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Abstract

We consider the problem of finding the Perron–Frobenius eigenvector of a primitive
matrix. Dividing each of the rows of the matrix by the sum of the elements in the row,
the resulting new matrix is stochastic. We give a formula for the normalized Perron–
Frobenius eigenvector of the original matrix, in terms of a realization of the Markov
chain defined by the associated stochastic matrix. This formula is a generalization of
the classical formula for the invariant probability measure of a Markov chain.
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Let A be a primitive matrix of size N , i.e., a non–negative matrix whose m–th power
is positive for some natural number m. The Perron–Frobenius theorem (Theorem 1.1
in [7]) states that there exist a positive real number λ and a vector u on the unit simplex
{x ∈ RN+ : x1 + · · · + xN = 1 } such that uTA = λuT . Moreover, the eigenvalue λ is
simple, is larger in absolute value than any other eigenvalue of A, and any non–negative
eigenvector of A is a multiple of u. The eigenvalue λ is the Perron–Frobenius eigenvalue
of A and u is a Perron–Frobenius eigenvector of A. The purpose of this note is to give a
Markov chain representation of the normalized Perron–Frobenius eigenvector u/|u|1.

The matrix A can be decomposed as A(i, j) = f(i)M(i, j) with f(i) being the sum
of the elements in the i–th row of A and M(i, j) = A(i, j)/f(i). The matrix M is now
primitive and stochastic, so that it naturally defines an ergodic Markov chain. Let
(Xn)n∈N be a Markov chain with state space { 1, . . . , N } and transition matrix M , denote
by Ek the expectation of the Markov chain issued from k and τk the time of the first
return of the chain to k. We have the following result.

Theorem. Let 1 ≤ k ≤ N . The normalized Perron–Frobenius eigenvector u of A is given
by the formula

∀i ∈ { 1, . . . , N } ui =

Ek

(
τk−1∑
n=0

(
1{Xn=i}λ

−n
n−1∏
t=0

f(Xt)
))

Ek

(
τk−1∑
n=0

(
λ−n

n−1∏
t=0

f(Xt)
)) .
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By taking i = k in the above formula we obtain the following corollary.

Corollary. The normalized Perron–Frobenius eigenvector u of A is given by the formula

∀k ∈ { 1, . . . , N } uk =
1

Ek

(
τk−1∑
n=0

(
λ−n

n−1∏
t=0

f(Xt)
)) .

This formula is a generalization of the classical formula for the invariant probability
measure of a Markov chain. Indeed, in the particular case where A is stochastic, f is
constant equal to 1, λ is also equal to 1, and u corresponds to the invariant probability
measure of the Markov chain. Thus, the formula of the corollary becomes the well–known
formula

∀k ∈ { 1, . . . , N } uk =
1

Ek(τk)
.

Before proving the theorem, we state a preparatory lemma.

Lemma. Let A be a non–negative primitive matrix of size N . Its Perron–Frobenius
eigenvalue λ satisfies the following identity: for any k ∈ { 1, . . . , N },

1 =
1

λ
A(k, k) +

1

λ2

∑
i1 6=k

A(k, i1)A(i1, k) + · · ·

+
1

λn

∑
i1,...,in−1 6=k

A(k, i1)A(i1, i2) · · ·A(in−1, k) + · · ·

Proof. Let (xi)1≤i≤N be a non–negative eigenvector associated to the Perron–Frobenius
eigenvalue λ of A:

∀j ∈ { 1, . . . , N }
N∑
i=1

xiA(i, j) = λxj .

Since A is primitive, all the components of x are positive. Let k ∈ { 1, . . . , N } be fixed.
We have thus

1 =
1

λxk

N∑
i=1

xiA(i, k) =
1

λ
A(k, k) +

∑
i 6=k

xi
λxk

A(i, k) .

We replace xi in the last sum and we get

1 =
1

λ
A(k, k) +

∑
i 6=k

N∑
i′=1

xi′

λ2xk
A(i′, i)A(i, k)

=
1

λ
A(k, k) +

∑
i 6=k

1

λ2
A(k, i)A(i, k) +

∑
i,i′ 6=k

xi′

λ2xk
A(i′, i)A(i, k) .

Iterating this procedure, we obtain, for n ≥ 1,

1 =

n−1∑
t=0

1

λt+1

∑
i1,...,it 6=k

A(k, i1)A(i1, i2) · · ·A(it, k)+

1

λn

∑
i1,...,in−1 6=k

xi1
xk
A(i1, i2) · · ·A(in−1, k) .

Let B be the matrix obtained from A by filling with zeroes the line and the column
associated to k . The last term of the previous identity can be rewritten as

1

λn

∑
i,j 6=k

xi
xk
B(i, j)n−2A(j, k) .
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Yet it follows from part (e) of Theorem 1.1 of [7] that the spectral radius of B is strictly
less than λ, whence

∀i, j ∈ { 1, . . . , N } lim
n→∞

1

λn
B(i, j)n−2 = 0 .

Thus the previous sum vanishes as n goes to ∞. Passing to the limit, we obtain the
desired identity.

We now proceed to the proof of the theorem.

Proof. Let us note Ek and τk simply by E and τ . We set, for 1 ≤ i ≤ N ,

yi = E

(
τ−1∑
n=0

(
1{Xn=i}λ

−n
n−1∏
t=0

f(Xt)
))

.

Obviously, the vector (yi)1≤i≤N is non–null (notice that yk = 1) and its components are
non–negative. Let us compute

N∑
i=1

yif(i)M(i, j) =

N∑
i=1

∑
n≥0

E

(
1{τ>n}λ

−n
( n−1∏
t=0

f(Xt)
)
1{Xn=i}f(i)M(i, j)

)

=

N∑
i=1

∑
n≥0

E

(
1{τ>n}λ

−n
( n∏
t=0

f(Xt)
)
1{Xn=i}1{Xn+1=j}

)

= E

(
τ−1∑
n=0

1{Xn+1=j}λ
−n
( n∏
t=0

f(Xt)
))

= λE

(
τ∑
n=1

1{Xn=j}λ
−n
( n−1∏
t=0

f(Xt)
))

.

Suppose that j 6= k. Then the term in the last sum vanishes for n = 0 or n = τ , and we
recover the identity

N∑
i=1

yif(i)M(i, j) = λyj .

For j = k, we obtain

N∑
i=1

yif(i)M(i, j) = λE

(
λ−τ

τ−1∏
t=0

f(Xt)

)
.

The last expectation can be rewritten as

E

(
λ−τ

τ−1∏
t=0

f(Xt)

)
=
∑
n≥1

E

(
1{τ=n}λ

−n
n−1∏
t=0

f(Xt)

)
=
∑
n≥1

∑
i1,...,in−1 6=k

λ−nf(k)f(i1) · · · f(in−1)

×P
(
X1 = i1, . . . , Xn−1 = in−1, Xn = k

)
=
∑
n≥1

∑
i1,...,in−1 6=k

λ−nf(k)M(k, i1) · · · f(in−1)M(in−1, k) .
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This last sum is equal to 1 by Lemma. Noticing that yk = 1, we conclude that

N∑
i=1

yif(i)M(i, k) = λyk .

Therefore the vector (yi)1≤i≤k is an eigenvector of A associated to λ. We normalize it so
that it belongs to the unit simplex and we obtain the formula stated in the theorem.

Examples

The decomposition of the matrix A in terms of f andM might seem artificial. However,
it arises naturally in several situations. We illustrate this fact in the following two
examples, which also provided us with the motivation to construct the probabilistic
representation of the normalized Perron–Frobenius eigenvector given in the above
results.

Mutation–selection equilibrium. Consider a mutation–selection model in which indi-
viduals have an associated type, the possible types being numbered from 1 to m. Individ-
uals reproduce and mutate, and mutations, which only happen during the reproduction
events, change the type of the offspring. We fix a function f : { 1, . . . ,m } → ]0,+∞[

and a primitive stochastic matrix (M(i, j))1≤i,j≤m. An individual of type i reproduces
at rate f(i), and the offspring mutates to type j with probability M(i, j). Let the vec-
tor (Nk(t))1≤k≤m represent the numbers of the different types at time t in an evolving
population. We assume that the evolution is driven by the following linear system of
differential equations,

N ′k(t) =

m∑
i=1

Ni(t)f(i)M(i, k) , 1 ≤ k ≤ m.

Let us consider the vector (xk(t))1≤k≤m of the proportions associated to the linear system,
i.e.,

xk(t) =
Nk(t)

N1(t) + · · ·+Nm(t)
, 1 ≤ k ≤ m.

A simple computation shows that the vector of proportions follows the following system
of differential equations:

x′k(t) =

m∑
i=1

xi(t)f(i)M(i, k)− xk(t)
m∑
i=1

xi(t)f(i) , 1 ≤ k ≤ m. (E)

We look now for the equilibrium solutions of this system of differential equations, and
we obtain the mutation–selection equilibrium equation

∀ k ∈ { 1, . . . , N } xk

N∑
i=1

xif(i) =

N∑
i=1

xif(i)M(i, k) . (S)

This equilibrium equation is of high interest and it arises in a wide variety of models,
for instance in Eigen’s quasispecies model [1, 2], which is just the system of differential
equations (E) for (xk(t))1≤k≤m, or in the evolutionary dynamics of grammar learning [5],
for a more detailed account of its wide applicability, see [6]. The main question is
whether a solution of (S) exists in the N − 1 dimensional unit simplex, and whether the
solution, if it exists, is unique or not. In view of the Perron–Frobenius Theorem [8, 4], the
unique solution of (S) in the unit simplex is given by the normalized Perron–Frobenius
eigenvector u of the matrix A = (f(i)M(i, j))1≤i,j≤m. The Perron–Frobenius eigenvalue
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λ corresponds to the mean fitness at equilibrium λ =
∑

1≤i≤m xif(i). In this particular
setting, the Markov chain (Xn)n≥0 can be naturally interpreted as the random walk of a
mutant in a neutrally evolving population, that is, if f is constant equal to 1.

Multitype Galton–Watson process. We describe next a probabilistic counterpart of
the mutation–selection equilibrium above. Consider a multitype Galton–Watson process
in which individuals of type i produce offspring according to a Poisson law with mean
f(i), and the offspring of a type i individual becomes of type j with probability M(i, j).
The multitype Galton–Watson process is a Markov chain

Zn =
(
Zn(1), . . . , Zn(m)

)
, n ≥ 0 .

The number Zn(i) represents the number of individuals having type i in generation n. In
order to build generation n+ 1 from generation n, each individual of type i present in
generation n produces a random number of offspring, distributed according to a Poisson
random variable with mean f(i), and each of the offspring then mutates according to
the matrix M . All these events happen independently of each other, as well as of the
past of the process. The ensemble of all the offspring forms the generation n+ 1. The
null vector is an absorbing state. For each i ∈ { 1, . . . ,m }, we denote by Pi and Ei the
probabilities and expectations for the process started from a population consisting of a
single individual of type i. The mean matrix of the process (Zn)n≥0 is defined by

∀ i, j ∈ { 1, . . . ,m } A(i, j) = Ei
(
Z1(j)

)
.

The matrix A is nothing but the matrix (f(i)M(i, j))1≤i,j≤m. Indeed, for i, j ∈ { 1, . . . ,m },
conditioning on the number of children of the individual in the initial population, we
obtain

Ei
(
Z1(j)

)
=

∞∑
k=1

Ei
(
Z1(j)

∣∣ |Z1|1 = k
)
Pi
(
|Z1|1 = k

)
=

∞∑
k=1

kM(i, j)e−f(i)
f(i)k

k!
= f(i)M(i, j) .

It is well–known (Chapter 2 of [3]) that if the Perron–Frobenius eigenvalue λ of A
is strictly larger than one, then the multitype Galton–Watson process has a positive
probability of survival. Conditionally on the survival event, the vector of proportions
of the different types converges to u when time goes to ∞, u being the normalized
Perron–Frobenius eigenvector of A, i.e., conditionally on the survival event

∀ k ∈ { 1, . . . ,m } lim
n→∞

Zn(k)

Zn(1) + · · ·+ Zn(m)
= uk .

References

[1] Manfred Eigen, Self-organization of matter and the evolution of biological macromolecules,
Naturwissenschaften 58 (1971), no. 10, 465–523.

[2] Manfred Eigen, John McCaskill, and Peter Schuster, The molecular quasi-species., Advances in
Chemical Physics 75 (1989), 149–263.

[3] Theodore E. Harris, The theory of branching processes, Springer-Verlag, Berlin; Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1963. MR-0163361

[4] B. L. Jones, R. H. Enns, and S. S. Rangnekar, On the theory of selection of coupled macro-
molecular systems, Bulletin of Mathematical Biology 38 (1976), no. 1, 15–28.

[5] Martin A. Nowak, Natalia L. Komarova, and Partha Niyogi, Evolution of universal grammar,
Science 291 (2001), no. 5501, 114–118.

ECP 22 (2017), paper 52.
Page 5/6

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=0163361
http://dx.doi.org/10.1214/17-ECP76
http://www.imstat.org/ecp/


Representation of the Perron–Frobenius eigenvector

[6] Karen M. Page and Martin A. Nowak, Unifying evolutionary dynamics, Journal of Theoretical
Biology 219 (2002), no. 1, 93–98.

[7] E. Seneta, Nonnegative matrices and Markov chains, second ed., Springer Series in Statistics,
Springer-Verlag, New York, 1981. MR-719544

[8] Colin J. Thompson and John L. McBride, On eigen’s theory of the self-organization of matter
and the evolution of biological macromolecules, Mathematical Biosciences 21 (1974), no. 1,
127–142.

ECP 22 (2017), paper 52.
Page 6/6

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=719544
http://dx.doi.org/10.1214/17-ECP76
http://www.imstat.org/ecp/

	References

