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Functional Erdős-Rényi law of large numbers for
nonconventional sums under weak dependence

Yuri Kifer*

Abstract

We obtain a functional Erdős–Rényi law of large numbers for “nonconventional” sums
of the form Σn =

∑n
m=1 F (Xm, X2m, ..., X`m) where X1, X2, ... is a sequence of expo-

nentially fast ψ-mixing random vectors and F is a Borel vector function extending in
several directions [18] where only i.i.d. random variables X1, X2, ... were considered.
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1 Introduction

Let X1, X2, ... be a sequence of independent identically distributed (i.i.d.) random
variables such that EX1 = 0 and the moment generating function φ(t) = EetX1 exists.
Denote by I the Legendre transform of lnφ and set Σn =

∑n
m=1Xm for n ≥ 1 and Σ0 = 0.

The Erdös-Rényi law of large numbers from [8] says that with probability one

I(α) lim
n→∞

max
0≤m≤n−[ lnn

I(α)
]

Σm+[ lnn
I(α)

] − Σm

lnn
= α (1.1)

for all α > 0 such that I(α) <∞.
The nonconventional limit theorems initiated in [17] and partially motivated by

nonconventional ergodic theorems (with the name coming from [10]) study asymptotic
behaviors of sums of the form

Σn =

n∑
m=1

F (Xm, X2m, ..., X`m) (1.2)

(and more general ones) where F is a vector function satisfying certain conditions. The
main features of such sums are nonstationarity and unboundedly long (and strong)
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Erdős-Rényi law for nonconventional sums

dependence of their summands. In [18] we established (1.1) for sums (1.2) where F is a
bounded Borel function and X1, X2, ... are independent identically distributed random
variables. One of the main reasons for the independence assumption in [18] was the use
of large deviations for nonconventional sums (1.2) which was established in [20] only for
sums (1.2) with i.i.d. random variables X1, X2, ....

In this paper we modify our method so that only the standard (conventional) large
deviations are used for sums of the form

Tn =

n∑
m=1

F (X(1)
m , X

(2)
2m, ..., X

(`)
`m) (1.3)

where {X(i)
m , m ≥ 1}, i = 1, 2, ..., ` are independent copies of the sequence {Xm, m ≥ 1}.

Now, when X1, X2, ... is a stationary weakly dependent sequence then the latter sum
consists of stationary weakly dependent summands with similar properties which allows
applications to Markov chains satisfying the Doeblin condition and to some dynamical
systems such as Axiom A diffeomorphisms, expanding transformations and topologically
mixing subshifts of finite type (see [2]). We assume exponentially fast ψ-mixing of the
sequence X1, X2, ... which still leads to long and strongly dependent summands of Σn
but once we justify a transition to the sums Tn we arrive at exponentially fast ψ-mixing
summands there. Observe that the Erdős-Rényi law for conventional (` = 1) sums of
exponentially fast ψ-mixing random variables was obtained in [6].

In fact, we derive a functional form of the Erdős-Rényi law for nonconventional
sums (1.2) which was first introduced for (conventional) sums of i.i.d. random vectors
in [1] and it was never considered before beyond this setup. This is a more general
result and as a corollary we derive from it the standard form of the Erdős-Rényi law for
nonconventional sums. Moreover, unlike the original form of this law its functional form
allows to consider a multidimensional version where X1, X2, ... are random vectors and
F is a vector function.

The structure of this paper is as follows. In Section 2 we describe precisely our setup
and results. In Section 3 we exhibit a lemma which is a version of Lemma 3.1 from [15]
and which plays a crucial role here. In Sections 4 and 5 we derive the corresponding
upper and lower bounds which yield the functional form of the Erdős-Rényi law for
nonconventional sums. After that we show how this implies the standard form of this
law. In Appendix we describe applications to Markov chains and dynamical systems and
then discuss some properties of rate functions of large deviations which are relevant to
our proofs but hard to find in most of the books on large deviations.

2 Preliminaries and main results

Let X1, X2, ... be a ℘-dimensional stationary vector stochastic process on a probability
space (Ω,F , P ) and let F : R℘` → Rd be a bounded Borel vector function on R℘`. Our
setup includes also a sequence Fm,n ⊂ F , −∞ ≤ m ≤ n ≤ ∞ of σ-algebras such that
Fm,n ⊂ Fm1,n1

whenever m1 ≤ m and n1 ≥ n which satisfies an exponentially fast
ψ-mixing condition (see, for instance, [4]),

ψ(n) = sup
{∣∣ P (A∩B)
P (A)P (B) − 1

∣∣ : A ∈ F−∞,k, B ∈ Fk+n,∞, (2.1)

P (A)P (B) 6= 0
}
≤ κ−1

1 e−κ1n

for some κ1 > 0 and all k, n ≥ 0.
We assume also the centering condition

F̄ =

∫
F (x1, x2, ..., x`)dµ(x1)...dµ(x`) = 0, (2.2)
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Erdős-Rényi law for nonconventional sums

where µ is the distribution of X1, which is not actually a restriction since we always can
take F − F̄ in place of F . In addition, we assume that either Xn is Fn−m,n+m-measurable
for some m ∈ N independent of n and then F is supposed to be only Borel measurable
and bounded or F is supposed to be bounded and Hölder continuous

‖F‖∞ = D <∞, |F (x1, ..., x`)− F (y1, ..., y`)| ≤ κ−1
2

∑̀
i=1

|xi − yi|κ2 , κ2 > 0 (2.3)

and then we need only the following approximation property

E|Xn −Xn,m|κ2 ≤ κ−1
3 e−κ3m, Xn,m = E(Xn|Fn−m,n+m) (2.4)

for all n,m ∈ N and some κ3 > 0 independent of n and m.
Define two sums

Σn =
∑

1≤k≤n

F (Xk, X2k, ..., X`k), Σ0 = 0

and
Tn =

∑
1≤k≤n

F (X
(1)
k , X

(2)
2k , ..., X

(`)
`k ), T0 = 0

where {X(i)
k , k ≥ 1}, i = 1, 2, ..., ` are independent copies (in the sense of distributions)

of the stationary process {Xk, k ≥ 1}. Assume that for any piece-wise constant map
γ : [0, 1]→ Rd the limit

lim
n→∞

1

n
lnE exp

(
n

∫ 1

0

(γu, F (X
(1)
[un], X

(2)
2[un], ..., X

(`)
`[un]))du

)
=

∫ 1

0

Π(γu)du (2.5)

exists, Π(α), α ∈ Rd is a convex twice differentiable function such that ∇αΠ(α)|α=0 = 0

and the Hessian matrix ∇2
αΠ(α)|α=0 is positively definite (where (·, ·) denotes the inner

product).
Let

I(β) = sup
α

((α, β)−Π(α)) (2.6)

and for any γ : [0, 1]→ Rd from the space C([0, 1],Rd) of continuous curves on Rd set

S(γ) =

∫ 1

0

I(γ̇u)du (2.7)

if γ is absolutely continuous and S(γ) = ∞, for otherwise. It follows from the ex-
istence and properties of the limit (2.5) (see, for instance, Section 7.4 in [9]) that
n−1Tn satisfies large deviations estimates in the form that for any a, δ, λ > 0 and every
γ ∈ C([0, 1],Rd), γ0 = 0 there exists n0 > 0 such that for n ≥ n0,

P{ρ(n−1Tn, γ) < δ} ≥ exp(−n(S(γ) + λ)) and (2.8)

P{ρ(n−1Tn, Φ(a)) ≥ δ} ≤ exp(−n(a− λ))

where ρ(γ, η) = supu∈[0,1] |γu − ηu| and Φ(a) = {γ ∈ C([0, 1],Rd) : γ0 = 0, S(γ) ≤ a}.
Since S is a lower semi-continuous functional then each Φ(a), a <∞ is a closed set

and, moreover, it is compact for any finite a. Indeed, |Π(α)| ≤ D|α| by (2.3) which implies
by (2.6) that It(β) =∞ provided |β| > D (take α = aβ/|β| in (2.6) and let a→∞). Hence,
|γ̇s| ≤ D for Lebesgue almost all s ∈ [0, 1] if γ ∈ Φt(a), and so the latter set is bounded
and equicontinuous which by the Arzelà-Ascoli theorem implies its compactness.

For each c > 0, u ∈ [0, 1] and integers m ≥ 0 and n ≥ 2 set

V cm,n(u) =
Σm+bc(n,u) − Σm

bc(n)
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Erdős-Rényi law for nonconventional sums

where bc(n, u) = [ubc(n)] and bc(n) = [c lnn]. Introduce also the set of random curves
W c
n = {V cj,n : 0 ≤ j ≤ n− bc(n)}. The following is the main result of this paper.

Theorem 2.1. Assume that the conditions (2.1)–(2.5) hold true. Then, for any c > 0 with
probability one

lim
n→∞

H(W c
n, Φ(1/c)) = 0 (2.9)

where H(Γ1,Γ2) = inf{δ > 0 : Γ1 ⊂ Γδ2, Γ2 ⊂ Γδ1} is the Hausdorff distance between sets
of curves with respect to the uniform metric ρ and Γδ = {γ : ρ(γ,Γ) < δ}.
Corollary 2.2. Let d = 1. Then for c = 1

I(β) with probability one

lim
n→∞

max
0≤k≤n−bc(n)

V ck,n(1) = β (2.10)

provided 0 < β < β0 = sup{β : I(β) <∞}.
Observe that (X

(1)
k , X

(2)
2k , ..., X

(`)
`k ), k ≥ 1 is an `℘-dimensional stationary process with

properties similar to the ones of the process Xk, k ≥ 1, and so unlike Σn the sum Tn
requires only “conventional” treatment. Our main goal here will be to show how to
replace in our proofs the handling of the sums Σn by the sums Tn. We will mainly
discuss the proof for the case where F and Xn, n ≥ 1 satisfy the conditions (2.3) and
(2.4) since the case when Xn is Fn−m,n+m-measurable and F is only a bounded Borel
function is established by an obvious simplification of the proof just by eliminating the
steps connected to approximations of Xn by corresponding conditional expectations
E(Xn|Fn−m,n+m).

Our method goes through also for more general sums Σn =
∑

1≤m≤n F (Xq1(m),

Xq2(m), ..., Xq`(m)) where qi(m) = im for i ≤ k ≤ ` and qj(m) for j = k + 1, ..., ` be-
ing nonlinear indexes as in [19]. For instance, we may take qj(m) = mj for j >

k. In this situation, it turns out that we can replace such sums Σn by the sums
Tn =

∑
1≤m≤n F (X

(1)
q1(m), X

(2)
q2(m), ..., X

(`)
q`(m)) where, again, {X(i)

m , m ≥ 1}, i = 1, ..., `

are independent processes, for i = 1, ..., k they are copies of Xm, m ≥ 1 while all
X

(i)
m , m ≥ 1, i > k are i.i.d. and have the same distribution as X1. Then, again,

(X
(1)
q1(m), X

(2)
q2(m), ..., X

(`)
q`(m)), m ≥ 1 is an `℘-dimensional stationary process with prop-

erties similar to the ones of the process Xm, m ≥ 1 and we can deal with such sums Tn
in the same way as in this paper.

Using dependence coefficients

$q,p(G,H) = sup{‖E
(
g|G
)
− Eg‖p : g is H−measurable and ‖g‖q ≤ 1}

for σ-algebras G,H ⊂ F (see [4]) it is possible to obtain a version of Lemma 3.1 below
beyond ψ-mixing (where ψ(G,H) = $1,∞(G,H)), and so the proof of Theorem 2.1 can be
extended assuming weaker than ψ-mixing conditions. Still, we do not give details here
since our main examples (see Appendix), which should also satisfy appropriate large
deviations, are anyway ψ-mixing.

Our conditions are satisfied when, for instance, Xn, n ≥ 1 is a ℘-dimensional Markov
chain with transition probabilities P (x,Γ) satisfying the strong Doeblin type condition

C−1 ≤ P (x, dy)

dν(y)
≤ C

for some probability measure ν and a constant C > 0 independent of x and y. Then
(X

(1)
n , X

(2)
2n , ..., X

(`)
`n ) is an `℘-dimensional Markov chain satisfying similarly to Xn both

exponentially fast ψ-mixing and the necessary large deviations estimates (see [4],
[9] and [13]). Here we can take, for instance, the σ-algebras Fm,n generated by
Xm, Xm+1, ..., Xm and then F is supposed to be only bounded and Borel.
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Erdős-Rényi law for nonconventional sums

On the dynamical systems side our conditions are satisfied, for instance, when
Xn = g ◦ fn where g is a Hölder continuous function and f is an Axiom A diffeomorphism
on a hyperbolic set, expanding transformation or a mixing subshift of finite type (see [2]).
In this case f : M → M and Xn(ω), ω ∈ M is a stationary sequence on the probability
space (M,F , P ) where M is the corresponding phase space, F is a Borel σ-algebra
and P is a Gibbs measure constructed by a Hölder continuous function. The function
F here should satisfy (2.3) and the σ-algebras Fm,n are generated by cylinder sets in
the subshift case or by corresponding Markov partitions in the Axiom A and expanding
case. The exponentially fast ψ-mixing for these transformations is obtained in [2] and
the required large deviations results can be found in [13] and [14] and the product
system (f, f2, ..., f `), which plays the role of ` independent copies in sums Tn, has similar
properties to the dynamical system fn itself.

3 Basic estimates

We start with the following result which is a corollary of Lemma 3.1 from [15].

Lemma 3.1. Let Yi be ℘i-dimensional random vectors with a distribution µi, i = 1, ..., k

defined on the same probability space (Ω,F , P ) and such that Yi is Fmi,ni -measurable
where ni−1 < mi ≤ ni < mi+1, i = 1, ..., k, n0 = −∞, mk+1 = ∞ and σ-algebras Fn,m
satisfy the condition (2.1). Then, for any bounded Borel function h = h(x1, ..., xk) on
R℘1+℘2+···+℘k ,

|Eh(Y1, Y2, ..., Yk)−
∫
h(x1, x2, ..., xk)dµ1(x1)dµ2(x2)...dµk(xk)| (3.1)

≤ κ−1
1 ‖h‖∞

∑k
i=2 e

−κ1(mi−ni−1)

where ‖ · ‖ is the L∞ norm. In other words, if Y (1)
1 , Y

(2)
2 , ...Y

(k)
k are independent copies of

Y1, Y2, ..., Yk, respectively, then

|Eh(Y1, Y2, ..., Yk)− Eh(Y
(1)
1 , Y

(2)
2 , ..., Y

(k)
k )| ≤ κ−1

1 ‖h‖∞
k∑
i=2

e−κ1(mi−ni−1). (3.2)

Taking h = IΓ for a Borel set Γ ⊂ R℘1+℘2+···+℘k (where IΓ(x) = 1 if x ∈ Γ and IΓ(x) = 0,
for otherwise) it follows that

|P{(Y1, Y2, ..., Yk) ∈ Γ} − P{(Y (1)
1 , Y

(2)
2 , ..., Y

(k)
k ) ∈ Γ}| ≤ κ−1

1

k∑
i=2

e−κ1(mi−ni−1). (3.3)

Proof. If k = 2 then Lemma 3.1 from [15] gives that

|E(h(Y1, Y2)|Fm1,n1
)− g(Y1)| ≤ ψ(m2 − n1)‖h‖∞

where g(y) = Eh(y, Y2) =
∫
h(y, z)dµ2(z). Taking the expectation we obtain (3.1) for

k = 2. Now let (3.1) holds true for all k ≤ j − 1 and any bounded Borel function of the
corresponding number of arguments. In order to derive (3.1) for k = j we consider
(Y1, Y2, ..., Yj−1) as one random vector and Yj as another . Then we obtain from Lemma
3.1 of [15] that

|E(h(Y1, Y2, ..., Yj)|Fm1,nj−1
)− g(Y1, Y2, ..., Yj−1)| ≤ ψ(mj − nj−1)‖h‖∞

where g(y1, y2, ..., yj−1) = Eh(y1, y2, ..., yj−1, Yj). Now, taking the expectation and apply-
ing the induction hypothesis to g we complete the proof.
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Erdős-Rényi law for nonconventional sums

In the case when Xn is Fn−m,n+m-measurable for all n and a fixed m then we
will be able to use Lemma 3.1 directly which will enable us to replace summands
F (Xn, X2n, ..., X`n) by F (X

(1)
n , X

(2)
2n , ..., X

(`)
`n ). On the other hand, under (2.3) and (2.4)

we will have, first, to replace the original random vectors Xm by their approximations
Xm,k = E(Xm|Fm−k,m+k) and then using (2.3) to estimate the error.

Namely, for k̄ = (k1, k2, ..., kn) set

Rn,k̄ =
∑

1≤j≤n

F (Xj,kj , X2j,kj , ..., X`j,kj ).

Let j(u) > 0, u ∈ [0, 1] be a non decreasing integer valued function. We will use that by
(2.3) and (2.4),

E supu∈[0,1] |Σm+j(u) − Σm − (Rm+j(u),k̄ −Rm,k̄)| (3.4)

≤
∑
m+1≤i≤m+j(1)E|F (Xi, X2i, ..., X`i)− F (Xi,ki , X2i,ki , ..., X`i,ki)|

≤ κ−1
2 κ−1

3

∑
m+1≤i≤m+j(1) e

−κ3ki .

We observe that Lemma 3.1 applied to the summands of the form F (Xj,kj , ..., X`j,kj )

does not yield yet the summands of the form F (X
(1)
j , ..., X

(`)
`j ) but only the summands

F (X
(1)
j,kj

, ..., X
(`)
`j,kj

) where X
(i)
ij,kj

, i = 1, ..., ` are independent and have the same distri-
butions as Xij,kj , i = 1, ..., `, respectively. Thus an additional argument together with
another use of (2.3) and (2.4) will be needed.

4 The upper bound

We will show first that with probability one,

lim
n→∞

max
0≤j≤n−bc(n)

ρ(V cj,n,Φ(1/c)) = 0. (4.1)

This assertion means that with probability one all limit points as n→∞ of curves from
W c
n belong to the compact set Φ(1/c).
Set Rn = Rn,k̄ where k̄ = (kj , 1 ≤ j ≤ n) with kj = [j/3] and

V̂ cm,n(u) =
Rm+bc(n,u) −Rm

bc(n)
.

Then by (3.4) and the Chebyshev inequality

P{ρ(V cm,n, V̂
c
m,n) ≥ ε} ≤ ε−1b−1

c (n)κ−1
2 κ−1

3

∑
m+1≤j<∞ e−κ3[j/3] (4.2)

≤ ε−1b−1
c κ−1

2 κ−1
3 e−κ3(m−2)/3(1− e− 1

3κ3)−1.

Observe that

|Σm+bc(n,u) − Σm − (Σm+k+bc(n,u) − Σm+k)| ≤ 2kD a.s. (4.3)

where, recall, D = ‖F‖∞. Hence, a.s.,

0 ≤ max
0≤j≤n−bc(n)

ρ(V cj,n,Φ(1/c))− max
εbc(n)≤j≤n−bc(n)

ρ(V cj,n,Φ(1/c)) ≤ 2εD (4.4)

and, similarly,

0 ≤ max
0≤j≤n−bc(n)

ρ(V̂ cj,n,Φ(1/c))− max
εbc(n)≤j≤n−bc(n)

ρ(V̂ cj,n,Φ(1/c)) ≤ 2εD. (4.5)
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Erdős-Rényi law for nonconventional sums

By (4.2) we also have that

P{maxεbc(n)≤j≤n−bc(n) ρ(V cj,n, V̂
c
j,n) ≥ ε} (4.6)

≤
∑
εbc(n)≤j≤n−bc(n) P{ρ(V cj,n, V̂

c
j,n) ≥ ε}

≤ (εbc(n)κ2κ3(1− e−κ3/3)2)−1e2κ3/3n−κ3εc/3.

Next, observe that the family of compact sets {Φ(a), a > 0} is upper semi continuous,
i.e. for any a > 0 and ε > 0 there exists δ > 0 such that Φ(a+δ) ⊂ Φ(a)ε where, as before,
Gε denotes the open ε-neighborhood of a set G. Indeed, if Gε = Φ(a + δ) \ Φ(a)ε 6= ∅
for some a, ε > 0 and all δ then the decreasing with δ ↓ 0 compact sets Gδ must have a
common point γ0 ∈ Φ(a) contradicting the fact that γ0 6∈ Φ(a)ε. Now, choosing such δ for
ε and a = 1/c we obtain that

P{ρ(V̂ cj,n,Φ(1/c)) > 3ε} ≤ P{ρ(V̂ cj,n,Φ(1/c+ δ)) > 2ε}. (4.7)

For each vector

x̄(m) = (x
(1)
1 , ..., x(1)

m ;x
(2)
1 , ..., x(2)

m ; ...;x
(`)
1 , ..., x(`)

m ) ∈ Rm`℘

define the curve γ(x̄(m)) in Rd by

γu(x̄(m)) = m−1
∑

1≤j≤[um]

F (x
(1)
j , x

(2)
j , ..., x

(`)
j ), u ∈ [0, 1]

where the sum over the empty set is considered to be zero. Introduce the Borel set

Γ = {x̄(bc(n)) ∈ Rbc(n)`℘ : ρ(γ(x̄(bc(n)), Φ(
1

c
+ δ)) > 2ε}.

Let the pairs {(X(i)
ij , X

(i)
ij,[j/3]), j = 1, 2, ...}, i = 1, ..., ` be independent copies (in the

sense of joint distributions) of pairs of processes {(Xij , Xij,[j/3]), j = 1, 2, ...}, i = 1, ..., `,
respectively, which can be constructed on a product space. We identify the processes
{X(i)

ij , j = 1, 2, ...}, i = 1, ..., ` with the processes having the same notation in Section 2
since they have the same joint distributions which is what only matters here. Set

T̂n =

n∑
j=1

F (X
(1)
j,[j/3], X

(2)
2j,[j/3], ..., X

(`)
`j,[j/3])

and

Û cm,n(u) =
T̂m+bc(n,u) − T̂m

bc(n)
, u ∈ [0, 1].

Next, observe that

{(Xj,[j/3], X2j,[j/3], ..., X`j,[j/3])m+1≤j≤m+bc(n) ∈ Γ} = {ρ(V̂ cm,n,Φ(
1

c
+ δ)) > 2ε}

and

{(X(1)
j,[j/3], X

(2)
2j,[j/3], ..., X

(`)
`j,[j/3])m+1≤j≤m+bc(n) ∈ Γ} = {ρ(Û cm,n,Φ(

1

c
+ δ)) > 2ε}.

Taking in Lemma 3.1,

Yi = (Xij,[j/3], j = m+ 1,m+ 2, ...,m+ bc(n)), i = 1, 2, ..., `
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Erdős-Rényi law for nonconventional sums

and observing that

i(m+ 1)− 1

3
(m+ 1)− (i− 1)(m+ bc(n))− 1

3
(m+ bc(n)) ≥ 1

6
m, (4.8)

provided that m ≥ 6`bc(n), we obtain from (3.3) that for m ≥ 6`bc(n),

|P{ρ(V̂ cm,n, Φ(
1

c
+ δ)) > 2ε} − P{ρ(Û cm,n, Φ(

1

c
+ δ)) > 2ε}| ≤ κ−1

1 `e−κ1m/6. (4.9)

Next, using the same notation for Tn =
∑n
j=1 F (X

(1)
j , X

(2)
2j , ..., X

(`)
`j ) as in Section 2

with X(1)
j , X

(2)
2j , ..., X

(`)
`j introduced in this section we set

U cm,n(u) =
Tm+bc(n,u) − Tm

bc(n)
, u ∈ [0, 1].

Now, recall that each pair (X
(i)
ij , X

(i)
ij,[j/3]) has the same joint distribution as (Xij , Xij,[j/3]),

and so by (2.4),

E|X(i)
ij −X

(i)
ij,[j/3]| = E|Xij − E(Xij |Fij−[j/3],ij+[j/3])| ≤ κ−1

3 e−κ3[j/3]. (4.10)

Hence, similarly to (3.4) and (4.2) we conclude that

P{ρ(U cm,n, Û
c
m,n) > ε} ≤ (εbc(n)κ2κ3(1− e−κ3/3))−1e−κ3(m−2)/3. (4.11)

Now, repeating (4.4)–(4.6) with U c in place of V c we write also

0 ≤ max
0≤j≤n−bc(n)

ρ(U cj,n,Φ(1/c))− max
εbc(n)≤j≤n−bc(n)

ρ(U cj,n,Φ(1/c)) ≤ 2εD, (4.12)

0 ≤ max
0≤j≤n−bc(n)

ρ(Û cj,n,Φ(1/c))− max
εbc(n)≤j≤n−bc(n)

ρ(Û cj,n,Φ(1/c)) ≤ 2εD, (4.13)

P{maxεbc(n)≤j≤n−bc(n) ρ(U cj,n, Û
c
j,n) ≥ ε} ≤

∑
εbc(n)≤j≤n−bc(n) (4.14)

P{ρ(U cj,n, Û
c
j,n) ≥ ε} ≤ (εbc(n)κ2κ3(1− e−κ3/3)2)−1e2κ3/3n−κ3εc/3.

Taking into account stationarity of the sequence F (X
(1)
m , X

(2)
2m, ..., X

(`)
`m), m ≥ 1 we

obtain from the upper large deviations bound in (2.8) that for any ε, λ > 0 there exists
n(ε, λ) such that for all n ≥ n(ε, λ),

P{ρ(U cm,n,Φ( 1
c + δ)) ≥ ε} = P{ρ(b−1

c (n)Tbc(n),Φ( 1
c + δ)) ≥ ε} (4.15)

≤ e−( 1
c+δ−λ)bc(n) ≤ e− 1

cn−(1+cσ)

where we choose λ > 0 so small that σ = δ − λ > 0.
Now, by (4.2), (4.7), (4.9), (4.10) and (4.15) we obtain that for m ≥ 6`bc(n),

P{ρ(V cm,n,Φ(1/c)) > 4ε} ≤ d−1
1 (e−d1m + n−(1+cσ)) (4.16)

for some d1 = d1(ε) > 0 independent of m and n but dependent on ε > 0 which is fixed
for now. Hence, we obtain from (4.2), (4.4), (4.5), (4.7), (4.12), (4.13) and (4.16) that

P{max0≤m≤n−bc(n) ρ(V cm,n,Φ(1/c)) > 8D + 4ε} (4.17)

≤ P{maxεbc(n)≤m≤n−bc(n) ρ(V cm,n,Φ(1/c)) > 4ε}
≤ P{maxεbc(n)≤m<6`bc(n) ρ(V cm,n,Φ(1/c)) > 4ε}
+
∑

6`bc(n)≤m≤n−bc(n) P{ρ(V cm,n,Φ(1/c)) > 4ε}

≤
∑
εbc(n)≤m≤6`bc(n) P{ρ(V̂ cm,n,Φ(1/c)) > 3ε}+ d−1

2 n−d2

≤
∑
εbc(n)≤m≤6`bc(n) P{ρ(V̂ cm,n,Φ(1/c+ δ)) > 2ε}+ d−1

2 n−d2

for some d2 > 0 independent of n but dependent on ε > 0.
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Erdős-Rényi law for nonconventional sums

Next, we have to modify our approach for εbc(n) ≤ m < 6`bc(n) in order to estimate
the last sum in the right hand side of (4.17). Fix an integer M and define new random
curves setting for k−1

M ≤ u < k/M ,

V̂ c,Mm,n,k(u) = M(V̂ cm,n(u)− V̂ cm,n(
k − 1

M
)), k = 1, ...,M

while V̂ c,Mm,n,k(u) = 0 if u 6∈ [k−1
M , kM ). We define also for u ∈ [k−1

M , kM ),

Û c,Mm,n,k(u) = M(Û cm,n(u)− Û cm,n(
k − 1

M
)), k = 1, ...,M

with Û c,Mm,n,k(u) = 0 if u 6∈ [k−1
M , kM ). Observe that for u ∈ [k−1

M , kM ),

V̂ c,Mm,n,k(u) = Mb−1
c (n)

m+bc(n,u)∑
j=m+[(k−1)M−1bc(n)]+1

F (Xj,[j/3], X2j,[j/3], ..., X`j,[j/3])

and

Û c,Mm,n,k(u) = Mb−1
c (n)

m+bc(n,u)∑
j=m+[(k−1)M−1bc(n)]+1

F (X
(1)
j,[j/3], X

(2)
2j,[j/3], ..., X

(`)
`j,[j/3]).

Taking in Lemma 3.1,

Yi = (Xij,[j/3], j = m+ [(k − 1)M−1bc(n)] + 1, ...,m+ [kM−1bc(n)]), i = 1, 2, ..., `

and observing that

(i− 1

3
)(m+(k−1)M−1bc(n))−(i− 2

3
)(m+kM−1bc(n))− 1

3
≥ (

ε

3
+
k + 1

3M
− `

M
)bc(n), (4.18)

provided that m ≥ εbc(n), we see that for M = M(ε) = 6`([1/ε] + 1) the right hand side
of (4.18) is not less than 1

6εbc(n). Thus by (3.3) for such m in the same way as in (4.9) we
obtain that

|P{ρ(V̂ c,Mm,n,k, Φ( 1
c + δ)) > 2ε} − P{ρ(Û c,Mm,n,k, Φ( 1

c + δ)) > 2ε}| (4.19)

≤ κ−1
1 eκ1(1+ε)/3`e−

1
6κ1εc lnn = κ−1

1 eκ1(1+ε)/3`n−κ1εc/6.

Since there are no more than 6`c lnn numbers m for which we will need this estimate it
will suit our purposes.

Next, define for u ∈ [k−1
M , kM ) and k = 1, ...,M ,

U c,Mm,n,k(u) = M(U cm,n(u)− U cm,n(k−1
M ))

= Mb−1
c (n)

∑m+bc(n,u)
j=m+[(k−1)M−1bc(n)]+1 F (X

(1)
j, , X

(2)
2j , ..., X

(`)
`j ).

Relying on (2.3) and (4.10) we estimate P{ρ(U c,Mm,n,k, Û
c,M
m,n,k) > ε} by the right hand side

of (4.11) and using (4.19) we obtain

P{ρ(V̂ c,Mm,n,k, Φ(
1

c
+ δ)) > 2ε} ≤ P{ρ(U c,Mm,n,k, Φ(

1

c
+ δ)) > 2ε}+ d−1

3 n−d3 (4.20)

for some d3 > 0 independent of m,n, k but dependent on ε.
Next, using stationarity of the sequence F (X

(1)
k , X

(2)
2k , ..., X

(`)
`k ), k ≥ 1 we can compute

the rate functional of large deviations for U c,Mm,n,k as n→∞ from (2.5)–(2.7) which will
provide the upper bound similarly to (4.15) in the form

P{ρ(U c,Mm,n,k,Φ(
1

c
+ δ)) ≥ ε} ≤ d−1

4 e−d4 lnn = d−1
4 n−d4 (4.21)
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Erdős-Rényi law for nonconventional sums

for some d4 > 0 depending on ε but not on n. Now observe that

V̂ cm,n =
1

M

M∑
k=1

V̂ c,Mm,n,k.

Since Φ( 1
c + δ) is a convex set then

ρ(V̂ cm,n,Φ(
1

c
+ δ)) ≤ 1

M

M∑
k=1

ρ(V̂ c,Mm,n,k,Φ(
1

c
+ δ)).

Hence,

P{ρ(V̂ cm,n,Φ(
1

c
+ δ)) > 2ε} ≤ 1

M

M∑
k=1

P{ρ(V̂ c,Mm,n,k,Φ(
1

c
+ δ)) > 2ε}. (4.22)

Now, collecting the estimates (4.4)–(4.7), (4.9), (4.15) and (4.17)–(4.22) we conclude
that

P{ max
0≤j≤n−bc(n)

ρ(V cj,n,Φ(1/c)) ≥ (8D + 4)ε} ≤ d−1
5 n−d5 (4.23)

for some d5 > 0 depending on ε but not on n. Replacing n by the subsequence kn = n2/d5]

we obtain by the Borel-Cantelli lemma that with probability one,

lim sup
n→∞

max
0≤j≤kn−bc(kn)

ρ(V cj,kn ,Φ(1/c)) ≤ (8D + 4)ε. (4.24)

Now take into account that if kn < r ≤ kn+1 then

bc(kn+1)− bc(r) ≤ bc(kn+1)− bc(kn) ≤ c[2/d4] ln(
n+ 1

n
) + 1→ 1 as n→∞.

It follows that (4.24) remains true if kn there is replaced by n implying (4.1) since ε > 0

is arbitrary.

5 The lower bound

We will prove here that with probability one

lim
n→∞

sup
γ∈Φ(1/c)

min
0≤j≤n−bc(n)

ρ(V cj,n, γ) = 0 (5.1)

which will complete the proof of (2.9). For γ ∈ Φ(1/c) introduce the events

Γ(1)
n = Γ(1)

n (γ, ε) = { min
0≤j≤n−bc(n)

ρ(V cj,n, γ) ≥ 6ε}.

Then
Γ(1)
n ⊂ Γ(2)

n (γ, ε) = { min
(1−1/4`)n≤j≤n−bc(n)

ρ(V cj,n, γ) ≥ 6ε}. (5.2)

Set
Γ(3)
n (γ, ε) = { min

(1−1/4`)n≤j≤n−bc(n)
ρ(V̂ cj,n, γ) ≥ 5ε}.

Then, by (4.2),
P (Γ(2)

n (γ, ε)) ≤ P (Γ(3)(γ, ε)) + d−1
6 e−d6n (5.3)

for some constant d6 > 0 independent of n and ε.
Next, we apply Lemma 3.1 to random vectors

Yi = (Xij,[j/3], (1− 1

4`
)n ≤ j ≤ n), i = 1, ..., `.
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Erdős-Rényi law for nonconventional sums

Observe that

(i− 1/3)(1− 1/4`)n− (i− 2/3)n = n/3− (i− 1/3)n/4` ≥ n/12,

and so similarly to Section 4 we derive from (3.3) that

|P (Γ(3)
n (γ, ε))− P (Γ(4)

n (γ, ε))| ≤ d−1
7 e−d7n (5.4)

where
Γ(4)
n (γ, ε) = { min

(1−1/4`)n≤j≤n−bc(n)
ρ(Û cj,n, γ) ≥ 5ε}

and d7 > 0 does not depend on n. Now,

Γ(4)
n = ∩(1−1/4`)n≤j≤n−bc(n)Γ

(5)
n,j ⊂ ∩j:(1−1/4`)n≤j[4 ln2 n]≤n−bc(n)Γ

(5)

n,j[4 ln2 n]
(5.5)

where
Γ

(5)
n,j(γ, ε) = {ρ(Û cj,n, γ) ≥ 5ε}.

Next, we write
Γ

(5)
n,j(γ, ε) ⊂ Γ

(6)
n,j(γ, ε) ∪ {ρ(U cj,n, Û

c
j,n) > ε}

where Γ
(6)
n,j(γ, ε) = {ρ(U cj,n, γ) ≥ 4ε}. Hence, by (4.11) and (5.2)–(5.5),

P (Γ(1)
n (γ, ε)) ≤ P

(
∩j: (1−1/4`)n≤j[4 ln2 n]≤n−bc(n) Γ

(6)

n,j[4 ln2 n]
(γ, ε)

)
+ d8e

−d8n (5.6)

for some d8 > 0 independent of n but depending on ε.
Next, we will use ψ-mixing and approximation properties of the product process

(X
(1)
j , X

(2)
2j , ..., X

(`)
`j ), j = 1, 2, .... Consider the product probability space (Ω`,F`, P `) =

(ω,F , P ) × · · · × (Ω,F , P ) (`-times product) and the σ-algebras Fm1,n1;m2,n2;...;m`,n` =

Fm1,n1
× Fm2,n2

× · · · × Fm`,n` (where by this product we mean the minimal σ-algebra
containing all products of sets from the factors). Let

Γ ∈ F−∞,m1;−∞,m2;...;−∞,m` and ∆ ∈ Fm1+k1,∞;m2+k2,∞;...;m`+k`,∞. (5.7)

We claim that

|P `(Γ ∩∆)− P `(Γ)P `(∆)| ≤ P `(Γ)P `(∆)
∑̀
i=1

ψ(ki)
∏̀
j=i+1

(1 + ψ(kj)) (5.8)

where
∏`
`+1 = 1 and ψ is defined in (2.1).

Indeed, take first Γ = Γ1×Γ2× · · ·×Γ` and ∆ = ∆1×∆2× · · ·×∆` with Γi ∈ F−∞,mi
and ∆i ∈ Fmi+ki,∞, i = 1, ..., `. We proceed by induction in `. For ` = 1 the inequality
(5.8) follows from (2.1). Now, suppose that (5.8) holds true for `− 1 in place of `. Then
by (2.1),

|P `(Γ ∩∆)− P `(Γ)P `(∆)| = |
∏`
i=1 P (Γi ∩∆i)−

∏`
i=1 P (Γi)P (∆i)|

≤ P (Γ` ∩∆`)||
∏`−1
i=1 P (Γi ∩∆i)−

∏`−1
i=1 P (Γi)P (∆i)|

+|P (Γ` ∩∆`)− P (Γ`)P (∆`)|
∏`−1
i=1 P (Γi)P (∆i)

≤ (1 + ψ(k`))P (Γ`)P (∆`)|
∏`−1
i=1 P (Γi ∩∆i)−

∏`−1
i=1 P (Γi)P (∆i)|

+ψ(k`)
∏`
i=1 P (Γi)P (∆i)

and we arrive at (5.8) using the induction hypothesis taking into account that here

P `(Γ) =
∏̀
i=1

P (Γi) and P `(∆) =
∏̀
i=1

P (∆i).
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Erdős-Rényi law for nonconventional sums

Since (5.8) remains true under finite disjoint unions and under monotone unions and
intersections then by the monotone class theorem (5.8) is valid for all Γ and ∆ satisfying
(5.7).

Next, we redefine X
(i)
j on the product space Ω` setting X

(i)
j (ω, ω2, ..., ω`) equal to

X
(i)
j (ωi) and using the same notation for the new processes which are, again, independent

for different i’s and have the same distributions as before. Using these X(i)
j we redefine

on Ω` the sum Tn and the random curves U cm,n(u), u ∈ [0, 1], as before. Let F0 = {∅,Ω}
be the trivial σ-algebra on Ω and set

F (i) = F0 × · · · × F0 ×F ×F0 × · · · × F0 and F (i) = F0 × · · · × F0 ×Fm,n ×F0 × · · · × F0

where the nontrivial σ-algebra appears as the i-th factor (and the product σ-algebras
are understood in the same sense as above). Set X(i)

n,m = E`(X
(i)
n |F (i)

n−m,n+m) where E`

is the expectation with respect to the probability P `. Define

T̃n =

n∑
j=1

F (X
(1)

j,[ln2 n]
, X

(2)

2j,[ln2 n]
, ..., X

(`)

`j,[ln2 n]
)

and

Ũ ci,n(u) =
T̃j+bc(n,u) − T̃j

bc(n)
.

Taking into account that the pairs (X
(i)
j , X

(i)

j,[ln2 n]
) have the same distributions as

(Xj , Xj,[ln2 n]) we derive from (2.3) and (2.4) similarly to (4.10) and (4.11) that

P `{ρ(U cj,n, Ũ
c
j,n) > ε} ≤ d−1

9 exp(−d9 ln2 n) (5.9)

for some d9 > 0 independent of n but depending on ε. Hence,

P (∩j: (1−1/4`)n≤j[4 ln2 n]≤n−bc(n)Γ
(6)

n,j[4 ln2 n]
(γ, ε)) (5.10)

≤ P (∩j: (1−1/4`)n≤j[4 ln2 n]≤n−bc(n)Γ
(7)

n,j[4 ln2 n]
(γ, ε)) + d−1

9 n exp(−d9 ln2 n)

where Γ
(7)
n,j(γ, ε) = {ρ(Ũ cj,n, γ) ≥ 3ε}. Now observe that Γ

(7)

n,j[4 ln2 n]
(γ, ε) is

Fk1(j,n),m1(j,n);k2(j,n),m2(j,n);...;k`(j,n),m`(j,n)-measurable, where ki(j, n) = ij[4 ln2 n]− [ln2 n]

and mi(j, n) = ij[4 ln2 n] + [ln2 n] + bc(n). Hence, ki(j + 1, n)−mi(j, n) ≥ [ln2 n] when n

is large enough. Applying (5.8) successively we obtain that

P (∩j: (1−1/4`)n≤j[4 ln2 n]≤n−bc(n)Γ
(7)

n,j[4 ln2 n]
(γ, ε)) (5.11)

≤ (1 + Ψ([ln2 n]))
n

[4 ln2 n]
∏
j: (1−1/4`)n≤j[4 ln2 n]≤n−bc(n) P

`(Γ
(7)

n,j[4 ln2 n]
(γ, ε))

where

Ψ(k) = `ψ(k)(1 + ψ(k))` ≤ κ−1
1 `2`e−κ1k (5.12)

for all k large enough.
Next, we use (5.9) again in order to obtain that

P `(Γ
(7)
n,j(γ, ε)) ≤ P

`(Γ
(8)
n,j(γ, ε)) + d−1

9 exp(−d9 ln2 n) (5.13)

where Γ
(8)
n,j(γ, ε) = {ρ(U cj,n, γ) ≥ 2ε}. Observe that we can replace P ` by P in the right

hand side of (5.13) if the independent processes {X(i)
ij , j = 1, 2, ...}, i = 1, ..., ` are

considered on the original probability space (Ω,F , P ).
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Since we consider γ ∈ Φ(1/c) then I(γ̇u) <∞ for Lebesgue almost all u ∈ [0, 1] and
(see Appendix) if I(β) < ∞, β ∈ Rd then I(aβ) < I(β) for any 0 < a < 1. Hence, if we
define

ηu = (1− ε( sup
v∈[0,1]

|γu|)−1)γu, u ∈ [0, 1]

then

ρ(γ, η) ≤ ε and S(η) ≤ S(γ)− a ≤ 1

c
− a (5.14)

for some a > 0. By (5.14) and stationarity of the summands in Tn,

P `(Γ
(8)
n,j(γ, ε)) ≤ P `{ρ(U cj,n, η) ≥ ε} (5.15)

= P `{ρ(b−1
c (n)Tbc(n), η) ≥ ε} = 1− P `{ρ(U cj,n, η) < ε}.

Now, employing the lower large deviations bound from (2.8) we obtain that for any
ε, λ > 0 there exists n0 > 0 such that for all n ≥ n0,

P `{ρ(b−1
c (n)Tbc(n), η) < ε} ≥ exp(−bc(n)(c−1 − a+ λ)) ≥ n−1+cσ (5.16)

where we choose λ > 0 so small that σ = a− λ > 0.
Hence, we obtain by (5.6), (5.10)–(5.13), (5.15) and (5.16) that for all n large enough

P (Γ
(1)
n (γ, ε)) ≤ (1 + κ−1`2` exp(−κ1[ln2 n]))n(1− n−1+cσ)

n
5`[4 ln2 n] (5.17)

+d−1
8 e−d8n + 2d−1

9 n exp(−d9 ln2 n) ≤ d−1
10 exp(−d10 ln2 n)

for some d10 > 0 independent of n but depending on ε. Employing the Borel-Cantelli
lemma we conclude from (5.17) that for any γ ∈ Φ(1/c) with probability one

lim sup
n→∞

min
0≤j≤n−bc(n)

ρ(V cj,n, γ) < 6ε. (5.18)

Since Φ(1/c) is a compact set we can choose there an ε-net γ1, γ2, ..., γk(ε) and then with
probability one (5.18) will hold true simultaneously for all γ = γi, i = 1, ..., k(ε). It follows
then that with probability one,

lim sup
n→∞

sup
γ∈Φ(1/c)

min
0≤j≤n−bc(n)

ρ(V cj,n, γ) ≤ 7ε (5.19)

and since ε > 0 is arbitrary we obtain (5.1).

6 Proof of Corollary 2.2

Observe that (2.9) implies, in particular, that for any continuous (with respect to the
metric ρ) function f on the space of curves [0, 1]→ Rd with probability one,

lim
n→∞

max
0≤k≤n−bc(n)

f(V ck,n) = sup
γ∈Φ(1/c)

f(γ). (6.1)

Now assume that d = 1 and take f(γ) = γ(1) where we write γ(u) = γu. Assume that
I(β) <∞ and set c = 1/I(β). Then

sup
γ∈Φ(I(β))

f(γ) = sup{γ(1) : γ ∈ Φ(I(β))} = β. (6.2)

Indeed, by convexity of the rate function I for any γ ∈ Φ(I(β)),

I(β) ≥ S(γ) =

∫ 1

0

I(γ̇(u))du ≥ I(

∫ 1

0

γ̇(u)du) = I(γ(1))

and by monotonicity of I (see Appendix), β ≥ γ(1). On the other hand, take γ(u) = uβ,
u ∈ [0, 1]. Then S(γ) = I(β) and γ(1) = β implying (6.2) whenever I(β) <∞ and (2.10)
follows.
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7 Appendix

7.1 Applications

The main applications in the discrete time case of Theorem 2.1 concern Markov
chains and some classes of dynamical systems such as Axiom A diffeomorphisms, ex-
panding transformations and topologically mixing subshifts of finite type. We will restrict
ourselves to several main setups to which our results are applicable rather than trying
to describe most general situations. First, let Xn, n ≥ 0 be a time homogeneous Markov
chain on R℘ whose transition probability P (x,Γ) = P{X1 ∈ Γ|X0 = x} satisfies

κν(Γ) ≤ P (x,Γ) ≤ κ−1ν(Γ) (7.1)

for some κ > 0, a probability measure ν on R℘ and any Borel set Γ ⊂ R℘. Then Xn, n ≥ 0

is exponentially fast ψ-mixing with respect to the family of σ-algebras Fm,n = σ{Xk, m ≤
k ≤ n} generated by the process (see, for instance, [12]). The strong Doeblin type
condition (7.1) implies geometric ergodicity

‖P (n, x, ·)− µ‖ ≤ β−1e−βn, β > 0

where ‖ · ‖ is the variational norm, P (n, x, ·) is the n-step transition probability and µ is
the unique invariant measure of {Xn, n ≥ 0} which makes it a stationary process. In

this situation (X
(1)
n , X

(2)
2n , ..., X

(`)
`n ), n ≥ 0 is the product Markov chain on R`℘ satisfying

similar to (7.1) strong Doeblin condition. The limit (2.5) exists here (see Lemma 4.3
in Ch.7 of [9]) and exp(Π(α)) turns out to be the principal eigenvalue of the positive
operator

Gf(x) = Exf(X
(1)
1 , X

(2)
2 , ..., X

(`)
` ) exp

(
(α, F (X

(1)
1 , X

(2)
2 , ..., X

(`)
` ))

)
(see [13] and references there) where Ex is the expectation conditioned to (X

(1)
0 ,

X
(2)
0 , ..., X

(`)
0 ) = x. It is well known (see [21], [12], [11] and references there) that

Π(α) is convex and differentiable in α. Furthermore, the Hessian matrix ∇2
αΠ(α)|α=0 is

positively definite if and only if for each α ∈ Rd, α 6= 0 the limiting variance

σ2
α = lim

n→∞
n−1E

( n∑
k=0

(α, F (X
(1)
k , X

(2)
2k , ..., X

(`)
`k ))

)
(7.2)

is positive. The latter holds true unless there exists a representation

(α, F (X(1)
n , ..., X

(`)
`n )) = g(X(1)

n , ..., X
(`)
`n )− g(X

(1)
n−1, ..., X

(`)
`(n−1)), n = 1, 2, ...

for some bounded Borel function g (see [12]).
In the discrete time dynamical systems case we consider Xn(ω) = g ◦ fn(ω), n ≥

0 where g is a Hölder continuous vector function and f : Ω → Ω is a C2 Axiom A
diffeomorphism on a hyperbolic set or a topologically mixing subshift of finite type or
a C2 expanding transformation. Here Xn, n ≥ 0 is considered as a stationary process
on the probability space (Ω,F , P ) where Ω is the corresponding phase space, F is the
Borel σ-algebra and P is a Gibbs measure constructed by a Hölder continuous function
(see [2]). Then the exponentially fast ψ-mixing holds true (see [2]) with respect to the
family of (finite) σ-algebras generated by cylinder sets in the symbolic setup of subshifts
of finite type or with respect to the corresponding σ-algebras constructed via Markov
partitions in the Axiom A and expanding cases.

Here the process (X
(1)
n , ..., X

(`)
`n ) is generated by the product dynamical system

(f × f2 × · · · × f `)n(ω1, ω2, ..., ω`) = (fnω1, f
2nω2, ..., f

`nω`)
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so that
(X(1)

n (ω1), ..., X
(`)
`n (ω`)) = G ◦ (f × f2 × · · · × f `)n(ω1, ω2, ..., ω`) (7.3)

where G(ω1, ω2, ..., ω`) = (g(ω1), g(ω2), ..., g(ω`)). The above product dynamical system
has similar properties as the original dynamical system fnω, n ≥ 0 itself, in particular, it
satisfies large deviations bounds with respect to Gibbs measures constructed by Hölder
continuous functions and exponentially fast ψ-mixing holds true, as well. The existence of
the limit (2.5) and its form follows from [14]. Here Πt(α) turns out to be the topological
pressure for the function (α, F ) + ϕ where ϕ is the potential of the corresponding Gibbs
measure (for the product system). The differentiability properties of Πt(α) in α are well
known and, again, the Hessian matrix ∇2

αΠt(α)|α=0 is positively definite if and only if
for each α ∈ Rd, α 6= 0 the limiting variance (7.2) is positive where the expectation
should be taken with respect to the chosen Gibbs measure (see [22], [11], [13], [14] and
references there). The latter holds true unless there exists a coboundary representation
(α, F ) = g ◦ f − g for some bounded Borel function g.

7.2 Some properties of rate functions

We collect here few properties of rate functions of large deviations which are essen-
tially well known but hard to find in major books on large deviations. First, observe that
if Π(α), α ∈ Rd is a twice differentiable function such that Π(0) = 0, ∇αΠ(α)|α=0 = 0

then Π(α) = o(|α|), and so

I(β) = sup
α

((α, β)−Π(α)) > 0 (7.4)

unless β = 0. Indeed, by the above

I(β) ≥ δ|β|2 −Π(δβ) > 0

if β 6= 0 and δ > 0 is small enough. Curiously, positivity of the rate function is not studied
in several books on large deviations without which upper large deviations bounds do not
make much sense.

Next, assume, in addition, that Π is convex and has a positively definite at zero
Hessian matrix ∇2

αΠ(α)|α=0. Then Π(α) ≥ 0 for all α ∈ Rd and for some δ1, δ2 > 0,

Π(α) ≥ δ1|α| provided |α| > δ2. (7.5)

It follows that if |β| < δ1 then αβ = arg sup((α, β) − Π(α)) satisfies |αβ | ≤ δ2 and, in
particular, I(β) <∞, i.e. I(β) is finite in some neighborhood of 0.

Next, under the above conditions on Π suppose that I(β) <∞ for some β 6= 0. Then

I((1 + δ)β) > I(β) for any δ > 0. (7.6)

Indeed, for any ε > 0 there exists αβ,ε such that

(αβ,ε, β)−Π(αβ,ε) ≥ I(β)− ε.

Since Π(αβ,ε) ≥ 0 we have

I((1 + δ)β) ≥ (1 + δ)(αβ,ε, β)−Π(αβ,ε) ≥ I(β) + δ(I(β)− ε)− ε > I(β)

provided ε < δ(1 + δ)−1I(β) yielding (7.6).
In the Erdős-Rényi law type results it is important to know where a rate function I(β)

is finite. This issue is hidden inside the functional form of Theorems 2.1 but appears
explicitly in Corollary 2.2 and in its original form (1.1). The discussion on finiteness of
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rate functions is hard to find in books on large deviations though without studying this
issue lower bounds there do not have much sense. We start with the rate functional J(ν)

of the second level of large deviations for occupational measures

ζn =
1

n

n−1∑
k=0

δXk , (7.7)

where δx denotes the unit mass at x (see [13]). Explicit formulas for J(ν) are known when
Xk is a Markov chain whose transition probability satisfies (5.1) and when Xk = fkx

with f being an Axiom A diffeomorphism, expanding transformation or subshift of finite
type. In the former case (see [7]),

J(ν) = − inf
u>0, continuous

∫
ln(

Pu

u
)dν (7.8)

and in the latter case (see [13]),

J(ν) =

{
−
∫
ϕdµ− hν(f) if ν is f -invariant,

∞, otherwise,
(7.9)

where hν(f) is the Kolmogorov–Sinai entropy of f with respect to ν and ϕ is the potential
of the corresponding Gibbs measure µ playing the role of probability here.

Necessary and sufficient conditions for finiteness of J(ν) in the Markov chain case
are given in [7] while in the above dynamical systems cases J(ν) <∞ for any f -invariant
measure ν. If

Π(α) = lim
n→∞

1

n
lnE exp

( n−1∑
j=0

(α,G(Xj))
)
, (7.10)

where Xt is a stationary process as above and G 6≡ 0 is a continuous vector function with
EG(X0) = 0, then by the contraction principle (see, for instance, [5]) the rate function
I(β) given by (7.4) can be represented as

I(β) = inf{J(ν) :

∫
Gdν = β} (7.11)

where the infimum is taken over the space P(M) of probability measures on M .
Set

Γ = {β ∈ Rd : ∃ν ∈ P(M) such that

∫
Gdν = β and J(ν) <∞}

and let Co(Γ) be the interior of the convex hull of Γ. Then

I(β) <∞ for any β ∈ Co(Γ). (7.12)

Indeed, any β ∈ Co(Γ) can be represented as β = p1β1 + p2β2 with β1, β2 ∈ Γ, p1, p2 ≥ 0

and p1 + p2 = 1. Then β1 =
∫
Gdν1, β2 =

∫
Gdν, and so

∫
Gdν = β for ν = p1ν1 + p2ν2.

Since J(ν1), J(ν2) <∞ then by convexity of J we have that J(ν) ≤ p1J(ν1)+p2J(ν2) <∞,
and so (7.12) holds true.

When d = 1, i.e. when G is a (not vector) function we can give another description of
the domain where I(β) <∞. In this case set

β+ = sup{β : β ∈ Γ} and β− = inf{β : β ∈ Γ}. (7.13)

Then by (7.12), I(β) < ∞ for any β ∈ (β−, β+). It is possible to extract from [6] that
under ψ-mixing,

β+ = lim
n→∞

1

n
ess sup

n−1∑
j=0

G(Xj) and β− = lim
n→∞

1

n
ess inf

n−1∑
j=0

G(Xj). (7.14)
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