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Abstract

We demonstrate a relationship between the heat kernel on a finite weighted Abelian
Cayley graph and Gaussian functions on lattices. This can be used to prove a new
inequality for the heat kernel on such a graph: when t ≤ t′,

Ht(u, v)

Ht(u, u)
≤ Ht′(u, v)

Ht′(u, u)
.

This was an open problem posed by Regev and Shinkar.
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1 Introduction

Let Γ = (V,E) be a finite undirected weighted graph. Let L be the graph laplacian
of Γ, given by L = D − A, with D the degree matrix and A the adjacency matrix. We
then define the heat kernel Ht as the matrix exponential e−tL, for any t ∈ R>0. The
value Ht(u, v) can be thought of as the probability that a continuous-time random walk
starting at u ends up at v after time t. See Section 1.1 of [RS16] for more detail on
this interpretation. We will say that G has monotonic diffusion if the following holds
whenever t′ ≥ t, for all vertices v and u:

Ht(u, v)

Ht(u, u)
≤ Ht′(u, v)

Ht′(u, u)
.

We will say that Γ is a weighted Abelian Cayley graph if there is an Abelian group
structure on V under which Γ is translation-invariant. In this note we will prove the
following theorem:

Theorem 1.1. Any weighted Abelian Cayley graph has monotonic diffusion.

For arbitrary weighted undirected graphs, monotonic diffusion often fails to hold. See
the appendix of [RS16] for a simple case. It has previously been asked whether vertex-
transitive graphs necessarily have monotonic diffusion; this question was attibuted to
Peres in [RS16], and was resolved in the negative in the same paper. It also makes sense
to ask whether a Riemannian manifold has monotonic diffusion, since there is a uniquely
determined heat kernel in this setting, provided the manifold is complete and the Ricci
curvature is bounded from below [C94]. We present an argument in Appendix A, due to
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Jeff Cheeger, that monotonicity does not always hold for Riemannian manifolds. In the
other direction, it was shown in [RS15] that all flat tori have monotonic diffusion. Since
weighted Abelian Cayley graphs are the closest thing we have to flat tori in the world of
graph theory, it is natural to ask whether they have monotonic diffusion. This problem
was posed in [RS16] and is resolved, in the affirmative, in this note.

We will use the following strategy: we show that, if υ is a nonnegative, even, real-
valued function on a finite Abelian group, then the convolutional exponential exp*(υ) can
be represented as a pushforward of a Gaussian function on a lattice. This will allow us
to apply an inequality in [RS15] regarding Gaussian sums on lattice cosets.

2 Gaussian pushforwards

Throughout this paper, G will refer to an arbitrary finite Abelian group.

Definition 2.1. A lattice is a discrete subgroup of a finite-dimensional inner product
space. If L is a lattice, we define the function ρ : L→ R as ρ(x) = e−π〈x,x〉. When S ⊆ L,
we will use the notation ρ(S) to mean

∑
x∈S ρ(x).

Definition 2.2. We will say that a function χ : G → R is a Gaussian pushforward if
there exists a lattice L and a group homomorphism h : L→ G such that χ(g) = ρ(h−1(g))

for all g ∈ G. We will use X to denote the set of all Gaussian pushforwards on G.

Proposition 2.3. X is closed under convolution.

Proof. Suppose that χ1 ∈ X and χ2 ∈ X. Then we have lattices L1 and L2, as well
as homomorphisms h1 : L1 → G and h2 : L2 → G, such that χ1(g) = ρ(h−11 (g)) and
χ2(g) = ρ(h−12 (g)) for all g ∈ G. Take L3 to be the orthogonal direct sum of L1 and L2.
We have the homomorphism h3 : L3 → G given by h3((x1, x2)) = h1(x1) + h2(x2). Define
χ3 : G → R as χ3(g) = ρ(h−13 (g)). Then χ3 = χ1 ∗ χ2. We also clearly have that χ3 ∈ X.
This yields the result.

Remark 2.4. Curiously, we also have that X is closed under multiplication, if we instead
take L3 to be the sublattice of L1 ⊕ L2 of points (x1, x2) with h1(x1) = h2(x2), and
h3((x1, x2)) to be h1(x1).

Proposition 2.5. If χ ∈ X, then for all g1, g2 ∈ G, we have

χ(g1)χ(g2)

χ(0)
≤ χ(g1 + g2) + χ(g1 − g2)

2
.

Proof. This follows immediately from (4c) of corollary 2.2 of [RS15], if we take the lattice
L to be the kernel of a homomorphism from a lattice to G whose corresponding Gaussian
pushforward function is χ.

From continuity, we immediately have the following stronger statement:

Corollary 2.6. If χ is in the topological closure X̄ of X then for all g1, g2 ∈ G, we have

χ(g1)χ(g2)

χ(0)
≤ χ(g1 + g2) + χ(g1 − g2)

2
.

Proposition 2.7. If χ is in X̄, υ is a nonnegative, even, real-valued function on G, and
ω = χ ∗ υ, then for all g ∈ G,

χ(g)

χ(0)
≤ ω(g)

ω(0)
.

Proof. For all g ∈ G, we have

ω(g) =
∑
g′∈G

χ(g − g′)υ(g′)
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=
∑
g′∈G

χ(g + g′)υ(−g′)

∑
g′∈G

χ(g + g′)υ(g′).

Taking the mean of the first and third sums above, we have:

ω(g) =
∑
g′∈G

χ(g + g′) + χ(g − g′)
2

υ(g′).

Applying 2.6,

ω(g) ≥
∑
g′∈G

χ(g)χ(g′)υ(g′)

χ(0)

=
χ(g)

χ(0)

∑
g′∈G

χ(g′)υ(−g′)

=
χ(g)ω(0)

χ(0)
.

Dividing by ω(0) yields the result.

3 The convolutional exponential of nonnegative even functions

Definition 3.1. Suppose υ is a real-valued function on G. We define exp*(υ), the convo-
lutional exponential of υ, by

exp*(υ) =

∞∑
n=0

υ∗n

n!
,

where υ∗n is the nth convolutional power of υ. In general, we have the following
relationship between convolution, multiplication, and Fourier transform for real-valued
functions on finite groups:

x̂ ∗ y = x̂ŷ.

We therefore have the following equivalent definition of exp*(υ):

̂exp*(υ) = exp(υ̂),

where exp is the pointwise exponential operator. From this perspective, it is clear that
exp*(a+ b) = exp*(a) ∗ exp*(b).

In this section, we will show that the convolutional exponential of any nonnegative
even function on G is a Gaussian pushforward.

Definition 3.2. We will use Φ to refer to the set of functions on G of the form φ(g) =

δ(g − g0) + δ(g + g0) for some g0 ∈ G. Here we have δ(0) = 1 and δ(g) = 0 for g 6= 0. We
clearly have that Φ is a basis for the even functions on G.

Definition 3.3. We will say that a sequence of real-valued functions υn on G is O(f(n))

if, for any g ∈ G, we have that υn(g) is O(f(n)). Since all norms on a finite-dimensional
vector space are equivalent, this is the same as saying that ‖υn‖ is O(f(n)), for any
choice of norm on RG. We also have that υn is O(f(n)) if and only if υ̂n is O(f(n)), by
the Plancherel theorem.

The next lemma is elementary and so the proof will be skipped.

Lemma 3.4. If a and b are both in [0, C], then for all n ∈ N, we have |an − bn| ≤
nCn−1|a− b|.
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Lemma 3.5. If an and bn are both 1 + O(1/n), and an − bn is O(f(n)), then ann − bnn is
O(nf(n)).

Proof. We have, for some C, that an ≤ 1 + C/n and bn ≤ 1 + C/n. By applying 3.4, we
have

|ann − bnn| ≤ n(1 + C/n)n−1|an − bn| ≤ neC |an − bn| ∈ O(nf(n)).

Lemma 3.6. Suppose φ ∈ Φ and α ∈ R>0. Then we can find a sequence of Gaussian
pushforwards (χn) such that δ + αφ/n− χn is O(1/n4).

Proof. We will choose χn arbitrarily when n ≤ α, and the rest of this proof will be
concerned with the tail (χn)n>α. Choose a g0 such that φ(g) = δ(g + g0) + δ(g − g0) for
all g ∈ G. Let rn =

√
ln(n/α)/π, so that α/n = ρ(rn). Let Ln be the lattice in R of reals

of the form krn, with k ∈ Z. We then have a unique group homomorphism hn from Ln
to G that sends rn to g0. We define χn by χn(g) = ρ(h−1n (g)). Let An = {rn, 0,−rn} and
Bn = Ln \An. We can break χn into two smaller sums:

χn(g) = ρ(h−1n (g) ∩An) + ρ(h−1n (g) ∩Bn).

The left term is equal to δ+αφ/n. The right term is O(1/n4). This yields the result.

Lemma 3.7. If φ ∈ Φ and α ∈ R>0, then exp*(αφ) is in the topological closure X̄ of X.

Proof. Let ψ = exp*(αφ). From the convolution theorem, we have that ψ̂ = exp(αφ̂).
Therefore, we have

ψ̂ = lim
n→∞

(1 +
αφ̂

n
)n.

From 3.6, we have a sequence of Gaussian pushforwards (χn) such that δ + αφ/n− χn
is O(1/n4). Taking the Fourier transform, we have that 1 + αφ̂/n− χ̂n is O(1/n4). We
then have from 3.5 that (1 + αφ̂/n)n − χ̂nn is O(1/n3). Combining this with the formula
for ψ̂ above, we have:

lim
n→∞

χ̂n
n = ψ̂.

Applying the convolution theorem then yields:

lim
n→∞

χ∗nn = ψ.

From 2.3, we know that χ∗nn is a Gaussian pushforward, so this last limit proves the
result.

Theorem 3.8. Suppose υ is a nonnegative even function on G. Then exp* υ is in X̄.

Proof. We can clearly represent υ as a sum α1φ1 + · · · + αnφn, with αi being positive
scalars and φi ∈ Φ. Then, applying the convolution theorem, we can represent exp*(υ)

as the convolution exp*(α1φ1) ∗ · · · ∗ exp*(αnφn). From 3.7, we know that each individual
term in this convolution is in the closure of X, so the result follows from 2.3 and the
continuity of the convolution operation.
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4 The heat kernel on weighted Abelian Cayley graphs

In this section, we prove 1.1. The hard work has already been done in [RS15] and in
the previous section; now we just need to translate these results into the language of
graph theory.

Proof of Theorem 1.1. We define τ to be the element of RV obtained by applying the
graph laplacian to −δ. In other words, we have τ : V → R and τ(v) = −L(0, v), with L

the graph laplacian, given by L = D −A, with D the degree matrix and A the adjacency
matrix. Then τ is an even function and is nonnegative everywhere except at 0. We also
have that the linear operator determined by the graph laplacian is just convolution with
−τ ; it follows that the heat kernel matrix Ht corresponds to convolution with exp*(tτ),
and therefore Ht(u, v) = exp*(tτ)(u − v). So, to prove 1.1, it suffices to show that, for
t ≤ t′, and for any v ∈ V ,

exp*(tτ)(v)

exp*(tτ)(0)
≤ exp*(t′τ)(v)

exp*(t′τ)(0)
.

Let τ ′ : V → R be given by τ ′(0) = 0 and τ ′(v) = τ(v) for v 6= 0. Then τ ′ is a
nonnegative even function. We also have that exp*(tτ ′) = e−τ(0) exp*(tτ). It therefore
suffices to show that, for t ≤ t′, and for any v ∈ V ,

exp*(tτ ′)(v)

exp*(tτ ′)(0)
≤ exp*(t′τ ′)(v)

exp*(t′τ ′)(0)
.

Since we have exp*(t′τ ′) = exp*(tτ ′) ∗ exp*((t′ − t)τ ′), the result follows immediately
from 3.8 and 2.7.

5 Directions for further work

In order to prove 1.1, we needed the inequality 2.6 for χ a Gaussian pushforward:

χ(g1)χ(g2)

χ(0)
≤ χ(g1 + g2) + χ(g1 − g2)

2
,

which itself follows from the stronger inequality

χ(g1)2χ(g2)2 ≤ χ(g1 + g2)χ(g1 − g2)χ(0)2, (5.1)

which is a special case of Theorem 2.1 of [RS15].
The proof of monotonic diffusion on flat tori also uses (5.1), except χ(g) is replaced

by Ht(0, g), with H the heat kernel on the torus in question.
So, if we want to see where else we have monotonic diffusion, it is natural to ask:

where else does (5.1) hold? On the surface, it looks we need group structure to even
state (5.1). However, (5.1) can be reformulated in the language of Riemannian symmetric
spaces. Indeed, suppose M is a Riemannian symmetric space, that is, M is a connected
Riemannian manifold equipped with an isometric automorphism sp for each point p,
such that sp(p) = p and the derivative of sp at p is the negation map on Tp. For flat tori
then, we have a symmetric space structure with sx(y) = 2x− y, and so the following is
equivalent to (5.1):

Ht(a, b)
2Ht(b, c)

2 ≤ Ht(a, c)Ht(a, sb(c))Ht(a, a)2 (5.2)

To see this, substitute 0 for a, x for b, and x + y for c. Then sb(c) is x − y, and we
recover the original inequality.

It is shown Appendix B that any symmetric space which satisfies (5.2) has monotonic
diffusion. This inequality does not hold for arbitrary symmetric spaces; it is shown
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in Appendix C that it fails on H3. However, we already know from [RS15] that (5.2)
holds for flat tori, and the author has numerically tested (5.2) for the 2-sphere and real
projective 2-space, using the spherical harmonic functions of SciPy to approximate the
heat kernel. The inequality appears to hold for these spaces. It seems natural then to
ask: for which Riemannian symmetric spaces does (5.2) hold? Perhaps it holds on all
Riemannian symmetric spaces of compact type.

It can also be readily seen from equation (1.6) of [GN98] that the heat kernel has
monotonic diffusion on H3, despite the fact that (5.2) fails on this space. Perhaps
monotonic diffusion holds on other hyperbolic spaces as well.

A Appendix: lack of monotonic diffusion on arbitrary manifolds

We present here an argument that not all Riemannian manifolds have monotonic
diffusion. This argument is due to Jeff Cheeger and was relayed to the author by Oded
Regev [R17]. It is very similar to the argument given in the appendix of [RS16], also due
to Cheeger, which deals with diffusion on graphs rather than manifolds.

It is shown in [CV87] that, on a compact manifold M of dimension at least 3, any
finite sequence λ1 ≤ λ2 ≤ · · · ≤ λn of positive real numbers appears as the first nonzero
eigenvalues, counted with multiplicity, of the Laplacian on M for some choice of metric.
In particular, there exist compact Riemannian manifolds on which the first nonzero
eigenvalue of the Laplacian has multiplicity 1. Let M be such a manifold, with λ1 the
first eigenvalue and λ2 the second. Let f : M → R be an eigenfunction of the Laplacian
corresponding to the eigenvalue λ1. Choose points x and y in M so that f(y) > f(x) > 0.
We have the following, for some positive constant C:

Ht(x, x) = 1 + Ce−λ1tf(x) +O(e−λ2t)

Ht(x, y) = 1 + Ce−λ1tf(y) +O(e−λ2t).

Since λ2 > λ1, we have that Ht(x, y) > Ht(x, x) for sufficiently large t. Since the quotient
Ht(x, y)/Ht(x, x) is eventually greater than 1, but it converges to 1 as t→∞, it can not
be monotonically increasing. Therefore, we do not have monotonic diffusion on M .

B Appendix: monotonic diffusion on Riemannian symmetric
spaces

Here we show that, if the heat kernel of a Riemannian symmetric space M satisfies
the inequality

Ht(a, b)
2Ht(b, c)

2 ≤ Ht(a, c)Ht(a, sb(c))Ht(a, a)2 (2)

then it has monotonic diffusion. First of all, note that (5.2) implies the following analogue
of 2.5:

Ht(a, b)Ht(b, c)

Ht(a, a)
≤ Ht(a, c) +Ht(a, sb(c))

2
(B.1)

This follows from dividing both sides of (5.2) by Ht(a, a)2, and then applying the
inequality of arithmetic and geometric means. This is essentially the same as the proof
of 2.5.

From this, we can derive the monotonic diffusion inequality in a way that parallels
the proof of 2.7. We have, for t′ ≥ t:

Ht′(x, y) =

∫
M

Ht′−t(x, z)Ht(z, y)dz

=

∫
M

Ht′−t(x, sx(z))Ht(sx(z), y)dz
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=

∫
M

Ht′−t(x, z)Ht(sx(z), y)dz.

Averaging the first and third lines above, we have:

Ht′(x, y) =

∫
M

Ht′−t(x, z)
Ht(z, y) +Ht(sx(z), y)

2
dz

=

∫
M

Ht′−t(x, z)
Ht(y, z) +Ht(y, sx(z))

2
dz.

Applying (B.1) then gives

Ht′(x, y) ≥
∫
M

Ht′−t(x, z)
Ht(y, x)Ht(x, z)

Ht(y, y)
dz

=

∫
M

Ht′−t(x, z)Ht(z, x)dz
Ht(x, y)

Ht(y, y)

=
Ht′(x, x)Ht(x, y)

Ht(y, y)
.

Dividing by Ht′(x, x) gives the result.

C Appendix: failure of (5.2) on H3

Here we present an argument, due to Oded Regev [R17], that the inequality (5.2) fails
on hyperbolic 3-space. In this section we realize H3 through the hyperboloid model, as
described in [CFKP97]. In other words, we seeH3 as the set of points (x0, x1, x2, x3) inR4

with x20 − x21 − x22 − x23 = 1. The geodesic distance between two points x = (x0, x1, x2, x3)

and y = (y0, y1, y2, y3) in H3 is then given by

d(x, y) = arccosh(x0y0 − x1y1 − x2y2 − x3y3).

Suppose d1 ∈ R>0. We define the following points in H3:

a = (cosh(d1), sinh(d1), 0, 0)

b = (1, 0, 0, 0)

c = (cosh(d1), 0, sinh(d1), 0).

Then we have d1 = d(a, b) = d(b, c), and we define d2 as d(a, c) = arccosh(cosh(d1)2).
We also fix some arbitrary t ∈ R>0. We have a formula for the heat kernel on H3, given
in [GN98]. When the geodesic distance between x and y is given by d, we have:

Ht(x, y) =
1

(4πt)3/2
d

sinh(d)
exp(−t− d2

4t
).

Using this formula, the inequality (5.2) reduces to the following, for our choices of a,
b, c, and t:

d21
sinh(d1)2

exp(−d
2
1

2t
) ≤ d2

sinh(d2)
exp(−d

2
2

4t
).

Let LS and RS be the left and right sides of the above inequality. We have, as d1 and
d2 grow:

ln(LS) =
−d21
2t

+O(d1)

ln(RS) =
−d22
4t

+O(d2).

However, it can be readily seen that d2 = 2d1 +O(1). We therefore have

ln(RS) =
−d21
t

+O(d1),

and therefore RS < LS for sufficiently large d1. This violates (5.2).
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