
Electron. Commun. Probab. 22 (2017), no. 24, 1–12.
DOI: 10.1214/17-ECP53
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Stein type characterization for G-normal distributions

Mingshang Hu* Shige Peng† Yongsheng Song‡

Abstract

In this article, we provide a Stein type characterization for G-normal distributions:
Let N [ϕ] = supµ∈Θ µ[ϕ], ϕ ∈ Cb,Lip(R), be a sublinear expectation. N is G-normal if
and only if for any ϕ ∈ C2

b (R), we have∫
R

[
x

2
ϕ′(x)−G(ϕ′′(x))]µϕ(dx) = 0,

where µϕ is a realization of ϕ associated with N , i.e., µϕ ∈ Θ and µϕ[ϕ] = N [ϕ].
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1 Introduction

Peng (2007) introduced the notion of G-normal distribution via the viscosity solutions
of the G-heat equation below

∂tu−G(∂2
xu) = 0, (t, x) ∈ (0,∞)×R,

u(0, x) = ϕ(x),

where G(a) = 1
2 (σ2a+ − σ2a−), a ∈ R with 0 ≤ σ ≤ σ < ∞, and ϕ ∈ Cb,Lip(R), the

collection of bounded Lipstchiz functions on R.
Then the one-dimensional G-normal distribution is defined by

NG[ϕ] = uϕ(1, 0),

where uϕ is the viscosity solution to the G-heat equation with the initial value ϕ.
The above G-heat equation has a unique viscosity solution. We refer to [2] for the

definition, existence, uniqueness and comparison theorem of this type of parabolic
PDEs (see also [10] for this specific situation). In this article, we consider only the
non-degenerate G, i.e., σ > 0. Then the above G-heat equation has a unique C1,2-solution
(see, e.g., [6]). More precisely, there exists α ∈ (0, 1) such that for any 0 < a < b <∞,

‖u‖
C1+α

2
,2+α([a,b]×R)

<∞.
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Stein’s characterization for G-normal distributions

By the comparison theorem of the G-heat equation, it can be easily checked that NG is a
sublinear expectation on Cb,Lip(R), i.e., a functional on Cb,Lip(R) satisfies

E1. NG[ϕ] ≥ NG[φ], for ϕ ≥ φ;

E2. NG[λϕ] = λNG[ϕ], for λ ≥ 0;

E3. NG[ϕ+ c] = NG[ϕ] + c, for c ∈ R;

E4. NG[ϕ+ φ] ≤ NG[ϕ] +NG[φ].

Moreover, NG is continuous from above: for ϕn ∈ Cb,Lip(R), ϕn ↓ 0, we have NG[ϕn] ↓ 0.
A sublinear expectation with this property is called regular, which happens if and only
if it can be represented as the supremum expectation of a tight family of probability
measures Θ on (R,B(R)) (see [3]).

Throughout this article, we shall only consider sublinear expectations which are
regular.

As a regular sublinear expectation, the G-normal distribution can be represented as

NG[ϕ] = sup
µ∈ΘG

µ[ϕ], for all ϕ ∈ Cb,Lip(R),

where ΘG is a tight family of probability measures on (R,B(R)). For ϕ ∈ Cb,Lip(R), we
call µ ∈ ΘG a realization of ϕ associated with NG if NG[ϕ] = µ[ϕ]. To ensure that each
ϕ ∈ Cb,Lip(R) has a realization, ΘG will always be chosen as weakly compact.

As is well known, the fact that µ = N (0, σ2) if and only if∫
R

[xϕ′(x)− σ2ϕ′′(x)]µ(dx) = 0, for all ϕ ∈ C2
b (R). (1.1)

This is the characterization of the normal distribution presented in Stein (1972), which
is the basis of Stein’s method for normal approximation (see Chen, Goldstein and Shao
(2011) and the references therein for more details).

What is the proper counterpart of (1.1) for G-normal distributions? An immediate
conjecture should be

NG[LGϕ] = 0, for all ϕ ∈ C2
b (R),

where LGϕ(x) = x
2ϕ
′(x)−G(ϕ′′(x)). However, the above equality does not hold generally

as was pointed out in Hu et al. (2015) by a counterexample.
By calculating some examples, we try to find the proper generalization of (1.1) for

G-normal distributions.

Example 1.1. Set β = σ
σ and σ = σ+σ

2 . Song (2015) defined a periodic function φβ as a
variant of the trigonometric function cosx (see Figure 1).

φβ(x) =

{
2

1+β cos( 1+β
2 x) for x ∈ [− π

1+β ,
π

1+β );
2β

1+β cos( 1+β
2β x+ β−1

2β π) for x ∈ [ π
1+β ,

(2β+1)π
1+β ).

(1.2)

It was proved that

G(φ′′β(x)) = −σ
2

2
φβ(x)

and that u(t, x) := e−
1
2σ

2tφβ(x) is a solution to the G-heat equation. Therefore

u(t, x) = NG[φβ(x+
√
t·)] = µt,x[φβ(x+

√
t·)], (1.3)
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Stein’s characterization for G-normal distributions

Figure 1: φβ(x)

where µt,x is a realization of φβ(x+
√
t·). Since µs,x[φβ(x+

√
t·)] considered as a function

of s attains its maximum at s = t, we get

∂tu(t, x) =

∫
R

φ′β(x+
√
ty)

y

2
√
t
µt,x(dy) =

1

t

∫
R

∂yφβ(x+
√
ty)

y

2
µt,x(dy)

by taking the formal derivation on the equality (1.3) with respect to t. On the other hand,
noting u(t, x) = e−

1
2σ

2tφβ(x), we have

∂tu(t, x) = −1

2
σ2u(t, x)

= −1

2
σ2

∫
R

φβ(x+
√
ty)µt,x(dy)

=

∫
R

G(φ′′β(x+
√
ty))µt,x(dy)

=
1

t

∫
R

G(∂2
yφβ(x+

√
ty))µt,x(dy).

Combining the above arguments, we get the following equality∫
R

[
y

2
∂yφβ(x+

√
ty)−G(∂2

yφβ(x+
√
ty))]µt,x(dy) = 0.

Inspired by this example, we predict the following result generally holds.

Proposition 1.2. Let ϕ ∈ C2
b (R). If µϕ is a realization of ϕ associated with the G-normal

distribution NG, we have ∫
R

[
x

2
ϕ′(x)−G(ϕ′′(x))]µϕ(dx) = 0.

To convince ourselves, let us calculate another simple example.

Example 1.3. Let φ ∈ C2(R) satisfy, for some ρ ≥ 0,

x

2
φ′(x) +G(φ′′(x)) = ρφ(x).

It is easy to check that u(t, x) = (1 + t)ρφ( x√
1+t

) is a solution to the G-heat equation.
Therefore

u(t, x) = NG[φ(x+
√
t·)] = µt,x[φ(x+

√
t·)] = (1 + t)ρφ(

x√
1 + t

), (1.4)

where µt,x is a realization of φ(x +
√
t·). By taking the formal derivation on (1.4) with

respect to t, we get

∂tu(t, x) =

∫
R

φ′(x+
√
ty)

y

2
√
t
µt,x(dy) (1.5)

= ρ(1 + t)ρ−1φ(
x√

1 + t
)− x

2
(1 + t)ρ−

3
2φ′(

x√
1 + t

). (1.6)
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Stein’s characterization for G-normal distributions

Similarly, by taking the formal derivation on (1.4) with respect to x, we get

∂xu(t, x) =

∫
R

φ′(x+
√
ty)µt,x(dy) = (1 + t)ρ−

1
2φ′(

x√
1 + t

). (1.7)

Note that (1.6)× (1 + t) + (1.7)× x
2 − (1.4)× ρ = 0, which implies∫

R

[
y

2
√
t
φ′(x+

√
ty)−G(φ′′(x+

√
ty))]µt,x(dy) = 0.

More precisely, we have∫
R

[
y

2
∂yφ(x+

√
ty)−G(∂2

yφ(x+
√
ty))]µt,x(dy) = 0,

which is exactly the conclusion of Proposition 1.2.

Returning to the linear case, the closed linear span of the family of functions consid-
ered in either of the previous two examples is the space of continuous functions, which
increases our confidence that the conclusion of Proposition 1.2 is correct.

Just like Stein’s characterization of (classical) normal distributions, we are also
concerned about the converse problem:
(Q) Let N [ϕ] = supµ∈Θ µ[ϕ], ϕ ∈ Cb,Lip(R), be a sublinear expectation. Assuming N
satisfies the Stein type formula (SH) below, does it follow that N = NG?

(SH) For ϕ ∈ C2
b (R), we have∫

R

[G(ϕ′′(x))− x

2
ϕ′(x)]µϕ(dx) = 0,

where µϕ is a realization of ϕ associated with N , i.e., µϕ ∈ Θ and µϕ[ϕ] = N [ϕ].
Throughout this article, we suppose the following additional properties:

(H1) Θ is weakly compact;

(H2) limN→∞N [|x|1[|x|>N ]] = 0.

Clearly, Θ and Θ
w

generate the same sublinear expectation on Cb,Lip(R). Here, we
emphasize by (H1) that Θ is weakly compact, which ensures that there exists a realization
µϕ for any ϕ ∈ Cb,Lip(R). (H2) is a condition (strictly) stronger than N [|x|] < ∞, but
weaker than N [|x|α] <∞ for some α > 1, which is employed to ensure that the functions
generated by N have better analytic properties.

Actually, we also find evidence for the converse statement from some simple examples.

Example 1.4. Assume that N is a sublinear expectation on Cb,Lip(R) satisfying the Stein
type formula (SH). Set u(t, x) := N [φβ(x+

√
t·)]. We shall “prove” that u is the solution

to the G-heat equation. Actually, noting that u(t, x) = N [φβ(x+
√
t·)] = µt,x[φβ(x+

√
t·)]

with µt,x a realization of φβ(x+
√
t·), we get

∂tu(t, x) =

∫
R

φ′β(x+
√
ty)

y

2
√
t
µt,x(dy).

So, from Hypothesis (SH), we get

∂tu(t, x) =

∫
R

G(φ′′β(x+
√
ty))µt,x(dy) = −σ

2

2

∫
R

φβ(x+
√
ty)µt,x(dy) = −σ

2

2
u(t, x).

Then u(t, x) = e−
σ2

2 tφβ(x), which is the solution to the G-heat equation with u(0, x) =

φβ(x).
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Stein’s characterization for G-normal distributions

Our purpose is to prove the Stein type formula for G-normal distributions (Proposition
1.2) and its converse problem (Q). In order to do so, we first prove a weaker version of
the Stein type characterization below.

Theorem 1.5. Let N [ϕ] = supµ∈Θ µ[ϕ], ϕ ∈ Cb,Lip(R), be a sublinear expectation. N is
G-normal if and only if for any ϕ ∈ C2

b (R), we have

sup
µ∈Θϕ

∫
R

[G(ϕ′′(x))− x

2
ϕ′(x)]µ(dx) = 0, (SHw)

where Θϕ = {µ ∈ Θ : µ[ϕ] = N [ϕ]}.
Since (SH) implies (SHw), the necessity part of Theorem 1.5 follows from Proposition

1.2. At the same time, the converse argument (Q) follows from the sufficiency part of
Theorem 1.5.

In Section 2, we provide several lemmas to show how the differentiation penetrates
the sublinear expectations, which makes sense the “formal derivation” in the above
examples. In Section 3, we give a proof to Theorem 1.5. We shall prove Proposition 1.2
in Section 5 based on the G-expectation theory, and as a preparation we list some basic
definitions and notations concerning G-expectation in Section 4.

2 Some useful lemmas

Let N [ϕ] = supµ∈Θ µ[ϕ] be a sublinear expectation on Cb,Lip(R).
Define ξ : R→ R by ξ(x) = x. Sometimes, we write N [ϕ], µ[ϕ] by E[ϕ(ξ)], Eµ[ϕ(ξ)],

respectively. For ϕ ∈ Cb,Lip(R), set Θϕ = {µ ∈ Θ : Eµ[ϕ(ξ)] = E[ϕ(ξ)]}.
Let ψ : [a, b] × R → R be a bounded function satisfying ψ(t, ·) ∈ Cb,Lip(R) for each

t ∈ [a, b] and for each n ∈ N, there exists Ln > 0 such that, for s, t ∈ [a, b] and |x| ≤ n,

|ψ(t, x)− ψ(s, x)| ≤ Ln|t− s|.

We denote by Cb,loc([a, b]×R) the totality of such functions. For ψ ∈ Cb,loc([a, b]×R), we
sometimes employ the following assumption: there exists a continuous function ψ̇t0(x)

such that at point t0 ∈ [a, b] the properties below hold.

(A1) E[|<ψδ;t0,ξ|] = o(δ) as δ → 0, where <ψδ;t0,ξ = ψ(t0 + δ, ξ)− ψ(t0, ξ)− ψ̇t0(ξ)δ;

(A2) limN→∞N [|ψ̇t0(x)|1[|x|>N ]] = 0.

Remark 2.1. For most cases, the function ψ̇t0(x) would be chosen as ∂tψ(t0, x).

For a function α : R → R, define ∂+
t α(t) = limδ↓0

α(t+δ)−α(t)
δ (respectively, ∂−t α(t) =

limδ↓0
α(t−δ)−α(t)

−δ ) if the corresponding limits exist.

Lemma 2.2. For ψ ∈ Cb,loc([a, b]×R) and a sublinear expectation N on Cb,Lip(R), set

α(t) := E[ψ(t, ξ)], Θt := Θψ(t,·) for t ∈ [a, b].

1) For any t0 ∈ [a, b], {tn}n≥1 ⊂ [a, b] and µn ∈ Θtn , n ≥ 1, such that tn → t0 and

µn
weakly−−−−→ µ as n goes to infinity, we have µ ∈ Θt0 .

Denote by Θt0 the totality of µ ∈ Θt0 defined above corresponding to tn ↓ t0 and by
Θt0 corresponding to tn ↑ t0.
2) Furthermore, if (A1), (A2) hold at t0, we have

∂+
t α(t0) = sup

µ∈Θt0

Eµ[ψ̇t0(ξ)] = Eµ[ψ̇t0(ξ)], for any µ ∈ Θt0 , (2.1)

∂−t α(t0) = inf
µ∈Θt0

Eµ[ψ̇t0(ξ)] = Eµ[ψ̇t0(ξ)], for any µ ∈ Θt0
. (2.2)
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Stein’s characterization for G-normal distributions

Proof. Proof to 1).
Since ψ belongs to Cb,loc([a, b]×R), it is easy to prove that {α(t)}t∈[a,b] is continuous

based on the assumption (H2) on N . By similar arguments, we can show that, as n goes
to infinity,

|Eµn [ψ(tn, ξ)]− Eµn [ψ(t0, ξ)]| ≤ E[|ψ(tn, ξ)− ψ(t0, ξ)|]→ 0.

Therefore, noting that µn
weakly−−−−→ µ, we have

Eµ[ψ(t0, ξ)] = lim
n→∞

Eµn [ψ(t0, ξ)] = lim
n→∞

Eµn [ψ(tn, ξ)] = lim
n→∞

α(tn) = α(t0),

which means µ ∈ Θt0 .

Proof to 2).
By the definition of the function α we have, for any µδ ∈ Θt0+δ,

α(t0 + δ)− α(t0)

δ
=

1

δ
E[ψ(t0 + δ, ξ)]− 1

δ
E[ψ(t0, ξ)] (2.3)

=
1

δ
Eµδ [ψ(t0 + δ, ξ)]− 1

δ
E[ψ(t0, ξ)] (2.4)

≤ 1

δ
Eµδ [ψ(t0 + δ, ξ)]− 1

δ
Eµδ [ψ(t0, ξ)] (2.5)

= Eµδ [ψ̇t0(ξ)] + o(1). (2.6)

The last equality follows from Assumption (A1). Let δn ↓ 0 be a sequence such that

lim sup
δ↓0

α(t0 + δ)− α(t0)

δ
= lim
n→∞

α(t0 + δn)− α(t0)

δn
. (2.7)

Since Θ is weakly compact, there exists a subsequence, also denoted by δn, such that

µδn
weakly−−−−→ µ ∈ Θ.

From 1) of this lemma, we know µ ∈ Θt0 . By (2.6) and Assumption (2), we have

lim sup
δ↓0

α(t0 + δ)− α(t0)

δ
≤ lim
n→∞

Eµδn [ψ̇t0(ξ)] = Eµ[ψ̇t0(ξ)].

On the other hand, for any µ ∈ Θt0 we get

α(t0 + δ)− α(t0)

δ
=

1

δ
E[ψ(t0 + δ, ξ)]− 1

δ
Eµ[ψ(t0, ξ)] (2.8)

≥ 1

δ
Eµ[ψ(t0 + δ, ξ)]− 1

δ
Eµ[ψ(t0, ξ)] (2.9)

= Eµ[ψ̇t0(ξ)] + o(1). (2.10)

The last equality follows from Assumption (A1).
Thus, by (2.10), we get

lim inf
δ↓0

α(t0 + δ)− α(t0)

δ
≥ sup
µ∈Θt0

Eµ[ψ̇t0(ξ)].

Combining the above arguments, we have

lim
δ↓0

α(t0 + δ)− α(t0)

δ
= sup
µ∈Θt0

Eµ[ψ̇t0(ξ)] = Eµ[ψ̇t0(ξ)].

Since limδ↓0
α(t+δ,x)−α(t,x)

δ exists, the equality (2.7) holds for any sequence δn ↓ 0. Hence,
the equality (2.1) holds for any µ ∈ Θt0 . (2.2) can be proved similarly.
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Stein’s characterization for G-normal distributions

Applying Lemma 2.2, we shall present the derivative formulas for two types of
functions in the remainder of this section.

For a sublinear expectation N on Cb,Lip(R) and ϕ ∈ Cb,Lip(R), set

u(t, x) := N [ϕ(x+
√
t·)] = E[ϕ(x+

√
tξ)], (t, x) ∈ [0,∞)×R.

Lemma 2.3. For a sublinear expectation N on Cb,Lip(R) and ϕ ∈ C2
b (R), we have, for

t > 0,

∂+
t u(t, x) = sup

µ∈Θt,x

Eµ[
ξ

2
√
t
ϕ′(x+

√
tξ)],

∂−t u(t, x) = inf
µ∈Θt,x

Eµ[
ξ

2
√
t
ϕ′(x+

√
tξ)],

(2.11)

∂+
x u(t, x) = sup

µ∈Θt,x

Eµ[ϕ′(x+
√
tξ)],

∂−x u(t, x) = inf
µ∈Θt,x

Eµ[ϕ′(x+
√
tξ)],

(2.12)

where Θt,x = Θϕ(x+
√
t·). Furthermore, we have

∂+
t u(t, x) = lim

δ↓0
∂+
t u(t+ δ, x) = lim

δ↓0
∂−t u(t+ δ, x), (2.13)

∂−t u(t, x) = lim
δ↓0

∂+
t u(t− δ, x) = lim

δ↓0
∂−t u(t− δ, x). (2.14)

Similar relations hold for ∂+
x u(t, x), ∂−x u(t, x).

Proof. We shall only give proof to (2.11) and (2.13). The other conclusions can be proved
similarly.

Step 1. Proof to (2.11).
Set ψ(t, x) = ϕ(x0 +

√
tx). For t0 > 0, choose b > t0 > a > 0. Clearly, ψ(t, x)

belongs to Cb,loc([a, b]×R). It suffices to show that ψ satisfies (A1), (A2) at point t0 with
ψ̇t0(x) = ∂tψ(t0, x).

Step 1.1 ψ satisfies (A1) at point t0.
<ψδ;t0,ξ = ψ(t0 + δ, ξ)− ψ(t0, ξ)− ∂tψ(t0, ξ)δ = δ

∫ 1

0
[∂tψ(t0 + sδ, ξ)− ∂tψ(t0, ξ)]ds. Now,

we should prove that limδ→0E|
∫ 1

0
[∂tψ(t0 + sδ, ξ)− ∂tψ(t0, ξ)]ds| = 0. Note that

∂tψ(t0 + sδ, ξ)− ∂tψ(t0, ξ) = ξ[
ϕ′(x0 +

√
t0 + sδξ)

2
√
t0 + sδ

− ϕ′(x0 +
√
t0ξ)

2
√
t0

]

and ϕ′(x0+
√
tx)

2
√
t

belongs to Cb,loc([a, b] × R). For any ε > 0, by (H2), there exists N > 0

such that

E[|ϕ
′(x0 +

√
t0 + sδξ)

2
√
t0 + sδ

− ϕ′(x0 +
√
t0ξ)

2
√
t0

||ξ|1[|ξ|>N ]] <
ε

2
.

For |ξ| ≤ N there exists δ0 > 0 such that for any δ < δ0 we have

|ϕ
′(x0 +

√
t0 + sδξ)

2
√
t0 + sδ

− ϕ′(x0 +
√
t0ξ)

2
√
t0

||ξ|1[|ξ|≤N ] <
ε

2
.

Thus, we have

E|
∫ 1

0

[∂tψ(t0 + sδ, ξ)− ∂tψ(t0, ξ)]ds| < ε.

Step 1.2 ψ satisfies (A2) at point t0.

Note that ∂tψ(t0, x) = ϕ′(x0+
√
t0x)

2
√
t0

x. By (H2) we know that ψ satisfies (A2) at point t0.
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Stein’s characterization for G-normal distributions

Step 2. Proof to (2.13).
By Step 1 and Lemma 2.2, there exists µδ ∈ Θt+δ,x such that ∂+

t u(t + δ, x) =

Eµδ [
ξ

2
√
t+δ

ϕ′(x+
√
t+ δξ)]. Noting that

Eµδ [
ξ

2
√
t+ δ

ϕ′(x+
√
t+ δξ)]− Eµδ [

ξ

2
√
t
ϕ′(x+

√
tξ)]→ 0,

it suffices to prove that Eµδ [
ξ

2
√
t
ϕ′(x+

√
tξ)]→ ∂+

t u(t, x). Actually, for any subsequence

of (µδ), there is a sub-subsequence (µδ
′
) such that µδ

′ weakly−−−−→ µ∗ ∈ Θ. By Lemma
2.2, we have µ∗ ∈ Θt,x and ∂+

t u(t, x) = Eµ∗ [
ξ

2
√
t
ϕ′(x +

√
tξ)]. Thus, we conclude that

Eµδ′ [
ξ

2
√
t
ϕ′(x+

√
tξ)]→ ∂+

t u(t, x).

For any ϕ ∈ Cb,Lip(R), let v(t, x) be the solution to the G-heat equation with an
initial value ϕ. For a sublinear expectation N on Cb,Lip(R), set wN (s) := E[v(s,

√
1− sξ)],

s ∈ [0, 1].

Lemma 2.4. For a sublinear expectation N on Cb,Lip(R), we have, for t ∈ (0, 1)

∂+
t wN (t) = sup

µ∈Θv(t,
√

1−t·)

Eµ[∂tv(t,
√

1− tξ)− ∂xv(t,
√

1− tξ) ξ

2
√

1− t
], (2.15)

∂−t wN (t) = inf
µ∈Θv(t,

√
1−t·)

Eµ[∂tv(t,
√

1− tξ)− ∂xv(t,
√

1− tξ) ξ

2
√

1− t
]. (2.16)

Proof. Set ψ(t, x) = v(t,
√

1− tx). For 1 > t0 > 0, choose 1 > b > t0 > a > 0. By the
regularity property of the G-heat equation (see [6]), we know that v ∈ C1,2

b ([κ, 1]) for any
κ > 0. So it is easy to show that ψ(t, x) belongs to Cb,loc([a, b]×R), and that ψ satisfies
(A1), (A2) at point t0 with

ψ̇t0(x) = ∂tψ(t0, x) = ∂tv(t0,
√

1− t0x)− ∂xv(t0,
√

1− t0x)
x

2
√

1− t0
by similar arguments as those in Lemma 2.3. Then by Lemma 2.2 we get the desired
results.

3 Proof to Theorem 1.5

We shall prove Theorem 1.5 based mainly on the lemmas introduced in Section 2.

Proof. Necessity.
Assume that N is G-normal. Then, for ϕ ∈ C2

b (R), u(t, x) := N [ϕ(x+
√
t·)] = E[ϕ(x+√

tξ)] is the solution to G-heat equation with initial value ϕ.
Step 1. For µ ∈ Θϕ,

∂tu(1, 0) = Eµ[
ξ

2
ϕ′(ξ)].

Actually, by Lemma 2.3, we have

sup
µ∈Θϕ

Eµ[
ξ

2
ϕ′(ξ)] = ∂+

t u(1, 0) = ∂tu(1, 0) = ∂−t u(1, 0) = inf
µ∈Θϕ

Eµ[
ξ

2
ϕ′(ξ)].

Step 2. ∂tu(1, 0) = supµ∈Θϕ Eµ[G(ϕ
′′
(ξ))].

Note that u(1 + δ, 0) = E[u(δ, ξ)] and u(δ, x) = E[ϕ(x+
√
δξ)] = ϕ(x) + δG(ϕ′′(x)) + o(δ)

uniformly with respect to x. Set ψ(t, x) = u(t, x) and α(t) = E[u(t, ξ)]. Then ψ belongs to
Cb,loc([0, 1]×R) and satisfies Assumptions (A1), (A2) at t0 = 0 with ψ̇0(x) = G(ϕ′′(x)).

So, by Lemma 2.2, we have

lim
δ↓0

u(1 + δ, 0)− u(1, 0)

δ
= ∂+

t α(0) = sup
µ∈Θϕ

Eµ[G(ϕ
′′
(ξ))].
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Sufficiency. Assume N is a sublinear expectation on Cb,Lip(R) satisfying Hypothesis
(SHw). For any ϕ ∈ Cb,Lip(R), let v(t, x) be the solution to the G-heat equation with initial
value ϕ. For s ∈ [0, 1], set w(s) := E[v(s,

√
1− sξ)]. To prove the theorem, it suffices to

show that w(0) = w(1).
By (2.15) in Lemma 2.4 and Hypothesis (SHw), we get ∂+

s w(s) = 0, s ∈ (0, 1). Noting
that w is continuous on [0, 1] and locally Lipschitz continuous on (0, 1), we get w(0) =

w(1).

Corollary 3.1. Let N [ϕ] = supµ∈Θ µ[ϕ], ϕ ∈ Cb,Lip(R), be a sublinear expectation. Then
N is G-normal if for any ϕ ∈ C2

b (R), we have∫
R

[G(ϕ′′(x))− x

2
ϕ′(x)]µϕ(dx) = 0, (SH)

where µϕ is a realization of ϕ associated with N , i.e., µϕ ∈ Θ and µϕ[ϕ] = N [ϕ].

4 Some definitions and notations about G-expectation

We review some basic notions and definitions of the related spaces under G-expecta-
tion. The readers may refer to [9], [10], [11], [12] and [14] for more details.

Let ΩT = C0([0, T ];Rd) be the space of allRd-valued continuous paths ω = (ω(t))t∈[0,T ]

with ω(0) = 0 and let Bt(ω) = ω(t) be the canonical process.
Let us recall the definitions of G-Brownian motion and its corresponding G-expecta-

tion introduced in [10]. Set

Lip(ΩT ) := {ϕ(ω(t1), · · · , ω(tn)) : t1, · · · , tn ∈ [0, T ], ϕ ∈ Cb,Lip((Rd)n), n ∈ N},

where Cb,Lip(Rd) is the collection of bounded Lipschitz functions on Rd.
We are given a function

G : Sd 7→ R

satisfying the following monotonicity, sublinearity and positive homogeneity:

A1. G(a) ≥ G(b), if a, b ∈ Sd and a ≥ b;

A2. G(a+ b) ≤ G(a) +G(b), for each a, b ∈ Sd;

A3. G(λa) = λG(a) for a ∈ Sd and λ ≥ 0.

Remark 4.1. When d = 1, we have G(a) := 1
2 (σ2a+ − σ2a−), for 0 ≤ σ2 ≤ σ2.

For each ξ(ω) ∈ Lip(ΩT ) of the form

ξ(ω) = ϕ(ω(t1), ω(t2), · · · , ω(tn)), 0 = t0 < t1 < · · · < tn = T,

we define the following conditional G-expectation

Et[ξ] := uk(t, ω(t);ω(t1), · · · , ω(tk−1))

for each t ∈ [tk−1, tk), k = 1, · · · , n. Here, for each k = 1, · · · , n, uk = uk(t, x;x1, · · · , xk−1)

is a function of (t, x) parameterized by (x1, · · · , xk−1) ∈ (Rd)k−1, which is the solution of
the following PDE (G-heat equation) defined on [tk−1, tk)×Rd:

∂tuk +G(∂2
xuk) = 0

with terminal conditions

uk(tk, x;x1, · · · , xk−1) = uk+1(tk, x;x1, · · ·xk−1, x), for k < n

and un(tn, x;x1, · · · , xn−1) = ϕ(x1, · · ·xn−1, x).
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The G-expectation of ξ(ω) is defined by E[ξ] = E0[ξ]. From this construction we obtain
a natural norm ‖ξ‖LpG := E[|ξ|p]1/p, p ≥ 1. The completion of Lip(ΩT ) under ‖·‖LpG is a

Banach space, denoted by LpG(ΩT ). The canonical process Bt(ω) := ω(t), t ≥ 0, is called
a G-Brownian motion in this sublinear expectation space (Ω, L1

G(Ω),E).

Definition 4.2. A process {Mt} with values in L1
G(ΩT ) is called a G-martingale if

Es(Mt) = Ms for any s ≤ t. If {Mt} and {−Mt} are both G-martingales, we call {Mt} a
symmetric G-martingale.

Theorem 4.3. ([3]) There exists a weakly compact subset P ⊂ M1(ΩT ), the set of
probability measures on (ΩT ,B(ΩT )), such that

E[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ Lip(ΩT ).

P is called a set that represents E.

Definition 4.4. A function η(t, ω) : [0, T ] × ΩT → R is called a step process if there
exists a time partition {ti}ni=0 with 0 = t0 < t1 < · · · < tn = T , such that for each
k = 0, 1, · · ·, n− 1 and t ∈ (tk, tk+1]

η(t, ω) = ξtk ∈ Lip(Ωtk).

We denote by M0(0, T ) the collection of all step processes.

For a step process η ∈M0(0, T ), we set the norm

‖η‖p
HpG

:= E[{
∫ T

0

|ηs|2ds}p/2], p ≥ 1

and denote by Hp
G(0, T ) the completion of M0(0, T ) with respect to the norms ‖ · ‖HpG .

Theorem 4.5. ([15]) For ξ ∈ LβG(ΩT ) with some β > 1, Xt = Et(ξ), t ∈ [0, T ] has the
following decomposition:

Xt = X0 +

∫ t

0

ZsdBs +Kt, q.s.,

where {Zt} ∈ H1
G(0, T ) and {Kt} is a continuous non-increasing G-martingale. Further-

more, the above decomposition is unique and {Zt} ∈ Hα
G(0, T ), KT ∈ LαG(ΩT ) for any

1 ≤ α < β.

5 Proof to Proposition 1.2

Let P be a weakly compact set that represents E. Then, the corresponding G-normal
distribution can be represented as

NG[ϕ] = sup
P∈P

EP [ϕ(B1)], for all ϕ ∈ Cb,Lip(R).

Clearly, NG satisfies condition (H2) and Θ := {P ◦B−1
1 | P ∈ P} is weakly compact. Also,

Proposition 1.2 can be restated in the following form.

Proposition 5.1. Let ϕ ∈ C2
b (R). For P ∈ P such that EP [ϕ(B1) = E[ϕ(B1)], we have

EP [
B1

2
ϕ′(B1)−G(ϕ′′(B1))] = 0.

Proof. For ϕ ∈ C2
b (R), set u(t, x) = E[ϕ(x + Bt)]. As a solution to the G-heat equation,

we know u ∈ C1,2
b (R+ ×R). Particularly, we have

lim
δ↓0

u(1 + δ, 0)− u(1, 0)

δ
= lim

δ↓0

u(1− δ, 0)− u(1, 0)

−δ
= ∂tu(1, 0).
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Set Pϕ = {P ∈ P : EP [ϕ(B1) = E[ϕ(B1)]}. In the proof to Theorem 1.5, we have
already proved that for P ∈ Pϕ, ∂tu(1, 0) = EP [B1

2 ϕ
′(B1)] and that ∂tu(1, 0) = supP∈Pϕ ×

EP [G(ϕ′′(B1))]. We shall only prove ∂tu(1, 0) = infP∈Pϕ EP [G(ϕ′′(B1))].

By the G-martingale representation theorem, we have

u(1− δ, 0) = ϕ(B1−δ)−
∫ 1−δ

0
zδsdBs −Kδ

1−δ,

u(1, 0) = ϕ(B1)−
∫ 1

0
zsdBs −K1,

where {Kδ
t }, {Kt} are non-increasing G-martingales with Kδ

0 = K0 = 0. Thus

u(1− δ, 0)− u(1, 0) = E[ϕ(B1−δ)− ϕ(B1) +K1]

= E[− 1
2ϕ
′′(B1−δ)(B1 −B1−δ)

2 +K1] + o(δ).

For each P ∈ Pϕ,

u(1−δ,0)−u(1,0)
−δ = 1

−2δE[−ϕ′′(B1−δ)(B1 −B1−δ)
2 +K1] + o(1)

≤ 1
2δEP [ϕ′′(B1−δ)(B1 −B1−δ)

2] + o(1)

≤ EP [G(ϕ′′(B1−δ))] + o(1).

Thus

sup
P∈Pϕ

EP [G(ϕ′′(B1))] = ∂tu(1, 0) ≤ inf
P∈Pϕ

EP [G(ϕ′′(B1))].

Consequently, for P ∈ Pϕ, we have ∂tu(1, 0) = EP [G(ϕ′′(B1))].

Remark 5.2. In [4], the authors used a similar idea to obtain the variation equation for
the cost functional associated with the stochastic recursive optimal control problem.

Corollary 5.3. Let H ∈ C2(R) with polynomial growth satisfy, for some ρ > 0,

x

2
H ′(x)−G(H ′′(x)) = ρH(x).

Then we have

E[H(B1)] = 0.

The proof is immediate from Proposition 1.2. Actually, for P ∈ P such that
EP [H(B1)] = E[H(B1)], we have

ρE[H(B1)] = ρEP [H(B1)] = EP [
B1

2
H ′(B1)−G(H ′′(B1))] = 0.

Below we give a direct proof.

Proof. Let Xx
t = e−

t
2x+

∫ t
0
e−

1
2 (t−s)dBs. Applying Itô’s formula to eρtH(Xx

t ), we have

eρtH(Xx
t ) = H(x) +

∫ t

0

eρs(ρH(Xx
s )− 1

2
Xx
sH
′(Xx

s ) +G(H ′′(Xx
s )))ds

+

∫ t

0

eρsH ′(Xx
s )dBs +

1

2

∫ t

0

eρsH ′′(Xx
s )d〈B〉s −

∫ t

0

eρsG(H ′′(Xx
s ))ds.

So E[H(Xx
t )] = e−ρtH(x) and

E[H(B1)] = lim
t→∞

E[H(Xx
t )] = 0.
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