c|1+c

+∞ otherwise
, (3.11)

where mα(µ) =
∫
R
|x|α dµ(x) denotes the α-th moment of µ.

Note that Φ′ is a good rate function because it is well known that for all m ≥ 0 and
p > 0, the set

Kp,m =

{
µ ∈ P(R)

∣∣∣∣ ∫
R

|x|p dµ(x) ≤ m
}

(3.12)

is compact for weak topology. Moreover, the domain of Φ′ can be explained thanks to
Lemma 3.6 (i).

Lemma 3.6. Let M ∈Mn,p(R) and

M ′ =

(
0 M

M t 0

)
.

(i) The distribution µM ′ is symmetric and µM ′({0}) ≥ |1−cn|1+cn
.

(ii) We have

µ2
M ′ =

2cn
cn + 1

µMMt +
1− cn
1 + cn

δ0 . (3.13)

(iii) If M is diagonal, in the sense that only the entries Mj,j , 1 ≤ j ≤ n ∧ p, can be
non-zero, then

µM ′ =
1

n+ p

n∧p∑
j=1

(
δMj,j

+ δ−Mj,j

)
+
|1− cn|
1 + cn

δ0 . (3.14)

The proof of this lemma relies on the identity

(M ′)2 =

(
MM t 0

0 M tM

)
.

Since it does not present any difficulty, it is left to the reader.
We also need a second lemma, which consists in two estimates for the distribution of

X1,1. These estimates come from the particular form of this distribution, see hypotheses
(1.1) and (1.2).

Lemma 3.7. (i) There exists a sequence (ηn)n∈N converging to 0 such that for all
x ≥ ε(n), we have

P(|X1,1| ≥ x
√
p) ≤ e−(a−ηn)xαpα/2

. (3.15)

(ii) We denote by Sa the support of the distribution ϑa defined by (1.2). There exists a
sequence (an)n∈N converging to a such that for all x ∈ R satisfying |x| ≥ ε(n) and
sign(x) ∈ Sa, for all γ > 0, and for all n large enough, we have

P

(
X1,1√
p
∈ (x− γ, x+ γ)

)
≥ e−an|x|

αpα/2

. (3.16)

The computations to get these inequalities are explained in [7, p. 26] and are left to
the reader.

We will now prove Proposition 3.5. Let us mention that Schatten’s inequality (B.12)
will be crucial in the proof since it will allow to link the α-th moment of the spectral
measure µC′ and the entries of C ′.

From now on, we denote by Bs,t(µ, δ) the ball with centre µ ∈ P(R) and radius δ > 0

for the distance ds,t.
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Proof of Proposition 3.5. Since the set of symmetric probability measures on R is closed
for weak topology, it is enough to prove the LDP on this set, see [9, Lemma 4.1.5].

Upper bound. Let µ be a symmetric probability measure on R. Since the function mα

is lower semi-continuous, there exists a continuous function h such that h(0) = 0 and

P(µC′ ∈ Bs,t(µ, δ)) ≤ P(mα(µC′) ≥ mα(µ)− h(δ))

for all δ small enough. Moreover, by Schatten’s inequality (B.12) and the fact that∑k
i=1 a

r
i ≤

(∑k
i=1 ai

)r
for all r ≥ 1, a1, . . . , ak ≥ 0, we have

mα(µC′) ≤
1

n+ p

n+p∑
j=1

(
n+p∑
k=1

|C ′j,k|2
)α/2

≤ 1

n+ p

n+p∑
j=1

n+p∑
k=1

|C ′j,k|α .

Consequently,

P(µC′ ∈ Bs,t(µ, δ))

≤ P

 1

n+ p

∑
j,k

|C ′j,k|α ≥ mα(µ)− h(δ)


= P

 2

(cn + 1)p1+α/2

∑
j,k

|Xj,k|α 1ε(n)
√
p<|Xj,k|≤ε(n)−1√p ≥ mα(µ)− h(δ)


≤ e−

a1
2 (cn+1)p1+α/2(mα(µ)−h(δ))

(
E
(
e
a1|X1,1|α 1ε(n)

√
p<|Xj,k|≤ε(n)−1√p

))np
for all a1 ∈ (0, a) by Chernoff’s inequality. Besides, from hypothesis (1.1), there exists
a2 ∈ (a1, a) such that for all x large enough, P(|X1,1| ≥ x) ≤ exp(−a2x

α). Let us also
recall the following integration by parts formula: for all ν ∈ P(R) and f ∈ C1(R,R),∫ b

a

f(x) dν(x) = f(a)ν([a,+∞))− f(b)ν([b,+∞)) +

∫ b

a

f ′(x)ν([x,+∞)) dx .

Denoting by P|X1,1| the law of |X1,1|, we thus have for n large enough,

E exp
(
a1|X1,1|α 1ε(n)

√
p<|X1,1|≤ε(n)−1√p

)
≤ 1 +

∫ ε(n)−1√p

ε(n)
√
p

ea1x
α

dP|X1,1|(x)

≤ 1 + ea1ε(n)αpα/2−a2ε(n)αpα/2 +

∫ ε(n)−1√p

ε(n)
√
p

a1αx
α−1ea1x

α−a2x
α

dx

≤ 1 + e−(a2−a1)ε(n)αpα/2 − a1

a1 − a2
e−(a2−a1)ε(n)αpα/2

= 1 +
a2

a2 − a1
e−(a2−a1)ε(n)αpα/2

≤ exp

(
a2

a2 − a1
e−(a2−a1)ε(n)αpα/2

)
hence

P(µC′ ∈ Bs,t(µ, δ))

≤ exp

(
−a1

2
(cn + 1)p1+α/2(mα(µ)− h(δ)) +

a2

a2 − a1
npe−(a2−a1)ε(n)αpα/2

)
.
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So, for all δ small enough and all a1 ∈ (0, a),

lim sup
n→+∞

1

n1+α/2
logP(µC′ ∈ Bs,t(µ, δ)) ≤ −

a1

2

c+ 1

c1+α/2
(mα(µ)− h(δ))

and finally

lim sup
δ→0

lim sup
n→+∞

1

n1+α/2
logP(µC′ ∈ Bs,t(µ, δ)) ≤ −

a

2

c+ 1

c1+α/2
mα(µ) . (3.17)

In the case of a µ satisfying µ({0}) < |1−c|
1+c , we have a better result. Indeed, inspired

by [16], we can observe that for all ε small enough, there exists R > 0 such that

µ([−R,R]) <
|1− c|
1 + c

− ε .

Therefore, {
µ′ ∈ P(R) | µ′([−R,R]) <

|1− c|
1 + c

− ε
}

is a neighbourhood of µ in which, for n large enough, almost surely, µC′ is not. So we
have

lim
δ→0

lim
n→+∞

1

n1+α/2
logP(µC′ ∈ Bs,t(µ, δ)) = −∞ . (3.18)

We have obtained the upper bound of the LDP.

Lower bound. Let µ ∈ P(R) be a symmetric measure such that µ({0}) ≥ |1−c|1+c . There
exists µ̃ ∈ P(R+) such that

µ =
|1− c|
1 + c

δ0 +
1 ∧ c
1 + c

(µ̃+ (− Id)]µ̃) ,

where (− Id)]µ̃ denotes the push-forward of µ̃ by − Id.

We denote by x1, . . . , xn∧p the quantiles of µ̃ of orders 1
1+n∧p , . . . ,

n∧p
1+n∧p , we also

define n0 = min{j ∈ J1, n ∧ pK | xj ≥ ε(n)}, and

M ′ =

(
0 M

M t 0

)
with M ∈Mn,p(R) defined by Mj,j = xj for all j ∈ Jn0, n ∧ pK and Mj,k = 0 otherwise.

From (3.14), we have

µM ′ =
1

n+ p

n∧p∑
j=1

(
δMj,j + δ−Mj,j

)
+
|1− cn|
1 + cn

δ0 .

Besides,

mα(µ) =
2(1 ∧ c)

1 + c

∫ +∞

0

|x|α dµ̃(x) ≥ 2(1 ∧ c)
(1 + c)(1 + n ∧ p)

n∧p∑
j=1

|Mj,j |α . (3.19)

Let us also remark that by construction, ds,t(µ, µM ′) tends to 0 as n→ +∞.

Let δ > 0. For n large enough, we thus have

ds,t(µ, µM ′) <
δ

2
. (3.20)
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Using respectively (3.20), the Hoffman-Wielandt inequality (B.10) with the inequality
ds,t ≤W2, the independence of the Xj,k’s, the inequalities (3.15) and (3.16), the fact that
1 ≤ n0 ≤ n ∧ p, and (3.19), we get for n large enough,

P(µC′ ∈ Bs,t(µ, δ))

≥ P

(
µC′ ∈ Bs,t

(
µM ′ ,

δ

2

))
≥ P

(
1

n+ p
Tr((C ′ −M ′)2) ≤ δ2

4

)

= P

∑
j,k

(Cj,k −Mj,k)2 ≤ δ2(n+ p)

8


≥ P

(
∀j ∈ Jn0, n ∧ pK, (Cj,j −Mj,j)

2 ≤ δ2(n+ p)

8(n ∧ p)

∩ ∀(j, k) different, Cj,k = 0

)

≥ P

(
∀j ∈ Jn0, n ∧ pK,

Xj,j√
p
∈

(
Mj,j −

√
δ2(n+ p)

8(n ∧ p)
,Mj,j +

√
δ2(n+ p)

8(n ∧ p)

)

∩ ∀(j, k) different, |Xj,k| < ε(n)
√
p

)

≥
n∧p∏
j=n0

e−an|Mj,j |αpα/2
(

1− e−(a−ηn)ε(n)αpα/2
)np−(n∧p−n0+1)

≥ 1

2
exp

−an n∧p∑
j=n0

|Mj,j |αpα/2


≥ 1

2
exp

−an
2
p1+α/2

(1 + c)
(

1
p + c ∧ 1

)
1 ∧ c

mα(µ)


Note that we can apply (3.15) and (3.16), even if it means to swap µ̃ and (− Id)]µ̃ in order
to apply (3.16). We finally get

lim inf
n→+∞

1

n1+α/2
logP(µC′ ∈ Bs,t(µ, δ)) ≥ −

a

2

c+ 1

c1+α/2
mα(µ) (3.21)

for all δ > 0.
This is the lower bound of the LDP.

Exponential tightness. Let A > 0 and m = 2Ac1+α/2

a(1+c) . We recall that the set Kα,m

defined by (3.12) is compact. Moreover, using the computations done for the upper
bound, we have

P(µC′ /∈ Kα,m) = P(mα(µC′) > m)

≤ exp

(
−a1

2
(cn + 1)p1+α/2m+

a2

a2 − a1
npe−(a2−a1)ε(n)αpα/2

)
for all a1 ∈ (0, a) and some a2 ∈ (a1, a). It follows that

lim sup
n→+∞

1

n1+α/2
logP(µC′ /∈ Kα,m) ≤ −a

2

c+ 1

c1+α/2
m = −A . (3.22)

The combination of (3.17), (3.18), (3.21), and (3.22) is the desired LDP.
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3.3 Conclusion

To conclude this section, we show how to deduce the LDP for µXXt/p (Theorem 1.7)
from the LDP for µC′ (Proposition 3.5).

Proposition 3.8. The measure µCCt satisfies the LDP with speed n1+α/2 in P(R+), for
weak topology and the good rate function Ψ′ defined by

Ψ′(ν) =

{
a

cα/2mα/2(ν) if ν({0}) ≥ max
(
0, 1− 1

c

)
+∞ otherwise

. (3.23)

Proof. We define

Tn : µ 7→ 1

2

(
1 +

1

cn

)
µ2 +

1

2

(
1− 1

cn

)
δ0

and

T : µ 7→ 1

2

(
1 +

1

c

)
µ2 +

1

2

(
1− 1

c

)
δ0 ,

so that µCCt = Tn(µC′), see (3.13).
Besides, we have

lim
n→+∞

ds,t(µCCt , T (µC′)) = 0 . (3.24)

Indeed, let n ∈ N and z in the domain Vs,t defined by (1.6). We have∣∣GµCCt (z)−GT (µC′ )
(z)
∣∣ =

∣∣∣∣∫
R

1

z − x
d(Tn(µC′))(x)−

∫
R

1

z − x
d(T (µC′))(x)

∣∣∣∣
=

∣∣∣∣12
(

1

cn
− 1

c

)∫
R

1

z − x
d(µ2

C′)(x) +
1

2

(
1

c
− 1

cn

)
1

z

∣∣∣∣
≤ 1

| Im z|

∣∣∣∣ 1

cn
− 1

c

∣∣∣∣ ,
so, taking the upper bound on z ∈ Vs,t and the limit as n→ +∞, we get (3.24).

The contraction principle applied to the function T , see [9, Theorem 4.2.1], will allow
us to conclude. Indeed, T takes its values in P(R+) and is continuous for weak topology.
This strategy will make appear the good rate function Ψ′ defined for all ν ∈ P(R+) by

Ψ′(ν) = inf{Φ′(µ), µ ∈ P(R) s.t. ν = T (µ)} .

For all µ ∈ P(R), we have (T (µ))({0}) = 1
2

(
1 + 1

c

)
µ({0}) + 1

2

(
1− 1

c

)
, hence

µ({0}) ≥ |1− c|
1 + c

⇔ (T (µ))({0}) ≥ 1

2

|1− c|+ (c− 1)

c
= max

(
0, 1− 1

c

)
.

Therefore, for all ν ∈ P(R+) such that ν({0}) ≥ max
(
0, 1− 1

c

)
, there exists a symmetric

µ ∈ P(R) satisfying µ({0}) ≥ |1−c|1+c and ν = T (µ). We have in this case

Φ′(µ) =
a

2

c+ 1

c1+α/2

∫
R

|x|α dµ(x) =
a

cα/2

∫
R

|x|α/2 d(T (µ))(x) =
a

cα/2
mα/2(ν)

hence Ψ′(ν) = a
cα/2

mα/2(ν). In the case where ν({0}) < max
(
0, 1− 1

c

)
, we can not find a

symmetric µ ∈ P(R) satisfying µ({0}) ≥ |1−c|1+c and ν = T (µ), so Ψ′(ν) = +∞. Thus, we
have computed Ψ′(ν) for every ν ∈ P(R+).

Lower bound. Let µ ∈ P(R+) and δ > 0. From (3.24), for n large enough, we have
ds,t(µCCt , T (µC′)) ≤ δ

2 , hence

P(µCCt ∈ Bs,t(µ, δ)) ≥ P
(
T (µC′) ∈ Bs,t

(
µ,
δ

2

))
.
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By Proposition 3.5 and the contraction principle, we thus have

lim inf
n→+∞

1

n1+α/2
logP(µCCt ∈ Bs,t(µ, δ)) ≥ − inf

ν∈Bs,t(µ,δ/2)
Ψ′(ν) ≥ −Ψ′(µ) . (3.25)

Upper bound. Let F be a closed subset of P(R+) and δ > 0. From (3.24), for n large
enough, we have ds,t(µCCt , T (µC′)) ≤ δ, so

P(µCCt ∈ F ) ≤ P(T (µC′) ∈ F δ) ,

where F δ denotes the δ-neighbourhood of F for the distance ds,t, namely

F δ = {ν ∈ P(R+) | ∃µ ∈ F, ds,t(µ, ν) ≤ δ} .

Applying the contraction principle again, we thus have

lim sup
n→+∞

1

n1+α/2
logP(µCCt ∈ F ) ≤ − inf

ν∈F δ
Ψ′(ν) .

This is true for all δ > 0 so, taking the limit as δ → 0, we get (see [9, Lemma 4.1.6(a)])

lim sup
n→+∞

1

n1+α/2
logP(µCCt ∈ F ) ≤ − inf

ν∈F
Ψ′(ν) . (3.26)

Combining (3.25) and (3.26), we can conclude that µCCt satisfies the announced
LDP.

Because rectangular free convolution is continuous for weak topology, see [5, The-
orem 3.12], the function µ 7→

(√
µ�c

√
µMP,c

)2
is so, therefore, by Proposition 3.8 and

the contraction principle,
(√
µCCt �c

√
µMP,c

)2
satisfies the LDP with speed n1+α/2 on

P(R+) governed by the good rate function

J ′(µ) =

{
Ψ′(ν) if there exists ν ∈ P(R+) such that µ =

(√
ν �c

√
µMP,c

)2
+∞ otherwise

.

Thanks to the exponential equivalence between µXXt/p and
(√
µCCt �c

√
µMP,c

)2
ob-

tained in Proposition 3.1, we can conclude that µXXt/p satisfies the same LDP, see [9,
Theorem 4.2.13], which ends the proof of Theorem 1.7.

A Concentration bounds for the information-plus-noise model

A.1 Concentration for some functions of the resolvent

In Section 2, in order to prove Lemma 2.5, we needed the following concentration
estimates.

Proposition A.1 (adaptation from [20, Lemma 8]). Let Y ∈Mn,p(R) be a random matrix
with i.i.d. entries, let M ∈Mn,p(R) be a deterministic matrix and let z ∈ C \R.

We define X = Y√
p + M , S = (zIn − XXt)−1 the resolvent of XXt, cn = n

p , and

σ2 = Var(Y1,1).
We assume that the distribution of Y1,1 has mean zero and satisfy the following

Poincaré inequality:

∀f ∈ C1(R,R) s.t. E(f ′(Y1,1)2) < +∞, Var(f(Y1,1)) ≤ σ2E(f ′(Y1,1)2) .

Then, for all deterministic matrices U ∈Mn(R) and V ∈Mn,p(R), and for all integers
n, p, we have

Var

(
1

n
Tr(SU)

)
≤ 4σ2cn

n5/2
u(z)‖U‖(Tr(UU t))1/2 (A.1)
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and

Var

(
1

n
Tr(XtSV )

)
≤ 9σ2cn

n2
v(z)

×max

(
‖V ‖ (Tr(V V t))1/2

n1/2
, ‖V ‖3/2 (Tr(V V t))1/4

n1/4
, ‖V ‖5/4 (Tr(V V t))3/8

n3/8

)
, (A.2)

where

u(z) =
|z|
| Im z|4

+
1

| Im z|3
and

v(z) = max

(
1

| Im z|2
,
|z|
| Im z|3

+
1

| Im z|2
,

(
|z|
| Im z|2

+
1

| Im z|

)2
)
.

Remark A.2. • In the proof of Lemma 2.5, we apply (A.1) to U = In and U = R, and
we apply (A.2) to V = M .

• Since ‖V ‖ ≤ Tr(V V t)1/2, (A.2) implies

Var

(
1

n
Tr(XtSV )

)
≤ 9σ2cn

n9/4
v(z) Tr(V V t) . (A.3)

Having in mind the large deviations in Section 3, we want to get a bound in
Tr(MM t) in Lemma 2.5, that is why we use (A.3) instead of (A.2) in its proof.

• We get here slightly better bounds than [20]. Indeed, we can recover their results
from ours since Tr(AAt) ≤ n‖A‖2 (see Proposition B.1 (iv)). This improvement is
due to the fact that we used the inequality |Tr(AC)| ≤

√
n‖A‖(Tr(CC∗))1/2 (see

Proposition B.1 (iii)) instead of |Tr(AC)| ≤ n‖A‖.‖C‖.
• If the distribution of Y1,1 satisfies the Poincaré inequality with a constant C instead

of σ2, then σ2 must be replaced by C in the bounds (A.1) and (A.2).
• In the case of complex matrices Y,M,U, V , the bounds are very similar and only

the constants change.

Proof. Using the sub-additivity property of variance, the Poincaré inequality, and the
differentiation formula (B.1), we get

Var

(
1

n
Tr(SU)

)
= Var

 ∑
1≤j,k≤n

1

n
Sj,kUk,j


≤ σ2E

∑
a,b

 1

n

∑
j,k

1
√
p
Da,bSj,k.Uk,j

2


= σ2E

∑
a,b

1

n2p

∑
j,k

(SX)j,bSa,kUk,j + Sj,a(XtS)b,kUk,j

2


=
σ2

n2p
E

∑
a,b

((SUSX)a,b + (XtSUS)b,a)2


=

σ2

n2p
E

∑
a,b

(SUSX)2
a,b + 2(SUSX)a,b(X

tSUS)b,a + (XtSUS)2
b,a


=

σ2

n2p
E
[
Tr(SUSX(SUSX)t) + 2 Tr(SUSXXtSUS) + Tr(XtSUS(XtSUS)t)

]
.

(A.4)
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Using the resolvent identity SXXt = XXtS = zS − In, the inequality |Tr(AB)| ≤√
nTr(AA∗)1/2‖B‖ (see Proposition B.1 (iii)), and ‖S‖ ≤ 1

| Im z| (see Proposition B.2 (iv)),
we get ∣∣Tr(SUSX(SUSX)t)

∣∣ =
∣∣Tr(U(zS − In)SU tS2)

∣∣
≤
√
n‖U‖Tr(UU t)1/2

(
|z|
| Im z|4

+
1

| Im z|3

)
(A.5)

and very similarly,∣∣Tr(SUSXXtSUS)
∣∣ ≤ √n‖U‖Tr(UU t)1/2

(
|z|
| Im z|4

+
1

| Im z|3

)
(A.6)

and ∣∣Tr(XtSUS(XtSUS)t)
∣∣ ≤ √n‖U‖Tr(UU t)1/2

(
|z|
| Im z|4

+
1

| Im z|3

)
. (A.7)

Combining (A.4), (A.5), (A.6) and (A.7), we conclude that

Var

(
1

n
Tr(SU)

)
≤ 4σ2cn

n5/2

(
1

| Im z|3
+

|z|
| Im z|4

)
‖U‖Tr(UU t)1/2 .

Let us now prove the second inequality. By the same arguments as above, we get

Var

(
1

n
Tr(XtSV )

)
= Var

 ∑
1≤k,l≤n
1≤j≤p

1

n
Xk,jSk,lVl,j


≤ σ2E

∑
a,b

 1

n

∑
j,k,l

Da,bXk,j .Sk,lVl,j +Xk,j .
1
√
p
Da,bSk,l.Vl,j

2


=
σ2

n2p
E

∑
a,b

(
(SV )a,b + (SV XtSX)a,b + (XtSV XtS)b,a

)2
=

σ2

n2p
E
[
Tr(SV (SV )t) + Tr(SV XtSX(SV XtSX)t) + Tr(XtSV XtS(XtSV XtS)t)

+2 Tr(SV XtSX(SV )t) + 2 Tr(SV XtSV XtS) + 2 Tr(SV XtSXXtSV XtS)
]
. (A.8)

We will now bound these terms, always using the resolvent identities SXXt =

XXtS = zS − In, XXtS∗ = S∗XXt = zS∗ − In, inequalities (i)–(iii) in Proposition B.1,
and the bound ‖S‖ ≤ 1

| Im z| . We get for example∣∣Tr(SV (SV )t)
∣∣ =

∣∣Tr(SV V tS)
∣∣ ≤ √n‖V ‖Tr(V V t)1/2 1

| Im z|2
(A.9)

and ∣∣Tr(SV XtSX(SV XtSX)t)
∣∣

=
∣∣Tr(V tS2V Xt(zS − In)SX)

∣∣
≤ Tr(V tS2V V t(S∗)2V )1/2 Tr(Xt(zS − In)SXXtS∗(zS∗ − In)X)1/2

= Tr(V tS2V V t(S∗)2V )1/2 Tr(S∗(zS∗ − In)XXt(zS − In)(zS − In))1/2

≤
(√

n‖V ‖3‖S‖4 Tr(V V t)1/2
)1/2

Tr((zS∗ − In)2(zS − In)2)1/2

≤ n1/4 1

| Im z|2
‖V ‖3/2 Tr(V V t)1/4.

√
n

(
|z|
| Im z|

+ 1

)2

= n3/4‖V ‖3/2 Tr(V V t)1/4

(
|z|
| Im z|2

+
1

| Im z|

)2

. (A.10)
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Very similarly, we get

∣∣Tr(XtSV XtS(XtSV XtS)t)
∣∣ ≤ n3/4‖V ‖3/2 Tr(V V t)1/4

(
|z|
| Im z|2

+
1

| Im z|

)2

, (A.11)

∣∣Tr(SV XtSXV tS)
∣∣ ≤ n5/8‖V ‖5/4 Tr(V V t)3/8

(
|z|
| Im z|3

+
1

| Im z|2

)
, (A.12)

∣∣Tr(SV XtSV XtS)
∣∣ ≤ √n‖V ‖Tr(V V t)1/2

(
|z|
| Im z|3

+
1

| Im z|2

)
, (A.13)

and finally

∣∣Tr(SV XtSXXtSV XtS)
∣∣ ≤ √n‖V ‖Tr(V V t)1/2

(
|z|
| Im z|2

+
1

| Im z|

)2

. (A.14)

Combining inequalities from (A.8) to (A.14), we finally obtain the announced bound.

Remark A.3. In the proof above, it is possible to improve some majorizations using the
inequality ‖SX‖ ≤ 1

| Im y| where y is a square root of z (see Proposition B.2 (v)). For
instance, it allows to get

|Tr(XtSV XtS(XtSV XtS)t)| ≤
√
nTr(V V t)1/2‖V ‖. 1

| Im y|4

instead of (A.11). However, in (A.10), which is the other dominant term in (A.8), we can
not improve the power of n by this strategy.

A.2 Concentration of the empirical spectral measure

In Section 3, in order to prove Proposition 3.1, we needed the following concentration
bound.

Proposition A.4 (adaptation from [7, Theorem 2.5]). Let κ > 1, Y ∈Mn,p(R) a random
matrix with i.i.d. entries bounded by κ, M ∈Mn,p(R) a deterministic matrix such that
1
n Tr(MM t) ≤ κ2, and s, t > 0. We assume that cn = n

p → c ∈ (0,+∞) as n→ +∞.
There exists β > 0 such that for all s large enough, t small enough, n large enough,

and δ ∈
[(

βκ2

n

)2/5

, 1

]
, we have

P
(
ds,t

(
µ(Y/

√
p+M)(Y/

√
p+M)t ,Eµ(Y/

√
p+M)(Y/

√
p+M)t

)
≥ δ
)
≤ βκ

δ3/2
exp

(
−n

2δ5

βκ4

)
.

(A.15)

Remark A.5. • Here κ is a constant but we are interested in the dependence on κ in
the bound since we apply (A.15) to a κ depending on n in Section 3.

• This result remains true if Y and M are complex matrices and the entries of Y
have independent real and imaginary parts.

Proof. We will apply [15, Theorem 1.3(b)] to the (n+ p)× (n+ p) matrix

XA =

 0 Y√
p +M(

Y√
p +M

)t
0

 .

The matrix M is not present in [15] but it is possible to do so because

1

n+ p
Tr(X2

A) ≤ 2

n

∑
j,k

(
Yj,k√
p

+Mj,k

)2

≤ 4

np

∑
j,k

Y 2
j,k +

4

n
Tr(MM t)
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so, thanks to the hypotheses on Y and M , we have 1
n+p Tr(X2

A) ≤ 8κ2. Therefore, the
argument in [15, p. 132] does not change and we can apply [15, Theorem 1.3(b)] adding
the matrix M . Consequently, there exists β > 0 such that for all n large enough and

δ ∈
[(

βκ2

n

)2/5

, 1

]
, we have

P

(
sup
f

∣∣∣∣∫ f dµXA
− E

∫
f dµXA

∣∣∣∣ ≥ δ
)
≤ βκ

δ3/2
e−n

2δ5/βκ4

where the supremum is taken over all bounded Lipschitz functions f such that

sup
x∈R
|f(x)|+ sup

x 6=y

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ 1 . (A.16)

Moreover, using (B.7), we can check that when s is large enough and t is small
enough, for every z ∈ Vs,t, the function f : x 7→ 1

z−x2 is Lipschitz, bounded, and satisfies
(A.16). Noting in addition that∫

1

z − x2
dµXA

(x) =
1

n+ p

(
2n

∫
1

z − x
dµ(Y/

√
p+M)(Y/

√
p+M)t(x) + (n− p).1

z

)
and using the definition (1.5) of ds,t, we find (A.15) even if it means to change β.

B Technical tools

In this appendix, we summarize miscellaneous results used throughout the paper.

B.1 Traces and matricial norms inequalities

For a matrix A ∈ Mn,p(C), we denote by ‖A‖ its operator norm associated to Eu-
clidean norms and

‖A‖∞ = max
1≤j≤n,1≤k≤p

|Aj,k| .

If B is an other matrix inMn,p(C), we denote by A ◦B the Hadamard product of A and
B, i.e. the matrix defined by (A ◦ B)j,k = Aj,kBj,k. Finally, diag(A) denotes the matrix
whose entries are given by Aj,kδj,k, where δ is the Kronecker delta.

Proposition B.1. Let A,B ∈ Mn,p(C), C ∈ Mp,n(C), D ∈ Mn(C), E ∈ Mp,q(C). We
have the following.

(i) |Tr(AC)| ≤ (Tr(AA∗))1/2(Tr(CC∗))1/2,

(ii) |Tr(AC)| ≤ n‖A‖.‖C‖,
(iii) |Tr(AC)| ≤

√
n‖A‖(Tr(CC∗))1/2,

(iv) ‖A‖ ≤ (Tr(AA∗))1/2 ≤
√
n‖A‖,

(v) (Tr(AA∗))1/2 ≤ √np‖A‖∞,

(vi) ‖ diag(D)‖ = ‖diag(D)‖∞ ≤ ‖D‖∞,

(vii) ‖A ◦B‖∞ ≤ ‖A‖∞‖B‖∞,

(viii) ‖A ◦B‖ ≤ ‖A‖.‖B‖,
(ix) Tr((A ◦B)(A ◦B)∗) ≤ Tr(AA∗)‖B‖2∞.

Most of these points are classical or easy to check. Note that the combination (iii) of
(i) and (ii) will be crucial for us and that a proof of (viii) requires the use of the matrices

A′ =

 A1,1 A1,2 A1,p

. . .
. . . . . .

. . .

An,1 An,2 An,p


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and

B′ =



B1,1

...
Bn,1

B1,2

...
Bn,2

. . .

B1,p

...
Bn,p



.

B.2 Properties of resolvents

Let A ∈ Hn(C) and z ∈ C \R. The resolvent of A at z is the matrix R(A) = (zIn−A)−1.
For A ∈Mn,p(C), we denote by S(A) the resolvent R(AA∗), or just S if no confusion can
arise.

Proposition B.2. Let A,B ∈Mn,p(C) and z ∈ C \R. We have the following.

(i) SAA∗ = AA∗S = zS − In,

(ii) S(A+B)− S(A) = S(A+B)(AB∗ +BA∗ +BB∗)S(A),

(iii) GµAA∗ (z) = 1
n TrS,

(iv) ‖S‖∞ ≤ ‖S‖ ≤ 1
| Im z| ,

(v) ‖SA‖∞ ≤ ‖SA‖ ≤ 1
| Im y| , where y is a square root of z,

(vi) ‖A∗SA‖∞ ≤ ‖A∗SA‖ ≤ 1 +
∣∣ z

Im z

∣∣.
(vii) We denote by Da,b the derivation w.r.t. ReAa,b and by δ the Kronecker delta. For

all a, j, k ∈ J1, nK and b, l,m ∈ J1, pK, we have

Da,bSj,k = (SA)j,bSa,k + Sj,a(A∗S)b,k , (B.1)

Da,b(SA)j,l = (SA)j,b(SA)a,l + Sj,a(A∗SA)b,l + δb,lSj,a , (B.2)

Da,b(A
∗S)l,k = (A∗SA)l,bSa,k + (A∗S)l,a(A∗S)b,k + δb,lSa,k , (B.3)

Da,b(A
∗SA)l,m = (A∗SA)l,b(SA)a,m + (A∗S)l,a(A∗SA)b,m

+ δb,m(A∗S)l,a + δb,l(SA)a,m , (B.4)

D2
a,bSj,k = 2[Sj,aSa,k + (SA)j,b(SA)a,bSa,k + Sj,a(A∗SA)b,bSa,k

+ Sj,a(A∗S)b,a(A∗S)b,k + (SA)j,bSa,a(A∗S)b,k] , (B.5)

D3
a,bSj,k = 6[(SA)j,bSa,aSa,k + Sj,a(A∗S)b,aSa,k + Sj,a(SA)a,bSa,k

+Sj,aSa,a(A∗S)b,k + (SA)j,b(SA)2
a,bSa,k + Sj,a(A∗S)2

b,a(A∗S)b,k

+(SA)j,b(SA)a,bSa,a(A∗S)b,k + (SA)j,bSa,a(A∗S)b,a(A∗S)b,k

+Sj,a(A∗SA)b,b(SA)a,bSa,k + (SA)j,bSa,a(A∗SA)b,bSa,k

+Sj,a(A∗S)b,a(A∗SA)b,bSa,k + Sj,a(A∗SA)b,bSa,a(A∗S)b,k] . (B.6)
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Most of these relations are classical or obtained by simple computations. Note
however that (v) and (vi) respectively follow from the identities(

yIn −A
−A∗ yIp

)−1

=

(
yS∗ A(y2Ip −A∗A)−1

(SA)∗ y(y2Ip −A∗A)−1

)
and A∗(zIn −AA∗)−1A = −Ip + z(zIp −A∗A)−1.

Note also that if y is a square root of z and z belongs to the domain Vs,t defined by
(1.6), then we can easily prove that

| Im y|2 =
Im z

2

(√
(Re z)2

(Im z)2
+ 1− Re z

Im z

)
>
s

2
(
√
t2 + 1− t) > 0 . (B.7)

B.3 Inequalities for empirical spectral measures

Proposition B.3 (Rank inequality, see [7, Lemma B.1]). Let A,B ∈ Hn(C). We have

dKS(µA, µB) ≤ 1

n
rank(A−B) . (B.8)

Proposition B.4 (Rank inequality for covariance matrices, see [3, Theorem A.44]). Let
A,B ∈Mn,p(C). We have

dKS(µAA∗ , µBB∗) ≤
1

n
rank(A−B) . (B.9)

Proposition B.5 (Hoffman-Wielandt inequality, see [7, Lemma B.2]). Let A,B ∈ Hn(C).
We have

W 2
2 (µA, µB) ≤ 1

n
Tr((A−B)2) , (B.10)

where W2 denotes the L2-Wasserstein distance on P(R).

Proposition B.6 (see [3, Corollary A.42]). Let A,B ∈Mn,p(C). We have

W 4
2 (µAA∗ , µBB∗) ≤

2

n2
Tr(AA∗ +BB∗) Tr((A−B)(A−B)∗) . (B.11)

Proposition B.7 (Schatten’s inequality, see [22, Theorem 3.32]). Let A ∈ Hn(C) and
p ∈ (0, 2]. We have ∫

R

|x|p dµA(x) ≤ 1

n

n∑
k=1

 n∑
j=1

|Ak,j |2
p/2

. (B.12)
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