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Reflected Brownian motion: selection, approximation
and linearization

Marc Arnaudon* Xue-Mei Li†

Abstract

We construct a family of SDEs with smooth coefficients whose solutions select a
reflected Brownian flow as well as a corresponding stochastic damped transport
process (Wt), the limiting pair gives a probabilistic representation for solutions of the
heat equations on differential 1-forms with the absolute boundary conditions. The
transport process evolves pathwise by the Ricci curvature in the interior, by the shape
operator on the boundary where it is driven by the boundary local time, and with
its normal part erased at the end of the excursions to the boundary of the reflected
Brownian motion. On the half line, this construction selects the Skorohod solution
(and its derivative with respect to initial points), not the Tanaka solution; on the half
space it agrees with the construction of N. Ikeda and S. Watanabe [29] by Poisson
point processes. The construction leads also to an approximation for the boundary
local time, in the topology of uniform convergence but not in the semi-martingale
topology, indicating the difficulty in proving convergence of solutions of a family of
random ODE’s to the solution of a stochastic equation driven by the local time and
with jumps. In addition, we obtain a differentiation formula for the heat semi-group
with Neumann boundary condition and prove also that (Wt) is the weak derivative of
a family of reflected Brownian motions with respect to the initial point.
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1 Introduction

A. Throughout this paper (Ω,F ,Ft,P) is an underlying filtered probability space
satisfying the usual assumptions, and M is a smooth connected d-dimensional Rieman-
nian manifold with boundary ∂M . We denote by Mo the interior of M and by ν the unit,
inward pointing, normal vector on the boundary. The boundary is a smooth manifold, but
not necessarily connected. Let ∧ denote the space of differential forms of all degrees
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Reflected Brownian motion: selection, approximation and linearization

and let d denote the exterior differential and d∗ its dual operator on L2(∧). Furthermore,
let ∆ = −d∗d denote the Laplacian on real valued functions and ∆1 = −(d∗d+ dd∗) the
restriction of the Hodge-Laplace-Beltrami operator to differential 1-forms. We study the
heat equation on differential 1-forms, on a manifold with boundary.

The solutions to the initial value problem for heat equations on scalar functions and
that on differential 1-forms are naturally related. For manifolds without a boundary, the
differential of the former with an initial value f , assumed to be reasonably regular, solves
the latter with the initial value df . This is an easy consequence of the commutating
relation d∆ = ∆1d, between d and the Laplacians. If (xt) is a Brownian motion (BM) with
initial value x0 and Wt the damped stochastic parallel transport along x·, then

e
1
2 ∆tf(x0) = Ef(xt), e

1
2 ∆1t(df) = E [df(Wt(·))] .

The damped stochastic parallel transport (Wt) solves the parallel translation equation,
damped by − 1

2Ric], where Ric]x : TxM → TxM is given by Ric]x(v) = Ricx(v,−) for Ricx
the Ricci curvature and v ∈ TxM . The involvement of the Ricci curvature follows from
the Weitzenböck formula: ∆1φ = trace∇2φ− φ(Ric#) and the fact that the commutator
between d and trace∇2, where ∇ is the Levi-Civita connection, is the interior product of
the differential 1-form with Ric].

A simple application of Itô’s formula transfers the derivative on the initial function
to Wt and leads to the formula d(e

1
2 ∆tf) = E[f(xt)Mt] where Mt is a martingale, a

stochastic integral which is a path integration of the damped parallel translation. This
procedure captures the essence of Malliavin calculus and the smoothing property of the
heat semi-group.

If the manifold has a boundary, we impose the Neumann boundary condition on the
scalar heat equation, which models heat conduction in a perfect insulator, and consider:

∂u(t, ·)
∂t

=
1

2
∆u(t, ·), on Mo, t > 0

∂u(t, ·)
∂ν

∣∣∣
∂M

= 0, u(0, ·) = f.

(1.1)

Then its solution has the probabilistic representation ut(x0) = E[f(Yt)], where (Yt) is a
reflected Brownian motion (RBM) with initial value x0. A RBM on M is a solution to a
stochastic differential equation (SDE) of the form:

dYt = χMo(Yt) “dxt” + ν χ∂M (Yt) dLt,

where (Lt) is the boundary local time of the RBM. The differential du, with respect to
the space variable, solves also the heat equation on differential forms. However the
induced boundary condition, df(ν) = 0, is not sufficient for the well-posedness of the
heat equation on differential form. We assume the absolute boundary condition and
consider the equations: 

∂φ(t, ·)
∂t

=
1

2
∆1φ(t, ·) on Mo, t > 0

φ(0, ·) = φ0,

φ(t, ν)|∂M = 0, dφ(t, ν)|∂M = 0,

(1.2)

where dφ denotes exterior differential of φ, a differential two form. In local coordinates,
dφ(v1, v2) = (∇v1φ)(v2) − (∇v2φ)(v1). Since d2 = 0, the absolute boundary condition is
satisfied by du(t, ·). Suppose the Dirichlet boundary condition φ(ν) = 0 holds, then the
absolute boundary condition is equivalent to ∇νφ− φ(∇ν) = 0 on the tangent spaces on
the boundary.
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A reflected Brownian motion, Yt, is obtained together with its local time Lt at the
boundary, and its transport equation involves ‘differentiating’ the local time with respect
to the initial value of the reflected Brownian motion. The local time vanishes when Yt is
in the interior of the manifold, so does not respond well to differentiating. The equation
for the damped parallel transport along the sample paths of a reflected Brownian motion
is also obtained by damping the parallel translation equation by the Ricci curvature,
before the RMB touches the boundary for the first time, after which both the shape
operator and the boundary local time are involved.

Our questions are (a) How would we simulate a RBM ands its damped stochastic
parallel transports? (b) Could we select a RBM so it leads naturally to a probabilistic
representation for the solution to the heat equation on differential 1-forms with the
absolute boundary conditions? (3) Which properties of the Brownian flow on manifolds
without a boundary can be passed to manifolds with a boundary? For example, an
immediate consequence of the construction is that a differentiation formula for heat
semigroups which does not involve the differential of the initial value, are valid for for
heat equation with the Neumann boundary condition. See [10, 21, 31] for compact and
non-compact manifolds without a boundary. In this article we prove that there exists a
family of stochastic differential equations, whose solution do not visit the boundary, such
that the following convergence hold.

1. Their solution flows converge to a reflected Brownian motions;

2. Their damped (resp. undamped) stochastic parallel transports converge to the
respected damped (resp. undamped stochastic parallel transport) along the limiting
reflected Brownian motions.

The existence of a family of SDE’s satisfying the first convergence is well known, espe-
cially for RBM defined on an Euclidean domain. The idea is to build a hard barrier on
the boundary by adding large drifts pointing away from the boundary.

B. We explain the construction mentioned earlier in the context of known results,
beginning by quoting the following theorem from the book [29] by N. Ikeda and S.
Watanabe.

Theorem 1.1 ([29, Thm 7.2]). Let D = R+
d = {(x1, . . . , x

d), xd ≥ 0}. Let {bi, σik, i =

1, . . . , d, k = 1, . . . ,m} be real valued functions on D and δ a real valued function on ∂D,
all are bounded Lipschitz continuous. Suppose that

∑m
k=1(σdk)2 ≥ C and δ ≥ C where C

is a positive number. Then there exists a pair of adapted stochastic processes (Yt, Lt)

such that for 1 ≤ i ≤ d− 1, their components satisfy the equations

dY it =

m∑
k=1

σik(Yt)χD0(Yt) dB
k
t + bi(Yt)χD0(Yt) dt, Y i0 = yi0,

dY dt =

m∑
k=1

σdk(Yt)χD0(Yt) dB
k
t + bd(Yt)χD0(Yt) dt,+δ(Yt)dLt, Y d0 = yd0 ,

(1.3)

and the following conditions: (a) L0 = 0, (b) Lt is a continuous and increasing process,
(3)
∫ t

0
χ{Ys∈∂D}dLs = Lt, for all t ≥ 0, a.s.. Furthermore uniqueness in law holds.

If δ ≡ 1, the solution of the resulting non-sticky stochastic differential equation
is a RBM. By working in local charts, this implies that RBM’s exist on any smooth
manifolds with a boundary. By this theorem, other reflected stochastic processes, with
not necessarily normal reflection, can also be constructed. All reasonable constructions
should lead to the same essential quantity: the local time of the Brownian motion on the
boundary. This philosophy follows from the uniqueness to the associated sub-martingale
problem.
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To solve the heat equation on differential 1-forms with the absolute boundary con-
dition, N. Ikeda and S. Watanabe sought a tangent space valued process satisfying
φ(t, v) = Eφ(0,Wt(v)). They constructed the solution for the half space, by the method
of orthonormal frames, and remarked that, by working in charts, this leads trivially to
the existence of a solution for general manifolds [29].

An ansatz for (Wt) is the solution to the random (covariant) ordinary differential
equation along the sample paths of a given RBM: DdtWt = − 1

2Ric#
Yt

(Wt). Here D denotes
covariant differentiation of (Wt(ω)) along a sample path Yt(ω). We use Wt(ω) to stand
both for a tangent vector Wt(ω) ∈ TYt(ω)M with initial value W0(ω) and the linear map
Wt(ω) : TY0

M → TYt(ω)M . The latter translates a tangent vector at Y0 ‘parallelly’ to a
tangent vector in the tangent space at Yt(ω).

The above representation holds for a manifold without a boundary, and is essentially
true for the half space. As we will explain, it is also necessary to consider the shape of
the boundary and add the shape operator S : TM → TM :

DWt = −1

2
Ric#

Yt
(Wt)χ{Mo}(Yt) dt− SYt(Wt) dLt. (1.4)

Here S denotes the shape operator of the boundary. If y ∈ ∂M and w ∈ TyM then
Sy = (−∇wν)T which is the tangential part of −∇wν. For the half space, the shape
operator vanishes identically, so the boundary local time is not involved. For a general
manifold, the shape operator compensates with the variation of φ in the normal direction:
if φ(ν) ≡ 0 then ∇wφ(ν) = φ(Sy(w)), see (C.5) for detail. There remains a term of the

form
∫ t

0
∇φT−s(ν(Ys),W

ν
s )ds where W ν

s is the ‘normal part’ of Ws. To solve the absolute
boundary problem one simply assumes that the normal part of Ws vanishes.

The damped stochastic parallel translation process exists and has a number of
constructions, the basic idea is as follows. Denote by Rt the distance of Yt to the
boundary. We erase the normal part of the solution to (1.4), at the end of each excursion
of the process Yt into the interior Mo, of size larger or equal to ε, and obtain a process
W ε
t . As ε approaches zero, W ε

t converges to a process Wt with the required properties.
The Poisson point process of (Rt) determines the frequency of the projection, the ‘local
time’ or the boundary time of the RBM is the local time of Rt at 0 and is essentially the
δ-measure on the boundary.

We construct a nice family of SDEs of the form dY at = “dxt” + Aa(Y at )dt whose
solutions (Y at ) are smooth and stay in the interior for all time, in particular they have no
boundary times. We seek the additional properties: (1) Lat :=

∫ t
0
|Aa(Y as )|ds approximates∫ t

0
χ∂M (Ys)ds; (2) as a→ 0, the solutions to the equations

DW a
t = −1

2
Ric#

Y at
(W a

t )dt+∇Wa
t
Aat dt (1.5)

converge to (Wt). Observe that dLat and dLt have mutually singular supports and it is
clear that not every choice of “dxt” yields an approximation. The solutions (Y at ) together
with their damped parallel translations (W a

t ) select a RBM (Yt) together with a damped
stochastic parallel transport Wt = limε→0W

ε
t . Note that, although (Y at ) and (W a

t ) are
sample continuous, the selected stochastic process (Yt,Wt) has jumps on the boundary.
In addition we observe that (W a

t ) can also be obtained by an appropriate variation in the
initial values of a stochastic flow (Y at ).

The construction is motivated by the following well known facts for manifold without
boundaries: (1) damped parallel translations can be obtained from perturbation to a
Brownian system with respect to its initial data and (2) a formula for the derivative of
the heat semigroup follows naturally from differentiating a Brownian flow with respect
to its initial value. More precisely if (dFt)(v) is the derivative of a Brownian flow (Ft(x))
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with respect to its initial data x in the direction v ∈ TxM , then Wt(v) is the conditional
expectation of (dFt)(v) with respect to the filtration of the Brownian flow. From our
construction it would be trivial to see the formula dut(Y0) = 1

tE[f(Yt)Mt] holds for
manifolds with a boundary, where Mt is a suitable local martingale.

C. Historical Remarks. Heat equations on differential forms were already consid-
ered 60 years ago in [14, P. E. Conner], where the authors related them to the existence
problem for harmonic differential forms, and were studied by P. Malliavin [34] and H.
Airault [2] who used perturbations to a boundary operator. The space of harmonic differ-
ential forms are related to the de Rham cohomology groups which are the quotients of
closed smooth differential forms by exact differential forms. For compact manifolds, de
Rham cohomology groups are typically obtained by an L2 Hodge decomposition theorem
and are topological invariants. Furthermore the alternative sum of the dimensions of the
de Rham cohomology groups is the Euler characteristic. On manifolds with a boundary,
a vanishing theorem on the first de Rham cohomology was obtained by A. Méritet [35];
a probabilistic proof for the Gauss-Bonnet-Chern Theorem which concerns a formula
relating the Euler characteristics to the Gauss curvature, was obtained by I. Shigekawa,
N. Ueki, and S. Watanabe [37].

The study of reflected Brownian motions, in conjunction with heat equation on
functions, goes back to the late 50’s and early 60’s, see [15, F. Dario], [26, N. Ikeda], [38,
A. V. Skorohod], and [27, N. Ikeda, T. Ueno, H. Tanaka and K. Satô]. A weak solution for
smooth domains is given in [39, D. W. Stroock and S. R. S. Varadhan ], see also the book
[9, A. Bensoussan and J. L. Lions ]. On convex Euclidean domains this was studied by H.
Tanaka [40]. A comprehensive study can be found in [33, P. L. Lions and A. S. Sznitman],
see also [42, S. R. S. Varadhan and R. J. Williams]. In terms of Dirichlet forms, see [13,
Z.-Q. Chen, P.J. Fitzsimmons, and R. Song], and [12, Burdzy-Chen-Jones].

The study of stochastic damped parallel transports on manifolds with boundary began
with the upper half plane, preluding which reflected Brownian motions was constructed
by the canonical horizontal SDE on the orthonormal frame bundle (OM) with drift given
by the horizontal lift of the ‘reflecting’ vector field, see e.g. [26, N. Ikeda], [44, Watanabe]
and [28, N. Ikeda and S. Watanabe]. The same SDE on OM defines also the stochastic
parallel transport process //t(Y ) which is a sample continuous stochastic process, this
is quite unlike the damped stochastic parallel translations whose construction is also
more difficult. The former reduces to solving a ‘reflected’ stochastic differential equation
while the latter is a stochastic process with seemingly arbitrarily induced jumps. Our
construction shows that these jumps are not as arbitrary as they seem to be.

Since a manifold with boundary can be transformed to the upper half plane by local
charts, c.f. [28, N. Ikeda and the S. Watanabe], this implies the local existence of damped
parallel transport on a general manifold, where the Dirichlet Neumann problems were
studied in [1, 2, H. Airault] using multiplicative functionals. H. Airault’s approach
was followed up in [25, E. Hsu] to give a neat treatment for the reflected SDE on the
orthonormal frame bundle. In Appendix C, we extend and explain Ikeda-Watanabe’s
construction [29] for damped parallel transport, the formulation involves an additional
curvature term, the shape operator of the normal vector ν.

For manifolds without a boundary, the concept of stochastic parallel translation goes
back to K. Itô [30], J. Eells and D. Elworthy [17], P. Malliavin [34], H. Airault [2], and N.
Ikeda and S. Watanabe [28]. The damped parallel translations along a Brownian motion
(xt) are constructed using stochastic parallel translation. Together with (xt) it is an
L(TM, TM)-valued diffusion process along (xt) with Markov generator 1

2∆1. It was well
understood that E[df(Wt)], where f ∈ BC2(M), solves the heat equation on differential
1-forms. See e.g. [18, D. Elworthy], [10, J.-M. Bismut], [28, N. Ikeda and S. Watanabe],
and [36, P.-A. Meyer]. Furthermore if Pt is the heat semi-group, the process dPT−tf(Wt)
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is a local martingale. See [31] for a systematic study of probabilistic representations
of heat semigroups on differential forms using both the damped parallel translation
and the derivative flow of a Brownian system. Furthermore, (Wt) can be obtained from
the derivative process of a Brownian flow by conditioning, from which information on
the derivative of the heat semigroup on functions can also be obtained. The filtering
method was used by M. Arnaudon, B. Driver, K. D. Elworthy, Y. LeJan, Xue-Mei Li, A.
Thalmaier and Feng-Yu Wang [31, 20, 19, 22, 41, 5], and in many other related works.
This plays also a role in the study of the regularity of finely harmonic maps, c.f. [8,
M. Arnaudon, Xue-Mei Li and A. Thalmaier]. The stochastic Jacobi field point of view
was also developed in [6, M. Arnaudon and A. Thalmaier], leading to estimates for the
derivatives of harmonic maps between manifolds and to Liouville-type theorems.

2 Outline and main theorems

Let ρ denote the Riemannian distance in M and p ≥ 1. If E

[
sup

0≤t≤T
ρ(Y at , Yt)

p

]
→ 0

we say that the family of processes (Y at ) converges to (Yt) in Sp([0, T ]). We may also
consider the convergence of a stochastic process after embedding the state space in an
Euclidean space. Contrary to the convergence in the topology of uniform convergence
(UCP), the Sp([0, T ]) convergence in terms of the Euclidean distance does depend on
the embedding. However if M is compact, convergence in Sp([0, T ]) for the Riemannian
distance is equivalent to convergence in Sp([0, T ]) for the Euclidean distance of an
Euclidean space into which the manifold is embedded. It is also equivalent to the UCP
convergence on the manifold. The notation, concerning the convergence of stochastic
processes on manifolds, is introduced in Appendix B where we also summarise the
relevant estimates for stochastic integrals in the Sp and Hp norm, as well as relating
different notions of convergences.

The paper is organised as follows. We first construct, in §3, a family of SDEs whose
solution flows (Y at , a > 0) exist and and has a reflected Brownian flow as their limit.
Away from the boundary, (Y at , a > 0) are Brownian motions with drift Aa, where Aa is
the gradient of ln tanh

(
R
a

)
and where R(x) is the distance of x to the boundary. This

construction selects a special reflected Brownian motion and their damped parallel
translations.

Theorem 3.3. (a) For each a > 0 and initial value Y0 ∈M0, (Y at ) remains in M0; (b)
As a→ 0, (Y at ) converges to the RBM process (Yt) in UCP.

For M = R+, the solution to the Skorohod problem is selected while the solution
given by Tanaka’s formula is not, see Appendix A for detail.

The convergence of their stochastic parallel translations, //s(Y at ), is given in §4, while
the more difficult convergence theorem for their damped stochastic parallel translations
(W a

t ) is stated in §5, together with a detailed description for the limiting process Wt

and a differentiation formula for the heat semi-group with the Neumann boundary
condition. The proof for the main theorem in §5 is given in §7. In §6 we study a variation,
(Y at (u), u ∈ [0, 1]), of (Y at ) and discuss the convergence of their derivatives with respect
to u to the damped stochastic parallel translation process Wt. In the Appendix C we
provide a proof for the existence of the stochastic damped parallel translation of Ikeda
and Watanabe, whose proof uses Poisson point processes and was explicit only for the
half plane. A formula for the normal part, W a

t , of Wt, are given in section 5.

The main idea behind the construction is that R(Y at ) involves one single real valued
Brownian motion for all parameters a, and hence pathwise analysis is possible. The
construction involves a tubular neighbourhood of the boundary in which the product
metric is used for the estimation. By the construction, the convergence of {Y at , a > 0} in
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the ‘tangential directions’ of the product tubular neighbourhood is trivial. Outside of
the tubular neighbourhood the drift Aa(x) vanishes, while inside it converges to zero
exponentially fast as a→ 0 for every x ∈Mo.

We also show that there exists a family of stochastic processes {Lat , a > 0} which
converges to the local time Lt in Sp([0, T ]). The convergence is not in the Hp([0, T ])

topology. The former convergence is a key for the convergence of the damped stochastic
parallel translations, while the lack of the convergence in the latter topology makes it
difficult to follow the standard methods for proving the convergence of solutions of SDEs
with a parameter.

Corollary 3.5 and Lemma 7.8 Let M be compact. Then for any p > 1 and T > 0,

lim
a→0
‖Lat − Lt‖Sp([0,T ]) = 0.

In spite of the convergence, dLt and dLat are mutually singular measures. As a
approaches zero, the total variation norms of their differences converge to a non-
zero measure: |d(Lt − Lat )| → 2|dLt|. We also observe that |Lat |Hp([0,T ]) = |Lat |Sp[0,T ],
|Lt|Hp[0,T ] = |Lt|Sp[0,T ] and

|Lt − Lat |Hp([0,T ]) = |Lt|Hp([0,T ]) + |Lat |Hp([0,T ]).

Below we state our main theorem, whose proof is the content of Section 7. A
preliminary and easier result on the stochastic parallel transports is given in §4.

If v ∈ TyM , where y ∈ ∂M , we denote vT and vν respectively its tangential and
normal component. Thus (W a,T

t ) is the tangential part of W a
t , the latter solves (1.5), and

W a
t = W a,T

t + fa(t)ν(Y at )

where fa(t) = 〈W a
t , ν(Y at )〉.

Lemma 7.11, Lemma 7.12, Theorem 5.6 and Corollary 5.7. Let M be a compact
Riemannian manifold and let (Wt) be the solution to (1.4). Let p ∈ [1,∞). Then

1. lima→0W
a,T
· = WT

· , in the topology of uniform convergence in probability.

2. Write Wt = WT
t + f(t)νYt . As a→ 0,

E

[∫ t

0

|fa(s)− f(s)|p ds
]
→ 0.

3. For any C2 differential 1-form φ such that φ(ν) vanishes on the boundary,

lim
a→0

sup
s≤t

E |φ(W a
s )− φ(Ws)|p = 0.

The family of sample continuous stochastic processes {(W a
t ), a > 0} cannot converge

to the stochastic process (Wt) with jumps, in the topology of uniform convergence in
probability, nor in the Sp norm, nor in the Skorohod topology. The uniform distance
between a continuous path and a path with jumps is at least half of the size of the largest
jump.

In Lemma 7.9 and Corollary 7.10 we see the simple ideas which are key to the proof.
We show that there exists a real continuous process ca(u) such that

dfa(t) = −ca(t)fa(t) dt+ other interacting terms,
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in which −
∫ t

0
ca(u)fa(u) du is the only term that contributes to creating jumps (as a

approaches 0). More precisely, for t 6∈ R(ω), let

αt = sup{s : Ys ∈ ∂M, s ∈ [0, t]}.

Then for all s, t ∈ [0, S] with s < t,

lim
a→0

e−
∫ t
s
ca(u) du = 1 if s > αt

lim
a→0

e−
∫ t
s
ca(u) du = 0 if s < αt.

Let us follow Appendix C and explain the jumps in the limiting process Wt. Denote
by R(x) = ρ(·, ∂) the distance function to the boundary and set Rt = ρ(Yt, ∂M). Viewed
by the distance process Rt, the RBM reaches the boundary at a stopping time ζ where
it makes excursions into the interior. By an equivalent change of probability measures,
these excursions are similar to those made by a real valued RBM. The complement to
the set of boundary points of Rt are disjoint open intervals. Let R(ω) denote the set of
the ‘right most points’ of the excursions of the distance function Rt and Rε(ω) its subset
coming from excursions of length at least ε.

The stochastic process Wt ∈ L(TY0
M ;TYtM) is the unique càdlàg process along the

RBM (Yt) satisfying the following equation during an excursion to the interior:

Wt(v) =v − 1

2
//t

∫ t

0

//−1
s Ric]Ys−(Ws−(v))ds− //t

∫ t

0

//−1
s SYs−(Ws−(v))dLs

−
∑

s∈R(ω)∩[0,t]

〈Ws−(v), ν(Ys))〉//s,tν(Ys),
(2.1)

where //s,t = //s,t(Y·) denotes the parallel transport process along (Y·) from TYsM to
TYtM . We abbreviate //0,t to //t. If we remove only the normal part of Wt on excursion
intervals whose lengths are equal to or exceed size ε, the above procedure makes sense
and the resulting processes (W ε

t ) has a limit. The above equation is understood in this
limiting sense. More precisely, let W ε

t denote the solution to

DW ε
t = −1

2
Ric](W ε

t ) dt− S(W ε
t ) dLt − χ{t∈Rε(ω)}〈W ε

t−, νYt〉νYt ,

W ε
0 = IdTY0M .

(2.2)

There exists an adapted right continuous stochastic processWt such that limε→0W
ε
t = Wt

in UCP, and in Sp for compact manifolds M , where p ≥ 1. Furthermore for any α ∈ T ,
the set of stochastic processes taking their values in the set of bounded differential
1-forms above Yt and vanishing outside some compact set, c.f. (C.6), we have

lim
ε→0

(∫ ·∧τD
0

αs(DW
ε
s )

)
S2=

(∫ ·∧τD
0

αs(DWs)

)
.

This construction agrees with the derivative flow of the Skorohod reflected Brownian
motion on the half line, extending stochastic damped parallel translation of Ikeda and
Watanabe to general manifolds with boundary. This was further elaborated in Section
6 where we prove damped parallel translation is a weak derivative of the reflected
Brownian flow. See also [25, E. Hsu] and [43, F. Wang] for two other constructions for
damped parallel translations. In Proposition 5.1 we explain that removing the normal
part of the damped parallel translation at the beginning of excursions leads to the same
object in the limit, using the fact that the beginnings of excursions are left limits of the
ends of excursions.
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Reflected Brownian motion: selection, approximation and linearization

In Theorem 5.3 we observe that (Wt) has the local martingale property when com-
posed with the differential of a solution to the heat equation with the Neumann boundary
condition, c.f. [29, N. Ikeda and S. Watanabe]. A stochastic representation for the
semigroup on differential one forms with absolute boundary conditions follows.

Theorem 5.2 Suppose that the tubular neighbourhood of the boundary has positive
radius, and that the curvatures Ric# and S are bounded from below. If φ(t, ·) is a solution
to the heat equation with absolute boundary conditions, then φ(t, ·) = Eφ(0,Wt(·)).

Finally we consider the problem of obtaining (W a
t ) by varying the initial value in a

family of stochastic flows. We have previously obtained a family of processes (Y at , 0 <

a ≤ 1) which converges as a → 0 to a RBM in Lp. For a fixed we consider a variation
(Y at (u), u ∈ [0, 1]) with the property that Y a0 (u) = γ(u) where γ(u) is a C1 curve and
∂uY

a
t (u) = W a

t (u)γ̇(u), see [4, M. Arnaudon, K.A. Coulibaly and A. Thalmaier] for the
construction.

Proposition 6.1, Theorem 6.2 and Theorem 6.3 If M is compact, then the family
of two parameter stochastic processes {(Y at (u))t∈[0,T ],u∈[0,1], a ∈ (0, 1]}, indexed by a, is
tight in the weak topology. Let {ak} be a sequence of positive numbers converging to
0 and such that (Y akt (u))t∈[0,T ],u∈[0,1] converges weakly to (Yt(u))t∈[0,T ],u∈[0,1]. Then the
following statements hold:

(1) for every u ∈ [0, 1], Yt(u) is a RBM on M with initial value γ(u);

(2) for every p ∈ [1,∞) there exists a number C ′(p, T ) s.t. for all 0 ≤ u1, u2 ≤ 1,

sup
0≤t≤T

E [ρp(Yt(u1), Yt(u2))] ≤ C ′(p, T )‖γ̇‖∞|u1 − u2|p. (2.3)

(3) For all f ∈ C2(M) with df(ν) = 0,

E

[
f(Yt(u2))− f(Yt(u1))−

∫ u2

u1

df
(
Wt(u)γ̇(u)

)
du

]
= 0.

The last identity implies that if γ̇(u) = v, then ∂
∂uYt(γ(u)) = Wt(u)(v). Thus the

damped parallel translation can be interpreted as a derivative of the RBM with respect
to the initial point, making connection with the study of K. Burdzy [11], S. Anders [3],
and J.-D. Deuschel and L. Zambotti [16] for Euclidean domains. It would be interesting
to prove that (Wt) can be constructed from the derivative of the flow in strong sense.

3 A reflected Brownian flow

Let ρ denote the Riemannian distance function on M and R the distance function to
the boundary, so R(x) = inf{ρ(x, y) : y ∈ ∂M}. Let ν denote the inward-pointing unit
normal vector field on the boundary and exp the exponential map. By inward-pointing we
mean that the sign of ν is chosen so that exp(tν) belongs to M0 for sufficiently small t.

If {σ1, . . . σm} is a family of vector fields spanning the tangent space at each point,
we associate to it a bundle map σ : M ×Rm → TM given by σ(x)(e) =

∑m
k=1 σk(x)〈ek, e〉

where {ei} is an orthonormal basis of Rm. Let σ0 be a smooth vector field. Let (Bt) be
an Rm-valued Brownian motion. A Brownian system is a stochastic differential equations
(SDE) of the form

dxt = σ(xt) ◦ dBt + σ0(xt)dt

with infinitesimal generator 1
2∆ where ◦ denotes Stratonovich integration. Such equa-

tions always exist and are not unique, for example if σi are the gradient vector fields
obtained by an isometric embedding of M into Rm, the SDE is a gradient Brownian
system.
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Reflected Brownian motion: selection, approximation and linearization

A RBM is a solution to the Skorohod problem, i.e. a sample continuous strong
Markov process satisfying the following properties: (1) its Markov generator is 1

2∆ when
restricted to C2

K(M0); (2) it spends almost all the time in the interior of the manifold
(with respect to Lebesgue measure on time set); and (3) its drift on the boundary is
co-linear with ν. More precisely,

Definition 3.1. A stochastic flow is a Riemannian RBM if it solves the Skorohod problem

dYt = σ(Yt) ◦ dBt + σ0(Yt)dt+A(Yt)dLt, (3.1)

where A is a smooth vector field extending the inward normal vector field and Lt is a
non-decreasing process satisfying∫ t

0

χ(∂M)c(Ys)dLs = 0.

We say that Lt is the local time of the RBM at ∂M , or the boundary time of the RBM.
Since dLt is supported on the boundary of M , Yt behaves exactly like a Brownian motion
in the interior.

The aim of the section is to construct a family of Brownian systems on M with large
drift Aa pushing away from the boundary, approximating a reflected Brownian motion in
the topology of uniform convergence in probability. Furthermore the following properties
are desired: the convergence is ‘uniform’ and the limiting process is continuous with
respect to the initial data.

By the tubular neighbourhood theorem, there exists a continuous function δ : ∂M →
(0,∞) such that for E0 = {(x, t) : x ∈ ∂M, 0 ≤ t < δ(x)}, the map

Φ : E0 → F0 := Φ(E0) ⊂M
(x, t) 7→ expx(tνx)

(3.2)

is a diffeomorphism such that Ψ(y) = (π(y), R(y)) on F0 where π(y) is the boundary point

given by ρ(y, π(y)) = R(y) and Ψ = Φ−1. In other words, on F0, R
(

Φ(x, t)
)

= t and the

distance function R is smooth. For 0 ≤ c ≤ 1, define

Ec = {(x, t) : 0 ≤ t < (1− c)δ(x)}, Fc = Φ(Ec).

Since ∂M is a Riemannian manifold of its own right, we may represent ∆∂M =∑m
j=2 σ̄j as the sum of squares of vector fields, for example by taking {σ̄j , j = 2, . . . ,m}

to be a gradient system on ∂M .
In the tubular neighbourhood around a relatively compact set U of the boundary, the

width δ(x) can be taken to be a positive constant 3δ0. Let R be a real valued 1-Lipschitz
smooth function on M which on F1/3 agrees with the distance function to the boundary
and such that R ≥ δ0 on F c1/3. This can be obtained by modifying the distance function to
the boundary.

Proposition 3.2. Let r ≥ 1 and c ∈ (0, 1). Let {σ̄0, σ̄j , j = 2, . . . ,m} be a family of Cr

vector fields on ∂M with the property that

1

2

m∑
j=2

Lσ̄jLσ̄j + Lσ̄0
=

1

2
∆∂M .

Suppose that E0 has strictly positive radius, i.e. there exists a positive number δ0 such
that inf

∂M
δ ≥ 3δ0. Then there exist a finite number of Cr vector fields {σj , j = 0, . . . , N}

such that
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Reflected Brownian motion: selection, approximation and linearization

(1) 1
2

∑N
j=1 LσjLσj + Lσ0

= 1
2∆ on M ,

(2) σ1 = ∇R on F2/3,

(3) For 2 ≤ j ≤ m, σj extends σ̄j ,

(4) For all p ∈ Φ(∂M × [0, δ0]), for all j ≥ 2: 〈σ1, σj〉p = 0.

In the sequel we denote A = σ1.

Proof. We first assume that there exist a family of vector fields σj , 1 ≤ j ≤ m defined in
the tubular neighbourhood F0. Denote σ : M ×Rm → TM the corresponding bundle
map, as indicated earlier. Let us extend the construction to M and then return to the
local construction.

Let σ̃i,m+ 1 ≤ i ≤ m+m′ be a family of vector fields in M such that

m+m′∑
i=m+1

Lσ̃iLσ̃i = ∆.

Let σ̃ be the corresponding bundle map from M ×Rm′ → TM and let N = m+m′. We
take a real valued function β ∈ C∞(M ; [0, 1]) with the property that

√
β and

√
1− β are

smooth (this is implied by the other assumptions), β|F2/3
= 1, and β|M\F1/3

= 0. Let us

define a new bundle map σ̂ : Rm ×Rm′ → TM as following:

σ̂(e1, e2) =
√
β σ(e1) +

√
1− β σ̃(e2),

and prove that it is a surjection. Let

(σ̂)∗(v) = (
√
βσ∗(v),

√
1− β(σ̃)∗(v)).

Then (σ̂)∗ : TxM → RN is the right inverse to σ̂. Indeed

σ̂σ̂∗ = βσσ∗ + (1− β)σ̃(σ̃)∗ = id,

and σ̂ induces the Laplace-Beltrami operator. It is the desired map.
Let us now construct σ on F0. If y ∈ m, let π(y) denote the projection of y to M , γy

the geodesic from π(y) to y, and //(γy) the parallel transport along γy which is a linear
map from Tπ(y)M to TyM . For j 6= 1, along a geodesic normal to the boundary, we may
extend σ̄j by parallel transport along the geodesic in the normal vector direction:

σj(y) = //(γy)σ̄j(π(y)).

In other words it is constant along the geodesic. It is clear that 〈σj(x), σ1(x)〉 = 0 for all
j > 1 and x ∈ F0.

From the assumption, 1
2

∑m
k=2∇∂σ̄k σ̄k + σ̄0 = 0 on ∂M and

∑m
j=2 σ̄j(x)σ̄[j(x) = IdTx∂M .

Here σ̄[j(x) denotes the 1-form 〈σj(x), ·〉. Let us prove that for all x ∈ F0,

m∑
j=1

σj(x)σ[j(x) = IdTxM

where σ[j(x) is defined in a similar way. Since the vectors {σk(x)} generate TxM , it is
sufficient to prove that for all k = 1, . . . ,m, m∑

j=1

σj(x)σ[j(x)

 (σk(x)) = σk(x).
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Reflected Brownian motion: selection, approximation and linearization

For k = 1:  m∑
j=1

σj(x)σ[j(x)

 (σ1(x)) = σ1(x)〈σ1(x), σ1(x)〉 = σ1(x).

For k ≥ 2:  m∑
j=1

σj(x)σ[j(x)

 (σk(x)) =

m∑
j=2

σj(x)〈σj(x), σk(x)〉

=

m∑
j=2

//(γx)σ̄j(π(x))〈σ̄j(π(x)), σ̄k(π(x))〉

= //(γx)σ̄k(π(x)) = σk(x).

To complete the construction, we take the drift vector with the following property:

σ0(x) = −1

2

m∑
j=1

∇σj(x)σj = −1

2

m∑
j=2

∇σj(x)σj , x ∈ F0.

This completes the proof.

The vector field A = σ1, constructed in Proposition 3.2 extends the unit inward
normal vector field, defined on ∂M , and coincides with ∇R on F2/3. Off the cut locus of
the R, ∇R exists almost everywhere. For the Skorohod problem, we will only need the
information of A on F := F2/3 and in particular we do not need to worry the effect of the
cut locus.

Next we take a family of additional drift vector fields converging to 0 in the interior
of M and to the local time on the boundary. We divide the manifold M into three regions:
inner tubular neighbourhood, the middle region and the outer region. The inner region,
a subset of E0 with the product metric is quasi isometric to its image, i.e. there is a
constant C > 0 such that for all x, y ∈ ∂M , for all s, t ∈ [0, δ0], denoting ρ̄ the distance in
∂M ,

1

C
(ρ̄(x, y) + |s− r|) ≤ ρ (Φ(x, s),Φ(y, r)) ≤ C (ρ̄(x, y) + |s− r|) .

Outside of the tubular neighbourhood the drifts will be chosen to be uniformly bounded
and to converge to zero uniformly. If xn is a sequence of points in the outer region with
limit x0, we need to assume that the solution with initial value xn converges in some
sense. In the first region we have convergence in probability and in the second we will
need a control on the rate of convergence that induces the property of a flow.

By the convergence of the manifold valued stochastic process (Y at ) to (Yt) we mean
that H(Y at ) converges to H(Yt) where H : M → Rk is an embedding, with the same
notion of convergence. We recall that (Y at ) converges to Yt in UCP implies that for any
ε > 0, the explosion times ξa of Y at and its exit times from relatively compact sets, for
sufficiently small a, are bounded below by the corresponding ones for Yt = Y 0

t minus ε
(in other words lim infa→0 ξ

a ≥ ξ0). Also, if we assume sufficient growth control on the
curvatures and the shape of the tubular neighbourhood, the convergence will be in Sp.
We only discuss this aspect for a compact manifold.

Let R : M → R be a smooth function such that R|F is the distance to the boundary,
and R|F c ≥ δ̃ for some number δ̃, and R(x) is a constant on the complement of F c.

Theorem 3.3. Let a be a positive number. Suppose that σk and A satisfy the properties
stated in Proposition 3.2. Let Y at and Yt denote respectively the maximal solution to the
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equations, with the same initial value x,

dY at =

m∑
k=1

σk(Y at ) ◦ dBkt + σ0(Y at )dt+∇ ln

(
tanh

(
R(Y at )

a

))
dt, (3.3)

dYt =

m∑
k=1

σk(Yt) ◦ dBkt + σ0(Yt)dt+A(Yt)dLt. (3.4)

Suppose that ρ(Y a0 , Y0) converges to 0 in probability.

1. Then lima→0 Y
a = Y , in the topology of uniform convergence in probability.

2. If M is compact, then the SDEs do not explode and for all p ∈ [1,∞) and for all
T > 0, Y a converges to Y in Sp([0, T ]), i.e.

lim
a→0

E sup
0≤s≤T

ρ(Y as , Ys)
p = 0.

Proof. Since UCP convergence is local and is implied by local convergence in Sp, (1) is
a consequence of (2). See Corollary B.4. So we assume that M is compact and choose a
constant δ0 > 0 such that the function δ is bounded below by 3δ0. Then we replace δ by
3δ0 in the definition of E0, F0, Ec, Fc.

We define ha(x) = ln
(

tanh
(
R(x)
a

))
and

Aa(x) = ∇ha(x) =
2∇R(x)

a sinh
(

2R(x)
a

) .
This is an approximation for a vector field that vanishes on M0 and exerts an ‘infinity’
force in the direction of ∇R = A on the boundary.

Let Rat = R(Y at ). Then

Rat = Ra0 +
∑
k

∫ t

0

〈dR, σk(Y as )〉dBks +
1

2

∫ t

0

∆R(Y as )ds+

∫ t

0

2

a sinh(
2Ras
a )

ds.

Let us denote by βat the stochastic term:

Rat = Ra0 + βat +
1

2

∫ t

0

∆R(Y as )ds+

∫ t

0

2

a sinh(
2Ras
a )

ds.

For Y at ∈ F2/3 the tubular neighbourhood of ∂M , we have by Proposition 3.2 (2) that
dβat = dB1

t is independent of a and of Y at , which will be crucial for the sequel:

dRat = dB1
t +

1

2
∆R(Y at )dt+

2

a sinh(
2Rat
a )

dt. (3.5)

Since we assumed that M is compact, |∆R| is bounded, so the drift is essentially
2

a sinh(
2Ras
a )

and Rat never touches the boundary and the equation is well defined.

Recall that π is the map that sends a point x ∈ M to the nearest point on ∂M , it
is defined on F0. The tubular neighbourhood map Ψ : F0 → E0 splits into two parts,
Ψ(x) = (π(x), R(x)). Since Ψ is a diffeomorphism onto its image, on {Yt ∈ F0}, the
processes Y at converges to Yt in the Riemannian metric on M if and only if Ψ(Y at )

converges to Ψ(Yt) in the product metric of ∂M × [0, δ].
On any subset of M not intersecting the tubular neighbourhood that is distance cδ

from ∂M for some c < 1, the functions |∇Aa| are uniformly bounded in a and converge to
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zero as a→ 0. The local time does not charge any real time if Yt is not on the boundary.
For a C3 embedding Φ : M → R,

Φ(Y at )− Φ(Yt) =Φ(Y a0 )− Φ(Y0) +

∫ t

0

〈(σ∗∇Φ)(Y as )− (σ∗∇Φ)(Ys), dBs〉

+
1

2

∫ t

0

(∆Φ(Y as )−∆Φ(Ys)) ds.

By standard estimates, if Y a0 → Y0 in probability, the processes Φ(Y at ) started outside
the closed tubular set F 1

3
and stopped at the first entrance time of F 2

3
converge to

Φ(Yt) in UCP. In particular this holds for isometric embeddings and since the intrinsic
Riemannian distance is controlled by the extrinsic distance function, we see that the
stochastic process ρ(Y at , Yt) converges in UCP.

Splitting in a proper way the times, for the UCP topology it is enough to prove that
the processes (Y at ) started inside the open set F 2

3
and stopped at exiting F 1

3
converge to

(Yt) whenever Y a0 → Y0.
So we assume that Y a0 and Y0 belong to F2/3 and ρ(Y a0 , Y0) converges to 0 in probability.

We let
τ = inf{t ≥ 0, R(Yt) = 2δ0}, τa = inf{t ≥ 0, R(Y at ) = 2δ0}.

We first prove that for all T > 0,

∀T > 0, lim
a→0

E

[
sup

t≤τa∧τ∧T
ρ2(Y at , Yt)

]
= 0. (3.6)

Notice if (3.6) holds, sups≤tR(Ys) < 2δ0 implies that sups≤tR(Y as ) < 2δ0 for sufficiently
small a, consequently,

lim
a→0

E

[
sup
t≤τ∧T

ρ2(Y at , Yt)

]
= 0. (3.7)

This in turn shows that
lim inf
a→∞

τa ∧ T ≥ τ ∧ T (3.8)

and the convergence of Y at to Yt in the UCP topology follows.
Let Rat = R(Y at ) and Rt = R(Yt). Denote ρ̄ the Riemannian distance on ∂M . Using

the tubular neighbourhood map, proving (3.6) is equivalent to proving the following
limits:

lim
a→0

E

[
sup

t≤τa∧τ∧T
(Rat −Rt)2

]
= 0, lim

a→0
E

[
sup

t≤τa∧τ∧T
(ρ̄)2(π(Y at ), π(Yt))

]
= 0. (3.9)

If t ≤ τa ∧ τ , from (3.5) and (3.1), we obtain the equation

Rat −Rt = Ra0 −R0 +

∫ t

0

ds

a sinh
(

2Ras
a

) − Lt +
1

2

∫ t

0

(∆R(Y as )−∆R(Ys)) ds, (3.10)

where there is no martingale part. Let ε > 0, and let

L̃at =

∫ t

0

ds

a sinh
(

2Ras
a

) − Lt.
We apply the Itô-Tanaka formula to the convex function max(y, ε) and obtain:

ε ∨ |Rat −Rt| =|Ra0 −R0| ∨ ε+

∫ t

0

χ{Ras−Rs>ε} dL̃
a
s −

∫ t

0

χ{Ras−Rs<−ε} dL̃
a
s

+
1

2

∫ t

0

χ{|Ras−Rs|>ε} (∆R(Y as )−∆R(Ys)) ds.
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It is vital to remark that Ls > 0 if and only if Ras −Rs = Ras . Also Ras −Rs < −ε, if only if
Rs 6= 0, and so −dL̃as is a negative measure. We may ignore the third term on the right
hand side of the identity. For each α > 0 and ε > 0, there exists a number a(ε, α) > 0

such that 1

a sinh( 2r
a )

< α, for all a ≤ a(ε, α) and for all r ≥ ε. Hence,∫ t

0

χ{Ras−Rs>ε,Rs=0} dL̃
a
s

≤
∫ t

0

1

a sinh
(

2(Ras−Rs)
a

)χ{Ras−Rs>ε,Rs=0} ds− Lt ≤ αt,

∫ t

0

χ{Ras−Rs>ε,Rs 6=0} dL̃
a
s =

∫ t

0

1

a sinh
(

2Ras
a

)χ{Ras−Rs>ε,Rs 6=0} ds

≤
∫ t

0

1

a sinh
(

2ε
a

) ds ≤ αt.
It follows that

ε ∨ |Rat −Rt| ≤ |Ra0 −R0|+ ε+ 2αt+
1

2
‖∇∆R‖L∞(F0)

∫ t

0

sup
r≤s

ρ(Y ar , Yr) ds. (3.11)

So

E

[
sup

t≤τ∧τa∧T
(Rat −Rt)

2

]
≤8E

[
(Ra0 −R0)2

]
+ 8ε2 + 16α2t2+

8T
(
‖∇∆R‖L∞(F0)

)2 ∫ T

0

E

[
sup

s≤τ∧τa∧t
ρ2(Y as , Ys)

]
dt.

(3.12)

Before continuing with the estimate above, we estimate ρ̄(π(Y at , π(Yt)). The distance
function ρ̄ is not smooth on ∂M × ∂M . So we will consider an isometric embedding
ı : ∂M → Rm′ (in fact since ∂M is compact any embedding would do) and instead of
proving the second limit in (3.9) we will prove that

lim
a→0

E

[
sup

t≤τa∧τ∧T
(ı(π(Y at ))− ı(π(Yt)))

2

]
= 0 (3.13)

We extend ı to F0 to obtain ı̃(y) = (ı ◦ π)(y), then

ı̃(Y at )− ı̃(Yt) = ı̃(Y a0 )− ı̃(Y0) +

∫ t

0

〈σ∗∇ı̃(Y as )− σ∗∇ı̃(Ys), dBs〉

+
1

2

∫ t

0

(∆ı̃(Y as )−∆ı̃(Ys)) ds+

∫ t

0

dı̃(Aa(yas ))ds−
∫ t

0

dı̃(A(ys))dLs.

(3.14)

Since dπ(A) = 0 and dπ(Aa) = 0, the last two terms vanish. By standard calculation,

E

[
sup

t≤T∧τ∧τa
‖ı̃(Y at )− ı̃(Yt)‖2

]
≤ 4E

[
‖ı̃(Y a0 )− ı̃(Y0)‖2

]
+ 16 ‖∇σ∗∇ı̃‖2L∞(F0)

∫ T

0

E

[
sup

s≤t∧τ∧τa
ρ2(Y as , Ys)

]
dt

+ 2‖∇∆ı̃‖L∞(F0)

∫ T

0

E

[
sup

s≤τ∧τa∧t
ρ2(Y as , Ys)

]
dt.

(3.15)

Since ∂M is compact, F0 is compact. The quantities ∇σ∗ and ∇ĩ = ∇π(∇i) are bounded.
Similarly ‖∇∆ı̃‖L∞(F0) is finite. For x ∈ F0, set

H(x) = (̃ı(x), R(x)) ∈ Rm′+1. (3.16)
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Reflected Brownian motion: selection, approximation and linearization

Let CH > 0 be a constant such that for all x, x′ ∈ F0,

1

CH
‖H(x)−H(x′)‖ ≤ ρ(x, x′) ≤ CH‖H(x)−H(x′)‖. (3.17)

Define
C =

(
16 ‖∇σ∗∇ı̃‖2L∞(F0) + 2‖∇∆H‖L∞(F0)

)
(CH)2. (3.18)

From (3.15), using Gronwall lemma we obtain that if a < a(ε),

E

[
sup

s≤T∧τ∧τa
‖H(Y as )−H(Ys)‖2

]
≤ 4

(
‖H(Y a0 )−H(Y0)‖2 + ε2 + α2T 2

)
eCT . (3.19)

Since ε and α can be chosen as small as we like and C is independent of ε, α, a, Y a0 → Y0

and H is bounded, we obtain that

lim
a→0

E

[
sup

s≤T∧τ∧τa
‖H(Y as )−H(Ys)‖2

]
= 0. (3.20)

Together with (3.12), we see that

lim
a→0

E

[
sup

s≤T∧τ∧τa
ρ2(Y as , Ys)

]
= 0. (3.21)

This implies that τa ∧ τ → τ almost surely, and since the distance is bounded,

lim
a→0

E

[
sup

s≤T∧τ
ρ2(Y as , Ys)

]
= 0. (3.22)

This completes the proof for the convergence of Y a to Y in UCP, and also in Sp for
compact manifold M .

It would be interesting to use the method in [32] to study whether there exists a
global smooth solution flow to the SDEs. It is also worth noting that if τU (Y ) (resp.
τU (Y a)) is the exit time of Y· (resp. Y a· ) from a relatively compact open set U , then

lim inf
a→0

τU (Y a) ≥ τU (Y ).

Corollary 3.4. Let S1, S2 be stopping times such that S1 < S2 and let a0 be a positive
constant. Suppose that Y at ∈ F0 for any a ∈ (0, a0] and t ∈ [S1, S2]. Then on the interval
[S1, S2], lima→0 π(Y a· ) = π(Y·). The convergence is in the semi-martingale topology. If
moreover M is compact and S2 is bounded, then the convergence holds in Hp for all
p ∈ [1,∞).

Proof. Since the drifts A and Aa belong to the kernel of the differential Tπ, we obtain
with Itô formula the following equations:

d(π(Y at )) =

m∑
k=1

Tπσk(Y at ) ◦ dBkt + Tπ ◦ σ0(Y at ) dt

d(π(Yt)) =

m∑
k=1

Tπ ◦ σk(Yt) ◦ dBkt + Tπ ◦ σ0(Y at ) dt.

Since 1
2

∑m
k=1∇σkσk + σ0 = 0, we only need to be concerned with the following term

from the Itô correction: 1
2

∑m
k=1∇Tπ(·)(σk, σk). By Theorem 3.3, both Tπ ◦ σk(Y at ) and

∇Tπ(Y at )(σk, σk) converge in the UCP topology, and they are locally uniformly bounded.
The limits are respectively Tπσk(Yt) and ∇Tπ(Yt)(σk, σk). By Theorem 2 in [23, M.
Emery], see [7, M. Arnaudon and A. Thalmaier] for the manifold case, π(Y a· ) converges
to π(Y·) in the semi-martingale topology.
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Reflected Brownian motion: selection, approximation and linearization

Define Lat =
∫ t

0
ds

a sinh
(

2Ras
a

) . Then in the tubular neighbourhood,

Aa(Y at ) = ∇R(Y at )
d

dt
Lat .

Corollary 3.5. Suppose that M is compact. Then for all p ≥ 1 and T > 0,

lim
a→0

E

(
sup
s≤T
|Las − Ls|p

)
= 0.

Moreover, letting L0 = L, for all λ > 0, there exists C(T, λ) such that for all a ∈ [0, 1],

E
[
eλL

a
T

]
≤ C(T, λ). (3.23)

Proof. Firstly we take Y a0 , Y0 in F2/3, the 2
3 tubular neighbourhood of the boundary. Let

τ = inf{R(Yt) = 2δ0} and τa = inf{R(Y at ) = 2δ0} be respectively the first exit times of Y
and Y a from {x : R(x) < 2δ0} ⊂ F 2

3
. On {t < τa ∧ τ} we have (3.10):

Lat − Lt = −Ra0 +R0 +Rat −Rt −
1

2

∫ t

0

(∆R(Y as )−∆R(Ys)) ds. (3.24)

By the convergence of Y a to Y in Sp([0, T ]),

E sup
t<τa∧τ

|Lat − Lt|p <∞.

Outside of the 2/3 tubular neighbourhood F 2
3
, 1

a sinh(
2R(x)
a )

converges to 0 uniformly in x

and Lt vanishes. Note that lima→0
1

a sinh( 2r
a )

= 0 for any r > 0. The required convergence

result follows.
To prove (3.23) we write for a ∈ [0, 1]

Lat = Rat −Ra0 +

∫ t

0

αas dZ
a
s +

∫ t

0

βas ds

where for all a, Zat is a real valued Brownian motion, and |Rat − Ra0 |, αat and βat are
uniformly bounded independently of a. The result immediately follows.

4 Convergence of the parallel transports

Let (Yt) and (Y at ) be respectively the solutions of (3.4) and (3.3). The parallel transport
along (Yt) and (Y at ) are respectively the solution to the canonical horizontal stochastic
differential equations on the orthonormal frame bundle with drift the horizontal lift of
the drift vector fields A and Aa respectively.

Denote by //at the parallel transport along Y at , //t the parallel transport along Yt.
Recall that σ∗y : TyM → Rm is the right inverse to σy. Take va ∈ TY a0 M and v ∈ TY0

M

with the property that lima→0 σ
∗(Y at )(va) = σ∗(Y at )(v). Let U be a continuous vector field.

Then
〈//at va, U(Y at )〉 = 〈σ∗(Y at )(//at v

a), σ∗(Y at )(U(Yt))〉.
Since Y at → Yt as a→ 0, so does σ∗(Y at )U(Y at ) to σ∗(Yt)U(Yt). We prove below that

σ∗(Y at )(//at v
a)→ σ∗(Yt)(//tv).

Proposition 4.1. Let va ∈ TY a0 M and v ∈ TY0
M . Suppose that σ∗Y a0 v

a converges to σ∗Y0
v

in probability as a → 0. Then lima→0 σ
∗(Y at )(//at v

a) = σ∗(Yt)(//tv), with convergence in

the semi-martingale topology. Also lima→0 //
a
t v

a UCP= //tv.
If M is compact, the convergences hold respectively in Hp([0, T ]) and Sp([0, T ]), for

all T > 0 and for all p ≥ 1.
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Reflected Brownian motion: selection, approximation and linearization

Proof. Since ∇◦dY at (//at v
a) = 0 by the definition, the stochastic differential of //at v

a

satisfies the following equation:

d(σ∗(Y at )//at v
a) = ∇◦dY at σ

∗(Y at )//at v
a =

m∑
j=2

(∇σj(Y at )σ
∗)//at v

a ◦ dBjt

where we used the fact that ∇νσ∗ = 0. Upon converting the Stratonovich integral on the
right hand side we see that

d(σ∗(Y at )//at v
a) =

m∑
j=2

(∇σj(Y at )σ
∗)//at v

adBjt +
1

2

m∑
j=2

d(∇σj(Y at )σ
∗)//at v

adBjt

=

m∑
j=2

(∇σj(Y at )σ
∗)//at v

adBjt +
1

2

m∑
j=2

(∇σj(Y at )∇σj(Y at )σ
∗)//at v

adt.

This can be rewritten as

d(σ∗(Y at )//at v
a) =

m∑
j=2

(
∇σj(Y at )σ

∗)σ(Y at ) (σ∗(Y at )//at v
a) dBjt

+
1

2

m∑
j=2

(
∇σj(Y at )∇σj(Y at )σ

∗)σ(Y at ) (σ∗(Y at )//at v
a) dt.

Since the coefficients of the SDE converges as a→ 0 uniformly in probability, we get that
σ∗(Y at )//at v

a converges to σ∗(Yt)//tv in semi-martingale topology, see Theorem 2 in [23,
M. Emery].

Finally, since the linear maps σ(Y at ) : Rm → TY at M converge to σ(Yt) : Rm → TYtM

in UCP topology and //at = σ(Y at )σ∗(Y at )//at , we see that //at converges to //t in the same
topology.

5 Convergence of the damped parallel translations

Let (Yt) be the reflected Brownian motion and (Y at ) the approximate reflected Brown-
ian motions, constructed by (3.4) and (3.3) respectively. Let Aa = ∇ ln tanh(Ra ). Denote
by (W a

t ) the damped parallel translations (Y at ), solving the equation

DW a
t

dt
= −1

2
Ric#(W a

t ) +∇Wa
t
Aa, W a

0 = Id. (5.1)

Let (Wt) the the damped parallel translation along (Yt). We take the version constructed
by Theorem C.3, so (Wt) is an adapted right continuous stochastic process such that
lim
ε→0

W ε
t = Wt in the topology of uniform convergence in probability (UCP) where (W ε

t )

are solutions to the equations (2.2). Formally,

DWt = −1

2
Ric](Wt) dt− S(Wt) dLt − χ{t∈R(ω)}〈Wt−, νYt〉νYt , W0 = IdTY0M .

Our aim is to prove that W a
t converges to Wt. It is fairly easy to see the convergence

when Y at and Yt are in M0. When they are in a a neighbourhood of ∂M , we use the
pathwise construction for W . Let (εn)n≥0 be a sequence of positive numbers converging
to 0. As soon as a continuous version of (Yt) and parallel translations along (Yt) are
chosen, each W εn is constructed pathwise. Moreover W εn converges to W locally in S2

and there exists a subsequence of εnk such that W εnk (ω) converges locally uniformly for
almost surely all ω.
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Reflected Brownian motion: selection, approximation and linearization

Denote L(ω) the set of times Yt spend on the boundary. Let F0 be a tubular neigh-
bourhood of ∂M . On {Yt ∈ F0}, we write

Wt = WT
t + f(t) νYt , (5.2)

where f(t) is its component along νYt and WT
t its orthogonal complement.

The proposition below is a local result. We prove the following two ways of removing
the normal part from the damped parallel translation are equivalent. (1) During an
excursion (lα, rα), evolve (Wt) with the continuous damped parallel translation equation,
then remove the normal part at the touching down time rα; (2) at the beginning of
every excursion remove the normal part of Wt and then evolve (Wt) with the continuous
damped parallel translation equation during an excursion. This equivalence is due to
the fact that every beginning of excursion is the right limit of ends of excursions and
every end of excursion is the left limit of beginning of excursions. Notice the integral
with respect to the local time is well explained by the approximation by W ε

t and later by
the approximation by W a

t , but is absent of the description here.

Proposition 5.1. Let S1, S2 be stopping times and t ∈ [S1(ω), S2(ω)]. Let

ζ = inf{t > 0 : Yt ∈ ∂M}.

We assume the following conditions.

1. The Ricci curvature and the shape operator are bounded on Eδ.

2. Yt(ω) ∈ F0 whenever t ∈ [S1(ω), S2(ω)].

Write Wt = WT
t + f(t) νYt . Let

αt(ω) = sup{s ≤ t, Ys(ω) ∈ ∂M} = sup ([S1(ω), t ∧ S2(ω)) ∩ L(ω))

and let

rt = 〈WS1
, ν(YS1

)〉 − 1

2

∫ t

S1

Ric(Ws, νYs) ds+

∫ t

S1

〈Ws, DνYs〉. (5.3)

Then f(t, ω) is a right continuous real-valued process vanishing on [S1(ω), S2(ω)] ∩ L(ω),
such that

f(t) =

{
rt if t < ζ

rt − rαt if t ≥ ζ, (5.4)

Furthermore,

DWT
t =− 1

2
Ric](Wt)

T dt− S(WT
t ) dLt − 〈Wt, DνYt〉νYt

− 〈Wt, νYt〉DνYt −
1

2

m∑
k=2

〈Wt,∇σk(Yt)ν(Yt)〉∇σk(Yt)νdt.
(5.5)

Conversely, if a right-continuous L(TY0M,TYtM)-valued process W ′t satisfies (5.2-5.5),
then it satisfies (C.7).

As a local result, this can be reduced to the half plane model, the latter was dealt
with in [29, N. Ikeda and S. Watanabe]. Our global description and the proof we give
below will be used for our approximation result (Theorem 5.6 and Corollary 5.7).

Proof. Denote ft = f(t) = 〈Wt, νYt〉. The formulas below in the proof are interpreted and
obtained as following: we first prove the corresponding identity for W ε

t and then take
ε→ 0. Firstly we compute the stochastic differential of ft:

dft = −1

2
〈Ric](Wt), νYt〉dt+ 〈Wt, DνYt〉 − χ{t∈R(ω)}〈Wt−, νYt〉,
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for which we used the fact that S(WT
t ) = S(Wt) is orthogonal to νYt . Then from

WT
t = Wt − ftνYt ,

DWT
t = DWt − dftνYt − ftDνYt −

1

2
D[f·, νY· ]t

where the covariant square bracket D[f·, νY· ]t is the martingale bracket including the
jump part. The jump part of the bracket disappears since νYt is a sample continuous
process. Thus

DWT
t = −1

2
(Ric](Wt))

T dt− S(WT
t ) dLt − 〈Wt, DνYt〉νYt − ftDνYt −

1

2
D〈f·, νY·〉t,

where D〈f·, νY·〉t is the continuous part of the martingale bracket. The martingale part
of νYt is

∑m
k=2∇σk(Yt)ν dB

k
t ; while the martingale part of 〈Wt, DνYt〉 is

m∑
k=2

〈Wt,∇σk(Yt)ν(Yt)〉dBkt .

This means that

D〈f·, νY·〉t =

m∑
k=2

〈Wt,∇σk(Yt)ν(Yt)〉∇σk(Yt)νdt,

concluding (5.5).
For t < ζ, (5.4) clearly holds. We prove it holds also for t > ζ. If t ∈ R(ω) ≡ {rα(ω)},

ft = 0 by the definition. This agrees with (5.4): αt = t and rt − rαt = 0.
On [S1, S2] the process Rt is equivalent in law to a reflected Brownian motion see

Lemma C.1. So for every t ∈ L(ω)\R(ω), there exists an increasing sequence (tn)n∈N of
elements of R(ω) converging to t. For all n ∈ N we have f(tn) = 0 and

f(t) = f(tn) +

∫ t

tn

df(s) = 0 +

∫ t

tn

〈DWs, νYs〉+

∫ t

tn

〈Ws, DνYs〉.

This formula makes sense by choosing a continuous version of the integral
∫ ·
S1
〈Ws, DνYs〉

and by remarking that (Wt) is the pathwise solution to equation (C.7).
So we have

f(t)2 =

∫ t

tn

2f(s) df(s) +

∫ t

tn

df(s) df(s)

=

∫ t

tn

2f(s) (〈DWs, νYs〉+ 〈Ws, DνYs〉) +

∫ t

tn

trace〈Ws,∇·ν〉〈Ws,∇·ν〉

+
∑

s∈]tn,t]∩R(ω)

〈Ws, νYs〉2

=

∫ t

tn

2f(s)

(〈
−1

2
Ric](Ws)ds− S(Ws)dLs, νYs

〉
+ 〈Ws, DνYs〉

)
+

∫ t

tn

trace〈Ws,∇·ν〉〈Ws,∇·ν〉 −
∑

s∈]tn,t]∩R(ω)

f(s)2.

Notice that the last term combines the jump term from 〈DWs, νYs〉 and from 〈Ws, νYs〉2.
It is the sum:

−2
∑

s∈]tn,t]∩R(ω)

f(s)〈Ws, νYs〉+
∑

s∈]tn,t]∩R(ω)

〈Ws, νYs〉2.
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Since the jumps are all non-positive and 〈S(Ws), νYs〉 = 0, we get

f(t)2 ≤
∫ t

tn

2f(s)

(
−1

2
Ric](WsνYs)ds+ 〈Ws, DνYs〉

)
+

∫ t

tn

trace〈Ws,∇·ν〉〈Ws,∇·ν〉.

But Ws is pathwise bounded in compact intervals, and∫ t

u

f(s)〈Ws, DνYs〉,
∫ t

u

trace〈Ws,∇·ν〉〈Ws,∇·ν〉

are continuous in u. So the right hand side converges to 0 as n→∞.
This implies that f(t) = 0 for all t ∈ L(ω). In particular for all t > ξ, f(αt) = 0 and the

second equality of (5.4) is valid.
Conversely let W ′t be a right-continuous process satisfying the conditions of Proposi-

tion 5.1. Clearly W ′t satisfies (C.7) when Yt ∈ M0. On the other hand f(t) vanishes on
left hand sides of excursion, it is right continuous, and all right hand times of excursions
are limits of decreasing sequences of left hand times of excursions, again by Lemma C.1.
So it also vanishes on R, and consequently W ′t = Wt.

We can now state the representation theorem for the heat equation on differential
1-forms, c.f. (1.2), with the absolute boundary conditions φ(ν) = 0 and dφ(ν) = 0.

Theorem 5.2. Suppose that the tubular neighbourhood of the boundary has positive
radius, and that the curvatures Ric# and S are bounded from below respectively on M0

and on ∂M . If φt is a solution to the heat equation on differential 1-forms, (1.2), with the
absolute boundary conditions, then for any v ∈ TY0M , φt(v) = E [φ(Wt(v))].

Proof. It is clear that the reflected Brownian motion (Yt) is globally defined. Let ψ be a
C2 differential 1-form. Since ψx(w) is linear in w ∈ TxM and 1

2

∑m
k=1∇σkσk + σ0 = 0, we

see that

ψ(Wt) =ψ(W0) +

m∑
k=1

∫ t

0

(∇σk(Ys)ψ)(Ws−)dBks +
1

2

∫ t

0

∆1ψ(Ws−)ds

+

∫ t

0

∇ν(Ys−)ψ(Ws−)dLs −
∫ t

0

ψ (S(Ws−)) dLs

−
∑

s∈R(ω)∩[0,t]

(〈Ws, νYs〉 − 〈Ws−, νYs〉)ψ(νYs).

We used Weitzenböck formula ∆1ψ = trace∇2ψ − ψ(Ric#). By Palais’s formula for two
vector fields ν and V :

dψ(ν, V ) = LV (ψ(ν))− Lν(ψ(V ))− ψ([ν, V ]) = (∇νψ)(V )− (∇V ψ)(ν). (5.6)

Hence we may commute the directions in ∇ν(Ys−)ψ(Ws−).
Suppose that ψ satisfies the additional condition: ψ(ν) = 0 and dψ(ν, ·) = 0 on the

boundary. Since Ys is continuous, ψ(νYs−) = 0 at the ends of an excursion, the last line
vanishes. For any vector w in the tangent space of the boundary, Lw(ψ(ν)) = 0 and so
(∇wψ)(ν)−ψ(S(w)) = 0. Since νYs〈Ws−, νYs〉 vanishes on the boundary and Ls increases
only on the boundary, ∫ t

0

(∇νψ)(νYs〈Ws−, νYs〉)dLs = 0.
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Together with the earlier argument we see the sum of the terms in the second line
vanishes:∫ t

0

∇ν(Ys−)ψ(Ws−)dLs −
∫ t

0

ψ (S(Ws−)) dLs

=

∫ t

0

(
∇ν(Ys−)ψ(WT

s−) +∇ν(Ys−)ψ(〈Ws−, ν(Ys−)〉ν(Ys−))− ψ (S(Ws−))
)
dLs = 0.

The last identity follows from the fact that ∇νν vanishes. The above argument should be
interpreted in the following way: we first replace Wt by W ε

t everywhere for ε fixed and
let ε→ 0 as in Theorem C.3.

If φ(t, ·) is the solution to the heat equation on 1-forms with absolute boundary
conditions and initial value φ, on a neighbourhood of the boundary,

φ(Wt) =φ(t,W0) +

m∑
k=1

∫ t

0

(∇σk(Ys)φ(t− s,Ws−)dBks . (5.7)

Note that φ is bounded and E sup
s≤t
|Ws|2 is finite, c.f. Lemma 7.6, we take expectations of

both sides of (5.7) to obtain φ(t, v) = E[φ(Wt(v))].

Let T > 0. If F (t, x) is a real valued function on [0, T ]×M , we denote by dF (t, x) its
differential in the second variable and ∇F (t, x) the corresponding gradient. In the next
theorem we do not need to assume that ∂M has a tubular neighbourhood of positive
radius.

Theorem 5.3. Let (Wt) be the solution of (C.7). If F : [0, T ]×M → R is a C1,2 function
such that F (t, Yt) is a continuous local martingale (or equivalently F solves (5.9) below),
then dF (t, Yt)(Wt) is also a local martingale.

Remark 5.4. The statements in Theorem 5.3, also in Corollary 5.5 and Theorem 5.2, are
valid with Wt replaced by W ε

t . But they are more powerful (and more intrinsic) with Wt,
for the reason that |Wt| is expected to be smaller than |W ε

t |.

Proof. It is clear that, on {Yt ∈ M0}, d(〈∇F (t, Yt),Wt〉) is the differential of a local
martingale, hence we only need to prove the result on {Yt ∈ F0}. We write the Itô
formula for F (t, Yt), the Itô differential d(F (t, Yt)) satisfies the following identity:

d(F (t, Yt)) =〈∇F (t, Yt), σ(Yt) dBt〉

+

(
∂t +

1

2
∆

)
F (t, Yt) dt+ 〈dF (t, Yt), νYt〉 dLt.

(5.8)

By the local martingale property of F (t, Yt) the last two terms vanishes and(
∂t +

1

2
∆

)
F (t, y) = 0, (t, y) ∈ [0, T ]×M0,

νy ∈ ker dF (t, y), (t, y) ∈ [0, T ]× ∂M.

(5.9)

Since Wt has finite variation on the set {Yt 6∈ ∂M} there is no covariation term between
dF (t, Yt) and Wt. Writing an Itô formula for 〈dF (t, Yt),Wt〉 yields

d 〈∇F (t, Yt),Wt〉 = ∇dF (t, Yt)(σ(Yt)dBt,Wt) +∇dF (t, Yt)(νYt ,Wt) dLt

+

(
∂t +

1

2
trace∇2

)
dF (t, Yt)(Wt) dt

− 1

2

〈
∇F (t, Yt),Ric](Wt)

〉
dt− 〈∇F (t, Yt)S(Wt)〉 dLt.
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where in the last term we used (5.9). We note that ∆1 = trace∇2 − 1
2Ric] and ∆1d = d∆.

This together with (5.9),
(
∂t + 1

2∆1
)
dF (t, y) = 0, yields

d〈∇F (t, Yt),Wt〉 =∇dF (t, Yt)(σ(Yt)dBt,Wt)

+∇dF (t, Yt)(νYt ,Wt−) dLt − 〈∇F (t, Yt),S(Wt)〉 dLt.

Now for y ∈ ∂M and w ∈ TyM , since ν(y) ∈ ker dF (t, y) ∈ Ty∂M we have

−〈∇F (t, y),S(w)〉 = 〈∇F (t, y),∇wν〉
= −〈∇wdF (t, y), νy〉 = −∇dF (t, y)(νy, w).

For the second equality we used the fact that ν(y) ∈ ker dF (t, y). Putting all the calcula-
tions together we finally get

d〈dF (t, Yt),Wt〉 = ∇dF (t, Yt)(σ(Yt)dBt,Wt),

which proves that 〈∇F (t, Yt),Wt〉 is a continuous local martingale.

Applying this theorem to F (t, y) = E[f(YT−t(y))] where (Y.(y)) is reflected Brownian
motion started at y ∈ M , f is a smooth function on M with df(ν) = 0 on the boundary,
(under this condition F is C1,2, see e.g. [43, F.-Y. Wang]), we immediately get the
following Bismut type formula:

Corollary 5.5. Assume that M is compact. Let f : M → R be a smooth bounded function
with df(ν) = 0 on the boundary and let T > 0. Let y ∈M , v ∈ TyM and (Yt) a reflected
Brownian motion started at y ∈M , constructed as in Theorem 3.3. If ut solves the heat
equation (1.1) with Neumann boundary conditions and u0 = f then

duT (v) =
1

T
E

[
f(YT )

∫ T

0

〈Ws(v), σ(Ys)dBs〉

]
.

For the analogous formula for manifold without boundary, see [31, Li] and [21, K. D.
Elworthy and X.-M. Li]. Such results are also obtained in [45, L. Zambotti] and [24, T.
Funaki and K. Ishitani].

Let T and a be positive numbers. Recall that the damped parallel translation along
a sample continuous stochastic process (Y at ) is the solution to the stochastic covariant
differential equation with initial value W a

0 = IdTY a0 M
,

DW a
t =

(
∇Wa

t
Aa − 1

2
Ric](W a

t )

)
dt. (5.10)

The following Theorem will be proved in Section 7

Theorem 5.6. Let M be a compact Riemannian manifold. Let

Aa(x) = ∇ ln tanh

(
R(x)

a

)
.

Let (Y at , t ∈ [0, T ]) and (Yt, t ∈ [0, T ]) be the stochastic processes defined in Theorem 3.3.
Let W a

t denote the damped parallel translation along Y at . Then for all p ∈ [1,∞) and for
any C2 differential 1-form φ vanishing on the normal bundle ν(∂M),

lim
a→0

sup
s≤t

E [|φ(W a
s )− φ(Ws)|p] = 0.

For a non-compact manifold, we have the following result, see Appendix B.

Corollary 5.7. Let M be a Riemannian manifold, not necessarily compact. Then for any
C2 differential 1-form φ such that φ(ν) = 0 in ∂M , φ(W a) converges to φ(W ) in UCP
topology.
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6 Damped parallel translation as a derivative flow

In this section we assume that M is compact and prove that the damped stochastic
parallel translation Wt along the sample paths of a reflected Brownian motion is the
weak derivative of the stochastic flow {Y at (u)}, which we define below.

For a > 0 let us denote by Ψa the solution flow to equation (3.3),

dYt =

m∑
k=1

σk(Yt) ◦ dBkt + σ0(Yt)dt+Aa(Yt) dt,

where Aa(x) = ∇ ln tanh

(
R(x)

a

)
.

Let Y at = Ψa(x0) denote its solution with the initial value x0 where x0 is any point in
the interior of M . Suppose that γ : [0, 1] → Mo is a C1 curve with γ(0) = x0. We build
a family of Brownian flows, with drift Aa and initial value γ(u), such that its derivative
with respect to u is locally uniformly bounded for a.s. ω. For u ∈ (0, 1], let Y at (u) denote
the solution to the following Itô equation:

dY at (u) = //0,u(Y at (·))dY at (0) +Aa(Y at (u))dt,

Y a0 (u) = γ(u)
(6.1)

where //0,u(Y at (·)) denotes parallel translation along the C1 path u 7→ Y at (u). Notice that
the first differential on the right hand side is an Itô differential in a fixed vector space
and the second one is a Stratonovich differential in a manifold.

Recall that the Itô differentials dY at (u) in (6.1) are defined by

dY at (u) = //0,td

(∫ ·
0

//−1
0,s ◦ dY as (u)

)
t

(6.2)

where //0,t is parallel transport along t 7→ Y at (u), and they are, formally, tangent vectors.

More precisely, putting (3.3) in Itô form dY at =

m∑
k=1

σk(Y at )dBkt +Aa(Y at ) dt we have

{
dY at (u) =

∑m
k=1 //0,u(Y at (·)) (σk(Y at (0))) dBkt +Aa(Yt(u)) dt

Y a0 (u) = γ(u).
(6.3)

The existence of a solution should follow from an iteration method, a proof for it is
given in [4, M. Arnaudon, K. A. Coulibaly and A. Thalmaier], where an approximation
procedure with iterated parallel couplings is used to obtain a Cauchy sequence in H2.
The advantage is that at each step and each value of u we have a diffusion with the same
generator 1

2∆ + Aa, and as the mesh goes to 0 all problems with cut locus disappear.
The solution curves u 7→ Y at (u) are almost surely differentiable and that their derivatives
∂uY

a
t (u) are locally uniformly bounded for almost surely all ω and

∂uY
a
t (u) = W a,u

t (γ̇(u)), (6.4)

where W a,u
t is the damped parallel translation along Y a(u). This is, to our knowledge,

the only known construction for ∂uY at (u) a.s. locally uniformly bounded. Our aim is
to obtain a similar property for reflected Brownian motion. For this we will let a → 0

in (6.4) and obtain a limiting identity in a weak sense. However we believe that our
construction indeed yields (6.4) for a = 0 in a strong sense.

Proposition 6.1. Let M be a smooth compact manifold with a boundary. The family

{(Y at (u))0≤t≤T, 0≤u≤1, a ∈ (0, 1]}

of two parameter stochastic processes is tight.
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Proof. We will use the Kolmogorov criterion. For t1, t2, u1, u2 satisfying 0 ≤ t1 < t2 ≤ T
and 0 ≤ u1 < u2 ≤ 1 and p ≥ 1,

E
[
ρp
(
Y at1(u1), Y at2(u2)

)]
≤ 2p−1

(
E
[
ρp
(
Y at1(u1), Y at2(u1)

)]
+ E

[
ρp
(
Y at2(u1), Y at2(u2)

)])
≤ 2p−1

(
E
[
ρp
(
Y at1(u1), Y at2(u1)

)]
+ E

[(∫ u2

u1

|W a
t2(u)| · |γ̇(u)| du

)p])
≤ 2p−1

(
E
[
ρp
(
Y at1(u1), Y at2(u1)

)]
+ (u2 − u1)p−1‖γ̇‖∞

∫ u2

u1

E
[
|W a

t2(u)|p
]
du

)
≤ 2p−1

(
E
[
ρp
(
Y at1(u1), Y at2(u1)

)]
+ (u2 − u1)p‖γ̇‖∞ sup

u∈[0,1], t∈[0,T ]

E [|W a
t (u)|p]

)
≤ 2p−1

(
E
[
ρp
(
Y at1(u1), Y at2(u1)

)]
+ C ′(p, T )(u2 − u1)p‖γ̇‖∞

)
,

where C ′(p, T ) is a constant. We used an estimate on |W a,u
t | given in (7.13) below. Here

and several time in the sequel, we use the equality in law of the processes (Y a(u),W a(u)),
for each fixed u, and (Y a,W a). The latter process was constructed in Sections 3 and 5.

For the first term on the right hand side we again use the fact that u1 is fixed
and use estimates for Y a, from Theorem 3.3. Since M is compact we can replace the
distance ρ(x, y) on M by the equivalent distance ‖H(x)−H(y)‖ where H : M → Rd is
an embedding. We can also assume that H = (ı, R) is an extension of the construction
in (3.16) around the boundary. In particular we can assume that the image of ∂M by H
is included in {R = 0}. Then we easily check that

• the drift of ı̃(Y at (u1)) is bounded,

• the drift of
(
R(Y at (u1))−R(Y at1(u1))

)4
is bounded on {R(Y at (u1)) ≥ δ0},

• the drift of
(
R(Y at (u1))−R(Y at1(u1))

)4
is negative on

{R(Y at (u1)) ≤ δ0} ∩ {R(Y at (u1)) ≤ {R(Y at1(u1))},

• the drift of
(
R(Y at (u1))−R(Y at1(u1))

)4
is positive on

{R(Y at (u1)) ≤ δ0} ∩ {R(Y at (u1)) ≥ {R(Y at1(u1))}

and bounded above by b
(
R(Y at (u1))−R(Y at1(u1))

)2
where b > 0 is independent of a

(this is a consequence of (3.5)).

This implies, by a standard calculation, that for some constant C ′ > 0,

E
[∥∥H(Y at2(u1))−H(Y at1(u1))

∥∥4
]
≤ C ′|t2 − t1|2. (6.5)

Finally, for some positive constant C,

E
[
ρ4
(
Y at1(u1), Y at2(u2)

)]
≤ 8C|t2 − t1|2 + 8C ′(4, T )(u2 − u1)4‖γ̇‖∞. (6.6)

This concludes the required tightness.

With this result at hand we construct our limiting process.

Theorem 6.2. Let M be a smooth compact manifold with a boundary. There is a two
parameter continuous process (Yt(u))0≤t≤T, 0≤u≤1 with the following properties:

(1) for every u ∈ [0, 1], Yt(u) is a reflected Brownian motion on M started at γ(u);
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(2) for every p ∈ [1,∞) there exists a number C ′(p, T ) s.t. for all 0 ≤ u1 < u2 ≤ 1,

sup
0≤t≤T

E [ρp(Yt(u1), Yt(u2))] ≤ C ′(p, T )‖γ̇‖∞(u2 − u1)p. (6.7)

Proof. By Proposition 6.1, there exists a sequence ak → 0 such that the two parameter
family of stochastic processes Y ak· (·) converges in law whose limit we denote by Y·(·).

Let us fix u ∈ [0, 1]. Since the convergence considered is in the weak topology, we are
allowed to use another construction of Y at (u), namely part (2) in Theorem 3.3, in which
the convergence is stronger. The limit is reflected Brownian motion started at γ(u). This
yields (1).

Let us then take t1 = t2 = t in the computation for tightness in Proposition 6.1. Then
take k →∞ to obtain (2).

For each u ∈ [0, 1] fixed, the stochastic processes Y akt (u) converges in law to Yt(u). So
the damped parallel translations W ak

t (u), as stochastic processes on [0, T ], converge in
law to Wt(u) in the following sense: if φ is a C2 differential 1-form such that φ|∂M(ν) = 0,
then φ(W ak

t (u)) converges in law to φ(Wt(u)). This is due to the fact that W a is a
functional of Y a, W is a functional of Y , so we can apply Corollary 5.7.

Unfortunately this argument does not allow us to prove the convergence of W ak
t (u)

converges to Wt(u), which would yield ∂uYt(u) = Wt(u)(γ̇(u)). However the following
theorem asserts this equality in a weak sense.

Theorem 6.3. Let M be a smooth compact manifold with a boundary. For all f ∈ C2(M)

satisfying 〈∇f, ν〉 = 0 on the boundary, then

E

[
f(Yt(u2))− f(Yt(u1))−

∫ u2

u1

〈df(Yt(u)),Wt(u)(γ̇(u))〉 du
]

= 0. (6.8)

Proof. By (6.4),

f(Y akt (u2))− f(Y akt (u1))−
∫ u2

u1

〈df(Y akt (u)),W ak
t (u)γ̇(u)〉 du = 0.

Since all the terms are integrable we can take the expectation, So

E [f(Y akt (u2))]−E [f(Y akt (u1))]−
∫ u2

u1

E [〈df(Y akt (u)),W ak
t (u)γ̇(u)〉] du = 0.

Now by Theorem 3.3 and Corollary 5.7 and dominated convergence theorem:

E [f(Y akt (u2))]−E [f(Y akt (u1))]−
∫ u2

u1

E [〈df(Y akt (u)),Wt(u)γ̇(u)〉] du = 0.

Finally we use Fubini-Tonelli Theorem to obtain (6.8).

7 Proof of Theorem 5.6

We first reduce the proof of Theorem 5.6 to the class of C2 differential 1-forms φ
vanishing in a neighbourhood of the boundary, this is the content of Section 7.1. We then
prove the convergence of the tangential part of the parallel transport in the topology of
UCP, followed by the convergence of its normal part fat . By the latter we mean that for
all smooth φ : M → R+ vanishing in a neighbourhood of ∂M , φ(Y at )fa(t)→ φ(Yt)f(t) in
the UCP topology. See Sections 7.4 and 7.5.

We describe briefly the strategy and the main difficulties. Thanks to the convergence
of parallel transports established in Proposition 4.1 we only need to prove that wat → wt
where wat = (//at )−1W a

t and wt = (//t)
−1Wt, more precisely that, writing

wat = wa,Tt + fa(t)nat (7.1)
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with nat = (//at )−1ν(Y at ) and wa,Tt orthogonal to nat , w
a,T
t → wTt and for any C2 map

φ : M → R vanishing in a neighbourhood of ∂M , φ(Y at )fa(t)nat → φ(Yt)f(t)nt.
Firstly, the integral equation for (fa, w

a,T ) has the following form(
fa(t)

wa,Tt

)
=

(
fa(0)

wa,T0

)
+

∫ t

0

dMa
s

(
fa(s)

wa,Ts

)
+

(
fa(0)e−C̃a(t)

0

)
, (7.2)

where (Ma
t ) is a matrix valued process for the following form

Ma
t =

(
0 ũat

va,Nt va,Tt

)
(7.3)

whose components are to be specified later. Also,(
f(t)

wTt

)
=

(
f(0)

wT0

)
+

∫ t

0

dMs

(
f(s)

wTs

)
+

(
f(0)e−C̃(t)

0

)
(7.4)

where Mt is of the following form:

Mt =

(
0 ũt
vNt vTt

)
. (7.5)

If (Vt) is a vector valued stochastic process, denote

‖V ‖Sp([0,T ]) = E

(
sup

0≤s≤T
E|Vs|p

)
.

We will see that the components of Ma converge to the corresponding components of
M in Hp([0, T ]) for all p ≥ 1, T > 0, with the exception ũa which contains e−C̃a(t) and
vTt which contains local time of the distance to boundary. The main difficulty is the
convergence of fa(0)e−C̃a(t) to f(0)e−C̃(t). The convergence is only in Lp(dt × P), see
Corollary 7.10. Also the convergence of Lat to Lt: it is in Sp([0, T ]) but not in Hp([0, T ])

and will require several integrations by parts. We note in the last term in equation (7.2),
the tangential and the normal part decouples. The matrix (7.3) is in the lower triangular
form. It is therefore possible to split the proof into the convergence of wa,T to wT and
the convergence of fa(t) to f(t). This procedure is essential for our proof to work.

7.1 Localisation

Lemma 7.1. Let S1 and S2 be stopping times such that for sufficiently small a, Yt ∈ E0

and Y at ∈ E0 on {ω : S1(ω) ≤ t ≤ S2(ω)].

1. If Theorem 5.6 holds for the class of C2 differential 1-forms φ with φ(ν) vanishing
in a neighbourhood of the boundary, then it holds for all C2 1-form φ such that
φ(ν) = 0 on ∂M .

2. If φ(W a) converges to φ(W ) in the UCP topology and M is compact, then

lim
a→0

E sup
s≤t
|φ(W a)− φ(W )|p → 0.

3. For the statement in Theorem 5.6, it is sufficient to prove that for t ∈ [S1, S2], φ(W a)

converges to φ(W ) in UCP.

Without loss of generality we will assume that S1 = 0 and let S2 = S.

Proof. Let φ be a C2 differential 1-form such that φ(ν) = 0 on ∂M . Then there exists a
family of C2 differential 1-forms φε such that 〈φε, ν〉 = 0 in a neighbourhood of ∂M and
supx∈M ‖φε(x)− φ(x)‖ < ε: choose for instance φε(u) = φ(u)− 〈u, ν〉fε(π(u))φ(ν) where
fε is a smooth function on M satisfying
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• fε = 0 on {R ≥ α},
• fε = 1 on {R ≤ α/2},
• 0 ≤ f ≤ 1 on M ,

and α ∈ (0, δ0) is chosen in such a way that |φ(ν)| < ε on {R < α}.
By the assumption, φε(W a)→ φε(W ) in Sp([0, T ]). On the other hand

|φ(W a
t )− φ(Wt)| ≤ |φ(W a

t )− φε(W a
t )|+ |φε(W a

t )− φε(Wt)|+ |φε(Wt)− φ(Wt)|
≤ ε|W a

t |+ |φε(W a
t )− φε(Wt)|+ ε|Wt|.

If a is sufficiently small then ‖φε(W a) − φε(W )‖Sp([0,T ]) < ε by Theorem 5.6. Using
lemma 7.5 we get

‖φ(W a)− φ(W )‖Sp([0,T ]) < ε(1 + 2C)

for a sufficiently small. Taking ε→ 0 we obtain ‖φ(W a)− φ(W )‖Sp([0,T ]) → 0.

(2) By Lemma 7.8 below,
∫ t

0
2

a sinh
(

2R(Y as )

a

) ds converges to Lt in Sp for all p ∈ [1,∞).

Let t > 0. Since M is compact, by corollary B.5 and lemma 7.5, if φ(W a) converges to
φ(W ) in UCP topology,

lim
a→0

E

(
sup
s≤t
|φ(W a

s )− φ(Ws)|p
)

= 0.

(3) This is due to the fact that Y at converges to Yt in UCP topology and inside M0 the
coefficients for W a

t converge smoothly and uniformly to the coefficients of the equation
for Wt.

7.2 Preliminary computations

Let a > 0. The damped parallel translation along Y at satisfies the following equations:

DW a
t =∇Wa

t
Aa dt− 1

2
Ric]Y at (W a

t ) dt.

In the tubular neighbourhood F0 on which the approximating SDEs were constructed,
take y ∈M0 and w ∈ TyM . Then

∇wAa =∇w∇ ln tanh

(
R

a

)
= ∇w

(
2∇R

a sinh
(

2R
a

))

=− 4

a2

cosh

sinh2

(
2R

a

)
〈w, νy〉νy −

2

a sinh
(

2R
a

)S(w),

Let us define Rat = R(Y at ), Rt = R(Yt),

ca(t) =
4

a2

cosh

sinh2

(
2Rat
a

)
, (7.6)

and
fa(t) = 〈wat , nat 〉 = 〈W a

t , ν(Y at )〉. (7.7)

We also denote W a,T
t the tangential part of W a

t :

W a,T
t = W a

t − fa(t)ν(Y at ). (7.8)

Definition 7.2. Let

Lat =

∫ t

0

2

a sinh
(

2R(Y as )
a

) ds. (7.9)
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Below //−1
t is shorthand for //−1

t (Y a· ). For x ∈ M , denote ‖∇ν(x)‖2 =
∑
k ‖∇σkν‖2x.

The latter is the Hilbert-Schmidt norm of the linear operator ∇ν : TxM → TxM . In the
following formulas we should consider the integrals are in Itô form. Hence the equation
for W a,T

t should be interpreted as for //−1
t W a,T

t .

Lemma 7.3. In the tubular neighbourhood, the following formulae hold.

DW a
t = −1

2
Ric](W a

t ) dt− ca(t)fa(t)ν(Y at ) dt− S(W a
t ) dLat ,

d//−1
t ν(Y at )dt = //−1

t

∑
k

∇σkν(Y at )dBkt +
1

2
//−1
t trace∇2ν(Y at )dt.

Finally the stochastic differential of the tangential part of W a
t has the following tangential

and normal decomposition

DW a,T
t =− 1

2

(
Ric](W a,T

t )
)T

dt− 1

2
fa(t)

(
Ric](ν(Y at ))

)T
dt− S(W a

t ) dLat

− fa(t)∇σkν(Y at )dBkt −
1

2
fa(t) trace∇2ν(Y at )dt

− 1

2
〈W a,T

t ,∇σkν(Y at )〉∇σkν(Y at ) dt

−
∑
k

〈W a,T
t ,∇σkν(Y at )〉ν(Y at )dBkt − 〈W

a,T
t , trace∇2ν(Y at )〉ν(Y at )dt

+ fa(t)‖∇ν(Y at )‖2ν(Y at )dt,

dfa(t) = −ca(t)fa(t)dt− 1

2
Ric(W a

t , ν(Y at ))dt+
∑
k

〈W a,T
t ,∇σkν(Y at )〉 dBkt

+
1

2
〈W a,T

t , trace∇2ν(Y at )〉dt− 1

2
fa(t)‖∇ν(Y at )‖2.

Proof. The first formula is clear, the second is straight forward after applying Itô’s
formula to the equation for (Y at ):

(//at )−1Dν(Y at ) = (//at )−1

(
〈∇ν, ◦dY at 〉+

1

2
trace∇2ν(Y at ) dt

)
.

Since 〈∇ν,Aa〉 = 0, this yields

(//at )−1Dν(Y at ) =(//at )−1

(∑
k

〈∇ν, σk(Y at )〉 dBkt +
1

2
trace∇2ν(Y at ) dt

)
+ (//at )−1∇Aa(Y at )νdt.

Note that ν = ∇R. If γt is the geodesic from x to π(x) then γ̇(t) = ∇R(γ(t)) and hence
∇νν = 0 and the second formula follows. We note also that

〈W a
t , ◦D(ν(Y at ))〉 =

∑
k

〈W a
t ,∇σkν(Y at )〉dBkt + 〈W a

t ,
1

2
trace∇2ν(Y at )〉dt

=
∑
k

〈W a
t ,∇σkν(Y at )〉dBkt −

1

2
ft‖∇ν(Y at )‖2

+
1

2
〈W a,T

t , trace∇2ν(Y at )〉dt.
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Note that the left hand side is in Stratonovich form and the right hand side in Itô form.
We work on the third equation:

dft =〈DW a
t , ν(Y at )〉+ 〈W a

t , D(ν(Y at ))〉

=− ca(t)fa(t)dt− 1

2
Ric(W a

t , ν(Y at ))dt+
∑
k

〈W a
t ,∇σkν(Y at )〉 dBkt

+
1

2
〈W a

t , trace∇2ν(Y at )〉dt.

All stochastic integrals in the above formula are in Itô form. The required identity follows
from the observation below:

〈
∑
k

∇2ν(σk, σk), ν〉 = −
∑
k

〈∇σkν,∇σkν〉 = −‖∇ν‖2.

Next we compute the tangential part of the damped parallel translation.

DW a,T
t = DW a

t −D(ftν(Y at ))

=− 1

2
Ric](W a

t ) dt− ca(t)fa(t)ν(Y at ) dt− S(W a
t ) dLat −D(ftν(Y at )).

For the normal part of the damped parallel transport, we use product rule

D(ftν(Y at )) =ν(Y at )dft + ftD(ν(Y at )) + dftD(ν(Y at ))

=ν(Y at )

(
−ca(t)fa(t)dt− 1

2
Ric(W a

t , ν(Y at ))dt

)
+ ν(Y at )

(∑
k

〈W a
t ,∇σkν(Y at )〉 dBkt +

1

2
〈W a

t , trace∇2ν(Y at )〉dt.

)

+ ft

(∑
k

∇σkν(Y at )dBkt +
1

2
//−1
t trace∇2ν(Y at )dt

)
+
∑
k

〈W a
t ,∇σk(Y at )ν〉∇σk(Y at )ν dt.

Since 〈∇·ν, ν〉 vanishes, 〈∇Wa
t
Aa, ν(Y at )〉dt = S(W a

t )dLat . Finally, we bring the above

formula back to the equation for W a,T
t and observe that the cancellation of the term

involving fa(t).

DW a,T
t =− 1

2
Ric](W a

t ) dt− S(W a
t ) dLat +

1

2
Ric(W a

t , ν(Y at ))ν(Y at )dt

−
∑
k

〈W a
t ,∇σkν(Y at )〉ν(Y at )dBkt +

1

2
ft‖∇ν‖2ν(Y at )

− 1

2
〈W a,T

t , trace∇2ν(Y at )〉ν(Y at )dt− ft
∑
k

∇σkν(Y at )dBkt

− 1

2
ft trace∇2ν(Y at )dt−

∑
k

〈W a
t ,∇σk(Y at )ν〉∇σk(Y at )ν dt.

Following this up and observing that

−1

2
Ric](W a

t ) +
1

2
Ric(W a

t , ν(Y at ))ν(Y at ) = −1

2
(Ric](W a

t ))T ,
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we see

DW a,T
t =− 1

2
(Ric](W a

t ))T dt− S(W a
t ) dLat −

∑
k

〈W a,T
t ,∇σkν(Y at )〉dBkt

+
1

2
ft‖∇ν‖2 −

1

2
〈W a,T

t , trace∇2ν(Y at )〉dt− ft
∑
k

∇σkν(Y at )dBkt

− ft trace∇2ν(Y at )dt−
∑
k

〈W a
t ,∇σk(Y at )ν〉∇σk(Y at )ν dt.

This completes the proof.

Lemma 7.4. Let nat = (//at )−1ν(Y at ). Then lima→0 n
a = n, in the topology of semi-

martingales.

Proof. By the definition, (7.15), the stochastic differential Dν(Y at ) is essentially nat :

dnat = (//at )−1

(
〈∇ν, σk(Y at )〉 dBkt +

1

2
trace∇2ν(Y at ) dt

)
. (7.10)

By the same computation,

dnt = (//t)
−1

(
〈∇ν, σk(Yt)〉 dBkt +

1

2
trace∇2ν(Yt) dt

)
. (7.11)

We recall that Y a → Y and //a(Y a)→ //(Y ). Let

∆∂Mν := trace∇2ν,

where the trace is taken in the vector space orthogonal to ν. It follows that

∇ν(Y a)→ ∇ν(Y ), σ(Y a)→ σ(Y ), ∆∂Mν(Y a)→ ∆∂Mν(Y ),

all in the topology of UCP. This implies that na converges to n in the topology of semi-
martingales.

Let us define

Ric(x) = inf
v∈TxM,|v|=1

{Ric(v, v)} , x ∈M and Ric = inf
x∈M

Ric(x).

We also define

S(x) = inf
v∈TxM,|v|=1,〈v,∇R〉=0

{S(v, v)} , x ∈M and S = inf
x∈M
S(x).

Lemma 7.5. For any t > 0 and a > 0,

|W a
t |2 ≤ |W a

0 |2 e−
∫ t
0

Ric(Y as ) ds−2
∫ t
0
S(Y as ) dLas . (7.12)

Suppose that Ric and S are bounded. Then supa ‖W a‖Sp([0,T ]) is finite. Furthermore

E

[
sup
t≤T
|W a

t |p
]
≤ |W a

0 |p e−pRicTC(T,−pS) (7.13)

where C(T, λ) is defined in (3.23)
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Proof. We begin with W a. Firstly,

|W a
t |2 =|W a

0 |2 −
∫ t

0

〈Ric](W a
s ),W a

s 〉 ds− 2

∫ t

0

〈S(W a
s ),W a

s 〉 dLas

−
∫ t

0

cas〈W a
s , νY as 〉

2 ds

where cas is the scalar normal part of W a
t , see (7.6). It is easy to see that cas > 0. So

|W a
t |2 ≤|W a

0 |2 −
∫ t

0

Ric(W a
s ,W

a
s ) ds− 2

∫ t

0

〈S(W a
s ),W a

s 〉 dLas

≤|W a
0 |2 −

∫ t

0

|W a
s |2Ric(Y as ) ds− 2

∫ t

0

|W a
s |2S(Y as ) dLas .

This implies (7.12) and (7.13) immediately follows.

Lemma 7.6. We also have

‖W‖pSp([0,T ]) ≤ |W0|pe−p T Ric C(T,−pS) (7.14)

Proof. Since W ε converges to W , a similar computation holds for W ε, the conclusion for
(Wt) follows.

7.3 The local time

Let us recall the notation

nat = (//at )−1ν(Y at ), ricat = (//at )−1Ric](//at (·)), sat = (//at )−1S(//at (·)). (7.15)

Denote wat = //−1
t (Y a)W a

t . Then

dwat = −ca(t)fa(t)nat dt− sat (wat )dLat −
1

2
ricat (wat ) dt.

Recall ca is a real valued stochastic process defined in (7.6). Let us define a new
stochastic process

c̃a(t) = ca(t) +
1

2
‖∇ν(Y at )‖2H.S. +

1

2
〈ricat (nat ), nat 〉, (7.16)

and also the stochastic processes

Ca(t) =

∫ t

0

ca(s) ds, C̃a(s, t) =

∫ t

s

c̃a(s) ds. (7.17)

In the tubular neighbourhood, the following holds.

Lemma 7.7. Let S be a bounded stopping time such that Yt ∈ F0 on {t < S}. Let
0 ≤ s < t ≤ S. Then

fa(t) = fa(0)e−
∫ t
0
c̃a(r)dr +

∫ t

0

e−
∫ t
s
c̃a(r)dr dr̃as , (7.18)

where

r̃at =

∫ t

0

〈wa,Ts ,∇σk(Y as )ν〉dBks −
1

2

∫ t

0

〈ricas(wa,Ts ), nas〉 ds

+
1

2

∫ t

0

〈wa,Ts , (//as )−1 trace∇2ν(Y as )〉 ds.
(7.19)
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Proof. By Lemma 7.3, the function fa(t) is a solution to the following equation,

dft = −ca(t)fa(t)dt− 1

2
Ric(W a

t , ν(Y at ))dt+
∑
k

〈W a,T
t ,∇σkν(Y at )〉 dBkt

+
1

2
〈W a,T

t , trace∇2ν(Y at )〉dt− 1

2
fa(t)‖∇ν(Y at )‖2.

Split the W a
t terms into its tangential and normal parts:

dft =− ca(t)fa(t)dt− 1

2
fa(t)Ric(ν(Y at ), ν(Y at ))dt− 1

2
fa(t)‖∇ν‖2dt

− 1

2
Ric(W a,T

t , ν(Y at ))dt+
∑
k

〈W a,T
t ,∇σk(Y at )ν〉dBkt

+
1

2
〈W a,T

t , trace∇2ν(Y at )〉dt.

The required identity follows from the variation of constant method.

Lemma 7.8. Let S be a stopping time as given in Lemma 7.7. Define for t ∈ [0, S],

Lat =

∫ t

0

2 ds

a sinh
(

2Ras
a

) . (7.20)

Let p, q ∈ [1,∞] and r defined by
1

r
=

1

p
+

1

q
. Let Zat and Zt be continuous real semi-

martingales defined on [0, S]. Then∥∥∥∥∫ ·
0

Zas dL
a
s −

∫ ·
0

Zs dLs

∥∥∥∥
Sr

≤ ‖Za − Z‖Sp
‖LaS‖q + ‖La − L‖Sp

(
‖Z‖Sq + ‖Z‖Hq

)
.

(7.21)

Proof. We have for t ∈ [0, S]∫ t

0

Zas dL
a
s −

∫ t

0

Zs dLs

=

∫ t

0

(Zas − Zs) dLas +

∫ t

0

Zs d(Las − Ls)

=

∫ t

0

(Zas − Zs) dLas +

∫ t

0

(Las − Ls) dZs + Zt(L
a
t − Lt).

Since La is nondecreasing we have

‖La· ‖
q
Hq([0,S]) = E

(
sup
s≤S
|Las |q

)
= ‖La· ‖

q
Sq([0,S]),

so we get by (B.2),∥∥∥∥∫ ·
0

(Zas − Zs) dLas
∥∥∥∥

Hr([0,S])

≤ ‖Za· − Z·‖Sp([0,S])‖La· ‖
q
Sq([0,S]).

Similar estimates holds for the last two terms on the right hand side of the identity. This
concludes the proof.

Let S be a stopping time such that Yt ∈ F0 on {t < S}.
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Lemma 7.9. Let αt = sups≤t{s ≤ t : Ys ∈ ∂M}. Suppose that t 6∈ R(ω). For all
s, t ∈ [0, S] satisfying s < t,

lim
a→0

e−
∫ t
s
ca(u) du = 1, if s > αt

lim
a→0

e−
∫ t
s
ca(u) du = 0, if s < αt.

(7.22)

The convergence is in probability. As a consequence, for all p ≥ 1,

lim
a→0

E

[∫ S

0

∣∣∣e−Ca(t) − χ{s>αt}
∣∣∣p dt] = 0; (7.23)

lim
a→0

E

[∫ S

0

(∫ t

0

∣∣∣e− ∫ ts ca(u) du − χ{s>αt}
∣∣∣p ds) dt] = 0. (7.24)

Proof. From (7.22) it is easy to get (7.23) and (7.24) using the fact that e−
∫ t
s
ca(u) du and

χ{s>αt} are uniformly bounded and Fubini-Tonelli theorem.
So let us prove (7.22). Write

∫ t

s

ca(u) du =

∫ t

s

2 cosh
(

2Rau
a

)
a sinh

(
2Rau
a

) × 2

a sinh
(

2Rau
a

) du.
If s > αt then there exists ε(ω) > 0 such that for u ∈ [s, t], Ru > ε(ω). Since Ra → R

in UCP topology, supu∈[s,t] ca(u) converges to 0 in probability, and this implies that

e−
∫ t
s
ca(u) du → 1.

If s < αt then Lt − Ls > 0. Indeed, this would be true if Rt was a reflected Brownian
motion. But by Girsanov transform we obtain that the law of Rt is equivalent to the one
of a reflected Brownian motion (Lemma C.1). So this is true.

Now we have

∫ t

s

2 cosh
(

2Rau
a

)
a sinh

(
2Rau
a

) × 2

a sinh
(

2Rau
a

) du >∫ t

s

2

a
× 2

a sinh
(

2Rau
a

) du
=

2

a
(Lat − Las).

Since Ra → R in UCP topology we have that La → L in UCP topology. So for all a0 > 0

the lim inf of the right hand side is larger than
2

a0
(Lt − Ls). This yields

lim sup
a→0

e−
∫ t
s
ca(u) du < e−

2
a0

(Lt−Ls)

in probability. Letting a0 → 0 we get

lim
a→0

e−
∫ t
s
ca(u) du = 0 in probability.

From this result we get the following

Corollary 7.10. Define

c̃(t) = −1

2
‖∇ν(Yt)‖2H.S. −

1

2
〈rict(nt), nt〉 (7.25)
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where rict is defined in (C.9). For s, t ∈ [0, S] satisfying s < t we define

C̃(s, t) =

{ ∫ t
s
c̃(s) ds, if s > αt

+∞, if s ≤ αt
(7.26)

Then the following convergence holds in probability for C̃a(s, t) defined in (7.17):

lim
a→0

e−C̃a(s,t) = e−C̃(s,t). (7.27)

Consequently, for all p ≥ 1,

lim
a→0

E

[∫ S

0

∣∣∣e−C̃a(t) − e−C̃(t)
∣∣∣p dt] = 0, (7.28)

lim
a→0

E

[∫ S

0

(∫ t

0

∣∣∣e−C̃a(s,t) − e−C̃(s,t)
∣∣∣p ds) dt] = 0. (7.29)

With these notations Equation (5.4) rewrites as

f(t) = f(0)e−C̃(t) +

∫ t

0

e−C̃(s,t) dr̃s (7.30)

where

r̃t =

∫ t

0

〈wTs ,∇σk(Ys)ν〉dB
k
s −

1

2

∫ t

0

〈rics(wTs ), ns〉 ds

+
1

2

∫ t

0

〈wTs , //−1
s trace∇2ν(Ys)〉 ds.

(7.31)

Proof. The convergences are obvious. For equation (7.31), we see if t < ζ, e−C̃(s,t) → 0

for any s ≥ 0. Hence

f(t) = f(0) +

∫ t

0

dr̃s = f(0) + r̃t.

If t ≥ ζ, then ∫ t

0

e−C̃(s,t) dr̃s =

∫ t

α(t)

e−C̃(s,t) dr̃s.

Consequently

f(t) =

∫ t

α(t)

dr̃s = r̃(t)− r̃(α(t)).

The new expression (7.30) for f(t) is the same form as the equation for fa(t):

fa(t) =fa(0)e−
∫ t
0
c̃a(r)dr +

∫ t

0

e−
∫ t
s
c̃a(r)dr dr̃as

=fa(0)e−C̃a(t) +

∫ t

0

e−C̃a(s,t) dr̃as .

We observe also that ca(t) does not converge to a finite stochastic process, hence we
only expect that fa(t) converges to f(t) in a weak sense. Especially it is only for a set of
t of full measure that fa(t)→ f(t). This will be made precise in part 7.5
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7.4 Convergence of the tangential parts

We will see that tangential parts of W a
t converges in UCP topology, as for normal

parts we have to exclude the boundary times. But both of them converge in Lp([0, T ]×Ω),
this will be proved at the very end of the proof. Let us begin with the first convergence.

Lemma 7.11. As a→ 0, W a,T
· →WT

· in UCP topology.

Proof. Since //at → //t in the UCP topology it is sufficient to prove that wa,T· → wT· in the
UCP topology. We recall from Lemma 7.3, the term involving ca(t) cancels and we have

DW a,T
t =− 1

2

(
Ric](W a,T

t )
)T

dt− 1

2
fa(t)

(
Ric](ν(Y at ))

)T
dt− S(W a

t ) dLat

− fa(t)∇σkν(Y at )dBkt −
1

2
ft trace∇2ν(Y at )dt

− 1

2
〈W a,T

t ,∇σkν(Y at )〉∇σkν(Y at ) dt

−
∑
k

〈W a,T
t ,∇σkν(Y at )〉ν(Y at )dBkt − 〈W

a,T
t , trace∇2ν(Y at )〉ν(Y at )dt

+ ft‖∇ν(Y at )‖2ν(Y at )dt.

Hence

dwa,Tt =− 1

2
ricat (wa,Tt ) dt− 1

2
fa(t)

(
Ric](ν(Y at ))

)T
dt− sat (wa,Tt ) dLat

− fa(t)(//at )−1∇σkν(Y at )dBkt −
1

2
fa(t)(//at )−1 trace∇2ν(Y at )dt

− 1

2
〈wa,Tt , (//at )−1∇σkν(Y at )〉(//at )−1∇σkν(Y at ) dt

−
∑
k

〈wa,Tt , (//at )−1∇σkν(Y at )〉nat dBkt

− 〈wa,Tt , trace(//at )−1∇2ν(Y at )〉nat dt
+ fa(t)‖∇ν(Y at )‖2nat dt.

(7.32)

We define the processes va,Tt , va,~nt :

va,Tu (·) =− 1

2

∫ u

0

ricat (·) dt−
∫ u

0

sat (·) dLat

− 1

2

∫ u

0

〈·, (//at )−1∇σkν(Y at )〉(//at )−1∇σkν(Y at ) dt

−
∑
k

∫ u

0

〈·, (//at )−1∇σkν(Y at )〉nat dBkt

−
∫ u

0

〈·, trace(//at )−1∇2ν(Y at )〉nat dt.

(7.33)

Also,

va,νu =−
∫ u

0

1

2
(//at )−1

(
Ric](ν(Y at ))

)T
dt−

∫ u

0

(//at )−1∇σkν(Y at )dBkt

− 1

2

∫ u

0

(//at )−1 trace∇2ν(Y at )dt+

∫ u

0

‖∇ν(Y at )‖2nat dt.
(7.34)
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With these notations and the expression for fa(t) in formula (7.18) we have

dwa,Tt = dva,Tt (wa,Tt ) + fa(t)dva,νt

and so

dwa,Tt = dva,Tt (wa,Tt ) +

(
fa(0)e−C̃a(t) +

∫ t

0

e−
∫ t
s
c̃a(u) du dr̃as

)
dva,νt . (7.35)

We also have

dwTt = dvTt (wTt ) +

(
f(0)e−C̃(t) +

∫ t

0

e−C̃(s,t) dr̃s

)
dvνt , (7.36)

(recall that e−C̃(s,t) = 0 if s < αt), where

vνu =− 1

2

∫ u

0

rict(nt)
T dt+

∫ u

0

‖∇ν(Yt)‖2nt dt−
∫ u

0

(//t)
−1∇σ(Yt) dBtν

− 1

2

∫ u

0

(//t)
−1∆h,T ν(Yt) dt,

(7.37)

vTu (·) =− 1

2

∫ u

0

rict(·) dt−
∫ u

0

st(·) dLt −
∫ u

0

〈·, (//t)−1∇σT (Yt) dBtν〉nt

− 1

2

∫ u

0

〈·, (//t)−1∆hν(Yt)〉nt dt

−
∑
j≥2

∫ u

0

〈·,∇σj(Yt)ν〉(//t)
−1∇σj(Yt)ν dt.

(7.38)

We investigate further (7.35)

dwa,Tt =dva,Tt (wa,Tt ) + fa(0)e−C̃a(t)dva,νt

+

(∫ t

0

e−
∫ t
s
c̃a(u) du〈wa,Ts ,∇σk(Y as )ν〉dBks

)
dva,νt

− 1

2

(∫ t

0

e−
∫ t
s
c̃a(u) du〈ricas(wa,Ts ), nas〉 ds

)
dva,νt

+
1

2

(∫ t

0

e−
∫ t
s
c̃a(u) du〈wa,Ts , (//as )−1 trace∇2ν(Y as )〉 ds

)
dva,νt .

From this the required convergence should follow: when a approaches zero, va,νt ap-
proaches vat and va,Tt approaches vTt . If furthermore if fa(0)→ f(0), then

lim
a→0

fa(0)e−C̃a(t) = f(0)e−C̃(t).

Hence the components of wa,Tt is the solution to a system of non-Markovian stochastic
differential equations whose coefficients converge, and furthermore va,Tt (wa,Tt ) con-
verges only in UCP, not in Hp([0, T ]). These factors explain why the proof below is long
given this simple explanation. To prove that va,Tt → vTt in UCP topology, c.f. (7.33) and

(7.38), we only need to prove that

∫ ·
0

sat (·) dLat →
∫ ·

0

st(·) dLt in UCP topology. This is a

consequence of Lemma 7.8, together with the facts that UCP topology is equivalent to
local convergence in Sp and that the random variables LaS are uniformly bounded in L2.

To make the rest of the proof more transparent let us define

ũt =

∫ t

0

e−C̃(s,t)〈·,∇σT (Ys) dBsν〉

− 1

2

∫ t

0

e−C̃(s,t)〈rics(·), ns〉 ds+
1

2

∫ t

0

e−C̃(s,t)〈·, //−1
s ∆h,T ν(Ys)〉 ds;

(7.39)
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ũat =

∫ t

0

e−C̃a(s,t)〈·,∇σT (Y as ) dBsν〉

− 1

2

∫ t

0

e−C̃a(s,t)〈ricas(·), nas〉 ds+
1

2

∫ t

0

e−C̃a(s,t)〈·, //−1
s ∆h,T ν(Y as )〉 ds

(7.40)

Then, by Lemma 7.3, we may write

fa(t) = fa(0)e−C̃a(t) +

∫ t

0

dũas(wa,Ts ), (7.41)

f(t) = f(0)e−C̃(t) +

∫ t

0

dũs(w
T
s ). (7.42)

Take these equalities back to equations (7.35) and (7.36), we see

dwa,Tt = dva,Tt (wa,Tt ) +

(
fa(0)e−C̃a(t) +

∫ t

0

dũas(wa,Ts )

)
dva,νt .

We also have

dwTt = dvTt (wTt ) +

(
f(0)e−C̃(t) +

∫ t

0

dũs(w
T
s )

)
dvνt .

Let us simply compute the difference of the two matrices:

d(wa,Tt − wTt )

=d(va,Tt − vTt )(wa,Tt ) + dvTt (wa,Tt − wTt ) + fa(t) d(va,νt − vνt )

+ dvνt

(
fa(0)e−C̃a(t) − f(0)e−C̃(t)

)
+ dvνt

∫ t

0

d(ũas − ũs)(wa,Ts ) + dvνt

∫ t

0

dũs(w
a,T
s − wTs ).

(7.43)

Now we recall that convergence in UCP topology is implied by local convergence in
S1. For a stopping time S′ smaller than S we have∥∥∥∥∥

(∫ ·
0

dvTt (wa,Tt − wTt
)S′∥∥∥∥∥

S1

≤ ‖(vT )S
′
‖H∞ · ‖(wa,T· − wT· )S

′
‖S1

(7.44)

Since vT0 = 0 and vT has locally bounded H∞ norm we can split the time interval and we
only have to make the proof on [0, S′] where S′ ≤ S is a stopping time so that

‖(vT )S
′
‖H∞ < 1. (7.45)

Then using an argument analogous to that for (7.44) we see∥∥∥∥∥
(∫ ·

0

dvνt

∫ t

0

dũs(w
a,T
s − wTs

)S′∥∥∥∥∥
S1

≤ ‖(vν)S
′
‖H∞ ·

∥∥∥∥∥
(∫ ·

0

dũt(w
a,T
t − wTs

)S′∥∥∥∥∥
S1

≤ ‖(vν)S
′
‖H∞ · ‖(ũ)S

′
‖H∞ · ‖(wa,T· − wT· )S

′
‖S1

(7.46)

Since vν and ũ have locally bounded H∞ norms, with the same argument we can take S′

so that

‖(vν)S
′
‖H∞ · ‖(ũ)S

′
‖H∞ < 1. (7.47)

EJP 22 (2017), paper 31.
Page 38/55

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP41
http://www.imstat.org/ejp/


Reflected Brownian motion: selection, approximation and linearization

We want to prove that ‖(wa,T· − wT· )S
′‖S1

→ 0 as a→ 0. Using (7.43-7.45), (7.46), (7.47)
and Gronwall lemma, it is sufficient to prove that

lim
a→0

∥∥∥∥∥
(∫ ·

0

d(va,Tt − vTt )(wa,Tt )

)S′∥∥∥∥∥
S1

= 0, (7.48)

lim
a→0

∥∥∥∥∥
(∫ ·

0

dvνt

(
fa(0)e−C̃a(t) − f(0)e−C̃(t)

))S′∥∥∥∥∥
S1

= 0. (7.49)

and

lim
a→0

∥∥∥∥∥
(∫ ·

0

dvνt

∫ t

0

d(ũas − ũs)(wa,Ts )

)S′∥∥∥∥∥
S1

= 0. (7.50)

For (7.48) we write∫ t

0

d(va,Ts − vTs )(wa,Ts ) = wa,Tt (va,Tt − vTt )−
∫ t

0

va,Ts − vTs )dwa,Ts . (7.51)

From (7.32) and Lemma 7.5 we see that the processes wa,T are uniformly bounded in
H2. Since va,Tt → vTt in UCP topology, va,Tt → vTt locally in S∞. We have∥∥∥∥∥

(∫ ·
0

va,Ts − vTs )dwa,Ts

)S′∥∥∥∥∥
S2

≤ ‖(va,T − vT )S
′
‖S∞ · ‖wa,Ts ‖H2

and

‖wa,T· (va,T· − vT· )‖S2
≤ ‖(va,T − vT )S

′
‖S∞ · ‖wa,Ts ‖S2

≤ 3‖(va,T − vT )S
′
‖S∞ · ‖wa,Ts ‖H2

.

From this, (7.51) and the fact that S1 norm is smaller than S2 norm, we obtain (7.48).
For (7.49) it is sufficient to compute the H2 norm of(∫ ·

0

dvνt

(
fa(0)e−C̃a(t) − f(0)e−C̃(t)

))S′
and to use the dominated convergence theorem.

Finally let us prove (7.50). This can be done by modifying S′, using the facts that the
processes W a,T have uniformly bounded S2 norms and ũa → ũ in UCP topology. For this
last point, use (7.29) in Corollary 7.10 and Corollary B.4.

7.5 Convergence of the normal parts

Lemma 7.12. For all p ∈ [1,∞) and T > 0, as a→ 0,

E

[∫ T

0

|fa(t)− f(t)|p dt

]
→ 0. (7.52)

Proof. Write

fa(t)− f(t) = (fa(0)− f(0)) e−C̃a(t) + f(0)
(
e−C̃a(t) − e−C̃(t)

)
+

∫ t

0

(
e−C̃a(s,t) − e−C̃(s,t)

)
dr̃as +

∫ t

0

e−C̃(s,t) d (r̃as − r̃s) .

The first term in the right converges to 0 in Lp([0, T ] × P) due to the positiveness of
C̃a(t). The second term in the right converges to 0 due to (7.28). For the last term
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in the right we use boundedness of e−C̃(s,t) and the fact that r̃at → r̃t in Hp([0, T ]) due
to (7.19) and (7.31) together with (B.2) and Lemmas 7.11 and 7.5 which allow to prove
that wa,Tt → wTt in Sq([0, T ]), q ∈ [1,∞).

We are left to prove that∫ t

0

(
e−C̃a(s,t) − e−C̃(s,t)

)
dr̃as → 0 in Lp([0, T ]× P.

Here it is easier to replace S by T ≥ S which is deterministic. We have

E

[∫ T

0

∣∣∣∣∫ s

0

(
e−C̃a(u,s) − e−C̃(u,s)

)
dr̃au

∣∣∣∣p ds
]

=

∫ T

0

E

[∣∣∣∣∫ s

0

(
e−C̃a(u,s) − e−C̃(u,s)

)
dr̃au

∣∣∣∣p] ds
≤ C(p, T )

∫ T

0

E

[∫ s

0

∣∣∣e−C̃a(u,s) − e−C̃(u,s)
∣∣∣p du] ds.

The last inequality comes from the fact that the identity map from Sp([0, s]) to Hp([0, s])

is continuous and bounded by C(p, s) satisfying 0 < C(p, s) ≤ C(p, T ). Notice that the

fact that u 7→ e−C̃a(u,s) − e−C̃(u,s) is not adapted is not a problem since in dr̃au there is no
integration with respect to B1. We conclude with (7.29) which is easily seen to be true
with S replaced by T .

Lemma 7.13. For all p ∈ [1,∞), T > 0 and all smooth φ : M → R+ vanishing in a
neighbourhood of ∂M , φ(Y at )fa(t)→ φ(Yt)f(t) in Sp([0, T ]).

Proof. Since φ is bounded and the processes fa(t) are uniformly bounded in Sp([0, T ])

independently of a, it is sufficient to prove convergence in UCP topology.
We have

φ(Rat )fa(t)− φ(Rt)f(t) = (φ(Rat )− φ(Rt)) fa(t) + φ(Rt) (fa(t)− f(t)) .

Since the processes fa(t) are uniformly bounded in Sp([0, T ]) independently of a and
Rat → Rt in Sp([0, T ]), the fist term in the right converges to 0 in UCP topology. Let us
consider the second term:

d (φ(Rt)(fa(t)− f(t))) =(fa(t)− f(t))dφ(Rt) + φ(Rt)d (fa(t)− f(t))

+ dφ(Rt)d (fa(t)− f(t)) .

The integral of the first term in the right converges to 0 in UCP topology, due to (7.29) and
the fact that φ(Rt) has uniformly bounded absolutely continuous local characteristics.

On the other hand

φ(Rt)d (fa(t)− f(t))

=− c̃a(t)φ(Rt)(fa(t)− f(t)) dt+ φ(Rt)(c̃(t)− c̃a(t))f(t) dt

+ φ(Rt)(fa(t)− f(t))dr̃a(t) + φ(Rt)f(t)d(r̃at − r̃t).

From subsection 7.4 together with (7.19) and (B.2) we get that r̃a → r̃ in semimartin-
gale topology.

So due to the presence of φ(Rt) which vanishes in a neighbourhood of ∂M all the
terms behave nicely, with the help of (7.52).

Finally the covariance term can be treated with similar methods.

With this we completed the proof of Theorem 5.6 and close this section.
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A The half line example

On the half line we select a reflected Brownian motion with ‘good’ sample path
properties. To begin with, we consider two reflected Brownian motions: the solution to
the Skorohod problem associated with a Brownian motion x+Bt and the solution to the
Tanaka problem associated with x+

∫ t
0

sign(x+Bs)dBs. The first is a stochastic flow, see
Lemma A.1 below, while the second is not.

The solution and the derivative flow to the Skorohod problem for x + Bt is ap-
proximated by solutions and derivative flows to a family of SDEs with explicit drifts.
Furthermore, its derivative flow is shown to coincide with the damped parallel translation
introduced in Appendix C.

Denote the space of real valued continuous function with f(0) = 0 by C0(R;R)

and its subset of non-negative valued functions by C0(R;R+). To each x ≥ 0 and
f ∈ C0(R,R) there exists a unique nondecreasing function h ∈ C0(R,R+) such that,
for g(t) := x+ f(t) + h(t),

∫ t
0
χ{0}(g(s))dh(s) = h(t). The pair (g, h) is the solution to the

Skorohod problem associated to (x, f) and is denoted by

Φ·(x, f) = (g, h). (A.1)

It is well known that h(t) = − inf0≤s≤t{(x+ f(s)) ∧ 0}.
If Bt is a standard real valued Brownian motion, then the Skorohod problem defines

the pair of stochastic processes (Xt(x), Lt(x)), and Lt(x) is called the local time at 0 of
Xt(x) and

Xt(x) = x+Bt + Lt(x). (A.2)

On the other hand, the process (|x + Bt|) is also a reflected Brownian motion. In
fact, by Tanaka’s formula, |x + Bt| = x + βt + 2`0t (ω) where βt =

∫ t
0

sign(x + Bs)dBs
is a Brownian motion and `0t is the local time of x + Bt. The local time `0t is also
the boundary time, i.e. the total time spent by x + Bt on the boundary {0} before
time t. The local time of a brownian motion was introduced by P. Lévy (1940) as
a Borel measurable function Ω × R+ × R → R+ such that (1) for all f ∈ Bb(R;R),∫ t

0
f(x + Bs)ds =

∫
R
f(a)`at da, and (2) (t, a) 7→ `at (ω) is continuous a.s.. It is also well

known that `0t = limε→0
1
ε

∫ t
0
χ[0,ε)(x + Bs)ds = limε→0

1
2ε

∫ t
0
χ(−ε,ε)(x + Bs)ds. It is clear

that (|x+Bt(ω)|, 2`0t (ω)) is the solution to the Skorohod problem associated with x+β·(ω),
and |x+Bt| is not a stochastic flow.

It turns out that Xt(x) = x+Bt + Lt(x) has many nice properties. Despite that the
probability distribution of Xt(x) is that of a reflecting Brownian, on a sample path level
it is not at all the reflected path! It is rather, a lifted path, by ‘the lower envelope’ curve.
The lower envelope curve is the unique continuous decreasing curve that is below the
given curve (Bt). Let 0 < x < y. Let τ(y) = inf{t > 0 : Xt(y) = 0}. It is clear that
Xt(y)−Xt(x) = y−x until Xt(x) reaches zero and the two stochastic processes coalesce
when Xt(y) reaches zero. If we compensate x by Lt(x), the two processes Xt(x+ Lt(x))

and Xt(x) are equal for all t.
In Lemma A.1 we summarise the sample properties of Xt(x) and discuss differentia-

bility of Xt(x) with respect to x. These properties are elementary and not surprising.
It is perhaps more surprising that these elementary properties of Xt(x) are passed to
the reflected Brownian motion on a manifold with boundary. We should mention that
differentiability with respect to the initial value was studied in [11, K. Burdzy] and [3, S.
Andres] for domains in R2 and polygons.

For s < t define θsB = Bs+· − Bs. Let ξ be an Fs measurable random variable and
(Xs,t(ξ, θsB), Ls,t(ξ, θsB)) the solution to the Skorohod problem for (ξ, θsB),

Xs,t(ξ, θsB) = ξ + (θsB)t−s + Ls,t(ξ, θsB).
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Define Ls,t(ξ, θsB) = 0 for 0 ≤ t ≤ s. For simplicity we also omit B in the flow, and write
Xt(x) for Xt(x,B). Let T (x, y) = inf{t > 0, Xt(x) = Xt(y)} be the first time Xt(x) and
Xt(y) meet.

Lemma A.1. The following statements hold pathwise.

1. For all 0 ≤ s < t, x ∈ R,

Xs,t(Xs(x,B), θsB) = Xt(x,B), Lt(x,B) = Ls(x,B) + Ls,t(Xs(x,B), θsB).

2. Let 0 < x < y, then Xt(x) and Xt(y) coalesce at the finite time T (x, y). Furthermore
T (x, y) = τ(y) and Lτ(y)(x) = y − x.

3. For all t ≥ 0 and x > 0, Xt(x+ Lt(x)) = Xt(x).

4. For all x ≥ 0 and t ≥ 0,

∂xXt(x) =

{
1, t < τ(x)

0, t > τ(x)
.

Proof. For part (1), we observe that,

Xs,t(Xs(x,B), θsB) = x+Bt + Ls(x,B) + Ls,t(Xs(x), θsB).

Define L̃(r) = Lr(x,B) when r ≤ s and L̃(t) = Ls(x,B) + Ls,t(Xs(x), θsB) for t > s.
Then L̃ ∈ C0(R+,R+), and (Xs,t(Xs(x,B), θsB), L̃) solves the Skorohod problem for
(x,B). By the uniqueness of the Skorohod problem, Xt(x,B) = Xs,t(Xs(x,B), θsB) and
L̃(t) = Lt(x,B).

Part (2). From the construction of the solution of the Skorohod problem, it is easy to
see that τ(x) < τ(y) and Xt(y)−Xt(x) = y− x on {t < τ(x)}, and Xτ(y)(y) = Xτ(x)(x) on
{t = τ(y)}. By the flow property, 0 ≤ Xt(x) ≤ Xt(y) a.s. for all time. In other words, the
two curves {Xs(x), s ≤ t} and {Xs(y), s ≤ t} are parallel on {t < τ(x)}, until the lower
curve hits zero after which the distance between the two curves decreases until Xt(y)

reaches zero, upon which point the two curves meet. The accumulated upward lift that
Xt(x) receives up to τ(y) is

− inf
0≤s≤τ(y,ω)

{(x− y + y +Bs(ω)) ∧ 0} = y − x.

This shows that Xτ(y)(x) = 0 and together with the flow property we see the coalescence.
We completed the proof that T (x, y) = τ(y) and Lτ(y)(x) = y − x.

Part (3). On {t < τ(x)}, Xt(x+ Lt(x)) = Xt(x) trivially. If t ≥ τ(x+ Lt(x)),

Xt(x+ Lt(x)) = x+ Lt(x) +Bt(x)− inf
0≤s≤t

((x+ Lt(x) +Bs) ∧ 0)

= x+ Lt(x) +Bt(x)− inf
0≤s≤t

((x+Bs) ∧ 0)− Lt(x) = Xt(x).

If τ(x) ≤ t < τ(x+ Lt(x)), Xt(x+ Lt(x)) = x+ Lt(x) +Bt while Xt(x) receives the kick
of the size Lt(x): Xt(x) = x+Bt + Lt(x).

Part (4). Take t < τ(x). Then t < τ(x+ ε) for ε > t− τ(x) and Xt(x+ ε) = Xt(x) + ε,
consequently ∂xXt(x) = 1. Suppose t > τ(x). Then by part (2), Xt(x) = Xt(x− ε) for any
ε < 0. If 0 < ε < Lt(x), 0 ≤ Xt(x+ ε)−Xt(x) ≤ Xt(x+ Lt(x))−Xt(x) = 0. We used part
(3) in the last step. Hence ∂xXt(x) = 0 for t > τ(x). This completes the proof.

A consequence of Lemma A.1 is the following. If we pick up a time t > τ(x), then
Xt(x+ Lt(x)) must reach 0 between τ(x) and t.

In the following we construct a family of stochastic processes {Xa
· (x), a > 0} with the

properties stated below illustrating the general construction. (1) For each a, Xa
· is a
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stochastic flow and x 7→ Xa
t (x) is a diffeomorphism on its image; (2) they approximate

the reflected Brownian motion; (3) their derivatives approximate ∂xXt(x).

Let φ(x) =
∫ x

0
e−

y2

2 dy. For x > 0 and a > 0 let

ua(x) = P (τ(x) > a) =

√
2

π
φ

(
x√
a

)
= 2Paχ(0,x)(0),

where Pt denotes the heat semigroup. Thus ∂xu
a = 2pa where pa is the Gaussian

kernel. Formally u0(0) = P (τ(0) > 0) = 0 and for x > 0, u0(x) = P (τ(x) > 0) = 1,
and ∂

∂x lnu0(x) = ∂
∂xχ(−∞,x) = δ0(x), the Dirac mass at 0. Note that lnua is a concave

function with positive gradient:

∂x lnua =
1√
a

(lnφ)′(
x√
a

) =
1√
a

e−
x2

2a

φ( x√
a
)
> 0; (A.3)

∂2
x(lnua) =

1

a
(lnφ)′′(

x√
a

) = − xe−
x2

2a

a
3
2φ( x√

a
)
− e−

x2

2a

aφ( x√
a
)
< 0. (A.4)

Proposition A.2. Let Xa
t (x) be the solution to

Xa
t (x) = x+Bt +

∫ t

0

∂x lnua(Xa
s (x))ds. (A.5)

Then x 7→ Xa
t (x) is an increasing function, a 7→ Xa

t (x) decreases as a decreases to zero.
For every (t, x, ω), lima↓0X

a
t (x) exists. For every x ≥ 0, the following holds for almost

surely all ω: lima↓0X
a
t (x) = Xt(x) for all t.

Proof. That Xa
t (x) increases with x follows from the comparison theorem one dimen-

sional SDEs. We also observe that the drift ∂x lnua(x) in (A.5) increases with a.

∂a∂x lnua = − 1

2a
3
2

(lnφ)′(
x√
a

)− x

2
√
aa

3
2

(lnφ)′′(
x√
a

) > 0.

For y > 0, define

F (y) = y(lnφ)′′(y) + (lnφ)′(y).

It is clear that F (y) is negative for y sufficiently large. By the comparison theorem, Xa
t (x)

increases with a and X̄t(x) = lima↓0X
a
t (x) exists for every t, x, ω. Consequently

Axt := lim
a↓0

∫ t

0

∂x lnua(Xa
s (x))ds

exists and

X̄t(x) = x+Bt +Axt .

Let f(t, a) =
∫ t

0
∂x lnua(Xa

s (x))ds, which is positive and increasing with t. Thus Axt is
non-negative and nondecreasing in t.

Note that lima→0 ∂x lnua(x) = 0 for x > 0, but the convergence is not uniform in x.
For x ∈ (0,

√
a],

∂x lnua ≥ 1√
a

e−
x2

2a

x√
a

≥
1− x2

2a

x
>

1

2x
.

By comparison with the Bessel square process Bes2 or standard criterion for diffusion
process, for almost surely all ω, Xa

t (x) cannot reach 0. Next we observe that, Xt(y) is a
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flow, Xa
t (y) > Xa

t (x) whenever y > x. Thus Xa
t (x) > 0 for all a > 0. The limiting process

X̄t(x) has the property:
X̄0(x) = x, X̄t(x) ≥ 0.

Let S < T be random times with X̄t(x, ω) > 0 for t ∈ [S, T ]. Let

δ(ω) = inf{X̄t(x, ω), t ∈ [S(ω), T (ω)]} > 0.

The function x 7→ ∂x lnua(x) decreases,∫ T

S

∂x lnua(X̄s(x))ds ≤
∫ T

S

∂x lnua(δ(ω))ds.

Then, since Xa
s (x) ≥ X̄s(x),

AT (ω)−AS(ω) = lim
a↓0

∫ T

S

∂x lnua(Xa
s (ω))ds

≤ lim
a↓0

∫ T

S

∂x lnua(X̄s(ω))ds

≤ lim
a↓0

∫ T

S

∂x lnua(δ(ω))ds = 0.

This implies that ∫ t

0

χ{X̄s(x)>0}dA
x
s = 0

and (X̄t(x), Axt ) solves the Skorohod problem associated to x+Bt.

Lemma A.3. For all x > 0 and a > 0, ∂3
x lnua > 0.

Proof. It is clearly sufficient to consider the case a = 1.

A(x) = ∂x lnu1(x) = φ′(x).

We have from (A.4)
A′(x) = −xA(x)−A2(x)

and this implies

φ′′′(x) = A′′(x) = (x2 − 1)A(x) + 3xA2(x) + 2A3(x). (A.6)

It is clearly positive when x ≥ 1. For 0 ≤ x < 1,

A(x) =
e−x

2/2∫ x
0
e−y2/2 dy

>
1− x2/2

x
>

1− x2

3x
.

Hence
φ′′′(x) ≥ A(x)

(
(x2 − 1) + 3xA(x)

)
> 0.

This completes the proof.

Since lnuat (x) is smooth, the derivative flow V at (x) = ∂xX
a
t (x) exists and satisfies the

linear equation V̇ at = (∂2
x lnua)V at . We prove that V at converges to 1 when t < τ(x) and

converges to 0 when t > τ(x). In the sequel, by V aτ(x+h)(x) we mean ∂xX
a
s (x)|s=τ(x+h),

and τ(x+ h) is not differentiated.

Theorem A.4. Let Xa
t (x) be the solution to (A.5). Let V at (x) = ∂xX

a
t (x). Then the

following holds.
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1. For all positive a and t, x 7→ V at (x) is increasing and t 7→ V at (x) decreases. For any
y > x,

lim
a→0

V aτ(y)(x) = 0.

2. For almost all ω the following holds for all x > 0 and t ≥ 0 such that t 6= τ(x):

lim
a↓0

V at (x) = ∂xXt(x).

Furthermore,

lim
a→0

E

∫ T

0

|V at (x)− ∂xXt(x)| dt = 0.

Proof. We observe that

d

dt
V at (x) = ∂2

x(lnuat )(Xa
t (x))V at (x),

and V a0 (x) = 1, leading to the formula,

V at (x) = e
∫ t
0
∂2
x(lnua)(Xas (x))ds. (A.7)

(1) Since ∂2
x(lnua) < 0, V at (x) decreases with t. We differentiate (A.7) to see that

∂xV
a
t (x) = V at (x)

∫ t

0

(∂3
x lnua)(Xa

s (x))V as (x)ds.

Firstly, letting V a0 = 1. By Lemma A.3, ∂3
x lnua > 0, so x 7→ V at (x) is increasing.

Let x, ω be fixed. Let t 6= τ(x, ω) be a non-negative number and h > 0. There is a
number θ(ω) ∈ [0, 1] s.t.

Xa
t (x+ h)−Xa

t (x)

h
= ∂xX

a
t (x+ θh) ≥ ∂xXa

t (x).

Since τ(x+ h, ω) 6= τ(x, ω) for a.e. ω, for almost all ω we may set t = τ(x, ω):

0 ≤ ∂xXa
t (x)|t=τ(x+h) ≤

Xa
τ(x+h)(x+ h)−Xa

τ(x+h)(x)

h
≤
Xa
τ(x+h)(x+ h)

h
.

Take h = Lt(x). By Proposition A.2

lim
a→0

Xa
τ(x+Lt(x))(x+ Lt(x)) = Xτ(x+Lt(x))(x+ Lt(x)) = 0.

Thus for any h > 0,
lim
a↓0

V aτ(x+h)(x) = 0.

(2) Let x > 0. By Lemma A.1, Xt(x+ Lt(x)) = Xt(x) for all t ≥ 0. So if t > τ(x), then
t ≥ τ(x+ Lt(x)). Suppose that t > τ(x). Since V at (x) decreases with t,

0 ≤ V at (x) ≤ V aτ(x+Lt(x))(x).

By the conclusion of part (1), the right hand side converges to 0 as a→ 0.
If t < τ(x), Xa

t (x) > Xt(x) > 0 by comparison theorem for SDEs. Also ∂2
x lnua < 0,

1 ≥ lim
a↓0

exp

(∫ t

0

∂2
x lnua(Xa

s (x))ds

)
≥ exp

(
lim
a↓0

∫ t

0

∂2
x lnua(Xs(x))ds

)
.

On the other hand for every y, ∂2
x lnua(y) → 0 and infs∈[0,t]Xs(x) > 0 for t < τ(x).

This concludes that lima↓0 exp
(∫ t

0
∂2
x lnua(Xa

s (x))ds
)

= 1. Note that V at (x) is uniformly

bounded to conclude the convergence in L1.
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B Convergence in semimartingale spaces

Let a0 > 0 and let {(Y at , t < ξa), a ∈ [0, a0)} be a family of continuous semi-martingales
with values in a manifold M . If U is an open domain in M , set:

τU,a = inf{t > 0 : Y at 6∈ U}.

Definition B.1. (1) We say that Y a converges to Y 0 in the topology of uniform conver-
gence in probability on compact time sets (UCP) if

(1a) for all relatively compact open domain U ⊂M ,

lim inf
a→0

τU,a ≥ τU,0,

(1b) for all t > 0, the following convergence holds in probability:

lim
a→0

sup
s≤t∧τU,a∧τU,0

ρ
(
Y as , Y

0
s

) (P )
= 0

(2) Let p ∈ [1,∞). We say that Y a converges to Y 0 locally in Sp if there exists an
increasing sequence of stopping times (Tn)n≥1 with limn→∞ Tn = ξ0 such that for
some a1 > 0 and for all a < a1 and all n ∈ N, Tn < ξa a.s. and

lim
a→0

E

[
sup
t≤Tn

ρp(Y at , Y
a
0 )

]
= 0 (B.1)

Given (1b), condition (1a) is equivalent to lim inf
a→0

ξa ≥ ξ0.

Let D denote the space of real-valued Càdlàg semimartingales defined on some
filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions.

For two real valued semi-martingales X,Y ∈ D we define the distance functions:

r(X,Y ) =
∑
n>0

2−nE

(
1 ∧ sup

0≤t≤n
|Xt − Yt|

)
,

r̂(X,Y ) = sup
|H|≤1

r

(∫ t

0

Hsd(Xs − Ys)
)
,

where the supremum is taken over all predictable processes H bounded by 1. The
distance r is compatible with UCP:

sup
0≤s≤t

|X(n)
s −Xs| → 0 ( in probability )

for each t > 0 if and only if r(Xn − X) converges to 0. The distance r̂ induces the
semi-martingale topology on the vector space of semi-martingales.

Define

S p = {X ∈ D : ‖X‖S p = ‖ sup
t
|Xt|‖Lp <∞},

H p = {X ∈ D : ‖X‖H p = inf

{∣∣∣∣ |X0|+ [M,M ]
1
2∞ +

∫ ∞
0

|dAs|
∣∣∣∣
Lp
<∞

}
,

where the infimum is taken over all semi-martingale decompositions X = X0 +M +A.
When the time interval is restricted to a finite time interval [0, T ] the notations will be
S p([0, T ]) and H p([0, T ]).

A semi-martingale is locally in S p and H p if there exists a sequence of stopping
times Tn increasing to infinity such that XTnχ{Tn>0} are in these spaces. It is prelocally
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in these spaces if all XTn−χ{Tn>0} are, where XT−(t) = Xtχ[0,T )(t) + XT− χ[T,∞)(t).
Let (X(n)) and X be semi-martingales. Let 1 ≤ p < ∞. If X(n) converges to X is the
semi-martingale topology, then there exists a subsequence that converges prelocally in
H p. If X(n) converges to X prelocally in H p then it converges in the semi-martingale
topology. Extension to Rk-valued processes is done by considering the components.

The following estimate of M. Emery is useful: If Y is a semi-martingale and H a left
continuous process with right limit, and 1

p + 1
q = 1

r where p, q ∈ [1,∞], then∥∥∥∥∫ ∞
0

HsdZs

∥∥∥∥
H r

≤ ‖H‖S p‖Z‖H q . (B.2)

We review these convergence in the settings that the semi-martingales may have
finite life times or take values in a manifold. See [7, M. Arnaudon and A. Thalmaier] for
details.

Let Zt = Z0 +Mt +At be a semi-martingale in Rk with lifetime ξ and the canonical
decomposition of Zt into the sum of its starting point, a local martingale Mt starting at 0,
and a finite variation process At starting at 0. Define

v(Z)t =
k∑
i=1

(
|Zi0|+ 〈M i,M i〉1/2t +

∫ t

0

|dAi|s
)
, t < ξ. (B.3)

Let T > 0. We say that a family of semi-martingales Z(n) converges to 0 in Sp([0, T ]) if

E

[
sup
s≤T
|Z(n)
s |p

]
→ 0. It converges to 0 in Hp([0, T ]) if v(Z(n))→ 0 in Sp([0, T ]).

To define this for a manifold valued stochastic process, we will use an embedding
Φ : M → Rk. The definition will in fact be independent of this embedding.

Definition B.2. Let (Y at ) be a family of semi-martingales indexed by a.

1. We say that Y a converges to Y 0 in semi-martingale topology or in SM topology if
the semi-martingale norm of Φ(Y a)− Φ(Y 0), v

(
Φ(Y a)− Φ(Y 0)

)
, converges to 0 in

UCP topology.

2. Let p ∈ [1,∞). We say that Y a converges to Y 0 locally in Hp if the processes

v
(
Φ(Y a)− Φ(Y 0)

)
converge to 0 locally in Sp.

The convergence in the semi-martingale topology is stronger than convergence in
the UCP topology. However it is a remarkable fact that they coincide on the subset of
martingales in the manifold. The following characterisations of convergence will be very
useful (see [7, M. Arnaudon and A. Thalmaier]).

Proposition B.3. • If Y a → Y 0 as a→ 0 in UCP topology then for all p ∈ [0,∞) there
exists a sequence ak → 0 such that Y ak → Y 0 as k →∞ locally in Sp.

• If Y a → Y 0 as a→ 0 in SM topology then for all p ∈ [0,∞) there exists a sequence
ak → 0 such that Y ak → Y 0 as k →∞ locally in Hp.

• If for some p ∈ [1,∞) Y a → Y 0 as a → 0 locally in Sp then Y a → Y 0 as a → 0 in
UCP topology.

• If for some p ∈ [1,∞) Y a → Y 0 as a → 0 locally in Hp then Y a → Y 0 as a → 0 in
SM topology.

As a consequence, a standard way to establish UCP or SM convergence given by the
following:

Corollary B.4. • Y a → Y 0 as a → 0 in UCP topology if and only if there exists
p ∈ [1,∞) such that for any ak → 0 there exists a subsequence ak` such that
Y ak` → Y 0 locally in Sp.
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• Y a → Y 0 as a→ 0 in SM topology if and only if there exists p ∈ [1,∞) such that for
any ak → 0 there exists a subsequence ak` such that Y ak` → Y 0 locally in Hp.

For processes which take their values in a compact manifold and which are defined
in bounded times, we have the following easy relations.

Corollary B.5. Assume that M is compact and that all processes are defined on some
deterministic time interval [0, T ]. The following equivalences hold:

• Y a → Y 0 as a→ 0 in UCP topology;

• Y a → Y 0 as a→ 0 in Sp for some p ∈ [1,∞);

• Y a → Y 0 as a→ 0 in Sp for all p ∈ [1,∞).

Similarly, we have the equivalences

• Y a → Y 0 as a→ 0 in SM topology;

• Y a → Y 0 as a→ 0 in Hp for some p ∈ [1,∞);

• Y a → Y 0 as a→ 0 in Hp for all p ∈ [1,∞).

C Ikeda and Watanabe’s damped parallel translation

The parallel transport Pt along a semi-martingale (Zt) is the semi-martingale with
values in L(TZ0M,TZtM) solving the Stratonovich SDE

◦ dPt = hPt(◦dZt), P0 = IdTZ0
M (C.1)

where hPt denotes horizontal lift to the orthonormal frame bundle. We have identified
Rd with TZ0M . Parallel transport is an isometry, a proof for its existence on manifolds
with boundary can be found in [29, N. Ikeda and S. Watanabe]. For simplicity we also
use the notation //t(Z).

If Zt is a diffusion process with generator L = 1
2∆ + U , where U is a time dependent

vector field, remaining in the interior of M for all time (which happens if M has no
boundary or if U is sufficiently strong in a neighbourhood of the boundary), then the
parallel transport Pt along Zt is the diffusion process whose generator on differential 1-
forms is 1

2 trace∇2 +∇U . If ∆1 = −(d∗d+dd∗) is the Hodge Laplacian, trace∇2 = ∆1 +Ric.
The damped parallel translation Wt along Zt is the solution to the equation

DWt =

(
∇WtU −

1

2
Ric](Wt)

)
dt, W0 = IdTZ0

M , (C.2)

where the covariant derivative DWt is defined to be //td
(
//−1
t Wt

)
. The process (Wt) is a

diffusion process with generator on 1-forms LW :

LWα =
1

2
∆1α+∇Uα+ α (∇·U) . (C.3)

The fundamental property of LW is its commutation with differentiation:

d(Lf) = LW (df), f ∈ C∞(M). (C.4)

As a consequence, if F ∈ C1,2([0, T ] ×M,R) is such that F (t, Zt) is a local martingale,
then dF (t,Wt) is also a local martingale, where dF is the differential of F in the second
variable. On the other hand, (C.2) together with the fact that Pt is an isometry yield
estimations on the norm of Wt. This allows to estimate the norm of dF . Another
fundamental property is that Wt is the derivative of the flow corresponding to parallel
couplings of L-diffusions.
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We construct a damped parallel transport along Brownian motion in a manifold
with boundary. The covariant derivative DWt has three components: one coming from
the behaviour in M0 (the usual one), one tangential to ∂M absolutely continuous with
respect to dLt and involving the shape operator of ∂M , and the third is normal to ∂M
and has jumps. This is similar to what happens for the half line. Concerning the half line
case the flow corresponding to parallel coupling of reflected Brownian motion is ∂xXt,
so in this case Wt = ∂xXt and the study is complete.

We also define the second fundamental form and shape operator for level sets
of the distance function to the boundary. Let S(r) = {y ∈ F0, R(y) = r}. Within a
tubular neighbourhood F0 of the boundary, R is smooth around x. Let r = R(x) and
νx = σ1(x) = ∇R(x). For w ∈ TxM , w′ ∈ TxS(r) we define Πx : TxM × TxS(r)→ R and
Sx : TxM → TxS(r) by

Π(w,w′) = 〈S(w), w′〉 = −〈∇wν, w′〉 = −∇dR(w,w′) (C.5)

The bilinear map Π is said to be the second fundamental form of S(r) and Sx its shape
operator or the Weingarten map.

Assume that there exists δ0 > 0 and a tubular neighbourhood of ∂M with radius 3δ0.
If D is a set denote τD the exit time of Y from D.

Lemma C.1. Let U be a relatively compact set of M . Let R0 < δ0, Y0 ∈ U , Yt the
reflected Brownian motion constructed in Theorem 3.3. Set

τ2δ0 = inf{t : Rt = 2δ0}.

Then under a probability measure equivalent to P , {Rt, t < τδ0 ∧ τU ∧ T} is the solution
to a Skorohod problem for a one dimensional Brownian motion on R+.

Proof. Within E0, because of Proposition 3.2 (2),

Rt = R0 +B1
t +

∫ t

0

∆R(Ys)ds+ Lt.

Let Q be the probability measure whose density with respect to P is the exponential
martingale of −

∫ t
0

∆R(Ys)dB
1
s . Then under Q, B̃1

t := B1
t +

∫ t
0

∆R(Ys)ds is a Brownian
motion. On the other hand, Lt is nondecreasing and dLt vanishes when Rt 6= 0. Since
Rt ≥ 0 we have (R,L) = Φ(0, B̃1), the solution to Skorohod problem. See (A.1). By the
uniqueness of the Skorohod problem, under Q, {Rt, t < τ2δ0 ∧ τU ∧ T} has the law of a
one dimensional reflected Brownian motion.

Let L(ω) = {t ≥ 0 : Yt(ω) ∈ ∂M} be the set of times that Yt spends on the boundary.
It has Lebesque measure zero for a.s. all ω and its complement

(0,∞) \ L(ω) = ∪α(lα(ω), rα(ω))

is the union of countably many disjoint open intervals, the excursion intervals. Denote
the set of right end times of excursions by R(ω):

R(ω) = ∪α{rα(ω)}.

We are interested in defining a damped parallel translation Wt along Yt, which agrees
with the usual one during an excursion, and pick up a change of direction when exiting
the boundary. The normal direction on the boundary is zero: we remove −〈Wt, ν(Yt)〉ν(Yt)
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upon the process entering the boundary. We would have liked to define a stochastic
processes (Wt), if it were possible, with values in n× n matrices, satisfying

(//t)
−1Wt =(//rα)−1Wrα −

1

2

∫ t

rα

(//s)
−1Ric](//s−)((//s)

−1Ws) ds

−
∫ t

rα

(//s)
−1S(//s−)

(
(//s)

−1W ε
s

)
dLs, t ∈ (rα, rα+1)

(//rα+1)−1Wrα+1

= (//(rα+1)−)−1W(rα+1)− − 〈W(rα+1)−, νY(rα+1)−〉(//r(α+1)−)−1νY(rα+1)− .

Given (lα, rα), for any ε > 0 there is an excursion (lα′ , rα′) such that 0 < lα′ − rα < ε, and
so the heuristic definition given above does not make sense.

We remedy this problem with an approximation adding jumps only on excursions of
size greater or equal to ε. We consider the set of excursions of lengths greater or equal
to a given size ε > 0 and define

Rε(ω) = {s = rα(ω) ∈ R(ω) : rα(ω)− lα(ω) ≥ ε},

where the excursions of size greater than or equal to ε are ordered with l1 the first time
Yt hits the boundary and we consider only α ∈ N. If rα − lα ≥ ε,

(//t)
−1W ε

t = (//rα)−1W ε
rα −

1

2

∫ t

rα

(//s)
−1Ric](//s−)((//s)

−1W ε
s ) ds

−
∫ t

rα

(//s)
−1S(//s−)

(
(//s)

−1W ε
s

)
dLs, t ∈ (rα, rα+1)

(//rα+1)−1W ε
rα+1

= (//(rα+1)−)−1W ε
(rα+1)− − 〈W(rα+1)−, νY(rα+1)−〉(//r(α+1)−)−1νY(rα+1)− .

where (W ε,T ) denotes the tangential part of Wt. This takes into consideration those
times slightly before (lα+1, rα+1) and is relevant to the integration with respect to Lt.

Since Yt spends Lebesgue time 0 on the boundary, for integration with respect to
a continuous process we could ignore the boundary process. We would like to simply
remove the normal part of Wt upon it touches down to the boundary. We are lead to the
following alternative description. Let v ∈ TY0

M and t > 0, for almost surely all ω, the
following folds,

(//t)
−1W ε

t =Id− 1

2

∫ t

0

(//s)
−1Ric](//s−)((//s)

−1W ε
s ) ds

−
∫ t

0

(//s)
−1S(//s−)

(
(//s)

−1W ε
s

)
dLs, t 6∈ Rε(ω)

(//t)
−1W ε

t =(//t−)−1W ε
t− −

∑
s≤t,s∈Rε(ω)

〈W ε
t−, νYt−〉(//t−)−1νYt− .

In other words, W ε
t is continuous at any time t that is not an element of Rε(ω), and

satisfies the following covariant equation

DWt = −1

2
Ric#(Wt) dt− S(Wt) dLt.
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If t is the right hand side of an excursion, we remove the normal part of its component.
This description will be used in Theorem C.3.

Define

T = {αt ∈H∞([0, T ]) : αt ∈ T ∗YtM,αt = 0 on {Yt 6∈ D} for some D}. (C.6)

where D is relatively compact subset of M . This is the set of bounded semi-martingale
with values in the pull back cotangent bundle by Yt, with the property that there is
relatively compact subset D of M such that αt = 0 whenever Yt 6∈ D. Denote by τD the
first exit time from D by Yt.

Definition C.2. The limit process Wt ∈ L(TY0
M,TYtM), below in Theorem C.3, is said

to be a solution to the following equation

DWt = −1

2
Ric](Wt) dt− S(Wt) dLt − χ{t∈R(ω)}〈Wt−, νYt〉νYt , W0 = IdTY0M . (C.7)

Theorem C.3. Let W ε
t be the solution to

DW ε
t = −1

2
Ric](W ε

t ) dt− S(W ε
t ) dLt − χ{t∈Rε(ω)}〈W ε

t−, νYt〉νYt , W ε
0 = IdTY0M . (C.8)

There exists an adapted right continuous stochastic processWt such that limε→0W
ε
t = Wt

in UCP and in Sp if M is compact, and for any p ≥ 1. Furthermore for any α ∈ T ,

lim
ε→0

(∫ ·∧τD
0

αs(DW
ε
s )

)
S2=

(∫ ·∧τD
0

αs(DWs)

)
.

The same result but with different formulation can be found in [29, N. Ikeda and S.
Watanabe]. We give a proof close to [29, N. Ikeda and S. Watanabe], which will be used
for our approximation result (Theorem 5.6 and Corollary 5.7).

Proof. Since the definition and convergence are local in Y , we can assume that M is
compact. Since Yt(ω) has a finite number of excursions larger than ε, the process W ε

t

is a well defined right continuous process. We first prove that as ε → 0, (W ε
t )t∈[0,T ]

converges in Sp to a process which we will call (Wt)t∈[0,T ].

Using the parallel translation process //t along Yt, we reformulate the equation as an
equation in the linear space L(TY0

M,TY0
M). Set

rict = //−1
t ◦ Ric]Yt ◦ //t, st = //−1

t ◦ SYt ◦ //t, ~nt = //−1
t (νYt). (C.9)

Then W ε
t is a solution to (C.8) if and only if wεt = (//t)

−1W ε
t satisfies the following

equations. For any rα ∈ Rε(ω),

wεt =− wεrα −
1

2

∫ t

rα

(//s)
−1rics(w

ε
s) ds−

∫ t

rα

ss(w
ε
s) dLs, t ∈ (rα, rα+1)

wεrα+1
=wε(rα+1)− − 〈w

ε
(rα+1))−, ~n(rα+1)−〉~n(rα+1−),

This means (wεt ) satisfies the following equation:

dwεt = −1

2
rict(w

ε
t ) dt− st(w

ε
t ) dLt − χ{t∈Rε(ω)}〈wεt−, nt〉nt, w0 = Id. (C.10)
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Let 0 < ε′ < ε, the difference between wεt and wε
′

t is given by

wεt − wε
′

t =

∫ t

0

(
−1

2
rics(w

ε
s) +

1

2
rics(w

ε′

s )

)
ds+

∫ t

0

(
−ss(w

ε
s) + ss(w

ε′

s )
)
dLs

−
∑

{s∈Rε(ω)∩[0,t]}

〈wεs−, ns〉ns +
∑

{s∈Rε′ (ω)∩[0,t]}

〈wε
′

s−, ns〉ns

=− 1

2

∫ t

0

rics(w
ε
s − wε

′

s ) ds−
∫ t

0

ss(w
ε
s − wε

′

s ) dLs

−
∑

{s∈Rε(ω)∩[0,t]}

〈wεs− − wε
′

s−, ns〉ns +
∑

{s∈(Rε′ (ω)\Rε)∩[0,t]}

〈wε
′

s−, ns〉ns.

Consequently,

‖wεt − wε
′

t ‖2 =−
∫ t

0

〈rics(wεs − wε
′

s ), wεs − wε
′

s 〉 ds− 2

∫ t

0

〈ss(wεs − wε
′

s ), wεs − wε
′

s 〉 dLs

− 2
∑

{s∈Rε(ω)∩[0,t]}

〈wεs− − wε
′

s−, ns〉2

+ 2
∑

{s∈(Rε′ (ω)\Rε)∩[0,t]}

〈wε
′

s−, ns〉〈ns, wεs− − wε
′

s−〉

which yields

‖wεt − wε
′

t ‖2 ≤2
∑

{s∈(Rε′ (ω)\Rε)∩[0,t]}

〈wε
′

s−, ns〉〈ns, wεs− − wε
′

s−〉

+

∫ t

0

‖wεs − wε
′

s ‖2 (−Ric(Ys) ds− 2S(Ys)dLs)

and

‖wεt − wε
′

t ‖2 ≤ Kt +

∫ t

0

‖wεs − wε
′

s ‖2 (ρ ds+ 2CdLs) (C.11)

where ρ, C ≥ 0, −ρ is a lower bound for the Ricci curvature, C is an upper bound for the
norm of the shape operator, and

Kt = sup
s≤t

∣∣∣∣∣∣2
∑

{r∈(Rε′ (ω)\Rε)∩[0,s]}

〈wε
′

r−, nr〉〈nr, wεr− − wε
′

r−〉

∣∣∣∣∣∣ . (C.12)

So using Gronwall lemma we get

sup
s≤t
‖wεs − wε

′

s ‖2 ≤ Kte
ρt+2CLt . (C.13)

On the other hand it is a remarkable but not surprising fact that each term

〈wε
′

s−, ns〉〈ns, wεs− − wε
′

s−〉

can be written as a stochastic integral over an interval not containing any excursion of
size larger than ε. This comes from the fact that the normal part of wε

′

t is set to zero at
the end of each excursion of size at least ε′. More precisely,

〈wε
′

s−, ns〉〈ns, wεs− − wε
′

s−〉 =

∫ s

u

d〈wε
′

r−, nr〉〈nr, wεr− − wε
′

r−〉

where u is the last vanishing time of 〈wε′r , nr〉 before s. Now since we are outside
excursions of size larger than ε′ the process inside the integral has no jumps, and
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since the range of sr is orthogonal to nr, the process inside the integral is a continuous
semi-martingale whose drift is absolutely continuous with respect to ds with bounded
derivative, see (C.10) and (7.11). Consequently letting

Ct := 2
∑

{s∈(Rε′ (ω)\Rε)∩[0,t]}

〈wε
′

s−, ns〉〈ns, wεs− − wε
′

s−〉

we can write

Ct =

∫ t

0

asds+ bsdBs (C.14)

where as, bs are uniformly bounded, Bs is a real-valued Brownian motion and as, bs
vanish outside U(ε) ∩ [0, t] where U(ε) is the set of times not contained in excursions
larger than ε.

From this we get for q > 1

E[Kq
T ]1/q ≤ CqE [λ(U(ε) ∩ [0, T ])] (C.15)

for some Cq > 0, where λ is the Lebesgue measure in R. On the other hand by (3.23)
in Corollary 3.5 the random variable eρT+2CLT has finite moments of any order. As a
consequence, using (C.13) and Hölder inequality, for any p ≥ 1

E[| sup
t≤T

wεt − wε
′

t |p]1/p ≤ C ′pE [λ(U(ε) ∩ [0, T ])] .

for some C ′p > 0. The left hand side goes to 0 as ε → 0, so for εn → 0, wεn is a Cauchy
sequence in Sp, it converges to some process w. Clearly w does not depend on the
sequence. Letting Wt = //twt then W ε

t converges to Wt in Sp.
Let us now prove that DW ε converges to DW in the sense given by theorem C.3. Let

(αt)t∈[0,T ] be a H∞ semimartingale taking its values in T ∗YtM , bounded by 1. We have for
0 < ε′ < ε ∫ t

0

αs (DW ε
s )−

∫ t

0

αs

(
DW ε′

s

)
= αt

(
W ε
t −W ε′

t

)
−
∫ t

0

Dαs

(
W ε
s −W ε′

s

)
.

By (B.2), a result of M. Emery, we see that

E

[
sup
t≤T

∥∥∥∥∫ t

0

αs (DW ε
s 〉)−

∫ t

0

αs

(
DW ε′

s

)∥∥∥∥2
]

≤ ‖α‖S∞([0,T ])‖W ε −W ε′‖S2([0,T ]) + ‖W ε −W ε′‖S2([0,T ])‖α‖H∞([0,T ]).

From the first part of the proof and the assumption on α, we get that for εn → 0,(∫ ·
0
αs (DW εn

s )
)
t∈[0,T ]

is a Cauchy sequence in S2([0, T ]), so it converges to some

process which is linear in αs. Consequently we denote it by
(
(
∫ ·

0
αs (DWs)

)
t∈[0,T ]

.
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