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1 Introduction and previous results

In this paper, we are interested in the deviation on the right of sums of unbounded
independent random variables with finite variances. So, let X1, X2, . . . , Xn be a finite
sequence of independent random variables with finite variances. Set

Sn = X1 +X2 + · · ·+Xn and σ2 = IE(X2
1 ) + IE(X2

2 ) + · · ·+ IE(X2
n). (1.1)

Assume that IE(Sn) = 0. Then the so-called Tchebichef-Cantelli inequality states that

IP(Sn ≥ x) ≤ σ2/(x2 + σ2) for any x > 0. (1.2)

Setting z = 1 + (x/σ)2, this inequality is equivalent to

IP
(
Sn ≥ σ

√
z − 1

)
≤ 1/z for any z > 1. (1.3)

Assume now that the random variables X1, X2, . . . , Xn have a finite Laplace transform
on [0,+∞[ and satisfy the subGaussian condition below:

log IE(etX1) + log IE(etX2) + · · ·+ log IE(etXn) ≤ 1
2σ

2t2 for any t > 0. (1.4)

Then the usual Chernoff calculation yields

IP(Sn ≥ σ
√

2 log z ) ≤ 1/z for any z > 1. (1.5)

For large values of z this inequality is clearly much sharper than the Cantelli inequality.
However (1.4) is too restrictive. A less restrictive condition is the existence of moments
of order q > 2 for the positive parts of the random variables X1, X2, . . . , Xn. Set

Xi+ = max(0, Xi) and Cq(X) =
(
IE(Xq

1+) + IE(Xq
2+) + · · ·+ IE(Xq

n+)
)1/q

(1.6)
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Constants in the Fuk-Nagaev inequality

for any q ≥ 1. If IE(Xi) = 0 for any i in [1, n], then an adequate version of the Fuk-Nagaev
inequalities (see Fuk (1973) or Nagaev (1979), Corollary 1.8) yields

IP(Sn ≥ x ) ≤

(
(q + 2)Cq(X)

qx

)q

+ exp

(
− 2x2

(q + 2)2eqσ2

)
for any x > 0 (1.7)

and any q > 2 such that Cq(X) <∞. Therefrom

IP(Sn ≥ aqσ
√

2 log z + bqCq(X)z1/q ) ≤ 2/z for any z > 1, (1.8)

with aq = (1+ q/2)eq/2 and bq = 1+(2/q). Fan, Grama and Liu (2017) obtain an extension
of (1.7) to the case of martingales (see their Corollary 2.5), with the same constants
aq and bq. In Section 3 of this paper, we will prove the following maximal version of
(1.8) with the optimal constant aq. Let S∗n = max(0, S1, . . . , Sn): under the assumptions
of (1.7),

IP
(
S∗n > σ

√
2 log z +

(
1 + (2/q) + (q/3)1q>3

)
Cq(X)z1/q

)
≤ 1/z for any z > 1. (1.9)

In the iid case, one can derive immediately the bounded law of the iterated logarithm
(with the exact constant) from (1.9), which shows (in spirit) that the constant aq = 1

appearing here cannot be further improved. In Section 4 we give similar inequalities
under weak moments conditions. In Section 5 we apply the results of Sections 3 and 4
to get constants in the weak Rosenthal inequalities of Carothers and Dilworth (1988).
The results of Sections 3, 4 and 5 are given in the more general setting of martingale
differences sequences. Section 2 deals with preliminary results, which are the starting
point of this paper.

2 Preliminary results

In this section, we introduce some definitions and technical tools which will be used
all along the paper. We start with the definition of the tail function, the quantile function
and the integrated quantile function.

Definition 2.1. Let X be a real-valued random variable. Then the tail function HX of
X is defined by HX(t) = IP(X > t). The quantile function QX of X is the cadlag inverse
of HX (note that QX is nonincreasing).

The basic property of QX is: x < QX(u) if and only if HX(x) > u. This property
ensures that QX(U) has the same distribution as X for any random variable U with the
uniform distribution over [0, 1].

Definition 2.2. The integrated quantile function Q̃X of the real-valued and integrable
random variable X is defined by Q̃X(u) = u−1

∫ u

0
QX(s)ds (since QX is nonincreasing,

Q̃X is a nonincreasing function).

We start by a byproduct of Doob’s inequality, which is a reformulation of Lemma 1 in
Dubins and Gilat (1978).

Lemma 2.3. Let (M0,M1, . . . ,Mn) be a submartingale in L1 such that M0 ≥ 0 almost
surely. Set M∗n = max(M0,M1, . . . ,Mn). Then QM∗

n
(u) ≤ Q̃Mn

(u) for any u in ]0, 1].

Proof. The assumption M0 ≥ 0, which seems to be necessary (this assumption ensures
that QM∗

n
≥ 0 ), is omitted in Dubins and Gilat (1978). Therefore I give a proof below.

From the Doob inequality and Lemma 2.1(a) in Rio (2000), for any x ≥ 0,

x IP(M∗n ≥ x) ≤ IE(Mn1M∗
n≥x) ≤

∫ IP(M∗
n≥x)

0

QMn(s)ds.
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For u in ]0, 1], let x = QM∗
n
(u). Then IP(M∗n ≥ x) = IP

(
QM∗

n
(U) ≥ QM∗

n
(u)
)
≥ u > 0.

Hence QM∗
n
(u) ≤ Q̃Mn

(
IP(M∗n ≥ x)

)
≤ Q̃Mn(u), since Q̃Mn is nonincreasing.

We now recall some elementary properties of the quantile function and the integrated
quantile function. These properties are given and proved in Pinelis (2014).

Proposition 2.4. Let X and Y be real-valued and integrable random variables. Then,
for any u in ]0, 1],

(i) QX(u) ≤ Q̃X(u), (ii) IP(X > QX(u)) ≤ u, (iii) Q̃X+Y (u) ≤ Q̃X(u) + Q̃Y (u).

Let us also recall the variational expression of Q̃X , which can be found in Rockafellar
and Uryasev (2000) or Pinelis (2014).

Q̃X(u) = inf
{
t+ u−1IE

(
(X − t)+

)
: t ∈ IR

}
for any u ∈]0, 1]. (2.1)

Consider now a real-valued random variable X with a finite Laplace transform on a
right neighborhood of 0. Define `X by

`X(t) = log IE
(
exp(tX)

)
for any t ≥ 0. (2.2)

Define the transformation T on the class Ψ of convex functions ψ : [0,∞[7→ [0,∞] such
that ψ(0) = 0 by

T ψ(x) = inf
{
t−1(ψ(t) + x) : t ∈]0,∞[

}
for any x ≥ 0 (2.3)

and the function Q∗X by

Q∗X(u) = T `X(log(1/u)). for any u ∈]0, 1]. (2.4)

As noted by Rio (2000, p. 159), T `X is the inverse function of the Legendre transform of
`X . Furthermore the following properties are valid.

Proposition 2.5. (i) For any real-valued and integrable random variable X with a finite
Laplace transform on a right neighborhood of 0, Q̃X ≤ Q∗X . (ii) T is subadditive on Ψ.

Proof. We refer to Pinelis (2014) for a proof of (i). We now prove (ii). Let ψ0 and ψ1 be
elements of Ψ. It is enough to prove that, for s > 0 and t > 0, there exists z > 0 such that

t−1(ψ0(t) + x) + s−1(ψ1(s) + x) ≥ z−1(ψ0(z) + ψ1(z) + x). (2.5)

Let z = st/(s+ t). From the convexity of the above functions and the facts that ψ0(0) = 0

and ψ1(0) = 0, ψ0(z) ≤ sψ0(t)/(s+ t) and ψ1(z) ≤ tψ1(s)/(s+ t), which ensures that (2.5)
holds true for this choice of z. Hence T is subadditive.

3 Fuk-Nagaev inequalities under strong moments assumptions

Throughout this section, (Mj)0≤j≤n is a martingale in L2 with respect to a nonde-
creasing filtration (Fj)j , such that M0 = 0. We set Xj = Mj −Mj−1 for any positive j.
We assume that, for some constant q > 2,

‖IE(X2
j | Fj−1)‖∞ <∞ and ‖IE(Xq

j+ | Fj−1)‖∞ <∞ for any integer j ∈ [1, n]. (3.1)

We set

σ =
∥∥∥ n∑

j=1

IE(X2
j | Fj−1)

∥∥∥1/2

∞
and Cq(M) =

∥∥∥ n∑
j=1

IE(Xq
j+ | Fj−1)

∥∥∥1/q

∞
. (3.2)

The increments X1, X2, . . . , Xn are said to be conditionally symmetric if, for any j in [1, n]

the conditional law of Xj given Fj−1 is symmetric. The main result of this section is
Theorem 3.1 below.
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Theorem 3.1. Let (Mj)0≤j≤n be a martingale in L2 satisfying (3.1), such that M0 = 0.
Then

Q̃Mn
(1/z) ≤ σ

√
2 log z + Cq(M)(βqz

1/q + 1q>3(e/3) log z) (a)

for any z > 1, where βq = 1 + min(1/5, 1/q) + (1/q) and (Cq(M), σ) is defined by (3.2).
Furthermore, if the increments X1, X2, . . . , Xn are conditionally symmetric, then

Q̃Mn
(1/z) ≤ σ

√
2 log z + Cq(M)(1 + (1/4) + 1/q)z1/q (b)

for any q in ]3, 4] and any z > 1.

From Theorem 3.1 and Lemma 2.3, we immediately get the corollary below.

Corollary 3.2. Under the assumptions of Theorem 3.1(a), for any z > 1,

IP
(

max(M0,M1, . . . ,Mn) > σ
√

2 log z + Cq(M)
(
βqz

1/q + 1q>3(e/3) log z
) )
≤ 1/z.

Remark 3.3. Note that βq ≤ 1 + (2/q). Hence Corollary 3.2 improves (1.8) for any value
of z in the case q ≤ 3. If q > 3, the elementary inequality e log z ≤ qz1/q can be used to
replace (e/3) log z by (q/3)z1/q in the above inequalities, which proves that Corollary 3.2
implies (1.9).

Proof of Theorem 3.1(a). We prove Theorem 3.1(a) in the case Cq(M) = 1. The general
case follows by dividing the random variables by Cq(M). Let y = z1/q. Set

X̄j = min(Xj , y) and M̄n = X̄1 + X̄2 + · · ·+ X̄n. (3.3)

From Proposition 2.4(iii) and Proposition 2.5(i),

Q̃Mn(1/z) ≤ Q∗M̄n
(1/z) + Q̃Mn−M̄n

(1/z). (3.4)

Next, from (2.1) and the fact that Mn − M̄n ≥ 0,

Q̃Mn−M̄n
(1/z) ≤ zIE(Mn − M̄n). (3.5)

Let us now bound up IE(Mn − M̄n). Let ηj = Xj − X̄j . Then

IE(Mn − M̄n) =
∑n

j=1 IE
(
IE(ηj | Fj−1)

)
. (3.6)

Now

IE(ηj | Fj−1) =

∫ ∞
y

IP(Xj > s | Fj−1)ds ≤ 1

qyq−1

∫ ∞
y

qsq−1IP(Xj > s | Fj−1)ds,

which ensures that
IE(ηj | Fj−1) ≤ q−1y1−qIE(Xq

j+ | Fj−1). (3.7)

Hence
IE(Mn − M̄n) ≤ q−1y1−qIE

( ∑n
j=1 IE(Xq

j+ | Fj−1)
)
≤ q−1y1−q, (3.8)

since
∑n

j=1 IE(Xq
j+ | Fj−1) ≤ 1 almost surely. Combining (3.5) and (3.8), we then get that

Q̃Mn−M̄n
(1/z) ≤ q−1y1−qz = q−1z1/q. (3.9)

In view of (3.4) and (3.9), it remains to prove that

Q∗M̄n
(1/z) ≤ σ

√
2 log z + (min(1/5, 1/q) + 1)z1/q + 1q>3(e/3) log z for any z > 1. (3.10)

In order to prove (3.10), we will bound the Laplace transform of M̄n via the lemma below.
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Lemma 3.4. Let Z1, Z2, . . . , Zn be a finite sequence of random variables with finite
variances, adapted to a nondecreasing filtration (Fj)j . Suppose furthermore that, for
any j in [1, n], IE(Zj | Fj−1) ≤ 0 almost surely. Let Tn = Z1 +Z2 + · · ·+Zn. Then, for any
positive t, log IE

(
etTn

)
≤ `(t), where

`(t) =
∥∥∥ n∑

j=1

IE(Z2
j | Fj−1)

∥∥∥
∞

t2

2
+

∞∑
k=3

∥∥∥ n∑
j=1

IE(Zk
j+ | Fj−1)

∥∥∥
∞

tk

k!
.

Proof of Lemma 3.4. From the elementary inequality ex ≤ 1 + x+ (x2/2) +
∑

k≥3(xk+/k!),
we infer that, for any positive t,

IE
(
etZj | Fj−1

)
≤ 1 + IE(Zj | Fj−1) t+ IE(Z2

j | Fj−1)
t2

2
+

∞∑
k=3

IE(Zk
j+ | Fj−1)

tk

k!

≤ exp

(
IE(Z2

j | Fj−1)
t2

2
+

∞∑
k=3

IE(Zk
j+ | Fj−1)

tk

k!

)
a.s. (3.11)

Define now the random variables Wj(t) by W0(t) = 1 and

Wj(t) = Wj−1(t) exp

(
tZj − IE(Z2

j | Fj−1)
t2

2
−
∞∑
k=3

IE(Zk
j+ | Fj−1)

tk

k!

)
for j ∈ [1, n].

Then, from (3.11) (Wj(t))0≤j≤n is a positive supermartingale adapted to (Fj)0≤j≤n, which
ensures that IE(Wn(t)) ≤ IE(W0(t)) = 1. Since Wn(t) exp(`(t)) ≥ exp(tTn) almost surely,
it implies Lemma 3.4.

We now apply Lemma 3.4 to the random variables X̄1, X̄2, . . . , X̄n. Noticing that
X̄j ≤ Xj , which ensures that IE(X̄j | Fj−1) ≤ 0 and that X̄2

j ≤ X2
j , which implies that∥∥∑n

j=1 IE(X̄2
j | Fj−1)

∥∥
∞ ≤ σ

2, we thus get that

log IE
(
etM̄n

)
≤ σ2t2/2 +

∑∞
k=3 γk t

k/k!, where γk =
∥∥∑n

j=1 IE(X̄k
j+ | Fj−1)

∥∥
∞. (3.12)

Usually the coefficients γk are bounded up by σ2yk−2. However this upper bound does
not take into accounts the assumption on the moments of order q. Here we need the
more precise upper bound below.

Proposition 3.5. Let Z1, Z2, . . . , Zn be a finite sequence of random variables, adapted
to a nondecreasing filtration (Fj)j . Suppose furthermore that max(Z1, Z2, . . . , Zn) ≤ c

a.s. for some positive c and that

∥∥∥ n∑
j=1

IE(Z2
j+ | Fj−1)

∥∥∥
∞
≤ V and

∥∥∥ n∑
j=1

IE(Zq
j+ | Fj−1)

∥∥∥
∞
≤ 1.

Then, first
∑n

j=1 IE(Zk
j+ | Fj−1) ≤ V (q−k)/(q−2) almost surely, for any real k ∈ [2, q] and

second
∑n

j=1 IE(Zk
j+ | Fj−1) ≤ ck−q almost surely, for any real k ≥ q.

Proof of Proposition 3.5. Noting that Zk
j+ ≤ Zq

j+c
k−q for any k ≥ q, one immediately

gets the second assertion. We now prove the first assertion. From the convexity of the
exponential function, (q − 2)(Zj+/a)k−2 ≤ (k − 2)(Zj+/a)q−2 + (q − k) for any k in [2, q]

and any positive a. Multiplying this inequality by ak−2Z2
j+, we get that

(q − 2)Zk
j+ ≤ (k − 2)ak−qZq

j+ + (q − k)ak−2Z2
j+.
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Taking the conditional expectation with respect to Fj−1 and summing then on j, we infer
that

(q − 2)

n∑
j=1

IE(Zk
j+ | Fj−1)≤ (k − 2)ak−q

n∑
j=1

IE(Zq
j+ | Fj−1) + (q − k)ak−2

n∑
j=1

IE(Z2
j+ | Fj−1)

≤ (k − 2)ak−q + (q − k)ak−2V a.s.

Choosing a = V −1/(q−2) in this inequality, we then get the first part of Proposition 3.5.

Let ψq(s) =
∑

k≥q (sk/ k! ). Define

v = σ2, `0(t) = v
t2

2
, `1(t) =

∑
2<k<q

v(q−k)/(q−2) t
k

k!
and `2(t) = y−q ψq(yt). (3.13)

From (3.12) and Proposition 3.5 applied to Zj = X̄j with c = y and V = σ2,

log IE
(
etM̄n

)
≤ `0(t) + `1(t) + `2(t) for any t > 0. (3.14)

Consequently, from Proposition 2.5(ii) and (2.4),

Q∗M̄n
(1/z) ≤ min

(
T `0(x)+T (`1+`2)(x), T (`0+`1)(x)+T `2(x)

)
, where x = log z. (3.15)

Let us bound up T `2(x). Choosing t = (x/y) in (2.3) yields

T `2(x) ≤ y + y1−qx−1ψq(x) = y + ye−xx−1ψq(x), (3.16)

since yq = z = ex. Now the function x 7→ e−xx−1ψq(x) is uniformly bounded on ]0,∞[, as
shown by the lemma below.

Lemma 3.6. For any q > 2 and any positive x, e−xx−1ψq(x) ≤ min(1/q, 1/5).

Proof of Lemma 3.6. ψq(x) =
∑

k≥q(xk/k!) ≤ (x/q)
∑

j≥q−1(xj/j!) ≤ xex/q, which gives
the first bound. Now e−xx−1ψq(x) ≤ x−1e−x(ex−1−x−x2/2) := g(x) for any q > 2. Let us
bound the maximum of g: the function g is increasing on [0, x0] and decreasing on [x0,∞[,
where x0 is the unique positive solution of the equation ex − 1 − x − (x2/2) = (x3/2).
Consequently supx>0 g(x) = x2

0e
−x0/2. Now one can prove that x0 ≥ x1 = 3.35. Since

x 7→ x2e−x is decreasing on ]2,∞[, it implies that x2
0e
−x0 ≤ x2

1e
−x1 = 0.394. Hence

supx>0 g(x) ≤ 1/5, which completes the proof of Lemma 3.6.

From (3.16) and Lemma 3.6,

T `2(x) ≤ y + (y/x)`2(x/y) ≤ αqy, where αq = 1 + min(1/q, 1/5). (3.17)

Proof of (3.10) for q ≤ 3. Then `1 = 0. Furthermore, an elementary calculation gives

T `0(x) = σ
√

2x = σ
√

2 log z. (3.18)

Then (3.10) follows from (3.15), (3.17) and (3.18).
Proof of (3.10) for q > 3. Applying (2.3) to `1 + `2 with t = x/y, we get that

T (`1 + `2)(x) ≤ y + (y/x)`2(x/y) + (y/x)`1(x/y) ≤ αqy + (y/x)`1(x/y).

Now recall that y = z1/q = ex/q. Hence (x/qy) ≤ sups>0 se
−s = (1/e) or, equivalently,

(x/y) ≤ (q/e). (3.19)
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Now t 7→ t−2`1(t) is increasing. Thus, using (3.19), (y/x)`1(x/y) ≤ (x/y)(e/q)2`1(q/e).
Since y ≥ 1 and q ≥ 3, it follows from the above inequalities that

T (`1 + `2)(x) ≤ αqy + (ex/3)`1(q/e). (3.20)

Next

`0(t) + `1(t) ≤ vt2
∑
k≥2

v(2−k)/(q−2) t
k−2

k!
≤ vt2

2(1− v−1/(q−2)t/3)
.

From the above bound and Inequality (2.17), page 30 in Bercu, Delyon and Rio (2015),

T (`0 + `1)(x) ≤ σ
√

2x+ v−1/(q−2)(x/3). (3.21)

Putting together the inequalities (3.15), (3.17), (3.18) and (3.20), we then get that

Q∗M̄n
(1/z) ≤ σ

√
2x+ αqy + (x/3) min

(
e`1(q/e), v−1/(q−2)

)
, (3.22)

where x = log z, y = z1/q. It remains to prove that

min
(
e`1(q/e), v−1/(q−2)

)
≤ e. (3.23)

If v−1/(q−2) ≤ e, (3.23) is trivial. Otherwise v1/(q−2) < (1/e), which ensures that
v(q−k)/(q−2) ≤ ek−q for any k in ]2, q[. Then `1(q/e) ≤ e−q

∑
2<k<q(qk/k!) ≤ 1, which

implies (3.23). Hence (3.10) holds true, which completes the proof of Theorem 3.1(a).

Proof of Theorem 3.1(b). It is enough to prove Theorem 3.1(b) in the case Cq(M) = 1.
Set y = z1/q and define the random variables X̄j by X̄j = max(−y,min(Xj , y)) for j in
[1, n]. Set M̄n = X̄1 + X̄2 + · · ·+ X̄n. Then

Mn − M̄n =
∑n

j=1(Xj − X̄j) ≤
∑n

j=1(Xj+ − y)+.

Now (3.4) is still valid, and applying (3.5)–(3.8) to the term on right hand (instead of
Mn− M̄n), we find that (3.9) is also still valid. Consequently it only remains to prove that

Q∗M̄n
(1/z) ≤ σ

√
2 log z + (5/4)z1/q for any z > 1. (3.24)

Since the increments X̄j are conditionally symmetric, the conditional moments of order
2k + 1 vanish. Hence, similarly to (3.11), we have

IE
(
etX̄j | Fj−1

)
≤ exp

(
IE(X2

j | Fj−1)
t2

2
+ 2

∞∑
k=2

IE(X̄2k
j+ | Fj−1)

t2k

(2k)!

)
a.s. (3.25)

Now, proceeding as in the proof of Lemma 3.4, we get that, for any t > 0,

log IE
(
etM̄n

)
≤ σ2 t

2

2
+ 2

∞∑
k=2

δk
t2k

(2k)!
, where δk =

∥∥∥ n∑
j=1

IE(X̄2k
j+ | Fj−1)

∥∥∥
∞
. (3.26)

Applying then Proposition 3.5 to the random variables X̄j ,

log IE
(
etM̄n

)
≤ `0(t) + `2(t) where `0(t) = σ2 t

2

2
and `2(t) =

2

z

∞∑
k=2

(ty)2k

(2k)!
. (3.27)

Recall that T `0(x) = σ
√

2x. Hence, from (2.4), (3.27) and the subadditivity of T ,

Q∗M̄n
(1/z) ≤ σ

√
2x+ T `2(x), where x = log z. (3.28)

Next, applying (3.3) with t = (x/y) and noticing that z = ex,

T `2(x) ≤ y + (y/x)`2(x/y) = y + 2(y/x)e−x(cosh(x)− 1− x2/2).

Now x−1(cosh(x)− 1− x2/2) =
∑∞

k=2 x
2k−1/(2k)! ≤ sinh(x)/4, which ensures that

2(y/x)e−x(cosh(x)− 1− x2/2) ≤ ye−x sinh(x)/2 ≤ (y/4).

Hence T `2(x) ≤ (5y/4), which, together with (3.28), implies (3.24).
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4 Fuk-Nagaev inequalities under weak moments assumptions

Throughout this section, (Mj)0≤j≤n is a martingale in L2 with respect to a nonde-
creasing filtration (Fj)j , such that M0 = 0. We set Xj = Mj −Mj−1 for any positive j.
We assume that, for some constant r > 2,

‖IE(X2
j | Fj−1)‖∞ <∞ and ‖ sup

t>0

(
tr IP(Xj+ > t | Fj−1)

)
‖∞ <∞ (4.1)

for any j in [1, n]. We set

σ =
∥∥∥ n∑

j=1

IE(X2
j | Fj−1)

∥∥∥1/2

∞
and Cw

r (M) =
∥∥∥ sup

t>0

(
tr

n∑
j=1

IP(Xj+ > t | Fj−1)
)∥∥∥1/r

∞
(4.2)

(the letter w in Cw
r (M) means weak). Let us now state our main result.

Theorem 4.1. Let (Mj)0≤j≤n be a martingale in L2 satisfying (4.1), such that M0 = 0.
Then, for any z > 1,

Q̃Mn(1/z) ≤ σ
√

2 log z + Cw
r (M)µrz

1/r,

where µr = 2 + max(4/3, r/3) and (Cw
r (M), σ) is defined by (4.2).

From Theorem 4.1 and Lemma 2.3, we immediately get the corollary below.

Corollary 4.2. Under the assumptions of Theorem 4.1, for any z > 1,

IP
(

max(M0,M1, . . . ,Mn) > σ
√

2 log z + Cw
r (M)µrz

1/r
)
≤ 1/z.

Remark 4.3. From the Markov inequality Cw
r (M) ≤ Cr(M). The constant µr appearing

here can be improved. Nevertheless µr ≤ 10/3 for any r in ]2, 4], which shows that
Corollary 4.2 is suitable for numerical applications.

Proof of Theorem 4.1. As in Section 3, it is enough to prove Theorem 3.1 in the case
Cw

r (M) = 1. Let then y = z1/r. Set

X̄j = min(Xj , y) and M̄n = X̄1 + X̄2 + · · ·+ X̄n. (4.3)

The upper bounds (3.4) and (3.5) are still valid. Let us now bound up IE(Mn − M̄n). Let
ηj = Xj − X̄j . Then

IE(Mn − M̄n) = IE
(∑n

j=1 IE(ηj | Fj−1)
)
. (4.4)

Let

Ar = sup
t>0

(
tr
∑n

j=1IP(Xj+ > t | Fj−1)
)
. (4.5)

If Cw
r (M) = 1, then Ar ≤ 1 a.s., whence

n∑
j=1

IE(ηj | Fj−1) =

∫ ∞
y

( n∑
j=1

IP(Xj > s | Fj−1)
)
ds ≤ Ar

∫ ∞
y

s−rds ≤ y1−r

r − 1
a.s.

It follows that IE(Mn − M̄n) ≤ (r − 1)−1y1−r. Applying now (3.5), we get that

Q̃Mn−M̄n
(1/z) ≤ (r − 1)−1y1−rz = (r − 1)−1z1/r. (4.6)

In view of (3.4) and (4.6), it remains to prove that

Q∗M̄n
(1/z) ≤ σ

√
2 log z +

(
2 + max(4/3, r/3)− 1/(r − 1)

)
z1/r for any z > 1. (4.7)
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We now prove (4.7). As in Dedecker, Gouëzel and Merlevède (2016), we will apply
inequalities involving strong moments of order q > r to the variables X̄n. We will choose
q in IN. Let k be any integer such that k > r. We start by bounding up Ck(M̄):

n∑
j=1

IE(X̄k
j+ | Fj−1) =

∫ y

0

ksk−1
( n∑
j=1

IP(Xj+ > s | Fj−1)
)
ds ≤ Ar

∫ y

0

ksk−1−rds,

where Ar is defined by (4.5). Since Ar ≤ 1 a.s., it follows that∥∥∥ n∑
j=1

IE(X̄k
j+ | Fj−1)

∥∥∥
∞
≤ k yk−r

k − r
for any k > q. (4.8)

From the above upper bound, for any integer q > r,

∑
k≥q+1

∥∥∥ n∑
j=1

IE(X̄k
j+ | Fj−1)

∥∥∥
∞

tk

k!
≤ `2(t), where `2(t) =

y1−rt

q + 1− r
∑
m≥q

(ty)m

m!
. (4.9)

Define now the positive real Cq and Z1, Z2, . . . , Zn by

Cq =
(
qyq−r/(q − r)

)1/q
and Zj = C−1

q X̄j for any j ∈ [1, n]. (4.10)

Then the random variables Z1, Z2, . . . , Zn fulfill the conditions of Proposition 3.5 with
V = (σ/Cq)2 and c = (y/Cq). Applying Proposition 3.5 to Z1, Z2, . . . , Zn for k in [2, q] and
multiplying by Ck

q , we then get that

∥∥∥ n∑
j=1

IE(X̄k
j+ | Fj−1)

∥∥∥
∞
≤ σ2

(
Cq

q/σ
2
)(k−2)/(q−2)

for any integer k ∈ [2, q]. (4.11)

From the above upper bound, for any integer q > r,

q∑
k=2

∥∥∥ n∑
j=1

IE(X̄k
j+ | Fj−1)

∥∥∥
∞

tk

k!
≤ `01(t), where `01(t) = σ2

q∑
k=2

(
Cq

q

σ2

) k−2
q−2 tk

k!
. (4.12)

Applying now Lemma 3.4, we get that

log IE
(
etM̄n

)
≤ `(t) := `01(t) + `2(t) for any t > 0. (4.13)

Hence, by Proposition 2.5(ii),

Q∗M̄n
(1/z) ≤ T `(x) ≤ T `01(x) + T `2(x), where x = log z. (4.14)

Now, on the one hand, proceeding exactly as in Section 3 (see in particular (3.21),
page 7),

T `01(x) ≤ σ
√

2x+ (Cq
q/σ

2)1/(q−2)(x/3) (4.15)

and on the other hand, choosing t = (x/y) in (2.3),

T `2(x) ≤ y + (y/x)`2(x/y) = y +
ye−x

(q + 1− r)
∑
m≥q

xm

m!
≤ y + y/(q + 1− r). (4.16)

If (Cq
q/σ

2)1/(q−2) ≤ (q − 1)y/x, from (4.14) and the two above ineqalities,

Q∗M̄n
(1/z) ≤ σ

√
2x+ y(1/(q + 1− r) + (q + 2)/3) where x = log z and y = z1/r. (4.17)
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Otherwise (σ2/Cq
q )1/(q−2) < x/(qy − y), whence

σ2(Cq
q/σ

2)(k−2)/(q−2) = Cq
q (σ2/Cq

q )(q−k)/(q−2) ≤ Cq
q

(
(q − 1)y/x

)k−q
.

Then, using the definition (4.10) of Cq,

(y/x)`01(x/y) ≤ y
Cq

qy
−qxq−1

(q − 1)q

q∑
k=2

(q − 1)k

k!
≤ y

(qxq−1y−r

q − r

) eq−1

(q − 1)q
. (4.18)

Now xq−1y−r = xq−1e−x ≤ (q − 1)q−1e1−q and, consequently,

(y/x)`01(x/y) ≤ yq/(q − 1)(q − r). (4.19)

Applying now (2.3) with t = (x/y) to ` and using (4.16) and (4.19), we get that

T `(x) ≤ y(1 + 1/(q + 1− r) + q/(q − 1)(q − r)). (4.20)

Finally, from (4.14), (4.17) and (4.20),

Q∗M̄n
(1/z) ≤ σ

√
2 log z + z1/rδr, (4.21)

where δr =
(
1 + 1/(q + 1− r) + max

(
(q − 1)/3, q/(q − 1)(q − r)

) )
.

In view of (4.21), it remains to prove that

δr + 1/(r − 1) ≤ 2 + max(4/3, r/3). (4.22)

In order to prove this inequality, we separate three cases. For r in ]2, 8/3], set q = 4.
Then (q− 1)/3 = 1 ≥ q/(q− 1)(q− r) and δr + 1/(r− 1) = 2 + 1/(5− r) + 1/(r− 1) ≤ 10/3

for any r in ]2, 8/3], which implies (4.7).
For r in ]8/3, 4], set q = 5. Then (q − 1)/3 = 4/3 ≥ q/(q − 1)(q − r). Consequently

δr + 1/(r − 1) ≤ (7/3) + 1/(6− r) + 1/(r − 1) ≤ 10/3

for any r in ]8/3, 4], which implies (4.22).
If r ≥ 4, we choose the integer q = qr such that qr − 1 < r + 1 ≤ qr. Noticing that

(q − 1)/3 ≥ q/(q − 1)(q − r) for any r ≥ 4, we get that

δr + 1/(r − 1) ≤ 1 + 1/(q + 1− r) + (q − 1)/3 + 1/(r − 1) ≤ 1 + 1/(q + 1− r) + q/3

for r ≥ 4. Set s = q − r. Then 1/(q + 1− r) + q/3 = 1/(s+ 1) + s/3 + r/3 ≤ 1 + r/3, since
s lies in [1, 2]. Hence δr + 1/(r − 1) ≤ 2 + (r/3) for any r ≥ 4, which completes the proof
of (4.22). Finally (4.7) holds true, whence Theorem 4.1.

5 Upper bounds for weak norms of martingales

In this section, we apply the results of Sections 3 and 4 to weak norms of martingales.
Let X be a real-valued and integrable random variable. For r ≥ 1, let

Λ+
r (X) = sup

t>0
t (IP(X > t))1/r and Λr(X) = max(Λ+

r (X),Λ+
r (−X) ). (5.1)

Then Λr is a quasi-norm on the space weak-Lr of real-valued random variables X such
that Λr(|X|) <∞. From the properties of QX given in Section 2, one can easily get the
well-known equalities

Λ+
r (X) = sup

u∈]0,1]

u1/rQX(u) and Λr(X) = max(Λ+
r (X),Λ+

r (−X)). (5.2)
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Define now, for r > 1,

Λ̃+
r (X) = sup

u∈]0,1]

u(1/r)−1

∫ u

0

QX(s)ds and Λ̃r(X) = max(Λ̃+
r (X), Λ̃+

r (−X)). (5.3)

Elementary arguments show that

Λ+
r (X) ≤ Λ̃+

r (X) ≤
(

r
r−1

)
Λ+
r (X) and Λr(X) ≤ Λ̃r(X) ≤

(
r

r−1

)
Λr(X). (5.4)

Furthermore, from Proposition 2.4(iii), Λ̃+
r and Λ̃r satisfy the triangle inequality. It

follows that Λ̃r is a norm on the space weak-Lr.
Let us now recall the extension of Rosenthal’s inequalities to weak-Lr spaces. Let

X1, X2, . . . , Xn be a finite sequence of independent centered random variables. Let
r > 2. Suppose that the random variables belong to the space weak-Lr. Set M0 = 0 and
Mn = X1 +X2 + · · ·+Xn. Then, according to Theorem 2.2 in Carothers and Dilworth
(1988), there exist positive constants ar and br such that

Λr(|Mn|) ≤ arσ + brC
w
r where σ2 = VarMn and Cw

r = sup
t>0

t
( n∑
k=1

IP(|Xk| > t)
)1/r

. (5.5)

From Theorem 4.1, we get the following constants in the maximal version of this
inequality.

Theorem 5.1. Let (Mj)0≤j≤n be a martingale in L2 satisfying (4.1), such that M0 = 0.
Set M∗n = max(M0,M1, . . . ,Mn). Then, for any real r > 2,

Λr(M∗n) ≤ Λ̃+
r (Mn) ≤ σ

√
(r/e) + Cw

r (M)µr (a)

and
Λ̃r(Mn) ≤ σ

√
(r/e) + max(Cw

r (M), Cw
r (−M))µr, (b)

where µr = 2 + max(4/3, r/3) and (Cw
r (M), σ) is defined by (4.2).

Proof. (b) follows immediately from (a) applied to Mn and −Mn. Let us prove (a). By
Theorem 4.1,

Λ̃+
r (Mn) ≤ σ sup

z≥1

(
z−1/r

√
2 log z

)
+ Cw

r (M)µr. (5.6)

Let s = (2/r) log z. Then z−1/r
√

2 log z =
√
rs exp(−s) ≤

√
(r/e), which implies the right

hand side of (a). Now M∗n ≥ 0. Therefrom Λr(M∗n) = Λr(|M∗n|) = Λ+
r (M∗n). Now, using

Lemma 2.3, we get that Λ+
r (M∗n) ≤ Λ̃+

r (Mn), which implies the left hand side of (a).

To conclude this paper, we now compare the weak norms estimates that can be
derived from Theorem 3.1 with weak norms estimates derived from Rosenthal’s inequali-
ties. Assume that the increments X1, X2, . . . , Xn are independent and symmetric. Then,
starting from Theorem 3.1 and proceeding exactly as in the above proof, one obtains
that, for q in ]2, 4],

Λq(M∗n) ≤ σ
√

(q/e) + ζqCq(M), (5.7)

where ζq = (6/5) + (1/q) for q in ]2, 3] and ζq = (5/4) + (1/q) for q in ]3, 4]. Now let Y be a
random variable with Gaussian law N (0, 1). For q in ]2, 4], by Theorems 6.1 and 7.1 in
Figiel et al. (1997),

IE(|Mn|q) ≤ σqIE(|Y |q) +
∑n

j=1 IE
(
|Xj |q

)
. (5.8)

From the Lévy symmetrization inequality, IP(M∗n > x) ≤ IP(|Mn| > x). Hence

‖M∗n‖qq ≤ IE
(
|Mn|q

)
≤ σqIE(|Y |q) + 2

∑n
j=1 IE

(
Xq

j+

)
. (5.9)
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Now, by the Markov inequality Λq(M∗n) ≤ ‖M∗n‖q. Consequently

Λq(M∗n) ≤ σ‖Y ‖q + 21/qCq(M). (5.10)

Using the Stirling formula, one can prove that, for any q > 2,

‖Y ‖qq = π−1/22q/2Γ((q + 1)/2) ≥ (q/e)q/2(1− 1/q)q/2
√

2e ≥ (q/e)q/2
√
e/2.

Hence ‖Y ‖q >
√

(q/e). It follows that, for independent and identically distributed
symmetric random variables in Lq, (5.7) is more efficient for large values of n. Note
however that 21/q < ζq, so that one cannot compare (5.7) and (5.10) in the general case.

Remark 5.2. For q in ]2, 3], from Theorem 3.1 in Section 3, (5.7) holds without the
symmetry condition. For q in ]2, 3], (5.8) also holds true without the symmetry condition,
thanks to Theorem 5.1 in Pinelis (2015). However one cannot derive (5.10) from (5.8) in
the nonsymmetric case.
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