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Abstract

We prove that the uniform infinite half-plane quadrangulation (UIHPQ), with either
general or simple boundary, equipped with its graph distance, its natural area mea-
sure, and the curve which traces its boundary, converges in the scaling limit to the
Brownian half-plane. The topology of convergence is given by the so-called Gromov-
Hausdorff-Prokhorov-uniform (GHPU) metric on curve-decorated metric measure
spaces, which is a generalization of the Gromov-Hausdorff metric whereby two such
spaces (X1, d1, µ1, η1) and (X2, d2, µ2, η2) are close if they can be isometrically embed-
ded into a common metric space in such a way that the spaces X1 and X2 are close in
the Hausdorff distance, the measures µ1 and µ2 are close in the Prokhorov distance,
and the curves η1 and η2 are close in the uniform distance.
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1 Introduction

1.1 Overview

There has been substantial interest in recent years in the scaling limits of random
planar maps. Various uniform random planar maps (equipped with the graph distance)
have been shown to converge in the Gromov-Hausdorff topology to Brownian surfaces,
the best known of which is the Brownian map, which is the scaling limit of uniform
random quadrangulations of the sphere [37,41]. These results have been generalized
in [1, 3,9] to other ensembles of random maps on the sphere and in [18] (resp. [10])
to give the convergence of the uniform infinite plane quadrangulation (resp. uniformly
random quadrangulations with boundary) toward the Brownian plane (resp. disk).

A planar map is naturally endowed with a measure µ (e.g., the one which assigns
mass to each vertex equal to its degree). Many interesting random planar maps M are
also equipped with a curve η. Examples include:

1. The path which visits the boundary ∂M in cyclic order of a planar map M with
boundary.

2. A simple random walk or self-avoiding walk (SAW) on M .

3. The Peano curve associated with a distinguished spanning tree of M .

4. The exploration path associated with a percolation configuration on M .

Hence it is natural to consider scaling limits of random planar maps in a topology which
describes not only their metric structure but also a distinguished measure and curve.

This article has two main aims. First, we will introduce such a topology, which arises
from the Gromov-Hausdorff-Prokhorov-uniform (GHPU) metric on 4-tuples (X, d, µ, η)

consisting of a metric space (X, d), a measure µ on X, and a curve η in X. Two such
4-tuples (X1, d1, µ1, η1) and (X2, d2, µ2, η2) are close in the GHPU metric if they can be
isometrically embedded into a common metric space (W,D) in such a way that X1 and X2
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are close in the D-Hausdorff distance, µ1 and µ2 are close in the D-Prokhorov distance,
and η1 and η2 are close in the D-uniform distance. We will consider a version of the
GHPU metric for compact spaces as well as a local version for locally compact spaces.
See Section 1.3 for a precise definition.

The definition of the GHPU metric is inspired by other metrics on types of metric
spaces such as the Gromov-Hausdorff metric [14,24], the Gromov-Prokhorov metric [23],
and the Gromov-Hausdorff-Prokhorov metric [2,40].

Second, we will prove scaling limit results for the uniform infinite half-plane quadran-
gulation (UIHPQ) in the local GHPU topology. The UIHPQ is the Benjamini-Schramm
local limit [5] of uniform random quadrangulations with boundary as the total number
of edges and then the perimeter tends to ∞ [15,19], where the map is viewed from a
root which is chosen uniformly at random from the boundary. There are two variants
of the UIHPQ. The first is the UIHPQ with general boundary (which we will refer to as
the UIHPQ), which may have boundary vertices with multiplicity greater than 1 in the
external face; and the UIHPQ with simple boundary (UIHPQS), where we require that the
boundary is simple (i.e., it is a path with no self-intersections). In this paper, we will prove
that both the UIHPQ and the UIHPQS (equipped with the measure which assigns mass
to each vertex equal to its degree and the curve which traces the boundary) converge
in the scaling limit in the local GHPU topology to the Brownian half-plane, which we
define in Section 1.5 below (see also [15, Section 5.3] for a different definition, which we
expect is equivalent). Along the way, we will also improve the Gromov-Hausdorff scaling
limit result for finite uniform quadrangulations with boundary toward the Brownian disk
in [10] to a scaling limit result in the GHPU topology.

One particular reason to be interested in random quadrangulations with simple
boundary (such as the UIHPQS) is that one can glue two such surfaces along their
boundary to obtain a uniform random quadrangulation decorated by a SAW. See [8,
Section 8.2] (which builds on [11,13]) for the case of finite quadrangulations with simple
boundary and [17, Part III], [16] for the case of the UIHPQS.

In [29], we will build upon the present work to prove, among other things, that the
random planar map obtained by gluing a pair of independent UIHPQS’s together along
the boundary rays lying to the right of their respective root edges (i.e., the uniform
infinite SAW-decorated half-plane) converges in the scaling limit in the GHPU topology,
with the SAW playing the role of the distinguished curve, to a pair of independent
Brownian half-planes glued together in the same way. We will also prove analogous
scaling limit results for two independent UIHPQS’s glued along their entire boundary
and for a single UIHPQS with its positive and negative boundary rays glued together.
The proofs of these results use the scaling limit statement for the UIHPQS proven in the
present paper. See also [31,32] for additional GHPU scaling limit results.

Remark 1.1. In an independent (and essentially simultaneous) work [4], Baur, Miermont,
and Ray proved several scaling limit results for uniform quadrangulations with general
boundary which include the statement that the UIHPQ with general boundary converges
in the scaling limit to the Brownian half-plane in the Gromov-Hausdorff topology [4,
Theorem 3.6]. The work [4] also includes a number of more general scaling limit
statements for uniform random quadrangulations with boundary under different scaling
regimes that we do not treat here. In the present paper we will deduce the scaling limit
of the UIHPQ to the Brownian half-plane in a stronger topology than in [4] and also
treat the case of the UIHPQS. Our proof is somewhat simpler than that in [4] since our
coupling statement is less general.

We will now explain how the aforementioned results about scaling limits of glued
UIHPQS’s allow us to identify the scaling limit of the SAW on a random quadrangulation
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Le Gall / Miermont: [Le 13, Mie13]
Convergence of random quadrangulations of
the sphere to the Brownian map

Bettinelli-Miermont: [BM15]
Convergence of random quadrangulations of
the disk to the Brownian disk

Miller-Sheffield: [MS15a,b,c,MS16b,c,d]
Construction of metric on the

√
8/3-LQG

sphere, cone, disk which is isometric to the
Brownian map, plane, disk

Duplantier-Miller-Sheffield: [DMS14]
General theory of quantum surfaces and con-
formal welding

Sheffield: [She16]
Basic theory of conformal welding of quan-
tum surfaces

Consequence:
Convergence of self-avoiding walk on
random quadrangulations to SLE8/3 on√

8/3-LQG

Gwynne-Miller:
Convergence of random quadrangulations of
the upper half-plane to the Brownian half-
plane

Gwynne-Miller: [GM16a]
Convergence of the discrete graph gluing of
random quadrangulations of the upper half-
plane to the metric gluing of Brownian half-
planes

Gwynne-Miller: [GM16b]
Conformal welding of

√
8/3-LQG surfaces is

the same as the metric gluing

Figure 1: A chart of the different components which serve as input into the proof that
self-avoiding walk on random quadrangulations converges to SLE8/3 on

√
8/3-LQG. The

present article corresponds to the blue box and implies that a random quadrangulation
of the upper half-plane converges in the GHPU topology to the Brownian half-plane. (See
also [4] for another proof that the UIHPQ converges to the Brownian half-plane, and a
more general treatment of scaling limits of quadrangulations with boundary.)

with SLE8/3 on a
√
8/3-Liouville quantum gravity (LQG) surface. Recently, it has been

proven by Miller and Sheffield [42–46], building on [48], that Brownian surfaces are
equivalent to

√
8/3-LQG surfaces. Heuristically speaking, a γ-LQG surface for γ ∈ (0, 2)

is the random Riemann surface parameterized by a domain D ⊂ C whose Riemannian
metric tensor is eγh dx⊗ dy, where dx⊗ dy is the Euclidean metric tensor on D and h is
some variant of the Gaussian free field (GFF) on D [21,47,50,51]. This definition does
not make rigorous sense since the GFF is a generalized function, not a function, so does
not take values at points.

Miller and Sheffield showed that in the special case when γ =
√
8/3, one can make

rigorous sense of a
√
8/3-LQG surface as a metric space. Certain particular types of√

8/3-LQG surfaces introduced in [20], namely the quantum sphere, quantum disk, and
weight-4/3 quantum cone, respectively, are isometric to the Brownian map, Brownian
disk, and Brownian plane, respectively [45, Corollary 1.5]. In this paper we will extend
this identification by proving that the Brownian half-plane is isometric to the weight-2
quantum wedge.

The results of [30] together with the identification between the Brownian half-plane
and the weight-2 wedge proven in the present paper imply that the gluing of two
Brownian half-planes along their positive boundary has the same law as a weight-4
quantum wedge (a particular type of

√
8/3-LQG surface) decorated by an independent

chordal SLE8/3 curve [49], which is the gluing interface. Hence the scaling limit result
of [29] discussed above yields the convergence of the SAW on a random quadrangulation
to SLE8/3 on a

√
8/3-LQG surface. See Figure 1 for a diagram of how the different works

fit together to establish this result.
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LQG surfaces arise as the scaling limits of random planar maps for all values of
γ ∈ (0, 2), not just γ =

√
8/3. Values of γ other than

√
8/3 correspond to maps sampled

with probability proportional to the partition function of some statistical mechanics
model, rather than sampled uniformly. For general values of γ, certain random planar
map models decorated by a space-filling curve, which is the Peano curve of a certain
spanning tree, have been shown to converge to SLE-decorated LQG in the so-called
peanosphere topology. This means that the joint law of the contour functions (or some
variant thereof) of the spanning tree and its dual, appropriately re-scaled, converges
to the law of the correlated Brownian motion which encodes a γ-LQG cone or sphere
decorated by a space-filling SLE16/γ2 curve in [20,44]. See [25, 27, 28,33–35, 52] for
results of this type.

Neither peanosphere convergence nor GHPU convergence implies the other. However,
we expect that the curve-decorated planar maps which converge to SLE16/γ2 -decorated
γ-LQG in the peanosphere topology also converge in the GHPU topology (this uses the
γ-LQG metric space, which has so far only been constructed for γ =

√
8/3), and in fact

converge in both topologies jointly. In the case of site percolation on a uniform triangula-
tion (which corresponds to γ =

√
8/3), this joint GHPU/peanosphere convergence will be

proven in the forthcoming work [26], building on [31] which shows GHPU convergence
of a random planar map decorated by a single percolation interface. However, it remains
open for other models.

Acknowledgements We thank two anonymous referees for helpful comments on an
earlier version of this paper. E.G. was supported by the U.S. Department of Defense via
an NDSEG fellowship. E.G. also thanks the hospitality of the Statistical Laboratory at
the University of Cambridge, where this work was started. J.M. thanks Institut Henri
Poincaré for support as a holder of the Poincaré chair, during which this work was
completed.

1.2 Preliminary definitions

Before stating our main results, we set some standard notation and definitions which
will be used throughout this paper.

1.2.1 Basic notation

We write N for the set of positive integers and N0 = N ∪ {0}.
For a < b ∈ R, we define the discrete intervals [a, b]Z := [a, b]∩Z and (a, b)Z := (a, b)∩Z.
If a and b are two quantities, we write a � b (resp. a � b) if there is a constant C

(independent of the parameters of interest) such that a ≤ Cb (resp. a ≥ Cb). We write
a � b if a � b and a � b.

If f is a function, we write a = ob(f(b)) if a/f(b)→ 0 as b→∞ or as b→ 0, depending
on context. We write a = Ob(f(b)) if there is a constant C > 0, independent of the
parameters of interest, such that a ≤ Cf(b).

1.2.2 Graphs

For a planar map G, we write V(G), E(G), and F(G), respectively, for the set of vertices,
edges, and faces of G.

By a path in G, we mean a function λ : I → E(G) for some (possibly infinite) discrete
interval I ⊂ Z, with the property that the edges {λ(i)}i∈I can be oriented in such a way
that the terminal endpoint of λ(i) coincides with the initial endpoint of λ(i+ 1) for each
i ∈ I other than the right endpoint of I. We define the length of λ, denoted |λ|, to be the
integer #I. We say that λ is simple if the vertices hit by λ are all distinct.
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For sets A1, A2 consisting of vertices and/or edges of G, we write dist(A1, A2;G) for
the graph distance from A1 to A2 in G, i.e. the minimum of the lengths of paths in G

whose initial edge either has an endpoint which is a vertex in A1 or shares an endpoint
with an edge in A1; and whose final edge satisfies the same condition with A2 in place of
A1.

For r > 0, we define the graph metric ball Br(A1;G) to be the subgraph of G
consisting of all vertices of G whose graph distance from A1 is at most r and all edges of
G whose endpoints both lie at graph distance at most r from A1. If A1 = {x} is a single
vertex or edge, we write Br({x};G) = Br(x;G).

1.2.3 Metric spaces

If (X, d) is a metric space, A ⊂ X, and r > 0, we write Br(A; d) for the set of x ∈ X with
d(x,A) ≤ r. We emphasize that Br(A; d) is closed (this will be convenient when we work
with the local GHPU topology). If A = {y} is a singleton, we write Br({y}; d) = Br(y; d).

For a curve γ : [a, b]→ X, the d-length of γ is defined by

len(γ; d) := sup
P

#P∑

i=1

d(γ(ti), γ(ti−1))

where the supremum is over all partitions P : a = t0 < · · · < t#P = b of [a, b]. Note that
the d-length of a curve may be infinite.

We say that (X, d) is a length space if for each x, y ∈ X and each ε > 0, there exists a
curve of d-length at most d(x, y) + ε from x to y.

1.3 The Gromov-Hausdorff-Prokhorov-uniform metric

In this paper (and in [29]) we will consider scaling limits of metric measure spaces
endowed with a distinguished continuous curve. A natural choice of topology for this
convergence is the one induced by the Gromov-Hausdorff-Prokhorov-uniform (GHPU)
metric, which we introduce in this subsection and study further in Section 2. This
topology generalizes the Gromov-Hausdorff topology [14,24], the Gromov-Prokhorov
topology [23], and the Gromov-Hausdorff-Prokhorov topology [2,40].

Let (X, d) be a metric space. The metric d gives rise to the d-Hausdorff metric dHd
on compact subsets of X and the d-Prokhorov metric dPd on finite measures on X in the
standard way.

The definition of the d-uniform metric on curves in X requires some discussion since
we want to allow curves defined on an arbitrary interval in R. Let C0(R, X) be the set
of continuous curves η : R → X such that for each ε > 0, there exists T > 0 such that
d(η(t), η(T )) ≤ ε and d(η(−t), η(−T )) ≤ ε whenever t ≥ T . If η : [a, b] → X is a curve
defined on a compact interval, we identify η with the element of C0(R, X) which agrees
with η on [a, b] and satisfies η(t) = a for t ≤ a and η(t) = b for t ≥ b. We equip C0(R, X)

with the d-uniform metric, defined by

dUd (η1, η2) = sup
t∈R

d(η1(t), η2(t)), ∀η1, η2 ∈ C0(R, X). (1.1)

Remark 1.2 (Graphs as connected metric spaces). In this paper we will often be inter-
ested in a graph G equipped with its graph distance dG. In order to study continuous
curves in G, we need to linearly interpolate G. We do this by identifying each edge of G
with a copy of the unit interval [0, 1]. We extend the graph metric on G by requiring that
this identification is an isometry.

If λ is a path in G, mapping some discrete interval [a, b]Z to E(G), we extend λ from
[a, b]Z to [a − 1, b] by linear interpolation, so that for i ∈ [a, b]Z, λ traces each edge λ(i)
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at unit speed during the time interval [i − 1, i]. In particular, the Gromov-Hausdorff-
Prokhorov-uniform metric and its local variant, to be defined below, make sense for
graphs equipped with a measure and a curve.

1.3.1 Compact case

Let MGHPU be the set of 4-tuples X = (X, d, µ, η) where (X, d) is a compact metric space,
d is a metric on X, µ is a finite Borel measure on X, and η ∈ C0(R, X). We remark that
an element of MGHPU has a natural marked point, namely η(0).

Suppose that we are given elements X1 = (X1, d1, µ1, η1) and X2 = (X2, d2, µ2, η2) of
MGHPU. For a compact metric space (W,D) and isometric embeddings ι1 : X1 →W and
ι2 : X2 →W , we define their GHPU distortion by

DisGHPU
X1,X2

(W,D, ι1, ι2) := dHD(ι1(X1), ι2(X2)) + dPD(((ι1)∗µ1, (ι2)∗µ2)) + dUD(ι1 ◦ η1, ι2 ◦ η2).
(1.2)

We define the Gromov-Hausdorff-Prokhorov-uniform (GHPU) distance by

dGHPU(X1,X2) = inf
(W,D),ι1,ι2

DisGHPU
X1,X2

(W,D, ι1, ι2), (1.3)

where the infimum is over all compact metric spaces (W,D) and isometric embeddings
ι1 : X1 →W and ι2 : X2 →W .

It will be proven in Lemma 2.4 below that dGHPU defines a pseudometric on MGHPU.
It is not quite a metric since two elements (X1, d1, µ1, η1), (X2, d2, µ2, η2) ∈ MGHPU lie at
GHPU distance zero if there is a measure-preserving isometry from X1 to X2 which takes

η1 to η2. Let M
GHPU

be the set of equivalence classes of elements of MGHPU under the
equivalence relation whereby (X1, d1, µ1, η1) ∼ (X2, d2, µ2, η2) if and only if there exists
such an isometry f : (X1, d1)→ (X2, d2) with f∗µ1 = µ2 and f ◦ η1 = η2.

The following statement will be proven in Section 2.2.

Proposition 1.3. The function dGHPU is a complete separable pseudometric on MGHPU

and the quotient metric space MGHPU/{dGHPU = 0} is M
GHPU

.

Restricting dGHPU to elements of MGHPU for which the measure µ is identically equal
to zero and/or the curve η is constant gives a natural metric on the space of compact
metric spaces which are not equipped with a measure and/or a curve. In particular, the
Gromov-Hausdorff and Gromov-Hausdorff-Prokhorov metrics are special cases of the
GHPU metric and we also obtain a metric on curve-decorated compact metric spaces
(which should be called the Gromov-uniform metric).

A particularly useful fact about the GHPU metric, which will be proven in Section 2.2
and used in the proof of Proposition 1.3, is that GHPU convergence is equivalent to
Hausdorff, Prokhorov, and uniform convergence within a fixed compact metric space, in
a sense which we will now make precise.

Definition 1.4 (HPU convergence). Let (W,D) be a metric space. Let X = (X, d, µ, η) and
Xn = (Xn, dn, µn, ηn) for n ∈ N be elements of MGHPU such that X,Xn ⊂ W , D|X = d,
and D|Xn = dn. We say that Xn → X in the D-Hausdorff-Prokhorov-uniform (HPU) sense
if Xn → X in the D-Hausdorff metric, µn → µ in the D-Prokhorov metric, and ηn → η in
the D-uniform metric.

Proposition 1.5. Suppose Xn = (Xn, dn, µn, ηn) for n ∈ N and X = (X, d, µ, η) are
elements of MGHPU. Then Xn → X in the GHPU metric if and only if there exists a
compact metric space (W,D) and isometric embeddings X →W and Xn →W for n ∈ N
such that if we identify X and Xn with their images under these embeddings, then
Xn → X in the D-HPU sense.
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Analogs of Proposition 1.5 for the Gromov-Hausdorff and Gromov-Prokhorov metrics
are proven in [23, Lemmas 5.8 and A.1], respectively. The proof of Proposition 1.5 below
will be similar to the proofs of these lemmas.

1.3.2 Non-compact case

In this paper we will also have occasion to consider non-compact curve-decorated metric
measure spaces (such as the Brownian half-plane). In this subsection we consider a
variant of the GHPU metric in this setting. We restrict attention to length spaces to
avoid technical complications with convergence of metric balls. However, we expect
that it is possible to relax this restriction with some modifications to the definition.
See [14, Section 8.1] for a definition of the local Gromov-Hausdorff topology which does
not require the length space condition.

Let MGHPU
∞ be the set of 4-tuples X = (X, d, µ, η) where (X, d) is a locally compact

length space, µ is a measure on X which assigns finite mass to each finite-radius metric
ball in X, and η : R → X is a curve in X. Note that MGHPU is not contained in MGHPU

∞
since elements of the former are not required to be length spaces.

Let M
GHPU

∞ be the set of equivalence classes of elements of MGHPU
∞ under the equiva-

lence relation whereby (X1, d1, µ1, η1) ∼ (X2, d2, µ2, η2) if and only if there is an isometry
f : X1 → X2 such that f∗µ1 = µ2 and f ◦ η1 = η2.

We will define a local version of the GHPU metric on M
GHPU

∞ by truncating X at the
metric ball Br(η(0); d), then integrating the GHPU metric over all metric balls. The
truncation is done in the following manner.

Definition 1.6. Let X = (X, d, µ, η) be an element of MGHPU
∞ . For r > 0, let

τηr := (−r) ∨ sup{t < 0 : d(η(0), η(t)) = r} and τηr := r ∧ inf{t > 0 : d(η(0), η(t)) = r}.
(1.4)

The r-truncation of η is the curve Brη ∈ C0(R;X) defined by

Brη(t) =





η(τηr), t ≤ τηr
η(t), t ∈ (τη, τηr)

η(τηr), t ≥ τηr .

The r-truncation of X is the curve-decorated metric measure space

BrX =
(
Br(η(0); d), d|Br(η(0);d), µ|Br(η(0);d),Brη

)
.

If X = (X, d, µ, η) ∈ MGHPU
∞ , then the Hopf-Rinow theorem [14, Theorem 2.5.28]

implies that every closed metric ball in X is compact. Hence for X ∈ MGHPU
∞ , we have

BrX ∈ MGHPU for each r > 0. Furthermore, for R > r > 0 we have BrBRX = BrX.
The local GHPU metric on MGHPU

∞ is the function on MGHPU
∞ ×MGHPU

∞ → [0,∞) defined
by

dGHPU
∞ (X1,X2) =

∫ ∞

0

e−r
(
1 ∧ dGHPU(BrX1,BrX2)

)
dr (1.5)

where dGHPU is as in (1.3).
We let M

GHPU

∞ be the set of equivalence classes of elements of MGHPU
∞ under the

equivalence relation whereby (X1, d1, µ1, η1) ∼ (X2, d2, µ2, η2) if and only if there is an
isometry f : (X1, d1)→ (X2, d2) such that f∗µ1 = µ2 and f ◦ η1 = η2. The following is the
analog of Proposition 1.3 for the local GHPU metric, and will be proven in Section 2.3.

Proposition 1.7. The function dGHPU
∞ is a complete separable pseudometric on MGHPU

∞

and the quotient metric space MGHPU
∞ /{dGHPU

∞ = 0} is M
GHPU

∞ .
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Scaling limit of the UIHPQ in the GHPU topology

We next want to state an analog of Proposition 1.5 for the local GHPU metric. To this
end, we make the following definition.

Definition 1.8 (Local HPU convergence). Let (W,D) be a metric space. Let Xn =

(Xn, dn, µn, ηn) for n ∈ N and X = (X, d, µ, η) be elements of MGHPU
∞ such that X and

each Xn is a subset of W satisfying D|X = d and D|Xn = dn. We say that Xn → X in the
D-local Hausdorff-Prokhorov-uniform (HPU) sense if the following is true.

• For each r > 0 we have Br(ηn(0); dn)→ Br(η(0); d) in the D-Hausdorff metric.

• For each r > 0 such that µ(∂Br(η(0); d)) = 0, we have µn|Br(ηn(0);dn) → µ|Br(η(0);d)

in the D-Prokhorov metric.

• For each a, b ∈ R with a < b, we have ηn|[a,b] → η|[a,b] in the D-uniform metric.

The following is our analog of Proposition 1.5 for the local GHPU metric.

Proposition 1.9. Let Xn = (Xn, dn, µn, ηn) for n ∈ N and X = (X, d, µ, η) be elements of
MGHPU
∞ . Then Xn → X in the local GHPU topology if and only if there exists a boundedly

compact (i.e., closed bounded sets are compact) metric space (W,D) and isometric
embeddings Xn → W for n ∈ N and X → W such that the following is true. If we
identify Xn and X with their embeddings into W , then Xn → X in the D-local HPU
sense.

1.4 Basic definitions for quadrangulations

The main results of this paper are scaling limit statements for quadrangulations with
boundary in the GHPU topology. In this subsection we introduce notation to describe
these objects.

A quadrangulation with boundary is a (finite or infinite) planar map Q with a dis-
tinguished face f∞, called the exterior face, such that every face of Q other than f∞
has degree 4. The boundary of Q, denoted by ∂Q, is the smallest subgraph of Q which
contains every edge of Q incident to f∞. The perimeter Perim(Q) of Q is defined to be
the degree of the exterior face, with edges counted with multiplicity (i.e., the number of
half-edges on the boundary).

A boundary path of Q is a path λ from [1,Perim(Q)]Z (if ∂Q is finite) or Z (if ∂Q is
infinite) to E(∂Q) which traces the edge of ∂Q (counted with multiplicity) in cyclic order
around the exterior face. Choosing a boundary path is equivalent to choosing an oriented
root (half-)edge on the boundary. This root edge is λ(Perim(Q)), oriented toward λ(1) in
the finite case; or λ(0), oriented toward λ(1), in the infinite case (here we note that a
quadrangulation cannot have any self-loops).

We say that ∂Q is simple if some (equivalently every) boundary path for Q hits each
vertex exactly once.

For n, l ∈ N0, we write Q(n, l) for the set of quadrangulations with general boundary
having n interior faces and 2l boundary edges (counted with multiplicity).

We write Q•(n, l) for the set of triples (Q, e0, v∗) where Q ∈ Q(n, l), e0 is a distin-
guished oriented half-edge of ∂Q (meaning that if e0 has multiplicity 2, we need to specify
a “side” of e0), and v∗ ∈ V(Q) is a distinguished vertex.

The uniform infinite half-plane quadrangulation (UIHPQ) is the infinite boundary-
rooted quadrangulation (Q∞, e∞) which is the limit in law with respect to the Benjamini-
Schramm topology [5] of a uniform sample from Q(n, l) (rooted at a uniformly random
boundary edge) if we first send n→∞ and then l→∞ [15,19].

The uniform infinite planar quadrangulation with simple boundary (UIHPQS) is the
infinite boundary-rooted quadrangulation (QS, eS) with simple boundary which is the
limit in law with respect to the Benjamini-Schramm topology [5] of a uniformly random
quadrangulation with simple boundary (rooted at a uniformly random boundary edge)
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Scaling limit of the UIHPQ in the GHPU topology

with n interior faces and 2l boundary edges if we first send n→∞ and then l→∞. The
UIHPQS can be recovered from the UIHPQ by “pruning” the dangling quadrangulations
which are disconnected from∞ by a single vertex [15,19]; see Section 3.4 for a review
of this procedure.

1.5 The Brownian half-plane

The limiting object in the main scaling limit results of this paper is the Brownian
half-plane, which we define in this section. The construction given here is of the
“unconstrained” type (corresponding to the version of the Schaeffer bijection in which
labels are not required to be positive). There is also a constrained construction of
the Brownian half-plane in [15, Section 5.3]. We expect (but do not prove) that this
construction is equivalent to the one we give here. Our construction is a continuum
analog of the Schaeffer-type construction of the UIHPQS found in [19] (c.f. [15]), which
we review in Section 3.2.

Let X∞ : R → [0,∞) be the process such that {X∞(t)}t≥0 is a standard linear
Brownian motion and {X∞(−t)}t≥0 is an independent Brownian motion conditioned to
stay positive (i.e., a 3-dimensional Bessel process). For r ∈ R, let

T∞(r) := inf{t ∈ R : X∞(t) = −r},

so that r 7→ T∞(r) is non-decreasing and for each r ∈ R,

{X∞(T∞(r) + t) + r}t∈R
d
= {X∞(t)}t∈R. (1.6)

Also let T−1∞ : R→ R be the right-continuous inverse of T , so that

T−1∞ (t) = − inf{X∞(s) : s ≤ t}. (1.7)

For s, t ∈ R, let

dX∞(s, t) := X∞(s) +X∞(t)− 2 inf
u∈[s∧t,s∨t]

X∞(u). (1.8)

Then dX∞ defines a pseudometric on R and the quotient metric space R/{dX∞ = 0} is
a forest of continuum random trees, indexed by the excursions of X∞ away from its
running infimum.

Conditioned on X∞, let Z0
∞ be the centered Gaussian process with

Cov(Z0
∞(s), Z0

∞(t)) = inf
u∈[s∧t,s∨t]

(
X∞(u)− inf

v≤u
X∞(v)

)
, s, t ∈ R. (1.9)

By the Kolmogorov continuity criterion, Z0
∞ a.s. admits a continuous modification which

is locally α-Hölder continuous for each α < 1/4. For this modification we have Z0
∞(s) =

Z0
∞(t) whenever dX∞(s, t) = 0, so Z0

∞ defines a function on the continuum random forest
R/{dX∞ = 0}.

Let b∞ : R→ R be
√
3 times a two-sided standard linear Brownian motion. For t ∈ R,

define

Z∞(t) := Z0
∞(t) + b∞(T−1∞ (t)),

with T−1∞ as in (1.7).
For s, t ∈ R, define

dZ∞(s, t) = Z∞(s) + Z∞(t)− 2 inf
u∈[s∧t,s∨t]

Z∞(u). (1.10)
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Scaling limit of the UIHPQ in the GHPU topology

Also define the pseudometric

d0∞(s, t) = inf

k∑

i=1

dZ∞(si, ti) (1.11)

where the infimum is over all k ∈ N and all 2k+2-tuples (t0, s1, t1, . . . , sk, tk, sk+1) ∈ R2k+2

with t0 = s, sk+1 = t, and dX∞(ti−1, si) = 0 for each i ∈ [1, k + 1]Z. In other words, d0∞ is
the largest pseudometric on R which is at most dZ∞ and is zero whenever dX∞ is 0.

The Brownian half-plane is the quotient space H∞ = R/{d0∞ = 0} equipped with the
quotient metric, which we call d∞. We write p∞ : R → H∞ for the quotient map. It
follows from [8, Theorem 2] (which says that the Brownian disk has the topology of the
closed disk) and Proposition 4.2 below that H∞ has the topology of the closed half-plane.

The boundary of H∞ is the set ∂H∞ = p({T∞(r) : r ∈ R}). It follows from the proof
of Proposition 4.2 below and the analogous property of the Brownian disk [8, Proposition
21] that ∂H∞ is in fact the boundary of H∞ in the topological sense (i.e., the set of points
which do not have a neighborhood which is homeomorphic to the disk).

The area measure of H∞ is the pushforward of Lebesgue measure on R under p∞,
and is denoted by µ∞. The boundary measure of H∞ is the pushforward of Lebesgue
measure on R under the map r 7→ p∞(T∞(r)). The boundary path of H∞ is the path
η∞ : R → R defined by η∞(r) = p∞(T∞(r)). Note that η∞ travels one unit of boundary
length in one unit of time.

Although it is not needed for the statement or proof of our main results, we record for
reference the

√
8/3-LQG description of the Brownian half-plane, which will be proven in

this paper.

Proposition 1.10. Let (H, h, 0,∞) be a
√
8/3-quantum gravity wedge (i.e., a quantum

wedge of weight equal to 2) with LQG parameter γ =
√
8/3 [20]. Let µh and νh,

respectively, be the
√
8/3-LQG area and boundary length measures induced by h [21].

Also let dh be the
√
8/3-LQG metric induced by h [43, 45, 46]. Let ηh : R → R be the

curve which parameterizes R according to
√

8/3-LQG length and satisfies ηh(0) = 0.
Then (H, dh, µh, ηh) and (H∞, d∞, µ∞, η∞) (as defined just above) agree as elements of
MGHPU
∞ , i.e. there exists an isometry f : (H, dh) → (H∞, d∞) satisfying f∗µh = µ∞ and

f ◦ ηh = η∞.

Proposition 1.10 follows from the results of this paper together with the same argu-
ment to prove the analogous

√
8/3-LQG description of the Brownian plane in [45, Corol-

lary 1.5]. Indeed, Proposition 4.2 below tells us that the Brownian half-plane is the local
limit of Brownian disks when we zoom in near a boundary point sampled uniformly from
the boundary measure. The

√
8/3-quantum wedge is the local limit of quantum disks

when we zoom in near a boundary point [20]. We already know from [45, Corollary 1.5]
that Brownian disks coincide with quantum disks in the sense of Proposition 1.10, so the
proposition follows.

We remark that the weight-2 quantum wedge mentioned in Proposition 1.10 comes
with some additional structure, namely an embedding into H with the two marked points
respectively sent to 0 and∞. It follows from the main result of [46] that this embedding
is a.s. determined by the quantum wedge, viewed as a random variable taking values
in MGHPU

∞ . This in particular implies that the Brownian half-plane a.s. determines its
embedding into

√
8/3-LQG.

1.6 Theorem statements: scaling limit of the UIHPQ and UIHPQS

In this subsection we state scaling limit results for the UIHPQ with general and
simple boundary in the local GHPU topology.
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Scaling limit of the UIHPQ in the GHPU topology

Let (H∞, d∞) be an instance of the Brownian half-plane, as in Section 1.5. Let µ∞
and η∞ : R→ ∂H∞, respectively, be its area measure and natural boundary path. Let

H∞ := (H∞, d∞, µ∞, η∞), (1.12)

so that H∞ is an element of MGHPU
∞ , defined as in Section 1.3.2.

Let (Q∞, e∞) be a UIHPQ (with general boundary). We view Q∞ as a connected
metric space by replacing each edge with an isometric copy of the unit interval, as in
Remark 1.2. For n ∈ N, let dn∞ be the graph distance on Q∞, re-scaled by (9/8)1/4n−1/4.
Let µn∞ be the measure on V(Q∞) which assigns a mass to each vertex equal to (4n)−1

times its degree (in the scaling limit, this is equivalent to assigning each face mass n−1).
Let λ∞ : R→ ∂Q∞ be the boundary path of Q∞ started from e∞ and extended by linear
interpolation. Let ηn∞(t) := λ∞

(
23/2n1/2t

)
for t ∈ R. For n ∈ N, let

Qn
∞ := (Q∞, d

n
∞, µ

n
∞, η

n
∞) (1.13)

so that Qn
∞ is an element of MGHPU

∞ .

Theorem 1.11. In the setting described just above, we have Qn
∞ → H∞ in law in the

local GHPU topology, i.e. the UIHPQ converges in law in the scaling limit to the Brownian
half-plane in the local GHPU topology.

Next we state an analog of Theorem 1.11 for the UIHPQ with simple boundary. Let
(QS, eS) be a UIHPQS. We will define for each n ∈ N an element of MGHPU

∞ associated with
(QS, eS) in the same manner as in the case of the UIHPQ, except that the time scaling for
the boundary path is different.

As above we view QS as a connected metric space in the manner of Remark 1.2. For
n ∈ N, let dnS be the graph distance on QnS , re-scaled by (9/8)1/4n−1/4 and let µnS be the
measure on V(QS) which assigns a mass to each vertex equal to (4n)−1 times its degree.
Let λS : R → ∂QS be the boundary path of QS, started from eS and extended by linear

interpolation. Let ηnS (t) := λ∞

(
23/2

3 n1/2t
)

for t ∈ R (note that 23/2

3 is replaced by 23/2 in

the UIHPQ case). For n ∈ N, let

Qn
S := (QS, d

n
S , µ

n
S , η

n
S ). (1.14)

Theorem 1.12. With H∞ as in (1.12), we have Qn
S → H∞ in law in the local GHPU

topology, i.e. the UIHPQS converges in law in the scaling limit to the Brownian half-plane
in the local GHPU topology.

We will also prove in Section 4.1 below a scaling limit result for finite quadrangula-
tions with boundary toward the Brownian disk in the GHPU topology. We do not state
this result here, however, as its proof is a straightforward extension of the proof of the
analogous convergence statement in the Gromov-Hausdorff topology from [10].

1.7 Outline

The remainder of this article is structured as follows. In Section 2, we prove the state-
ments about the Gromov-Hausdorff-Prokhorov-uniform metric described in Section 1.3
plus some additional properties, including compactness criteria and a measure-theoretic
condition for GHPU convergence.

In Section 3, we review some facts about random planar maps in preparation for our
proofs of Theorems 1.11 and 1.12, including the Schaeffer-type constructions of uniform
quadrangulations with simple boundary and the UIHPQ, the relationship between the
UIHPQ and the UIHPQS via the pruning procedure, and the definition of the Brownian
disk.
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Scaling limit of the UIHPQ in the GHPU topology

In Section 4, we prove Theorems 1.11 and 1.12. The proof of Theorem 1.11 is
similar in spirit to the proof of the scaling limit result for the Brownian plane in [18].
It proceeds by showing that the Brownian half-plane (resp. UIHPQ) can be closely
approximated by a Brownian disk (resp. uniform quadrangulation with boundary) and
applying a strengthened version of the scaling limit result for uniform quadrangulations
with boundary from [10]. Theorem 1.12 is deduced from Theorem 1.11 and the pruning
procedure.

2 Properties of the Gromov-Hausdorff-Prokhorov-uniform metric

In this section we will establish the important properties of the GHPU and local
GHPU metrics, defined in Section 1.3, and in particular prove Propositions 1.3, 1.5, 1.7,
and 1.9. We start in Section 2.1 by proving some elementary topological lemmas which
give conditions for a sequence of 1-Lipschitz maps or isometries defined on a sequence
of metric spaces to have a subsequential limit. These lemmas will be used several times
in this section and in [29]. In Section 2.2, we establish the basic properties of the GHPU
metric on compact curve-decorated metric measure spaces. In Section 2.3, we establish
the basic properties of the local GHPU metric on non-compact curve-decorated metric
measure spaces. In Section 2.4, we introduce a generalization of Gromov-Prokhorov
convergence and use it to give a criterion for GHPU convergence which will be used for
the proof of our scaling limit results in [29].

2.1 Subsequential limits of isometries

In this subsection we record two elementary topological lemmas which will be useful
for our study of the GHPU metric.

Lemma 2.1. Let (W,D,w) be a separable pointed metric space and let (Ŵ , D̂) be any
metric space. Let {Xn}n∈N and X be closed subsets of W and for n ∈ N, let fn : Xn → Ŵ

be a 1-Lipschitz map. Suppose that the following are true.

1. For each r > 0, Br(w;D) ∩Xn → Br(w;D) ∩X in the D-Hausdorff metric.

2. For each r > 0, there exists a compact set Ŵr ⊂ Ŵ such that fn(Br(w;D) ∩Xn) ⊂
Ŵr for each n ∈ N.

Then there is a sequence N of positive integers tending to ∞ and a 1-Lipschitz map
f : X → Ŵ such that fn → f as N 3 n→∞ in the following sense. For any x ∈ X, any
subsequence N ′ of N , and any sequence of points xn ∈ Xn for n ∈ N ′ with xn → x, we
have fn(xn)→ f(x) as N ′ 3 n→∞. Moreover, if each fn is an isometry onto its image,
then f is also an isometry onto its image.

Proof. Let {xj}j∈N be a countable dense subset of X (which exists since X is separable).
By assumption 1, Br(w;D) ∩Xn → Br(w;D) ∩X in the D-Hausdorff topology for each
r > 0, so for each j ∈ N we can choose points xnj ∈ Xn such that D(xnj , xj) → 0. By

condition 2, each of the sequences {xnj }n∈N is contained in a compact subset of Ŵ .
By a diagonalization argument we can find a sequence N of positive integers tending

to∞ and points {x̂j}j∈N in Ŵ such that fn(xnj )→ x̂j for each j ∈ N as N 3 n→∞. Let
f(xj) := x̂j for j ∈ N. Then for j1, j2 ∈ N,

D̂(f(xj1), f(xj2)) = lim
N3n→∞

D̂(fn(xnj1), f
n(xnj2)) ≤ lim

N3n→∞
D(xnj1 , x

n
j2) = D(xj1 , xj2),

with equality throughout if in fact each fn is an isometry onto its image. Since {xj}j∈N

is dense in X, the map f extends by continuity to a 1-Lipschitz map X → Ŵ , which
preserves distances in the case when each fn is an isometry.
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Scaling limit of the UIHPQ in the GHPU topology

It remains to check that fn → f in the sense described in the lemma. Suppose that
we are given a subsequence N ′ of N and a sequence of points xn ∈ Xn with xn → x ∈ X.
Fix ε > 0 and choose j ∈ N with xj ∈ Bε(x;D). Then for large enough n ∈ N ′,

D̂(fn(xnj ), f
n(xn)) ≤ D(xnj , x

n) ≤ D(xnj , xj) +D(xj , x) +D(x, xn) ≤ ε+ on(1).

Since fn(xnj )→ f(xj), fn(xn) lies within D̂-distance 2ε of f(xj) for large enough n ∈ N ′.
On the other hand, D̂(f(xj), f(x)) ≤ ε (since f is 1-Lipschitz). Therefore fn(xn)→ f(x)

along the subsequence N ′.

In the case when the fn’s are isometries onto their images and we assume conver-
gence in the HPU sense, we obtain existence of an isometry f satisfying additional
properties.

Lemma 2.2. Let Xn = (Xn, dn, µn, ηn) for n ∈ N and X = (X, d, µ, η) be elements of
MGHPU (resp. MGHPU

∞ ) such that Xn and X are subsets of a common boundedly compact
(i.e., closed bounded subsets are compact) metric space (W,D) satisfying dn = D|Xn and
d = D|X . Let (Ŵ , D̂) be another boundedly compact metric space and let X̂ = (X̂, d̂, µ̂, η̂)

be an element of MGHPU (resp. MGHPU
∞ ) such that X̂ ⊂ D̂ and D̂|X̂ = d̂.

Suppose that we are given distance-preserving maps fn : Xn → Ŵ for each n ∈ N
such that the following are true (using the terminology as in Definitions 1.4 and 1.8).

1. Xn → X in the D-(local) HPU sense.

2. (fn(Xn), D̂|fn(Xn), f
n
∗ µ

n, fn ◦ ηn)→ X̂ in the D̂-(local) HPU sense.

There is a sequence N of positive integers tending to ∞ and an isometry f : X → X̂

with f ◦ η = η̂ and f∗µ = µ̂ such that fn → f as N 3 n→∞ in the following sense. For
any x ∈ X, any subsequence N ′ of N , and any sequence of points xn ∈ Xn for n ∈ N ′
with xn → x, we have fn(xn)→ f(x) as N ′ 3 n→∞.

Proof. By Lemma 2.1 and since (Ŵ , d̂) is boundedly compact, there is a sequence N of
positive integers tending to∞ and a distance-preserving map f : X → X̂ such fn → f

in the sense described in the statement of Lemma 2.1. It remains to check that f is
surjective and satisfies f ◦ η = η̂ and f∗µ = µ̂.

We start with surjectivity. Suppose given x̂ ∈ X̂. Since fn(Xn) → X̂ in the D̂-local
Hausdorff metric, we can find a sequence {xn}n∈N of points in Xn such that fn(xn)→ x̂.
There is an r > 0 such that D̂(fn(x), fn(ηn(0))) ≤ r for each n ∈ N , so since each fn

is an isometry we also have dn(x, ηn(0)) ≤ r for each n ∈ N . Since W is boundedly
compact, by possibly passing to a subsequence, we can arrange so that xn → x ∈ X.
Then the convergence of fn to f implies that f(x) = x̂.

Next we check that f ◦η = η̂. For each t ≥ 0 we have ηn(t)→ η(t) and fn(ηn(t))→ η̂(t).
Therefore our convergence condition for fn toward f implies that f(η(t)) = η̂(t).

Finally, we show that f∗µ = µ̂. We do this in the case of MGHPU
∞ ; the case of MGHPU is

similar (but in fact simpler). Let r > 0 be a radius for which both

µ(∂Br(η(0); d)) = 0 and µ̂(∂Br(η̂(0); d)) = 0. (2.1)

For n ∈ N let xn be sampled uniformly from µn|Br(ηn(0);dn). By assumption 1,
µn|Br(ηn(0);dn) → µ|Br(η(0);d) in the D-Prokhorov metric. Therefore, xn → x in law,
where x is sampled uniformly from µ|Br(η(0);d). By the Skorokhod representation theo-
rem, we can couple {xn}n∈N with x in such a way that xn → x a.s. Then our convergence
condition for fn implies that fn(xn) → f(x) a.s. Since each fn is an isometry, the ran-
dom variable fn(xn) is sampled uniformly from fn∗ µ

n|Br(fn(ηn(0));D̂)∩fn(Xn). By (2.1) and

EJP 22 (2017), paper 84.
Page 14/47

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP102
http://www.imstat.org/ejp/


Scaling limit of the UIHPQ in the GHPU topology

assumption 2, we find that fn(xn) converges in law to x̂, where x̂ is sampled uniformly
from µ|Br(η̂(0);d̂)

. Hence the law of f(x) is that of a uniform sample from µ|Br(η̂(0);d̂)
. Since

µn(Br(η
n(0); dn)) converges to both µ(Br(η(0); d)) and µ̂(η̂(0); d̂)), we find that

f∗
(
µ|Br(η(0);d)

)
= µ̂|Br(η̂(0);d̂)

for all but countably many r > 0. Therefore f∗µ = µ̂.

2.2 Proofs for the GHPU metric

In this subsection we prove Propositions 1.3 and 1.5. Most of the arguments in this
subsection are straightforward adaptations of standard proofs for the Gromov-Hausdorff,
Gromov-Prokhorov, and Gromov-Hausdorff-Prokhorov metrics; see [2,14,23,24,40], but
we give full proofs here for the sake of completeness.

The following lemma tells us that the definition of dGHPU in (1.3) is unaffected if when
taking the infimum we require that W = X1 tX2 and ι1 and ι2 are the natural inclusions.

Lemma 2.3. Let X1 = (X1, d1, µ1, η1) and X2 = (X2, d2, µ2, η2) be in MGHPU and identify
X1 and X2 with their inclusions into the disjoint union X1 t X2. For a metric dt on
X1 tX2 with dt|X1

= d1 and dt|X2
= d2, we define

DisGHPU,t
X1,X2

(dt) = dHdt(X1, X2) + dPdt(µ1, µ2) + dUdt(η1, η2). (2.2)

Then
dGHPU(X1,X2) = inf DisGHPU

X1,X2
(dt) (2.3)

where the infimum is over all metrics on X1 tX2 with dt|X1
= d1 and dt|X2

= d2.

Proof. It is clear that the infimum in (2.3) is at most the infimum in (1.3), so we only
need to prove the reverse inequality. Suppose given a compact metric space (W,D) and
isometric embeddings ι1 : X1 →W and ι2 : X2 →W . Given ε > 0, we define a metric on
X1 tX2 by

dεt(x, y) =





d1(x, y), x, y ∈ X1

d2(x, y), x, y ∈ X2

D(ι1(x), ι2(y)) + ε, x ∈ X1, y ∈ X2

D(ι2(x), ι1(y)) + ε, x ∈ X2, y ∈ X1.

It is easy to see that dεt defines a metric on X1 tX2. Furthermore, since ι1 and ι2 are
isometric embeddings, it follows that dεt(x, y) differs from D(x, y) by as most ε. Hence

DisGHPU,t
X1,X2

(dt) ≤ DisGHPU
X1,X2

(W,D, ι1, ι2) + 3ε.

Since ε > 0 is arbitrary the statement of the lemma follows.

We now verify the triangle inequality for dGHPU, which in particular implies that
dGHPU is a pseudometric.

Lemma 2.4. The function dGHPU satisfies the triangle inequality, i.e. for X1,X2,X3 ∈
MGHPU we have

dGHPU(X1,X3) ≤ dGHPU(X1,X2) + dGHPU(X2,X3).

Proof. Write Xi = (Xi, di, µi, ηi) for i ∈ {1, 2, 3} and fix ε > 0. By Lemma 2.3 we can find
metrics d12 and d23 on X1 t X2 and X2 t X3, respectively, which restrict to the given
metrics on each factor such that

DisGHPU,t
X1,X2

(d12) ≤ dGHPU(X1,X2) + ε and DisGHPU,t
X2,X3

(d23) ≤ dGHPU(X2,X3) + ε.
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We define a metric on X1 tX2 tX3 as follows. If x, y ∈ X1 tX2 tX3 and both x and y
belong to X1 tX2 or X2 tX3 we set d13(x, y) = d12(x, y) or d23(x, y), respectively. For
x1 ∈ X1 and x3 ∈ X3, we set

d13(x1, x3) = d13(x3, x1) = inf
x2∈X2

(d12(x1, x2) + d23(x2, x3)).

It is easily checked that d13 is a metric on X1 t X2 t X3, so restricts to a metric on
X1 tX3 which in turn restricts to d1 on X1 and d3 on X3. Furthermore, by the triangle
inequalities for the d13-Hausdorff, Prokhorov, and uniform metrics, we have

DisGHPU,t
X1,X3

(d13) ≤ DisGHPU,t
X1,X2

(d12) + DisGHPU,t
X2,X3

(d23).

The statement of the lemma follows.

Now we can prove Proposition 1.5, using a similar argument to that used to prove [23,
Lemma A.1].

Proof of Proposition 1.5. By Lemma 2.3, for each n ∈ N there exists a metric dnt on
X tXn such that DisGHPU,t

X,Xn (dnt)→ 0. Let W := X t
⊔∞
n=1X

n and identify X and each
Xn with its natural inclusion into W . We define a metric D on W as follows. If x, y ∈W
such that x, y ∈ X tXn for some n ∈ N, we set D(x, y) = dnt(x, y). If x ∈ Xn and y ∈ Xm

for some n,m ∈ N, we set

D(x, y) = inf
u∈X

(dnt(x, u) + dmt (u, y)).

As in the proof of Lemma 2.4, D is a metric on W and by definition this metric restricts to
dn on each Xn and to d on X. Furthermore we have DisGHPU,t

X,Xn (dnt) = DisGHPU,t
X,Xn (D)→ 0

as n → ∞, which implies that Xn → X in the D-Hausdorff metric, µn → µ in the
D-Prokhorov metric, and ηn → η in the D-uniform metric.

By replacing W with its metric completion, we can assume that W is complete.
Since X is totally bounded, for each ε > 0 we can find N ∈ N and x1, . . . , xN such that
X ⊂

⋃N
i=1Bε(xi; d). Since Xn → X in the D-Prokhorov metric and D|X = d, it follows

that there exists n0 ∈ N such that Xn ⊂
⋃N
i=1Bε(xi;D) for n ≥ n0. Since each Xn for

n ≤ n0 is totally bounded, we infer that W is totally bounded, hence compact.

Lemma 2.5 (Positive definiteness). Let X1 = (X1, d1, µ1, η1) and X2 = (X2, d2, µ2, η2) be
in MGHPU. If dGHPU(X1,X2) = 0, then there is an isometry f : X1 → X2 with f∗µ1 = µ2

and f ◦ η1 = η2.

Proof. By Lemma 2.3, we can find a sequence of metrics dnt on X1 tX2 whose GHPU
distortion tends to 0. By Proposition 1.5 there is a compact metric space (W,D) and
isometric embeddings ι : X1 →W and ιn : X2 →W for n ∈ N such that

(
ιn(X2), D|ιn(X2), ι

n
∗µ2, ι

n ◦ η
)
→ (X1, d1, µ1, η1)

in the D-HPU topology. By Lemma 2.2 (applied with Xn = X2 for each n ∈ N) we can find
a subsequence along which the embeddings ιn converge to an isometry g : X2 → ι(X1)

with g∗µ2 = ι∗µ2 and g ◦ η2 = ι ◦ η1. The statement of the lemma follows by taking
f = g−1 ◦ ι.

For our proof of completeness, we will use the following compactness criterion for
MGHPU, which is also of independent interest.

Lemma 2.6 (Compactness criterion). Let K be a subset of MGHPU and suppose the
following conditions are satisfied.

EJP 22 (2017), paper 84.
Page 16/47

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP102
http://www.imstat.org/ejp/


Scaling limit of the UIHPQ in the GHPU topology

1. K is uniformly totally bounded, i.e. for each ε > 0, there exists N ∈ N such that for
each (X, d, µ, η) ∈ K, the set X can be covered by at most N d-balls of radius at
most ε.

2. There is a constant C > 0 such that for each (X, d, µ, η) ∈ K, we have µ(X) ≤ C.

3. K is equicontinuous, i.e. for each ε > 0, there exists δ > 0 such that for each
(X, d, µ, η) in K and each s, t ∈ R with |s− t| ≤ δ, we have d(η(s), η(t)) ≤ ε; and for
each t ∈ R with |t| ≥ δ−1, we have d(η(s), η(±δ−1)) ≤ ε, where ± is the sign of t.

Then every sequence in K has a subsequence which converges with respect to the GHPU
topology.

Proof. Let Xn = (Xn, dn, µn, ηn) for n ∈ N be elements of K. By condition 1 and the
Gromov compactness criterion [14, Theorem 7.4.15], we can find a sequence nk →∞ and
a compact metric space (X, d) such that (Xnk , dnk) → (X, d) in the Gromov-Hausdorff
topology. By [23, Lemma A.1] (or Proposition 1.5 applied with µ = 0 and η a constant
curve) we can find a compact metric space (W,D) and isometric embeddings Xnk →W

for k ∈ N and X → W such that if we identify Xnk and X with their embeddings, we
have Xnk → X in the D-Hausdorff metric.

By conditions 2 and 3, the Prokhorov theorem, and the Arzéla-Ascoli theorem, after
possibly passing to a further subsequence we can find a finite Borel measure µ on X

and a curve η in X such that µnk → µ in the D-Prokhorov metric and ηnk → η in the
D-uniform metric as k →∞. Therefore Xnk → X in the GHPU metric.

Lemma 2.7 (Completeness). The pseudometric space (MGHPU, dGHPU) is complete.

Proof. Let Xn = (Xn, dn, µn, ηn) for n ∈ N be a Cauchy sequence with respect to dGHPU.
It is clear that K = {Xn}n∈N satisfies the conditions of Lemma 2.6, so has a convergent
subsequence. The Cauchy condition implies that in fact the whole sequence converges.

Next we check separability.

Lemma 2.8 (Separability). The space MGHPU with the metric dGHPU is separable.

The proof of Lemma 2.8 is slightly more difficult than one might expect. The reason
for this is that we cannot simply approximate elements of MGHPU by finite metric spaces,
since such spaces do not admit non-trivial continuous paths. We get around this as
follows. Given X = (X, d, µ, η) ∈ MGHPU, we first find a finite subset A of X equipped with
a measure µ0 such that (A, d|A, µ0) closely approximates (X, d, µ) it in the Hausdorff and
Prokhorov metrics. We then isometrically embed (A, d|A) into (a very high dimensional)
Euclidean space equipped with the L∞ distance and draw in a piecewise linear path
which approximates η.

Proof of Lemma 2.8. Let F be the set of (X, d, µ, η) ∈ MGHPU for which the following is
true.

• X is a subset of RN for some N ∈ N and d is the restriction of the L∞ metric d∞ on
RN (i.e. d∞(z, w) = maxi∈[1,N ]Z |zi − wi|).

• X is the union of finitely many points in QN with and finitely many linear segments
with endpoints in QN .

• The measure µ is supported on X ∩ QN , and µ(x) ∈ Q ∩ [0,∞) for each x ∈ X ∩ QN .

• The curve η is the concatenation of finitely many (possibly degenerate) linear
segments with endpoints in QN , each traversed at a constant d∞-speed which
belongs to Q ∩ [0,∞).
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It is clear that F is countable. We claim that F is dense in MGHPU. It is clear that F is
dense in the set F̂ ⊂ MGHPU which is defined in the same manner as F but with every
instance of Q replaced by R. Hence it suffices to show that F̂ is dense in MGHPU.

Suppose that we are given X = (X, d, µ, η) ∈ MGHPU and ε > 0. We will construct
X̂ = (X̂, d̂, µ̂, η̂) ∈ F̂ which approximates X in the GHPU sense. We first define a finite
subset A of X as follows.

• Let A1 be a finite ε-dense subset of X.

• Let µ0 be a finitely supported measure on X with dPd (µ, µ0) ≤ ε (which can be
obtained, e.g., by sampling M i.i.d. points from µ for M large and defining the
mass of each to be µ(X)/M ). Let A2 be the support of µ.

• Let K ∈ N be chosen so that d(η(s), η(t)) ≤ ε whenever s, t ∈ R with |t− s| ≤ 1/K

and d(η(±t), η(±δ−1)) ≤ ε whenever t ≥ K. For k ∈ [−K2,K2]Z let yk := η(k/K).
Let

A3 := {y−K2 , . . . , yK2}.

• Let A := A1 ∪A2 ∪A3.

It is not hard to see (and is proven, e.g., in [39, Theorem 15.7.1]) that there is an
isometric embedding ι of the metric space (A, d|A) into (RN , d∞) for N = #A (here we
recall that d∞ is the L∞ metric on RN ). For k ∈ [−K2,K2]Z, let η̂k be the straight line
path in RN from ι(yk−1) to ι(yk) with constant d∞-speed which is traversed in 1/K units
of time. By our choice of the yk’s, η̂k ∈ Bε(ι(yk); d∞). Let η̂ be the concatenation of the
paths η̂k.

Let X̂ := ι(A)∪ η̂. Let d̂ := d∞|X̂ . Let µ̂ be the measure on X̂ which is the pushforward

of µ0 under ι. Then X̂ := (X̂, d̂, µ̂, η̂) ∈ F̂.
It remains only to compare X with X̂. Let W be the set obtained from X t X̂ by

identifying A ⊂ X with ι(A) ⊂ X̂. Let D be the metric on W which restricts to d (resp. d̂)
on X (resp. X̂) and which is defined for x ∈ X and x̂ ∈ X̂ by

dZ(x, x̂) = dZ(x̂, x) = inf
a∈A

(
d(x, a) + d̂(ι(a), x̂)

)
.

Note that this is well defined and satisfies the triangle inequality since ι is an isometry.
By our choices of A, µ0, K, and the path η̂, it follows that the GHPU distortion of (W,D)

and the natural inclusions of X and X̂ into W is at most 4ε, so since ε > 0 is arbitrary we
obtain the desired separability.

Proof of Proposition 1.3. This follows by combining Lemmas 2.4, 2.5, 2.7, and 2.8.

2.3 Proofs for the local GHPU metric

In this subsection we will prove Propositions 1.7 and 1.9. These statements will, for
the most part, be deduced from the analogous statements in the compact case proven in
Section 2.2. We first state a lemma which will enable us to relate GHPU convergence
and local GHPU convergence. For the statement of this lemma and in what follows, it
will be convenient to have the following definition.

Definition 2.9 (Good radius). Let X = (X, d, µ, η) ∈ MGHPU
∞ and r > 0. We say that r is a

good radius for X if

µ(∂Br(η(0); d)) = 0 and |η−1(∂Br(η(0); d))| = 0, (2.4)

where |η−1(∂Br(η(0); d))| is the Lebesgue measure of η−1(∂Br(η(0); d)).

Since the sets ∂Br(η(0); d) for r > 0 are disjoint, it follows that all but countably many
radii are good.
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Lemma 2.10. Let X = (X, d, µ, η) ∈ MGHPU and suppose that for each ζ > 0, each point
x ∈ X can be joined to η(0) by a path of d-length at most d(η(0), x) + ζ. Let R > r > 0

and suppose that the radius r is good, in the sense of (2.4). For each ε > 0, there exists
δ > 0 depending only on ε and the R-truncation BRX (Definition 1.6) such that the
following is true. Let X̃ = (X̃, d̃, µ̃, η̃) ∈ MGHPU and suppose that dt is a metric on X t X̃
which restricts to d on X and d̃ on X̃ and whose GHPU distortion (recall (2.2)) satisfies
DisGHPU,t

X,X̃
(dt) ≤ δ. Then

DisGHPU,t
BrX,BrX̃

(dt) ≤ ε. (2.5)

The proof of Lemma 2.10 is a straightforward but tedious application of the definitions
together with the triangle inequality, so we omit it. In light of Lemma 2.3, Lemma 2.10

implies that if dGHPU(X, X̃) < δ, then dGHPU
(
BrX,BrX̃

)
≤ ε.

As a consequence of Lemma 2.10, we see that local GHPU convergence is really
just GHPU convergence of curve-decorated metric measure spaces truncated at an
appropriate sequence of metric balls.

Lemma 2.11. Let X and {Xn}n∈N be elements of MGHPU
∞ . If {rk}k∈N is a sequence

of positive real numbers tending to ∞ and the rk-truncations (Definition 1.6) satisfy
BrkX

n → BrkX in the GHPU topology for each k ∈ N, then Xn → X in the local GHPU
topology. Conversely, if Xn → X in the local GHPU topology, then for each good radius r
(Definition 2.9), we have BrX

n → BrX in the GHPU topology.

Proof. Let R be the set of good radii r > 0 for X. Recall that (0,∞) \ R is countable.

Suppose first that we are given a sequence rk →∞ such that BrkX
n → BrkX in the

GHPU topology for each k ∈ N. By Lemma 2.10 applied with BrkX for rk > r in place of
X, we find that for each r ∈ R, dGHPU(BrX

n,BrX)→ 0. By the dominated convergence
theorem applied to the formula (1.5), it follows that Xn → X in the local GHPU topology.

Conversely, suppose Xn → X in the local GHPU topology and let r ∈ R. By
Lemma 2.10 applied with R = r + 1, and BRX for R > r + 1 in place of X, for each
k ∈ N and each ε > 0, there exists δ = δ(k, δ) > 0 such that whenever R ≥ r + 1 and
dGHPU(BRX

n,BRX) ≤ δ, we have dGHPU(BrX
n,BrX) ≤ ε. Local GHPU convergence

implies that for large enough n ∈ N, there exists R ≥ r + 1 with dGHPU(BRX
n,BRX) ≤ δ.

Hence BrX
n → BrX.

Proof of Proposition 1.9. It is clear from Lemma 2.11 that the existence of (W,D) and
isometric embeddings as in the statement of the lemma implies that Xn → X in the local
GHPU topology.

Conversely, suppose Xn → X in the local GHPU topology. The proof of this direction
is a generalization of that of Proposition 1.5. To lighten notation, for r > 0 and n ∈ N we
write

Bnr := Br(η
n(0); dn) and Br := Br(η(0); d).

Choose a sequence of good radii rk → ∞ for X. By Lemma 2.11, we have, in the
notation of Definition 1.6, BrkX

n → BrkX for each n ∈ N. For each k ∈ N, choose Nk ∈ N
such that for n ≥ Nk, we have dGHPU

∞ (BrkX
n,BrkX) ≤ 1/k. For n ∈ N, let kn be the

largest k ∈ N such that Nk ≤ n, and note that kn →∞ as n→∞.

By Lemma 2.3, for each n ∈ N there exists a metric d̃nt on Brkn
tBnrkn

which restricts
to dn on Bnrkn

and d on Brkn
and whose GHPU distortion is at most 1/kn. We now extend
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d̃nt to a metric dnt on X tX by the formula

dnt(x, y) :=





d(x, y) x, y ∈ X
dn(x, y) x, y ∈ Xn

inf
(u,v)∈Brkn

×Bn
rkn

(
d(x, u) + dn(y, v) + d̃nt(u, v)

)
x ∈ X, y ∈ Xn

together with the requirement that dnt(y, x) = dnt(x, y) when y ∈ X and x ∈ Xn. It is
easily verified that dnt is a metric on X tXn and that dnt|Brkn

tBn
rkn

= d̃nt.

As in the proof of Proposition 1.5, let W := X t
⊔∞
n=1X

n and identify X and each Xn

with its natural inclusion into W . We define a metric D on W as follows. If x, y ∈W such
that x, y ∈ X tXn for some n ∈ N, we set D(x, y) = dnt(x, y). If x ∈ Xn and y ∈ Xm for
some n,m ∈ N, we set

D(x, y) = inf
u∈X

(dnt(x, u) + dmt (u, y)).

Then D is a metric on W which restricts to dn on each Xn and to d on X.
For each n ∈ N, the restriction of D to Brkn

t Bnrkn
agrees with the corresponding

restriction of dnt, which agrees with d̃nt. Since the GHPU distortion of d̃nt is at most
1/kn → 0 and rkn →∞ as n→∞, it follows from Lemma 2.10 that Xn → X in the D-local
HPU topology.

By possibly replacing W with its metric completion, we can take W to be complete.
Since (X, d) and each (Xn, dn) is boundedly compact (since they are locally compact
length spaces and by the Hopf-Rinow Theorem), it follows easily from D-Hausdorff metric
convergence of the metric balls Br(ηn(0); dn) that each metric ball in X with finite radius
is totally bounded, hence compact.

Next we record a compactness criterion for the local GHPU metric which will be used
to prove completeness.

Lemma 2.12 (Compactness criterion). Let K be a subset of MGHPU
∞ and suppose that

there is a sequence rk →∞ such that for each k ∈ N, the set of rk-truncations BrkK =

{BrkX : X ∈ K} (Definition 1.6) satisfies the conditions of Lemma 2.6 with BrkX in
place of X, i.e. BrkK is totally bounded, has bounded total mass, and is equicontinuous.
Then every sequence in K has a subsequence which converges with respect to the local
GHPU metric.

Proof. By the compactness criterion for the local Gromov-Hausdorff-Prokhorov topol-
ogy [2, Theorem 2.9], the set of metric measure spaces {(X, d, µ, η) : (X, d, µ, η) ∈ K}
is pre-compact with respect to the pointed local Gromov-Hausdorff-Prokhorov topology.
Hence for any sequence {Xn = (Xn, dn, µn, ηn)}n∈N of elements of K, there exists a
sequence nk → ∞ and a locally compact pointed length space equipped with a finite
measure (X, d, µ, x) such that (Xnk , dnk , µnk , ηnk(0)) → (X, d, µ, x) in the pointed local
Gromov-Hausdorff-Prokhorov topology.

By the analog of Proposition 1.9 for local Gromov-Hausdorff-Prokhorov convergence
(which follows from Proposition 1.5 by taking η to be a constant curve) we can find
a boundedly compact metric space (W,D) and isometric embeddings of (Xnk , dnk) for
k ∈ N and (X, d) into (W,D) such that if we identify these spaces with their embed-
dings, then ηnk(0) → x, Br(ηnk(0); dnk) → Br(x; d) in the D-Hausdorff metric for each
r > 0, and µnk |Br(ηn(0);dn) → µ|Br(η(0);d) in the D-Prokhorov metric for each r > 0

such that µ(∂Br(η(0); d)) = 0. By the Arzéla-Ascoli theorem and a diagonalization ar-
gument, after possibly passing to a further subsequence we can find a curve η in X

such that (Xnk , dnk , µnk , ηnk) → (X, d, µ, η) in the D-HPU sense (Definition 1.8), so by
Proposition 1.9 Xnk → (X, d, µ, η) in the local GHPU metric.
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Proof of Proposition 1.7. Symmetry and the triangle inequality are immediate from the
formula (1.5) and the analogous properties for the GHPU metric, so dGHPU

∞ is a pseudo-
metric.

The fact that dGHPU
∞ (X1,X2) = 0 implies that X1 and X2 agree as elements of

M
GHPU

∞ follows from Proposition 1.9, Lemma 2.2, and the same argument used to prove
Lemma 2.5.

Completeness follows from Lemma 2.12 (c.f. the proof of Lemma 2.7).
Finally, we check separability. We know that MGHPU is separable, so the set MGHPU ∩

MGHPU
∞ consisting of length spaces in MGHPU is separable with respect to the GHPU

metric. By Lemma 2.11, MGHPU∩MGHPU
∞ is also separable with respect to the local GHPU

metric. So, it suffices to show that MGHPU ∩ MGHPU
∞ is dense in MGHPU

∞ .
We cannot approximate an element of X = (X, d, µ, η) ∈ MGHPU

∞ by the r-truncation
BrX since Br(η(0); d) may not be a length space with the restricted metric. We instead
construct a modified version of BrX which is a length space. Given r > 0, let Xr be the
quotient space of Br(η(0); d) under the equivalence relation which identifies ∂Br(η(0); d)
to a point. Let d̃r be the quotient metric on Xr and let pr : Br(η(0); d) → Xr be the
quotient map.

We note that d̃r is a metric, not a pseudometric since every point of Br(η(0); d) \
∂Br(η(0); d) lies at positive distance from ∂Br(η(0); d). Furthermore, the triangle inequal-
ity implies that the restriction of d̃r to pr(Br/3(η(0); d)) coincides with the corresponding
restriction of d, pushed forward under pr.

Let dr be the smallest length metric on Xr which is greater than or equal to d̃r.
Equivalently, for x, y ∈ Xr, dr(x, y) is the infimum of the d̃r-lengths of paths from x to
y contained in Xr. Then Xr is complete and totally bounded with respect to dr, so is
compact with respect to dr.

Since d is a length metric, we find that the restriction of dr to pr(Br/3(η(0); d))

coincides with the corresponding restriction of d, pushed forward under pr.
Let

Xr := (Xr, dr, (pr)∗µ, pr ◦Brη),

with Brη as in Definition 1.6. Then Xr ∈ MGHPU ∩MGHPU
∞ and Br/3Xr agrees with Br/3X

as elements of M
GHPU

. Hence dGHPU
∞ (X,Xr) ≤ e−r/3. Since r > 0 is arbitrary, we obtain

the desired density.

2.4 Conditions for GHPU convergence using the m-fold Gromov-Prokhorov
topology

In this subsection we prove a lemma giving conditions for GHPU convergence which
will be used in subsequent sections to prove convergence of uniform quadrangulations
with boundary to the Brownian disk in the GHPU topology. To state the lemma we first
need to consider a variant of the Gromov-Prokhorov topology [23], which we now define.

For m ∈ N let MGP
m be the space of (m+ 2)-tuples (X, d, µ1, . . . , µm) where (X, d) is a

separable metric space and {µr}r∈[1,m]Z are finite Borel measures on X. Given k ∈ N and
r ∈ [1,m]Z let {xj+(r−1)k}j∈[1,k]Z be i.i.d. samples from µr and let Mk(X, d, µ1, . . . , µm) be
the km× km matrix whose i, jth entry is d(xi, xj) for i, j ∈ [1, km]Z. We define the m-fold
Gromov-Prokhorov (GP) topology on MGP to be the weakest one for which the functional

(X, d, µ1, . . . , µm) 7→ E[φ(Mk(X, d, µ1, . . . , µm), µ1(X), . . . , µm(X))] (2.6)

is continuous for each bounded continuous function φ : R(km)2 × Rm → R. Note that
convergence in the m-fold GP topology is equivalent to convergence of each of these
functionals.
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If x ∈ X is a marked point, we set x0 = x and define M•k (X, d, µ1, . . . , µm, x) to be the
be the random (km+1)×(km+1) matrix whose (i, j)th entry is d(xi, xj) for i, j ∈ [0, km]Z,
where xi for i ∈ [1, km]Z is defined as above. We define the m-fold Gromov-Prokhorov
(GP) topology on pointed metric spaces with m finite Borel measures to be the weakest
one for which the functional

(X, d, µ1, . . . , µm, x) 7→ E[φ(M•k (X, d, µ1, . . . , µm, x), µ1(X), . . . , µm(X))] (2.7)

is continuous for each bounded continuous function φ : R(km+1)2 × Rm → R.
Like the Gromov-Prokhorov topology, the m-fold Gromov-Prokhorov topology also

separates points.

Lemma 2.13. Let (X, d, µ1, . . . , µm) and (X̃, d̃, µ̃1, . . . , µ̃m) be elements of MGP
m . Suppose

that the functionals (2.6) agree on (X, d, µ1, . . . , µm) and (X̃, d̃, µ̃1, . . . , µ̃m) for each k ∈ N.
Suppose further that the union of the closed supports of µr (resp. µ̃r) for r ∈ [1,m]Z
is all of X (resp. X̃). Then there is an isometry f : X → X̃ with f∗µr = µ̃r for each
r ∈ [1,m]Z. If X and X̃ are endowed with marked points x and x̃, respectively, for which
the functionals (2.7) agree for each k ∈ N, we can also take f to satisfy f(x) = x̃.

Proof. We treat the unpointed case; the pointed case is treated in an identical manner.
For r ∈ [1,m]Z, let {xjr}j∈N and {x̃jr}j∈N be i.i.d. samples from µr and µ̃r, respectively.
By our assumption about the supports of the measures µr and µ̃r, the sets {xjr : (r, j) ∈
[1,m]Z × N} and {x̃jr : (r, j) ∈ [1,m]Z × N} are a.s. dense in X and X̃, respectively. The
agreement of the functionals (2.6) implies that µr(X) = µ̃r(X̃) for each r ∈ [1,m]Z.

Furthermore, the collections of distances {d(xjr, x
j′

r′) : (r, j), (r′, j′) ∈ [1,m]Z × N} and

{d̃(x̃jr, x̃
j′

r′) : (r, j), (r
′, j′) ∈ [1,m]Z × N} agree in law, so we can couple everything in such

a way that these collections of distances agree a.s. Let f : {xjr : (r, j) ∈ [1,m]Z × N} → X̃

be the function which sends each xrj to x̃rj . By our choice of coupling f is distance

preserving, and since the domain and image of f are a.s. dense in X and X̃, respectively,
f extends by continuity to an isometry X → X̃.

For each N ∈ N, the set {xjr : (r, j) ∈ [1,m]Z × [N,∞)Z} is still a.s. dense in X, so the
restriction of f to this set a.s. determines f . By the Kolmogorov zero-one law, f is a.s.
equal to a certain deterministic map X → X̃. In particular, for each r ∈ [1,m]Z and each
A ⊂ X, we have

µr(A) = µr(X)P
[
x1r ∈ A

]
= µ̃r(X)P[x̃r1 ∈ f(A)] = µ̃r(f(A)),

so f∗µr = µ̃r.

We now state our condition for GHPU convergence.

Lemma 2.14. Let Xn = (Xn, dn, µn, ηn) for n ∈ N and X = (X, d, µ, η) be elements of
MGHPU. Suppose that the curves ηn for n ∈ N (resp. η) are each constant outside some
bounded interval [0, Tn] (resp. [0, T ]). Let νn (resp. ν) be the pushforward of Lebesgue
measure on [0, Tn] (resp. [0, T ]) under ηn (resp. η). Suppose the following conditions are
satisfied.

1. (Xn, dn, η(0))→ (X, d, η(0)) in the pointed Gromov-Hausdorff metric.

2. (Xn, dn, µn, νn, ηn(0))→ (X, d, µ, ν, η(0)) in the 2-fold GP topology.

3. The curves {ηn}n∈N are equicontinuous, i.e. for each ε > 0 there exists δ > 0

such that for each n ∈ N, we have dn(ηn(s), ηn(t)) ≤ ε whenever s, t ∈ [0, Tn] with
|s− t| ≤ δ.

4. The closed support of µ is all of X.
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5. η is a simple curve.

Then Xn → X in the GHPU topology.

Proof. By Lemma 2.6 and condition 1, we can find a sequence N ⊂ N and X̃ =

(X̃, d̃, µ̃, η̃) ∈ MGHPU such that (X, d, η(0)) and (X̃, d̃, η̃(0)) are isometric as pointed metric
spaces and Xn → X in the GHPU topology. By Proposition 1.5, there is a compact metric
space (W,D), and isometric embeddings of Xn for n ∈ N and X into (W,D) such that if
we identify Xn and X with their images under these embeddings, we have Xn → X in
the D-HPU sense as N 3 n→∞.

From the convergences νn → ν̃, µn → µ̃, and ηn(0)→ η̃(0), we infer that (Xn, dn, µn,

νn, ηn(0))→ (X̃, d̃, µ̃, ν̃, η̃(0)) in the 2-fold GP topology. Hence condition 4 and Lemma 2.13
imply that we can find a distance-preserving map f : X → X̃ (whose range is the union
of the closed supports of ν̃ and µ̃) such that f∗µ̃ = µ, f∗ν̃ = ν, and f(η̃(0)) = η(0). Since
(X, d) and (X̃, d̃) are isometric as metric spaces and a compact metric space cannot be
isometric to a proper subset of itself, we find that f is in fact surjective, so is an isometry
from X to X̃.

We claim that also f ◦ η̃ = η, which will imply that (X, d, µ̃, η̃) = (X, d, µ, η) as elements

of M
GHPU

.

Since each ηn is constant outside of [0, Tn] and Tn → T , we find that η̃ is constant
outside of [0, T ]. It is clear that ν̃ is supported on η̃. For 0 ≤ a ≤ b ≤ T we have ηn([a, b])→
η̃([a, b]) in the D-Hausdorff distance, so since νn → ν̃ it follows that ν̃(η̃([a, b])) ≥ b− a.
By condition 5 and the existence of the isometry f above, the measure ν̃ has no point
masses so for each ε > 0 we can find δ > 0 such that ν̃(Bδ(η̃([a, b]))) ≤ b− a+ ε. Hence
in fact ν̃(η̃([a, b])) = b− a. Therefore ν̃ is the pushforward under η̃ of Lebesgue measure
on [0, T ].

The map f takes the closed support of ν̃ to the closed support of ν, so takes the
range of η̃ to the range of η. Since f∗ν̃ = ν and f(η̃(0)) = η(0), for each t ∈ [0, T ] the
set f(η̃([0, t])) is a connected subset of η̃ containing 0, with ν̃-mass equal to t. Therefore
η̃−1(f(η([0, t]))) = [0, t]. In other words, the map η̃−1 ◦ f ◦η is the identity, so f ◦η = η̃.

3 Schaeffer-type constructions

In this section we will review constructions from the planar map literature which are
needed for the proofs of our scaling limit results. In Sections 3.1 and 3.2, respectively,
we review the Schaeffer-type constructions of uniform quadrangulations with boundary
and the UIHPQS. In Section 3.3, we record some distance estimates in terms of the
encoding functions in these constructions. In Section 3.4, we recall how to “prune” the
UIHPQ to get an instance of the UIHPQS. In Section 3.5, we recall the definition of the
Brownian disk from [10].

3.1 Encoding quadrangulations with boundary

Recall from Section 1.4 the set Q•(n, l) of boundary-rooted, pointed quadrangulations
with n internal faces and 2l boundary edges. In this subsection we review a variant of the
Schaeffer bijection for elements of Q•(n, l) which is really a special case of the Bouttier-
Di Francesco-Guitter bijection [12]. Our presentation is similar to that in [19, Section 3.3]
and [10, Section 3.3]. See Figure 2 for an illustration.

For l ∈ N, a bridge of length 2l is a function b0 : [0, 2l]Z → Z such that b0(j+1)−b0(j) ∈
{−1, 1} for each j ∈ [0, 2l − 1]Z and b0(0) = b0(2l) = 0. For a bridge b0, we associate a
function b : [0, l]Z → Z as follows. We set j0 = 0 and for k ∈ [1, l]Z we let jk be the kth
smallest j ∈ [0, 2l − 1]Z for which b0(j + 1)− b0(j) = −1. We then let b(k) := b0(jk).
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Figure 2: Illustration of the Schaeffer-type encoding of a boundary-rooted, pointed
quadrangulation with boundary (Q, e0, v∗). The region enclosed by Q is shown in light
blue. The graph F containing the trees tk is the union of the dashed red lines and the
black vertices. The red vertices correspond to upward steps of b0, and do not belong
to F or Q. Each vertex is labeled with either its label L(v) or the corresponding value
of b0. The black edges are part of the interior of Q and the blue edges are part of ∂Q.
The oriented boundary root edge e0 is indicated with an arrow.

For n, l ∈ N, a treed bridge of area n and boundary length 2l is an (l + 1)-tuple
(b0; (t0, v0, L0), . . . , (tl−1, vl−1, Ll−1)) where b0 is a bridge of length 2l and (tk, vk, Lk) for
k ∈ [0, l − 1]Z is a rooted plane tree with a label function Lk : V(tk) → Z satisfying
Lk(v) − Lk(v′) ∈ {−1, 0, 1} whenever v and v′ are joined by an edge and Lk(vk) = b(k),
where b is constructed from b0 as above, such that the total number of edges in the trees
tk is n. Let T •(n, l) be the set of treed bridges of area n and boundary length 2l, together
with a sign ξ ∈ {−,+} (which will be used to determine the orientation of the root edge).

We associate a treed bridge with a rooted, labeled planar map (F, e0, L) with two
faces as follows. Draw an edge from vk to vk+1 for each k ∈ [0, l − 2]Z and an edge from
vl−1 to v0. This gives us a cycle which we embed into C in such a way that the vertices
vk all lie on the unit circle. We extend this embedding to the trees tk in such a way that
each is mapped into the unit disk. This gives us a planar map F with an inner face of
degree 2n+ l (containing all of the trees tk) and an outer face of degree l. Let e0 be the
oriented edge of F from vl−1 to v0. Let L be the label function on vertices of F inherited
from the label functions Lk for k ∈ [0, l − 1]Z.

We now associate a rooted, pointed quadrangulation with boundary to (F, e0, L) and
the sign ξ via a variant of the Schaeffer bijection. Let p : [0, 2n + l]Z → V(F ) be the
contour exploration of the inner face of F started from v1, i.e. the concatenation of the
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contour explorations of the trees t0, . . . , tl−1. Also define (by a slight abuse of notation)
L(i) = L(p(i)). Note that each p(i) for i ∈ [0, 2n+ l]Z is associated with a unique corner
of the inner face of F (i.e. a connected component of Bε(p(i)) \ F for small ε > 0). Let v∗
be an extra vertex not connected to any vertex of F , lying in the interior face of F . For
i ∈ [0, 2n+ l]Z, define the successor s(i) of i to be the smallest i′ ≥ i (with elements of
[0, 2n + l]Z viewed modulo 2n + l) such that L(i′) = L(i) − 1, or let s(i) = ∞ if no such
i′ exists. For i ∈ [0, 2n + l]Z, draw an edge from (the corner associated with) p(i) to
(the corner associated with) p(s(i)), or an edge from p(i) to v∗ if s(i) =∞. Then, delete
all of the edges of F to obtain a map Q. We take Q to be rooted at the oriented edge
e0 ∈ E(∂Q) from v0 to p(s(0)) (if ξ = −) or from p(s(0)) to v0 (if ξ = +), viewed as a
half-edge on the boundary of the external face.

As explained in, e.g., [19, Section 3.2] and [10, Section 3.3], this construction defines
a bijection from T •(n, l) to Q•(n, l).
Remark 3.1. It is explained in [19, Section 3.3.1] that there is a canonical boundary
path λ : [1, 2l]Z → E(∂Q) starting and ending at the terminal vertex v0 of the root edge
e0 which traces all of the edges in ∂Q in cyclic order, defined as follows. Recall the
definition of the times jk for k ∈ Z at which the walk b0 has a downward step. For each
k ∈ [1, l]Z, there is a unique connected component of the complement of Q in the inner
face of the map F which contains the edge from vk to vk+1 (or from vl to v1 if k = l)
on its boundary. It is easy to see from the Schaeffer bijection that there are precisely
jk+1 − jk + 1 vertices and jk+1 − jk edges of ∂Q on the boundary of this component,
counted with multiplicity. The ordered sequence of labels of the vertices coincides
with the ordered sequence of values of b0(j) for j ∈ [jk, jk+1]Z (which by definition of
jk is the same as b(jk), b(jk)− 1, b(jk), b(jk + 1), . . . , b(jk) + jk+1 − jk − 2 = b(jk+1)). For
j ∈ [jk, jk+1 − 1]Z, we let λ(j) be the jth edge along the boundary of this component, in
order started from vk and counted with multiplicity. Then λ is a bijection from [1, 2l]Z to
the set of edges of ∂Q if we count the latter according to their multiplicity in the external
face.

As in the case of the ordinary Schaeffer bijection, the above construction can also be
phrased in terms of walks. For i ∈ [0, 2n + l]Z, let ki ∈ [0, l − 1]Z be chosen so that the
vertex p(i) belongs to the tree tki and let

C(i) := dist(p(i), vki ; tki)− ki, ∀i ∈ [0, 2n+ l − 1]Z and C(2n+ l) = −l. (3.1)

Then C is the concatenation of the contour functions of the trees tk, but with an extra
downward step whenever it moves to a new tree. Let

I(k) := min{i ∈ [0, 2n+ l]Z : C(i) = −k}, ∀k ∈ [0, l]Z. (3.2)

Then for k ∈ [0, l − 1]Z, I(k) is the first time i for which p(i) ∈ tk and the range of I
is precisely the set of vertices lying on the outer boundary of the graph F . Also let
L0(i) := L(i) − b(ki). To describe the law of the pair (C,L0) we need the following
definition.

Definition 3.2. Let [a, b]Z be a (possibly infinite) discrete interval and let S : [a, b]Z → Z
be a (deterministic or random) path with S(i)−S(i−1) ∈ {−1, 0, 1} for each i ∈ [a+1, b]Z.
The head of the discrete snake driven by S is the function H : [a, b]Z → Z whose
conditional law given S is described as follows. We set H(a) = 0. Inductively, suppose
i ∈ [a+ 1, b]Z and H(i) has been defined for j ∈ [a, i− 1]Z. If S(i)− S(i− 1) ∈ {−1, 0}, let
i′ be the largest j ∈ [a, i − 1]Z for which H(i) = H(i′); or i′ = −∞. If i′ 6= −∞, we set
H(i) = H(i′). Otherwise, we sample H(i)−H(i− 1) uniformly from {−1, 0, 1}.

The following lemma is immediate from the definitions and the fact that the above
construction is a bijection.
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Lemma 3.3. If we sample (Q, e0, v∗) uniformly from Q•(n, l), then the law of C is that of
a simple random walk started from 0 and conditioned to reach −l for the first time at time
2n+l. The process L0 is the head of the discrete snake driven by i 7→ C(i)−minj∈[1,i]Z C(j).
The pair (C,L0) is independent from b0.

3.2 Encoding the UIHPQ

In this subsection we describe an infinite-volume analog of the bijection of Section 3.1
which encodes a UIHPQ which is alluded to but not described explicitly in [19, Sec-
tion 6.1] (see also [15] for a different encoding). See Figure 3 for an illustration.
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Figure 3: Illustration of the Schaeffer-type encoding of the UIHPQ. The graph F∞
containing the trees t∞,k is the union of the dashed red lines and the black vertices. The
red vertices correspond to upward steps of b0∞, and do not belong to F∞ or Q∞. Each
vertex is labelled with either its label L∞(v) or the corresponding value of b0∞. The black
edges are part of the interior of the UIHPQ, and the blue edges are part of its boundary.
Note that ∂Q∞ is not a simple path. The oriented boundary root edge e∞ is indicated
with an arrow.

Let b0∞ : Z→ N0 be a two-sided simple random walk reflected at 0 (with increments
uniform in {−1, 1}). Let {jk}k∈Z be the ordered set of times for which b0∞(j+1)−b0∞(j) =

−1, shifted so that j1 is the smallest j ≥ 0 for which b0∞(j + 1) − b0∞(j) = −1. Let
b∞(k) := b0∞(jk).

Conditional on b∞, let {(t∞,k, v∞,k, L∞,k)}k∈Z be a bi-infinite sequence of independent
triples where each (t∞,k, v∞,k) is a rooted Galton-Watson tree whose offspring distribu-
tion is geometric with parameter 1/2 and, conditional on t∞,k, each L∞,k is uniformly
distributed on the set of label functions V(t∞,k)→ Z which satisfy L∞,k(v∞,k) = b∞(k)

and |L∞,k(u)− L∞,k(v)| ≤ 1 whenever u, v ∈ V(t∞,k) are connected by an edge.
We define a graph F∞ as follows. Equip Z with the standard nearest-neighbor graph

structure and embed it as the real line in C. For k ∈ Z, embed the tree t∞,k into the
upper half-plane in such a way that the vertex v∞,k is identified with k ∈ Z and none of
the trees t∞,k intersect each other or intersect R except at their root vertices. The graph
F 0
∞ is the union of Z and the trees t∞,k for k ∈ Z with this graph structure, with each

integer jk identified with the corresponding root vertex v∞,k.
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We define a label function L∞ on the vertices of F∞ by setting L∞|V(t∞,k) = L∞,k
for each k ∈ Z. We let p∞ : Z → V(F∞) be the contour exploration of the upper face
of F∞, shifted so that p∞ starts exploring the tree t∞,1 at time 0. We then define the
successor s∞(i) of each time i ∈ Z exactly as in the Schaeffer bijection, except that
there is no need to add an extra vertex since a.s. lim infi→∞ L∞(i) = −∞. We then draw
an edge connecting each vertex p∞(i) to p∞(s∞(i)) for each i ∈ Z to obtain an infinite
quadrangulation with boundary Q∞, which we take to be rooted at the oriented edge
e∞ which goes from v∞,0 to p∞(s∞(0)). Then (Q∞, e∞) is an instance of the UIHPQ.
Furthermore, our construction of F∞ gives rise to an embedding of Q∞ into H.

We note that the obvious analog of Remark 3.1 holds in this setting.

Remark 3.4. There is a canonical choice of boundary path λ∞ : Z→ E(∂Q) which hits
the terminal vertex v∞ of the root edge e∞ at time 0 and which traces all of the edges in
∂Q in cyclic order, defined as follows. Recall the definition of the times jk for k ∈ Z at
which the walk b0∞ has a downward step. For each k ∈ Z, there is a unique connected
component of the complement of Q∞ in the upper face of the map F∞ which contains the
edge from v∞,k to v∞,k+1 on its boundary. There are precisely jk+1 − jk + 1 vertices and
jk+1− jk edges of ∂Q∞ on the boundary of this component, counted with multiplicity. For
j ∈ [jk, jk+1 − 1]Z, we let λ∞(j) be the jth edge along the boundary of this component,
in order started from v∞,k and counted with multiplicity. Then λ∞ is a bijection from Z
to the set of edges of ∂Q∞ if we count the latter according to their multiplicity in the
external face.

As in Section 3.1, we now define random paths which encode (Q∞, e∞). For i ∈ Z, let
ki be chosen so that the vertex p∞(i) belongs to the tree t∞,ki and let

C∞(i) := dist(p∞(i), v∞,ki ; t∞,ki)− ki, ∀i ∈ Z. (3.3)

Let
I∞(k) := min{i ∈ Z : C∞(i) = −k}, ∀k ∈ Z. (3.4)

Then I∞(k) is the first time i for which p∞(i) ∈ t∞,k and the range of I∞ is the set of
vertices lying on the outer boundary of the graph F∞. We let L∞(i) := L∞(p∞(i)) and
L0
∞(i) := L∞(i)− b∞(ki).

Lemma 3.5. The pair (C∞, L
0
∞) is independent from b0∞ and its law can be described

as follows. The law of C∞|N0 is that of a simple random walk started from 0 and the
law of C∞(−·)|N0 is that of a simple random walk started from 0 and conditioned to
stay positive for all time (see, e.g., [6] for a definition of this conditioning for a large
class of random walks). Furthermore, L0

∞ is the head of the discrete snake driven by
i 7→ C∞(i)−minj∈(−∞,i]Z C∞(j) (Definition 3.2).

Proof. The process C∞ is the concatenation of the contour functions of countably many
i.i.d. Galton-Watson trees with offspring distribution given by a geometric random
variable with parameter 1/2, separated by downward steps. Each of these contour
functions has the law of a simple random walk run until the first time it hits 0. Therefore,
C∞ has the law described in the statement of the lemma. Since each L0

∞|[I(k),I(k+1)−1]Z
is the head of the discrete snake driven by C∞|[I(k),I(k+1)−1]Z , we see that L0

∞ is the head
of the discrete snake driven by C∞. The pair (C∞, L

0
∞) is determined by the labeled

trees {(t∞,k, v∞,k, L∞,k)}k∈Z, so is independent from b0∞.

3.3 Distance bounds for quadrangulations with boundary

In this subsection we record elementary upper and lower bounds for distances in
quadrangulations with boundary in terms of the encoding processes in the Schaeffer
bijection. We start with an upper bound.
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Lemma 3.6. Suppose we are in the setting of Section 3.1. In particular, let (Q, e0, v∗) ∈
Q•(n, l), let (C,L, b) be its Schaeffer encoding process, and let p : [0, 2n+ l]Z → V(Q) be
the projection map. For i1, i2 ∈ Z, we have

dist(p(i1),p(i2);Q) ≤ L(i1) + L(i2)− 2 min
j∈[i1∧i2,i1∨i2]Z

L(j) + 2

Proof. In the finite-volume case, this follows from [40, Lemma 3] (which gives the
analogous estimate in a more general setting). The infinite-volume version follows
from exactly the same argument. See also [36, Lemma 3.1] (which is the analogous
estimate for quadrangulations without boundary, and is proven in the same manner)
and/or [8, Equation (3)] (which states the precise estimate given in the present lemma in
the finite-volume case).

We also have a lower bound for distances, which is a variant of the so-called cactus
bound for the Brownian map (see, e.g., [38, Proposition 5.9]).

Lemma 3.7. Suppose we are in the setting of Section 3.1. In particular, let (Q, e0, v∗) ∈
Q•(n, l), let (C,L) be its Schaeffer encoding process, let I(m) for m ∈ [0, l]Z be as in (3.2),
and let p : [0, 2n+ l]Z → V(Q) \ {v∗} be the contour exploration. For i1, i2 ∈ [1, 2n+ ln]Z
with i1 < i2, let

J(i1, i2) := (I([0, l]Z) ∩ [i1, i2]Z)∪ {i1, i2} and J ′(i1, i2) := (I([0, l]Z) \ [i1, i2]Z)∪ {i1, i2},
(3.5)

so that p(J(i1, i2)) (resp. p(J ′(i1, i2))) consists of p(i1), p(i2), and the set of vertices of
∂Q which are contained in the image of p ◦ I and which are (resp. are not) contained in
p([i1, i2]Z) Then

dist(p(i1),p(i2);Q) ≥ L(i1) + L(i2)− 2max

{
min

j∈J(i1,i2)
L(j), min

j∈J′(i1,i2)
L(j)

}
. (3.6)

The analogous estimate also holds in the setting of the UIHPQ (but in this case the
minimum over J ′(i1, i2) in (3.6) is a.s. equal to −∞, so only the first term in the maximum
is present).

Proof. This follows from essentially the same proof as the ordinary cactus bound for
quadrangulations without boundary (see [38, Proposition 5.9(ii)]) but in the finite-volume
case one has to consider two paths in the graph F associated with the treed bridge
from Section 3.1 since F has a single cycle. See also the proof of [8, Theorem 5] for a
lower bound which immediately implies the one in the statement of the lemma in the
finite-volume case.

3.4 Pruning the UIHPQ to get the UIHPQS

Recall from Section 1.4 that the UIHPQS is the Benjamini-Schramm limit of uniformly
random quadrangulations with simple boundary, as viewed from a uniformly random
vertex on the boundary, as the area and then the perimeter tend to∞. In this subsection
we explain how to prune an instance of the UIHPQ to obtain an instance of the UIHPQS.

Suppose (Q∞, e∞) is a UIHPQ. There are infinitely many vertices v ∈ V(∂Q∞) which
have multiplicity at least 2 in the external face, so are hit twice by the boundary path
λ∞ : Z→ E(∂Q∞) of Remark 3.4. Attached to each of these vertices is a finite dangling
quadrangulation which is disconnected from∞ in Q∞ by removing a single boundary
vertex.

Let QS be the largest subgraph of Q∞ with the property that none of its vertices or
edges can be disconnected from ∞ in Q∞ by removing a single boundary vertex. In
other words, QS is obtained by removing all of the “dangling quadrangulations” of Q∞
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QS

Figure 4: Pruning the red dangling quadrangulations from the UIHPQ Q∞ (light blue
and pink regions with blue and red boundary) produces a UIHPQS QS (light blue region
with blue boundary).

which are joined to∞ by a single vertex. Also let eS be the edge immediately to the left
of the vertex which can be removed to disconnect e∞ from∞ (if such a vertex exists) or
let eS = e∞ if e∞ belongs to ∂QS. Then (QS, eS) is an instance of the UIHPQS.

One can recover a canonical boundary path λS : Z→ E(∂QS) which traces the edges
of ∂Q∞ and hits the terminal endpoint of eS at time 0 from the analogous boundary path
λ∞ of the UIHPQ by skipping all of the intervals of time during which λS is tracing a
dangling quadrangulation.

It is shown in [19, Section 6.1.2] and explained more explicitly in [15, Section 6] that
if we start with an instance (QS, eS) of the UIHPQS, we can construct a UIHPQ (Q∞, e∞)

which can be pruned as above to recover (QS, eS) via an explicit sampling procedure.
Conditional on QS, let {(qv, ev)}v∈V(∂QS) be an independent sequence of random finite
quadrangulations with general boundary with an oriented boundary root edge, with
distributions described as follows. Let v0 be the right endpoint of the root edge eS. Each
qv for v 6= v0 is distributed according to the so-called free Boltzmann distribution on
quadrangulations with general boundary, which is given by

P[(qv, ev) = (q, e)] = C−1
(

1

12

)n(
1

8

)l
(3.7)

for any quadrangulation q with n interior faces and 2l boundary edges (counted with
multiplicity) with a distinguished oriented root edge e ∈ ∂q, where here C > 0 is a
normalizing constant. The quadrangulation qv0 is instead distributed according to

P[(qv0 , ev0) = (q, e)] = C̃−1(2l + 1)

(
1

12

)n(
1

8

)l
(3.8)

for a different normalizing constant C̃. (Intuitively, the reason for the extra factor 2l + 1

in (3.8) is that a dangling quadrilateral with longer boundary length is more likely to
contain the root edge.)

For each v ∈ V(∂QS), identify the terminal endpoint of ev with v. This gives us a new
quadrangulation Q∞ with general boundary. We choose an oriented root edge e∞ for
Q∞ by uniformly sampling one of the oriented edges of E(∂qv0) ∪ {eS}. Then (Q∞, e∞) is
a UIHPQ with general boundary which can be pruned to recover (QS, eS).
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3.5 The Brownian disk

In this subsection we will review the definition of the Brownian disk from [10],
which is the scaling limit of finite uniform quadrangulations with boundary [10]. The
construction is a finite-volume analog of the construction of the Brownian half-plane in
Section 1.5 and a continuum analog of the Schaeffer-type construction in Section 3.1.
We follow closely the exposition given in [30, Section 3.1].

Fix an area parameter a > 0 and a boundary length parameter ` > 0. Let X : [0, a]→
[0,∞) be a standard Brownian motion started from ` and conditioned to hit 0 for the first
time at time a (such a Brownian motion is defined rigorously in, e.g., [10, Section 2.1]).
For s, t ∈ [0, 1], set

dX(s, t) := X(s) +X(t)− 2 inf
u∈[s∧t,s∨t]

X(u). (3.9)

Conditioned on X, let Z0 be the centered Gaussian process with

Cov(Z0(s), Z0(t)) = inf
u∈[s∧t,s∨t]

(
X(u)− inf

v∈[0,u]
X(v)

)
, s, t ∈ [0, a]. (3.10)

Using the Kolmogorov continuity criterion, one can check that Z0 a.s. admits a continuous
modification which is α-Hölder continuous for each α < 1/4. For this modification we
have Z0

s = Z0
t whenever dX(s, t) = 0.

Let b be
√
3 times a Brownian bridge from 0 to 0 independent from (X,Z) with time

duration `. For r ∈ [0, `], let

T (r) := inf{t ≥ 0 : Xt = `− r} (3.11)

and for t ∈ [0, a], let T−1(t) := sup{r ∈ [0, `] : T (r) ≤ t}. Set

Z(t) := Z0(t) + b(T−1(t)).

We view [0, a] as a circle by identifying 0 with a and for s, t ∈ [0, a] we define Z(s, t) to be
the minimal value of Z on the counterclockwise arc of [0, a] from s to t. For s, t ∈ [0, a],
define

dZ(s, t) = Z(s) + Z(t)− 2(Z(s, t) ∨ Z(t, s)) (3.12)

and

d0(s, t) = inf

k∑

i=1

dZ(si, ti) (3.13)

where the infimum is over all k ∈ N and all 2k + 2-tuples (t0, s1, t1, . . . , sk, tk, sk+1) ∈
[0, a]2k+2 with t0 = s, sk+1 = t, and dX(ti−1, si) = 0 for each i ∈ [1, k + 1]Z. Equivalently,
d0 is the largest pseudometric on [0, a] which is at most dZ and is zero whenever dX is 0.

The Brownian disk with area a and perimeter ` is the quotient space H = [0, a]/{d0 =

0} equipped with the quotient metric, which we call d. It is shown in [10] that (H, d) is
a.s. homeomorphic to the closed disk.

Let p : [0, a]→ H for the quotient map. The area measure ofH is the pushforward µ of
Lebesgue measure on [0, a] under p. The boundary ofH is the set ∂H = p({Tr : r ∈ [0, `]})
(this set is the topological boundary of H by [8, Proposition 21], and is homeomorphic to
the circle). We note that ∂H has a natural orientation, obtained by declaring that the
path t 7→ p(t) traces ∂H in the counterclockwise direction. The boundary measure of
H is the pushforward ν of Lebesgue measure on [0, `] under r 7→ p(T (r)). The boundary
path of H is the curve η : [0, `]→ ∂H defined by η(r) = p(T (r)).

By [45, Corollary 1.5], the law of the metric measure space (H, d, µ, ν) is the same
as that of the

√
8/3-LQG disk with area a and boundary length `, equipped with its√

8/3-LQG area measure and boundary length measure.
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4 Scaling limit of the UIHPQ and UIHPQS

In this section we will prove Theorems 1.11 and 1.12. We will extract Theorem 1.11
from [10] in a manner which is similar to that in which the scaling limit result for
the uniform infinite planar quadrangulation without boundary (UIPQ) in [18] was ex-
tracted from [37, 41]. We start in Section 4.1 by showing that one can improve the
Gromov-Hausdorff scaling limit result for finite uniformly random quadrangulations with
boundary toward the Brownian disk [10] to get convergence in the GHPU topology. In
Section 4.2, we will show that one can couple an instance of the Brownian half-plane
with a Brownian disk in such a way that metric balls of a certain radius centered at the
root point coincide with high probability. In Section 4.3, we prove an analogous coupling
result for the UIHPQ with a finite uniformly random quadrangulation with boundary. In
Section 4.4, we will deduce Theorem 1.11 from these coupling results and the scaling
limit result of Section 4.1.

In Section 4.5, we will deduce Theorem 1.12 from Theorem 1.11 using the pruning
procedure discussed in Section 3.4.

4.1 Convergence to the Brownian disk in the GHPU topology

It is proven in [10] that uniformly random quadrangulations with boundary converge
in the scaling limit to the Brownian disk in the Gromov-Hausdorff topology, and it is
not hard to see from the proof in [10] that one has convergence in the stronger GHPU
topology as well. We will explain why this is the case just below.

Fix ` > 0 and let (H, d) be a unit area Brownian disk with boundary length `. Let µ
(resp. η) be the natural area measure (resp. boundary path) on H, as in Section 3.5. Let

H := (H, d, µ, η) (4.1)

so that H is an element of MGHPU.

Let {ln}n∈N be a sequence of positive integers with (2n)−1/2ln → `. For n ∈ N,
let (Qn, en0 , v

n
∗ ) be sampled uniformly from Q•(n, ln) (Section 1.4). We view Qn as a

connected metric space in the manner of Remark 1.2. Let dn be the graph distance on
Qn, re-scaled by (9/8)1/4n−1/4. Let µn be the measure on V(Qn) which assigns a mass
to each vertex equal to (4n)−1 times its degree. Let λn : [0, 2ln]→ ∂Qn be the boundary
path of Qn started from en0 , extended by linear interpolation. Let ηn(t) := λn

(
23/2n1/2t

)

for t ∈ [0, 2−1/2n−1/2ln]. Let

Qn := (Qn, dn, µn, ηn). (4.2)

Theorem 4.1. In the setting described just above, we have Qn → H in law in the GHPU
topology.

Proof. We will deduce the theorem statement from the scaling limit result in [10]
together with Lemma 2.14. The key point is that the encoding processes for Qn from
Section 3.1 converge jointly with the metric spaces (Qn, dn) to the encoding processes
for (H, d) in Section 3.5 and the metric space (H, d), in the uniform topology and the
Gromov-Hausdorff topology, respectively; and the measures and curves defined above
are determined by the encoding processes in a relatively simple way. This allows us to
check the conditions of Lemma 2.14.

Let (X,Z, b) be the encoding process for (H, d) and for r ∈ [0, `] let T (r) be the first
time that X(t) = ` − r, as in (3.11). Let p : [0, 1] → H be the quotient map and for
s, t ∈ [0, 1] write

d̃(s, t) := d(p(s),p(t))
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so that d̃ is a pseudometric on [0, 1]. Recall that µ is the pushforward of Lebesgue
measure on [0, a] under p and η(r) = p(T (r)) for r ∈ [0, `]. Let ν be the pushforward of
Lebesgue measure on [0, `] under η, i.e. the boundary length measure of H.

For n ∈ N, let (Cn, Ln, b0,n) be the Schaeffer encoding triple of (Qn, en0 , v
n
∗ ) as in

Section 3.1. For m ∈ [1, ln]Z, define In(m) := min{i ∈ [1, 2n+ ln]Z : Cn(i) = −m}, as
in (3.2). Extend Cn and Ln to [0, 2n] by linear interpolation and for t ∈ [0, 1], define

Xn(t) := (2n)−1/2(Cn((2n+ ln)t) + ln) and Zn(t) :=

(
9

8n

)1/4

Ln((2n+ ln)t).

For r ∈ [0, (2n)−1/2ln], also define (in analogy with (3.11))

Tn(r) := (2n)−1In(b(2n)1/2rc). (4.3)

Let pn : [0, 2n+ ln]Z → V(Qn) be the contour exploration as in Section 3.1. For s, t ∈ [0, 1]

with (2n+ ln)s, (2n+ ln)t ∈ N0, let

d̃n(s, t) := dn(pn((2n+ ln)s),pn((2n+ ln)t))

and extend d̃n to [0, 1]2 by linear interpolation.
In the variant of the Schaeffer bijection described in Section 3.1, we add one edge

from the vertex pn(i) to the successor vertex (which has a smaller label) for each
i ∈ [0, 2n + ln]Z. Consequently, if we let µ̂n be the pushforward under pn of (2n)−1

times counting measure on [0, 2n + ln]Z, then for v ∈ V(Qn) it holds that µ̂n(v) equals
(2n)−1 times the number of edges of Qn which connect v to a vertex with a smaller
label. Since µn assigns mass to each vertex equal to (4n)−1 times its degree, the dn-
Prokhorov distance between µ̂n and µn is at most a universal constant times n−1/4 (note
that the scaling factors for µ̂n and µn differ by a factor of 2 since each edge is counted
twice—once for each of its endpoints—when considering the measure µn).

Let νn be the pushforward of 2−3/2n−1/2 times counting measure on [1, 2ln]Z under
the (linearly interpolated) boundary path λn. Equivalently νn is the counting measure on
V(∂Qn) (with vertices counted with multiplicity), rescaled by 2−3/2n−1/2. The measure
νn does not admit a simple description in terms of (Cn, Ln, b0,n) but we can describe a
closely related measure as follows.

Let ν̂n be the pushforward under pn ◦ In of 2−1/2n−1/2 times the counting measure
on [1, ln]Z (with In as above). Note that the scaling factor here is off by a factor of 2
as compared to the scaling factor of νn so that ν̂n has the same total mass as νn. The
measure ν̂n can equivalently be described as follows. Let jn0 = 0 and for k ∈ [1, ln]Z,
let jnk be the kth smallest downward step of the random walk bridge b0,n. Then ν̂n is
the measure on V(∂Qn) which assigns mass 2−1/2n−1/2 to the jnk th vertex of ∂Qn in
counterclockwise cyclic order started from the root vertex. Since b0,n is a simple random
walk bridge, we can use Hoeffding’s concentration inequality for binomial random
variables to find that except on an event of probability decaying faster than any power of
n,

max
k∈[1,ln]Z

|jnk − 2k| = non(1) (4.4)

which implies that λn(2k) differs from pn(In(k)) for k ∈ N by at most non(1) units of
boundary length and

|νn(A)− ν̂n(A)| ≤ n−1/2+on(1), ∀A ⊂ ∂Qn.

It is shown in [10, Section 5] that, in the notation above,

(Xn, Zn, d̃n)→ (X,Z, d̃) and (Qn, dQn , ηn(0))→ (H, d, η(0)) (4.5)
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in law in the uniform topology and the pointed GH topology, respectively. With T and Tn

the hitting time processes as in (3.11) and (4.3), respectively, we have (Xn, Zn, Tn)→
(X,Z, T ) in law in the uniform topology in the first two coordinates and the Skorokhod
topology in the third coordinate. Since (X,Z) a.s. determines T , d̃, and (H, d, η(0)), the
convergence (4.5) in law occurs jointly with the convergence Tn → T in law.

By the Skorokhod representation theorem, we can couple {(Qn, en0 , vn∗ )}n∈N with
(BD, d, x) in such a way that the convergence (4.5) occurs a.s. and also Tn → T a.s. in
the Skorokhod topology. Henceforth fix a coupling for which this is the case. Note that
the Borel-Cantelli lemma implies that in any such coupling, (4.4) holds for large enough
n.

By [30, Lemma 3.2], re-phrased in terms of the pseudometric d̃ on [0, 1], there a.s.
exists C > 0 such that for each r1, r2 ∈ [0, `] with r1 < r2,

d̃(T (r1), T (r2)) ≤ C(r2 − r1)1/2(| log(r2 − r1)|+ 1)
2
. (4.6)

The Skorokhod convergence Tn → T together with the uniform convergence d̃n → d̃

therefore implies that for each ε > 0, there a.s. exists δ > 0 such that for each n ∈ N
and each r1, r2 ∈ [0, `] with |r1 − r2| ≤ δ, we have d̃n(Tn(r1), T

n(r2)) ≤ ε. From this
together with (4.4) and the discussion just after, we infer that the re-scaled boundary
paths {ηn}n∈N are equicontinuous.

We will now apply Lemma 2.14 to deduce our desired GHPU convergence. The
lemma does not apply directly in our setting since the curve η is not simple (it satisfies
η(0) = η(`)), so a straightforward truncation argument is needed. For r ∈ [0, (2n)−1/2ln],
let ν̂nr be the restriction of ν̂n to the counterclockwise arc of ∂Qn started from ηn(0) with
ν̂n-length r. Also let νnr be the pushforward of Lebesgue measure on [0, r] under ηn. For
r ∈ [0, `]Z, let νr be the pushforward of Lebesgue measure on [0, r] under η.

Our choice of coupling and our above description of the relationship between the
measures µn and µ̂n,

(Qn, dn, µn, ν̂nr , η
n(0))→ (H, d, µ, νr, η(0))

in the 2-fold pointed Gromov-Prokhorov topology for each r ∈ (0, `). By (4.4), we also
have this convergence with νnr in place of ν̂nr . By Lemma 2.14, we infer that

(
Qn, dn, µn, ηn|[0,r]

)
→
(
H, d, µ, η|[0,r]

)

in the GHPU topology. Since r can be made arbitrarily close to `, by combining this with
equicontinuity of the curves ηn we see that in fact Qn → H in the GHPU topology.

4.2 Coupling the Brownian half-plane with the Brownian disk

In this section, we will prove the following coupling statement, which is an analog
of [18, Proposition 4] for Brownian surfaces with boundary. This coupling statement is
needed for the proof of Theorem 1.11 and also implies Proposition 1.10, as explained
just below the proposition statement.

Proposition 4.2. Fix a, ` > 0 and let (H, d) be a Brownian disk with area a and boundary
length `. Also let (H∞, d∞) be a Brownian half-plane. For each ε ∈ (0, 1) there exists
α > 0 and a coupling of (H, d) with (H∞, d∞) such that the following is true. Let µ (resp.
µ∞) and η (resp. η∞) be the area measure and boundary path of H (resp. H∞). In the
notation of Definition 1.6, it holds with probability at least 1− ε that

Bα(H, d, µ, η) and Bα(H∞, d∞, µ∞, η∞).

agree as elements of M
GHPU

.
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Note that scaling distances in a Brownian surface by r > 0 corresponds to scaling
boundary lengths by r2 and areas by r4. Indeed, this follows by the scaling properties of
Brownian motion. Hence Proposition 4.2 (applied with a = ` = 1) implies that for any
r > 0 and any ε ∈ (0, 1), there exists R > 0 such that if (H, d, µ, η) is as in Proposition 4.2
for a = R and ` = R1/2, then we can couple (H, d) with (H∞, d∞) in such a way that

Br(H, d, µ, η) and Br(H∞, d∞, µ∞, η∞) coincide as elements of M
GHPU

with probability
at least 1− ε.

The proof of Proposition 4.2 requires two lemmas. The first is a continuum analog of
Lemma 3.7.

Lemma 4.3. Suppose we are in the setting of Section 3.5. In particular, fix a, ` > 0,
let (H, d) be a Brownian disk with area a and boundary length `, let p : [0, a] → H be
the quotient map, let (X,Z) be the encoding process, and let T (r) for r ∈ [0, `] be as
in (3.11). Almost surely, the following is true. For s, t ∈ [0, a] with s ≤ t, let

S(s, t) := (T ([0, `]) ∩ [s, t]) ∪ {s, t} and S′(s, t) := (T ([0, `]) \ [s, t]) ∪ {s, t}

so that p(S(s, t)) (resp. p(S′(s, t))) consists of p(s), p(t), and the set of points in ∂H

which are (resp. are not) contained in p([s, t]). Then

d(p(s),p(t)) ≥ Z(s) + Z(t)− 2max

{
inf

u∈S(s,t)
Z(u), inf

u∈S′(s,t)
Z(u)

}
. (4.7)

The analogous estimate also holds in the setting of the Brownian half-plane (note that in
this case the infimum over S′(s, t) in (4.7) is a.s. equal to −∞).

Proof. This follows from essentially the same argument used to prove the cactus bound
in the case of the Brownian map (see, e.g., [18, Equation (4)]). See also [8, Lemma 22]
for an analogous estimate in the case when p(s),p(t) ∈ ∂H.

Next we prove a coupling statement for the encoding processes.

Lemma 4.4. Fix a, ` > 0 and let (X,Z) be the encoding process for the Brownian disk
with area a and boundary length ` and let T be as in (3.11). Also let (X∞, Z∞) be the
encoding process for the Brownian half-plane and for r ∈ R let T∞(r) = inf{t ∈ [0, `] :

X∞(t) = −r}, as in Section 1.5. For each ε, δ ∈ (0, 1), there exists 0 < δ0 < δ1 ≤ δ and a
coupling of (X,Z) with (X∞, Z∞) such that with probability at least 1− ε, the following
is true. We have T (r) = T∞(r) for each r ∈ [0, δ1], X(t)− ` = X∞(t) for each t ∈ [0, T (δ1)],
and for each t ∈ [T∞(δ0), T∞(δ1)],

Z(t)− Z(T (δ0)) = Z∞(t)− Z∞(T∞(δ0)).

Proof. By [10, Proposition 9], for each r ∈ [0, `] the Radon-Nikodym derivative of the law
of (X − `)|[0,T (r)] with respect to the law of X∞|[0,T∞(r)] is given by fr(T∞(r)), where

fr(t) := 1(t<a)
(`− r)a3/2

`(a− t)3/2
exp

(
`2

2r
− (`− r)2

2(a− t)

)
.

Since fr(t) is continuous in both variables and f0(0) = 1, if we are given ε ∈ (0, 1), then
we can find ζ ∈ [0, `] such that |fr(t) − 1| ≤ ε/4 for t, r ∈ [0, ζ]. Choose δ1 ∈ (0, δ ∧ ζ]
such that P[T∞(δ1) ≤ ζ] ≥ 1 − ε/4. Then except on an event of probability at most
ε/4, the Radon-Nikodym derivative of the law of (X − `)|[0,T (δ1)] with respect to the law
of X∞|[0,T∞(δ1)] is between 1 − ε/4 and 1 + ε/4, so we can couple these two restricted
processes so that they agree with probability at least 1 − ε/2. Henceforth assume we
have chosen such a coupling.
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Recalling (3.10) and (1.9), we see that for any fixed realization x of (X − `)|[0,T (δ1)],
the regular conditional law of Z0|[0,T (δ1)] given {(X − `)|[0,T (δ1)] = x} coincides with the
regular conditional law of Z∞|[0,T∞(δ1)] given {X∞|[0,T∞(δ1)] = x}. Hence we can extend
our coupling so that in fact

T (δ1) = T∞(δ1) and (X − `, Z0)|[0,T (δ1)] = (X∞, Z∞)|[0,T∞(δ1)] (4.8)

with probability at least 1− ε/2.
Recall that Z (resp. Z∞) is obtained from Z0 (resp. Z0

∞) by adding the composition of
b (resp. b∞) with its running infimum process, where b is

√
3 times a Brownian bridge

and b∞ is
√
3 times a standard linear Brownian motion.

For 0 < δ0 < δ1, the law of (b− b(δ0))|[δ0,δ1] is absolutely continuous with respect to
the law of (b∞−b∞(δ0))|[δ0,δ1], with Radon-Nikodym derivative tending to 1 in probability
as δ0 increases to δ1. We can find δ0 ∈ (0, δ1) for which this Radon-Nikodym derivative
lies in [1− ε/4, 1+ ε/4] with probability at least 1− ε/4, so we can couple (b− b(δ0))|[δ0,δ1]
with (b∞ − b∞(δ0))|[δ0,δ1] in such a way that

(b− b(δ0))|[δ0,δ1] = (b∞ − b∞(δ0))|[δ0,δ1] (4.9)

with probability at least 1− ε/2.
Since b (resp. b∞) is independent from (X,Z0) (resp. (X∞, Z

0
∞)), we can couple

(X,Z, b) and (X∞, Z∞, b∞) so that (4.8) and (4.9) hold simultaneously with probability
at least 1 − 4ε. For such a coupling, the conditions in the statement of the lemma are
satisfied.

Proof of Proposition 4.2. Let (X,Z) and (X∞, Z∞) be the encoding processes, as in
Proposition 4.2. By Proposition 4.2, for each ε, δ ∈ (0, 1) there exists 0 < δ0 < δ1 ≤ δ and
a coupling of (X,Z) with (X∞, Z∞) such that with probability at least 1− ε/4, we have
T (r) = T∞(r) for each r ∈ [0, δ1], X(t) − ` = X∞(t) for each t ∈ [0, T (δ1)], and for each
t ∈ [T∞(δ0), T∞(δ1)],

Z(t)− Z(T (δ0)) = Z∞(t)− Z∞(T∞(δ0)).

Note that with b∞ (resp. b) the Brownian motion (resp. Brownian bridge) from Section 1.5
(resp. Section 3.5), we have Z∞ ◦ T = b∞ (resp. Z ◦ T = b), so (4.2) implies that also
b(r)− b(δ0) = b∞(r)− b∞(δ0) for each r ∈ [δ0, δ1].

If we choose δ0 and δ1 sufficiently small, then it is unlikely that the infimum of b over
[0, δ0] is smaller than the infimum of b over [δ1, `]. Since b is a constant times a Brownian
bridge, b(δ0) is a.s. strictly larger than the minimum value of b on each of [0, δ0] and
[δ1, `]. Furthermore, if we choose δ1 sufficiently close to δ0 (leaving δ0 fixed), then by
continuity it is likely that |Z(s) − b(δ0)| is close to 0 for each s ∈ [T (δ0), T (δ1)]. Hence
by choosing δ0 sufficiently small and then choosing δ1 sufficiently close to δ0, we can
arrange that except on an event of probability at most ε/4,

max

{
inf

r∈[0,δ0]
b(r), inf

r∈[δ1,`]
b(r)

}
< inf
s∈[T (δ0),T (δ1)]

Z(s). (4.10)

Let δ∗ :=
1
2 (δ0 + δ1). Also define

ρ := −
(

inf
r∈[δ0,δ∗]Z

(b∞(r)− b∞(δ0)) ∨ inf
r∈[δ∗,δ1]Z

(b∞(r)− b∞(δ0))

)
≥ 0

and
ρ′ := b∞(δ∗)− b∞(δ0) + ρ.

Since b∞ is a constant times a standard Brownian motion, there exists α > 0 such that
with probability at least 1− ε/2 we have 1

4ρ
′ ≥ α.
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By definition, the quotient map p∞ : R → H satisfies p∞(T∞(δ∗)) = η∞(δ∗). By
invariance of the law of the Brownian half-plane under re-rooting along the boundary,
which follows from (1.6),

(H∞, d∞, µ∞, η∞(δ∗ + ·))
d
= (H∞, d∞, µ∞, η∞).

It is immediate from Theorem 4.1 that the analogous property also holds for the Brownian
disk. Hence it suffices to show that whenever (4.2) and (4.10) occur,

B 1
4ρ
′(H, d, µ, η(δ∗ + ·)) and B 1

4ρ
′(H∞, d∞, µ∞, η∞(δ∗ + ·)) (4.11)

agree as elements of M
GHPU

.
Henceforth assume that (4.2) and (4.10) occur (which happens with probability at

least 1− ε/2). Let p : [0, a]→ H and p∞ : R→ H∞ be the quotient maps. Let r0 ∈ [δ0, δ∗]Z
and r1 ∈ [δ∗, δ1]Z be chosen so that

b∞(r0)− b∞(r1) ≤ −ρ and b∞(r1)− b∞(δ0) ≤ −ρ.

By Lemma 4.3 together with (4.2) and (4.10) (the latter equation is used to deal with the
second term in the maximum in (4.7)), if t ≥ T (r1) then

d(p(t), η(δ∗)) ≥ Z(t) + b(δ∗)− 2max

{
inf

u∈S(T (δ∗),t)
Z(u), inf

u∈S′(T (δ∗),t)
Z(u)

}

≥ Z(t) + b(δ∗)− Z(t) + ρ− b(δ∗) ≥ ρ′.

We have a similar estimate if t ≤ T (r0). Again using Lemma 4.3, we similarly obtain that
if t ∈ [0, a] \ [T (r0), T (r1)] then d∞(p∞(t), η∞(δ∗)) ≥ ρ′.

Hence

Bρ′(η(δ∗); d) ⊂ p([T (r0), T (r1)]) and Bρ′(η∞(δ∗); d∞) ⊂ p∞([T∞(r0), T∞(r1)]).

From the definitions (1.11) and (3.13) of the pseudometrics d0 and d0∞, respectively, and

the triangle inequality, we find that the sets p−1
(
B 1

4ρ
′(η(δ∗); d)

)
and p−1∞

(
B 1

4ρ
′(η∞(δ∗);

d∞)
)

(resp. the distances d0(s, t) and d0∞(s, t) for s and t in these sets) are given by

the same deterministic functionals of X|[0,T (δ1)] and (Z − Z(T (δ0)))|[T (δ0),T (δ1)] and (Z −
Z(T (δ0)))|[T (δ0),T (δ1)]. Note that we use (4.10) to resolve the discrepancy between the
definitions (1.10) and (3.12). The measures µ and µ∞ and the paths η and η∞ are
determined by the same local functionals of the Schaeffer encoding functions. From
these considerations, we see that the map p(t) 7→ p∞(t) for t ∈ [T∞(r0), T∞(r1)] is well
defined and restricts to a measure- and curve-preserving isometry from B 1

4ρ
′(η(δ∗); d) to

B 1
4ρ
(η∞(δ∗); d∞). Hence (4.11) holds.

4.3 Coupling the UIHPQ with a finite uniform quadrangulation with boundary

In this section we prove a discrete analog of Proposition 4.2, which is also an
analog of [18, Proposition 9] for maps with boundary. Throughout this section, we let
(Q∞, e∞) be a UIHPQ. We also fix ` > 0, a sequence of positive integers {ln}n∈N with
(2n)−1/2ln → `, and for n ∈ N we let (Qn, en0 , v

n
∗ ) be sampled uniformly from Q•(n, ln)

(defined in Section 1.4). Also let v∞ (resp. vn0 ) be the initial endpoint of e∞ (resp. en0 ), so
that v∞ = λ∞(0), with λ∞ the linearly interpolated boundary path of Q∞.

Proposition 4.5. For each ε ∈ (0, 1) there exists α > 0 and n∗ ∈ N such that for
n ≥ n∗, there is a coupling of (Q∞, e∞) with (Qn, en0 , v

n
∗ ) with the following property.

With probability at least 1− ε, the graph metric balls Bαn1/4(vn0 ;Q
n) and Bαn1/4(v∞;Q∞)
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equipped with the graph structures they inherit from Qn and Q∞, respectively, are
isomorphic (as graphs) via an isomorphism which takes en0 to e∞ and ∂Qn∩Bαn1/4(vn0 ;Q

n)

to ∂Q∞ ∩ Bαn1/4(v∞;Q∞). Furthermore, we can arrange that this isomorphism is an
isometry for the metrics on Bαn1/4(vn0 ;Q

n) and Bαn1/4(v∞;Q∞) which they inherit from
Qn and Q∞, respectively.

The proof of Proposition 4.5 is similar to that of Proposition 4.2. We will first construct
a coupling of the encoding functions, then transfer to a coupling of the maps using
Lemma 3.7. The following lemma is needed to bound the Radon-Nikodym derivative of
the encoding functions.

Lemma 4.6. Let {S(i)}i∈N0 be a simple random walk on Z started from 0, with steps
distributed uniformly in {−1, 1}. Let {Fi}i∈N0 be the filtration generated by S. For
m ∈ N0, let I(m) := inf{i ∈ N0 : S(i) = −m}. Let N be a stopping time for {Fi}i∈N0 .
Then for m,n ∈ N, it holds on the event {N < I(m) ∧ n} that

P[I(m) = n | FN ] =
1√
2π

(S(N)+m)(n−N)−3/2 exp

(
− (S(N) +m)2

2(n−N)

)
+o
(
(S(N) +m)−2

)

with the rate of the o
(
(SN +m)−2

)
error universal and deterministic.

Proof. By Donsker’s theorem, we have m2I(m)→ T in law, where T is the first time a
standard linear Brownian motion hits −1. By the local limit theorem for stable laws (see,
e.g., [22, Section 50]), we find that for n ∈ N,

lim
n→∞

sup
n∈N

∣∣∣m2P[I(m) = n]− g
( n

m2

)∣∣∣ = 0,

where

g(t) =
1√

2πt3/2
e−

1
2t

is the density of T . By the strong Markov property, on the event {N < I(m)∧n} we have

P[I(m) = n | FN ] = P[I(−s+m) = n−N ]|s=SN
.

The statement of the lemma follows.

In what follows, we define the encoding paths C∞, L0
∞, L∞, b∞, and b0∞ as in Sec-

tion 3.2 and the analogous finite-volume objects Cn, L0,n, Ln, bn, and b0,n as in Section 3.1
for the quadrangulation Qn, but with an additional superscript n. For m ∈ [0, ln] (resp.
m ∈ Z) we let In(m) (resp. I∞(m)) be the smallest i ∈ [0, 2n + ln]Z (resp. i ∈ Z) for
which Cn(i) = −m (resp. C∞(i) = −m), as in (3.2) (resp. (3.4)). We extend these func-
tions to [0, 2n + l] (resp. R) by setting In(s) = In(bsc) (resp. I∞(s) = I∞(bsc)). The
following lemma gives us a coupling of the Schaeffer encoding functions of the maps in
Proposition 4.5.

Lemma 4.7. For each ε, δ ∈ (0, 1), there exists 0 < δ0 < δ1 ≤ δ and n∗ ∈ N such that for
n ≥ n∗, there exists a coupling of the encoding pairs (Cn, Ln) and (C∞, L∞) such that
with probability at least 1 − ε, the following is true. We have In(m) = I∞(m) for each
m ∈ [0, δ1n

1/2]. Furthermore, for each i ∈ [0, In(δ1n
1/2)]Z we have Cn(i) = C∞(i) and for

each i ∈ [In(δ0n
1/2), In(δ1n

1/2)]Z we have

Ln(i)− Ln(In(δ0n1/2)) = L∞(i)− L∞(I∞(δ0n
1/2)).

Proof. Recall that the law of Cn is that of a simple random walk conditioned to first hit
−ln at time 2n+ ln and the law of C∞|N0

is that of an unconditioned simple random walk
(Lemmas 3.3 and 3.5). By Lemma 4.6 and Bayes’ rule, for δ ∈ (0, `) and n ∈ N, then

EJP 22 (2017), paper 84.
Page 37/47

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP102
http://www.imstat.org/ejp/


Scaling limit of the UIHPQ in the GHPU topology

the Radon-Nikodym derivative of the law of Cn|[0,In(δn1/2)]Z with respect to the law of

C∞|[0,I∞(δn1/2)]Z is given by fnδ
(
I∞(δn1/2)

)
where for k ∈ [0, 2n+ ln]Z,

fnδ (k)=
(ln−bδn1/2c)(2n+ ln− k)−3/2 exp

(
− (ln−bδn1/2c)2

2(2n+ln−k)

)
+ o
(
(ln−bδn1/2c)−2

)

ln(2n+ ln)−3/2 exp
(
− (ln)2

2(2n+ln)

)
+ o((ln)−2)

1(k<2n+ln).

Since (2n)−1/2ln → `, if we are given ε ∈ (0, 1), we can find ζ > 0 and n0 ∈ N such that for
n ≥ n0, 1 ≤ k ≤ ζn, and 0 < δ1 ≤ ζ, we have

∣∣fnδ1(k)− 1
∣∣ ≤ ε

4 . Since (2n)−1/2Cn((2n)−1·)
converges in law in the uniform topology to an appropriate conditioned Brownian
motion [7, Lemma 14], we can find δ1 ∈ (0, δ ∧ ζ] and n∗ ≥ n0 such that for n ≥ n∗,
it holds with probability at least 1 − ε/4 that I(δ1n1/2) ≤ ζn. If n ≥ n∗, then except
on an event of probability at most 1 − q/4, the Radon-Nikodym derivative of the law
of Cn|[0,In(δ1n1/2)]Z with respect to the law of C∞|[0,I∞(δ1n1/2)]Z lies in [1 − ε/4, 1 + ε/4].
Hence we can couple these restricted processes together so that with probability at least
1− ε/2,

In(δ1n
1/2) = I∞(δ1n

1/2) and Cn|[0,In(δ1n1/2)]Z = C∞|[0,I∞(δ1n1/2)]Z . (4.12)

Since the conditional law of the shifted label function L0,n|[0,In(δ1n1/2)]Z given
Cn|[0,In(δ1n1/2)]Z coincides with the conditional law of L0

∞|[0,I∞(δ1n1/2)]Z given
C∞|[0,I∞(δ1n1/2)]Z , we also obtain a coupling of (Cn, L0,n) with (C∞, L

0
∞) such that with

probability at least 1− ε/2,

(Cn, L0,n)|[0,In(δ1n1/2)]Z = (C∞, L
0
∞)|[0,I∞(δ1n1/2)]Z . (4.13)

Recall that Ln (resp. L∞) is obtained from (C∞, L
0
∞) and the bridge b0,n (resp.

(C∞, L
0
∞) and the walk b0∞) in the manner described in Section 3.1 (resp. Section 3.2).

Recall also the processes bn and b∞ obtained from b0,n and b0∞, respectively, by consid-
ering only times when the path makes a downward step. A similar absolute continuity
argument to the one given above shows that after possibly increasing n∗, we can find
δ0 ∈ (0, δ1] and a coupling of b0,n with b0∞ such that with probability at least 1− ε/2,

bn(k)− bn(bδ0n1/2c) = b∞(k)− b∞(bδ0n1/2c), ∀k ∈ [δ0n
1/2, δ1n

1/2]Z. (4.14)

The pair (Cn, L0,n) (resp. (C∞, L0
∞)) is independent from b0,n (resp. b0∞), so for n ≥ n∗,

we can couple (Cn, L0,n, b0,n) with (C∞, L
0
∞, b

0
∞) in such a way that (4.13) and (4.14) hold

simultaneously with probability at least 1− ε. Such a coupling satisfies the conditions in
the statement of the lemma.

Proof of Proposition 4.5. The proof is essentially identical to that of Proposition 4.2, but
we give the details for the sake of completeness. By Lemma 4.7, we can find 0 < δ0 <

δ1 < ` and n∗ ∈ N such that for n ≥ n∗, there exists a coupling of (Cn, Ln) with (C∞, L∞)

such that with probability at least 1 − ε/4, In(m) = I∞(m) for each m ∈ [0, δ1n
1/2],

Cn(i) = C∞(i) for each i ∈ [0, In(δ1n
1/2)], and for each i ∈ [In(δ0n

1/2), In(δ1n
1/2)]Z,

Ln(i)− Ln(In(δ0n1/2)) = L∞(i)− L∞(I∞(δ0n
1/2)). (4.15)

Note that with bn (resp. b∞) the process from Section 3.1 (resp. Section 3.1), we have
Ln(In(m)) = bn(m + 1) (resp. L∞(I∞(m)) = b∞(m + 1)), so (4.2) implies that also
bn(m)− bn(dδ0n1/2e) = b∞(m)− b∞(dδ0n1/2e) for each m ∈ [δ0n

1/2, δ1n
1/2].

By choosing δ0 sufficiently small and then δ1 sufficiently close to δ0 and possibly
increasing n∗ (c.f. the argument right before (4.10) in the proof of Proposition 4.5), we
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can arrange that for n ≥ n∗, it holds except on an event of probability at most 1 − ε/4
that

max

{
min

m∈[0,δ1n1/2]Z
bn(m), min

m∈[δ1n1/2,ln]Z
bn(m)

}
< min
i∈[In(δ0n1/2),In(δ1n1/2)]Z

Ln(i). (4.16)

Let

m∗ :=

⌊
1

2
(δ0 + δ1)n

1/2

⌋
.

Also define

r :=−
(

min
m∈[δ0n1/2,m∗−1]Z

(
b∞(m)− b∞(dδ0n1/2e)

)

∨ min
m∈[m∗+1,δ1n1/2]Z

(
b∞(m)− b∞(dδ0n1/2e)

))
,

so that r ≥ 0, and let
r′ := b∞(m∗)− b∞(dδ0n1/2e) + r.

Since m 7→ b∞(m)− b∞(bδ0n1/2c) is obtained from a simple random walk by skipping its
upward steps, we can find α > 0 such that for large enough n, it holds with probability
at least 1− ε/2 that 1

4r
′ − 1 ≥ αn1/4.

Recall the contour functions pn : [0, 2n + ln]Z → V(Qn) and p∞ : Z → V(Q∞). Let
ṽn0 := pn(In(m∗)) and ṽn∞ := p∞(I∞(m∗)). If we let ẽn0 (resp. ẽ∞) be the edge of ∂Qn (resp.
∂Q∞) immediately to the left of ṽn0 (resp. ṽ∞), with one of the two possible orientations
chosen with probability 1/2 each. Then by re-rooting invariance,

(Qn, ẽn0 , v
n
∗ )

d
= (Qn, en0 , v

n
∗ ) and (Q, ẽ∞)

d
= (Q, e∞).

Hence it suffices to show that whenever (4.15) and (4.16) occur, it holds that B 1
4 (r
′−3)(ṽ

n
0 ;

Qn) and B 1
2 (r
′−3)(ṽ∞;Q∞) are isomorphic via a graph isomorphism satisfying the condi-

tions in the statement of the proposition.
Henceforth assume that (4.15) and (4.16) occur. Let m0 ∈ [δ0n

1/2,m∗ − 1]Z and
m1 ∈ [i∗ + 1, δ1n

1/2]Z be chosen so that

b∞(m0)− b∞(dδ0n1/2e) ≤ −r and b∞(m1)− b∞(dδ0n1/2e) ≤ −r.

By Lemma 3.7 together with (4.15) and (4.16) (the latter equation is used to deal with
the second term in the maximum in the estimate of Lemma 3.7), if i ∈ N0 with i ≥ In(m1)

then

dist(pn(i), ṽn;Qn) ≥ Ln(i) + bn(m∗)− 2max

{
inf

j∈Jn(In(m∗),i)
Ln(j), inf

j∈(J′)n(In(m∗),i)
Ln(j)

}

≥ Ln(i) + bn(m∗)− Ln(i) + r − bn(bδ0n1/2c) ≥ r′.

We have a similar estimate if i ≤ In(m0). Again using Lemma 3.7, we obtain that if
i ∈ [0, 2n]Z \ [In(m0), I

n(m1)]Z then

dist(p∞(i), ṽ∞;Q∞) ≥ r′.

Hence V(Br′(ṽ∞;Q∞)) ⊂ p∞([I∞(m0), I∞(m1)]Z) and V(Br′(ṽn0 ;Qn)) ⊂ pn([In(m0),

In(m1)]Z). By the local nature of the Schaeffer bijection and (4.15) it holds that
B 1

4 r
′−1(ṽ

n
0 ;Q

n) and B 1
4 r
′−1(ṽ∞;Q∞) are isomorphic as graphs via an isomorphism satis-

fying the conditions in the proposition statement. The triangle inequality implies that
any such isomorphism is an isometry when these balls are equipped with the metrics
they inherit from Qn and Q∞, respectively.
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4.4 Proof of Theorem 1.11

We will deduce the scaling limit statement for the UIHPQ from Theorem 4.1 and the
coupling results (Propositions 4.2 and 4.5).

For R > 0, let (HR, dR) be a Brownian disk with area R and boundary length R1/2 and
let µR and ηR : [0, R]→ ∂HR be its area measure and boundary path, respectively. Let

HR := (HR, dR, µR, ηR).

By Brownian scaling and the definition of the Brownian disk from Section 3.5, HR has
the same law as

(
H1, R

1/4d1, Rµ1, η1(R
−1/2·)

)
.

Let (QnR, e
n
R, v

n
∗,R) be sampled uniformly from the set of boundary-rooted pointed

quadrangulations with bRnc interior faces and perimeter b23/2(Rn)1/2c. View QnR as
a topological space in the manner of Remark 1.2. Let dnR be (9/8)1/4n−1/4 times the
graph distance on QnR and let µnR be the measure on V(QnR) which assigns mass to
each vertex equal to (4n)−1 times its degree. Let λnR : [0, b23/2(Rn)1/2c] → ∂QnR be the
boundary path of QnR started from enR (extended to R by linear interpolation) and let
ηnR(t) := λnR

(
23/2n1/2t

)
for t ∈ [0, R1/2]. Let

Qn
R := (QnR, d

n
R, µ

n
R, η

n
R).

By Theorem 4.1 and the aforementioned scaling relation between HR and H1, we find
that Qn

R → HR in the GHPU topology for each R > 0.
Now fix r > 0 and ε ∈ (0, 1). We recall the r-truncation operator Br from Definition 1.6.

By Proposition 4.2 and the scale invariance of the law of the Brownian half-plane, we
can find R > r and a coupling of (H∞, d∞) with (HR, dR) such that with probability at

least 1− ε, BrH∞ and BrHR agree as elements of M
GHPU

.
By Proposition 4.5 (applied with bRnc in place of n), after possibly increasing R, we

can find n∗ ∈ N such that for n ≥ n∗, we can couple (Q∞, e∞) with (QnR, e
n
R, v

n
∗,R) in such

a way that with probability at least 1− ε, BrQ
n
∞ and BrQ

n
R agree as elements of M

GHPU
.

Since Qn
R → HR in the GHPU topology and a.s. r is a good radius for HR (Defini-

tion 2.9), Lemma 2.11 implies that BrQ
n
R → BrHR in law in the GHPU topology. Since

ε ∈ (0, 1) is arbitrary, the existence of the above couplings implies that BrQ
n
∞ → BrH∞

in law in the GHPU topology. Since r > 0 is arbitrary and by Lemma 2.11, it follows that
Qn
∞ → H∞ in law in the local GHPU topology.

4.5 Proof of Theorem 1.12

In this section we will deduce Theorem 1.12 from Theorem 1.11. We define the
UIHPQS (QS, eS) and its associated elements of MGHPU

∞ , Qn
S for n ∈ N, as in the discussion

just above Theorem 1.12.
We assume throughout this section that we have coupled (QS, eS) with an instance of

the UIHPQ (Q∞, e∞) in the manner described in Section 3.4, so that QS is obtained from
Q∞ by pruning the dangling quadrangulations from Q∞. Let {(qv, ev)}v∈V(∂QS) be these
dangling quadrangulations (with their oriented boundary root edges). Then the pairs
(qv, ev) except for the one dangling from the right endpoint of eS are i.i.d. samples from
the free Boltzmann distribution on quadrangulations with general boundary (Section 3.4)
and

Q∞ = QS ∪
⋃

v∈V(∂QS)

qv.

Since each of the quadrangulations qv for v ∈ ∂QS is disconnected from QS by removing
the single vertex v, it follows that no geodesic between vertices of QS enters qv \ {v}.
Hence for r > 0 and v ∈ V(QS),

Br(v;QS) = Br(v;Q∞) ∩QS. (4.17)
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In what follows we will bound the diameters, areas, and boundary lengths of the extra
quadrangulations qv, with the eventual goal of showing that QS and Q∞ have the same
scaling limit in the GHPU topology (up to multiplying boundary lengths by a constant
factor).

Before proving these bounds, it will be convenient to have a general lemma for how
many vertices along the boundary can be contained in a metric ball. Let {vk}k∈Z be
the vertices of ∂QS, listed in the order in which they are hit by the boundary path λS
and enumerated so that v0 is the right endpoint of eS (so that qv0 is the one dangling
quadrangulation which does not agree in law with the others; recall Section 3.4).

Let Kn
r be the largest k ∈ N for which either vk or v−k belongs to Brn1/4(eS;QS).

By (4.17),Kn
r is also the largest k ∈ N for which either vk or v−k belongs toBrn1/4(eS;Q∞).

Lemma 4.8. For each r > 0 and each ε ∈ (0, 1), there exists C = C(r, ε) > 0 such that
for each n ∈ N,

P
[
Kn
r ≤ Cn1/2

]
≥ 1− ε.

Proof. Let (C∞, L∞, b∞) be the Schaeffer encoding process of (Q∞, e∞) as in Section 3.2.
Since b∞ is obtained from a two-sided simple random walk by skipping the upward steps,
we can find C0 = C0(r, ε) such that with probability at least 1− ε/4,

min
k∈[0,C0n1/2]Z

b∞(k) ≤ −rn1/4 and min
k∈[−C0n1/2,0]Z

b∞(k) ≤ −rn1/4.

By Lemma 3.7, if this is the case then (with p∞ the contour function as in Section 3.2)

dist(p∞(0),p∞(i);Q∞) ≥ L∞(p∞(0)) + L∞(p∞(i))−
(
L∞(p∞(i)) + min

k∈[0,C0n1/2]Z
b∞(k)

)

≥ rn1/4 (4.18)

whenever i ≥ I∞(bC0n
1/2c). We have a similar bound when i ≤ I∞(−bC0n

1/2c).
The number of vertices of ∂Q∞ in p∞([I∞(−bC0n

1/2c), I∞(bC0n
1/2c)]Z) is at most the

sum of the quantities |b∞(k)− b∞(k− 1)|+1 for k ∈ [−C0n
1/2, C0n

1/2]Z (c.f. Remark 3.4).
By the law of large numbers and (4.18) we can find C1 = C1(r, ε) > C0 such that with
probability at least 1− ε/2, there are at most C1n

1/2 vertices of ∂Q∞ in Brn1/4(e∞;Q∞).
Since the dangling quadrangulation qv0 is a.s. finite, applying the preceding bound with
r − A in place of r for A a deterministic, n-independent constant shows that we can
find C = C(r, ε) > C1 such that with probability at least 1− ε, there are at most Cn1/2

vertices of ∂Q∞ in Brn1/4(eS;Q∞).
Our coupling of Q∞ and QS implies that in this case, there are at most Cn1/2 vertices

of ∂QS in Brn1/4(eS;QS). The statement of the lemma follows.

We next prove a bound for the diameter of dangling quadrangulations.

Lemma 4.9. For each r > 0 and each δ > 0, it holds with probability tending to 1 as
n→∞ that

max
v∈V(∂QS∩Brn1/4 (eS;QS))

diam(qv) ≤ δn1/4

where the diameter is taken with respect to the internal graph metric on qv.

We will deduce Lemma 4.9 from Proposition 4.5 and an analogous bound for finite-
volume quadrangulations. Fix ` > 0 and a sequence of positive integers {ln}n∈N with
ln → `. For n ∈ N, let (Qn, en0 , v

n
∗ ) be sampled uniformly Q•(n, ln). Let Core(Qn) be the

quadrangulation obtained by removing from Qn each vertex and each edge which can be
disconnected from vn∗ by deleting a single vertex of ∂Qn. Let Cn be the set of connected
components of the set of vertices and edges removed in this manner plus the vertices
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which can be deleted to disconnect these vertices and edges from vn∗ . Then Cn is a set of
quadrangulations with general boundary which “dangle” from Core(Qn).

Lemma 4.10. For each δ > 0, it holds with probability tending to 1 as n→∞ that

max
q∈Cn

diam(q) ≤ δn1/4

where here the diameter is taken with respect to the internal graph metric on q.

Proof. This is essentially proven in [10, Section 5] but for the sake of clarity we explain
how the precise statement of the lemma follows from existing results in the literature.
For n ∈ N let dn be the graph distance on Qn, rescaled by (9/8)1/4n−1/4. Also let (H, d, z)
be a Brownian disk with area 1 and boundary length ` together with a marked interior
point, sampled uniformly from its area measure. We know from [10, Theorem 1] (c.f.
Theorem 4.1) that (Qn, dn, vn∗ )→ (H, d, z) in the pointed Gromov-Hausdorff topology. By
the Skorokhod representation theorem, we can couple so that this convergence occurs
a.s. By the analog of [23, Lemma A.1] for the pointed Gromov-Hausdorff topology (which
follows from Proposition 1.5), we can find a compact metric space (W,D) and isometric
embeddings Qn →W and H →W such that the following is true. If we identify Qn and
H with their embeddings into W , then we a.s. have Qn → H in the D-Hausdorff distance
and D(vn∗ , z)→ 0.

Suppose now by way of contradiction that the statement of the lemma is false. Then
we can find δ > 0 such that with positive probability, there is an infinite sequence N of
positive integers such that for n ∈ N , there is a qn ∈ Cn with dn-diameter ≥ δ. Let vn be
the vertex of ∂Qn with the property that removing vn from ∂Qn disconnects qn from vn∗ .
By possibly replacing N with a further subsequence, we can arrange that vn → x ∈ H as
N 3 n→∞.

For n ∈ N and ζ ∈ (0, δ), let Anζ := qn \Bζ(vn; dn) and let Unζ := Qn \ (qn ∪Bζ(vn; dn)).
Then for each n ∈ N we have dn(Anζ , U

n
ζ ) ≥ ζ and Anζ ∪ Unζ ∪ Bζ(vn; dn) = V(Qn). For

each rational ζ > 0, we can find a subsequence Nζ of N along which Anζ → Aζ ⊂ H and
Unζ → Uζ ⊂ H in the D-Hausdorff distance. The sets Aζ and Uζ lie at distance at least ζ
from each other (so are disjoint) and Aζ ∪ Uζ ∪Bζ(x; d) = H. Since vn∗ lies at uniformly
positive dn-distance from ∂Qn with probability tending to 1 as n→∞ and by our choice
of the vertices vn, it follows that it is a.s. the case that for small enough ζ > 0, each
of Aζ and Uζ is non-empty. Hence for each sufficiently small ζ > 0, removing Bζ(x; d)

disconnects H into two non-empty components. This contradicts the fact that H has the
topology of a disk [8, Theorem 2].

Proof of Lemma 4.9. Let {vk}k∈Z and Kn
r be as in the discussion just before Lemma 4.8.

Also fix ε ∈ (0, 1) and let C = C(r, ε) be chosen as in that lemma. By Theorem 1.11,
we can find ρ = ρ(r, ε) > r such that with probability at least 1 − ε, each vk for k ∈
[−Cn1/2, Cn1/2]Z is contained in Bρn1/4(eS, QS). Then with probability at least 1− 2ε,

V(∂QS ∩Brn1/4(eS, QS)) ⊂ {vk : k ∈ [−Cn1/2, Cn1/2]Z} ⊂ V
(
∂Q∞ ∩Bρn1/4(e∞, Q∞)

)
.

(4.19)
By Proposition 4.5, we can findR = R(r, ε, δ) ∈ N withR > ρ+δ such that for large enough
n ∈ N, we can couple (QRn, eRn0 , vRn∗ ) with (Q∞, e∞) in such a way that with probability at
least 1− ε, the graph metric balls B(ρ+δ)n1/4(e∞;Q∞) and Bρ+δ(eRn0 ;R−1/4dRn) equipped
with the restricted graph metrics are isometric via a graph isomorphism which preserves
the intersection of these metric balls with ∂Q∞ and ∂QRn, respectively. If this is the case
and (4.19) holds, then each qv for v ∈ V(∂QS ∩Brn1/4(eS, QS)) with internal diameter
≥ δn1/4 corresponds to a unique dangling quadrangulation in CRn with internal diameter
≥ δn1/4. By Lemma 4.10, the probability that such a quadrangulation exists tends to 0

and n→∞. Since ε ∈ (0, 1) was arbitrary, we conclude.
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Next we turn our attention to a bound for the areas of the dangling quadrangulations.

Lemma 4.11. For each r > 0 and each ε > 0, there exists A = A(r, ε) > 0 such that for
each n ∈ N, it holds with probability at least 1− ε that

∑

v∈V(∂QS)∩Brn1/4 (eS;QS)

µn∞(qv) ≤ An−1/3,

where here we recall that µn∞ is the measure which assigns each vertex of Qn∞ a mass
equal to (4n)−1 times its degree.

Proof. Let {vk}k∈Z and Kn
r be as in the discussion just before Lemma 4.8. By Lemma 4.8,

for each ε > 0 there exists C = C(r, ε) > 0 such that with probability at least 1− ε, we
have Kn

r ≤ Cn1/2, in which case

∑

v∈V(∂QS)∩Brn1/4 (eS;QS)

µn∞(qv) � n−1
bCn1/2c∑

k=−bCn1/2c

#E(qvk)

with universal implicit constant.
By [15, Equation (24)], we have the tail estimate P[#E(qv) > m] ∼ cm−3/4 for v 6= v0,

for a universal constant c > 0. By the heavy-tailed central limit theorem, the random
variables

n−2/3
bCn1/2c∑

k=−bCn1/2c

#E(qvk)

converge in law to a non-degenerate limiting distribution. The statement of the lemma
follows.

It remains to prove a bound for the boundary length of the dangling quadrangulations
(which will explain why we use a different scaling in the definitions of the re-scaled
boundary paths ηn∞ and ηnS ). For t ≥ 0, let σnS (t) be equal to n−1/2 times the sum of
the boundary lengths of the dangling quadrangulations qv attached at vertices v which
are hit by ηnS between time 0 and time t plus n−1/2 times the total number of such
quadrangulations, so that for t ≥ 0,

ηnS (t) = ηn∞

(
2−3/2σnS (t) +On(n

−1/2)
)
. (4.20)

Also let σ̃nS (−t) be equal to n−1/2 times the sum of the boundary lengths of the dangling
quadrangulations qv attached at vertices v which are hit by ηnS between time −t and time
0 plus n−1/2 times the total number of such quadrangulations so σ̃S satisfies an analog
of (4.20) for negative times.

Lemma 4.12. We have σnS → (t 7→ 23/2t) and σ̃nS → (t 7→ 23/2t) in law with respect to the
topology of uniform convergence on compact subsets of [0,∞).

Proof. We will prove the statement for σnS ; the statement for σ̃nS is proven identically.
Let {vk}k∈Z be as in the discussion just before Lemma 4.8. Then qv0 is a.s. finite and
by [15, Equation (23)], for k ∈ N we have E[Perim(qvk) + 1] = 3, where here Perim

denotes the perimeter. The random variables Perim(qvk) + 1 for k ∈ N are i.i.d. and
Perim(qv0) is a.s. finite, so by the strong law of large numbers there a.s. exists a random
M ∈ N such that for m ≥M ,

∣∣∣∣∣
1

m

m∑

k=0

(Perim(qvk) + 1)− 3

∣∣∣∣∣ ≤ ε. (4.21)
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The law of M does not depend on n, so we can find a deterministic m0 ∈ N such that
with probability at least 1 − ε, (4.21) holds for each m ≥ m0. Let E be the event that
this is the case. Since

∑m0

k=0(Perim(qvk) + 1) <∞ a.s., we can find a deterministic C > 0,
independent from n, such that with probability at least 1− ε this sum is at most C. Let F
be the event that this is the case.

We have

σS(t) = n−1/2
b 23/23 n1/2tc∑

k=0

(Perim(qvk) + 1)

so if E occurs and b 23n
1/2tc ≥ m0,

∣∣∣σS(t)− 23/2t
∣∣∣ ≤ εt.

Hence if T > 0, then on E ∩ F ,

sup
t∈[0,T ]

∣∣∣σS(t)− 23/2t
∣∣∣ ≤ εT +On(n

−1/2).

Since ε > 0 is arbitrary, the statement of the lemma follows.

Proof of Theorem 1.12. Let {((QnS , enS), (Qn∞, en∞))}n∈N be a sequence of copies of the
coupling ((QS, eS), (Q∞, e∞)) used in this section and let {qnv }n∈N be the associated
dangling quadrangulations. Define the elements Qn

∞ = (Qn, dn∞, µ
n
∞, η

n
∞) and Qn

S =

(QnS , d
n
S , µ

n
S , η

n
S ) of MGHPU

∞ as in Section 1.6 with respect to the nth pair in this sequence.
By Theorem 1.11 and the Skorokhod representation theorem, we can find a coupling

of the sequence {((QnS , enS), (Qn∞, en∞))}n∈N and (H∞, d∞) such that a.s. Qn
∞ → H∞ in the

local GHPU topology. By Proposition 1.9, we can a.s. find a random boundedly compact
metric space (W,D) and isometric embeddings of (Qn∞, d

n
∞) for n ∈ N and (H∞, d∞) into

(W,D) such that if we identify these spaces with their embeddings, then a.s. Qn
∞ → H∞

in the D-local HPU topology (Definition 1.8).
Now fix a deterministic r > 0 and recall (4.17). By Lemma 4.9, in any such coupling

Br(η
n
S (0); d

n
S)→ Br(η∞(0); d∞)

in probability with respect to the D-Hausdorff metric. By Lemma 4.11, in any such
coupling

µnS |Br(ηnS (0);dnS )
→ µS|Br(η∞(0);d∞)

in probability with respect to the D-Prokhorov metric. By (4.20) and Lemmas 4.9
and 4.12, in any such coupling

Brη
n
S → Brη∞

in probability with respect to the D-uniform metric, where Br is as in Definition 1.6.
Therefore BrQ

n
S → BrH∞ in law in the GHPU topology, so by Lemma 2.11 Qn

S → H∞ in
law in the local GHPU topology.
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