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Abstract

Biggins [Uniform convergence of martingales in the branching random walk. Ann.
Probab., 20(1):137–151, 1992] proved local uniform convergence of additive martin-
gales in d-dimensional supercritical branching random walks at complex parameters λ
from an open set Λ ⊆ Cd. We investigate the martingales corresponding to parameters
from the boundary ∂Λ of Λ. The boundary can be decomposed into several parts. We
demonstrate by means of an example that there may be a part of the boundary, on
which the martingales do not exist. Where the martingales exist, they may diverge,
vanish in the limit or converge to a non-degenerate limit. We provide mild sufficient
conditions for each of these three types of limiting behaviors to occur. The arguments
that give convergence to a non-degenerate limit also apply in Λ and require weaker
moment assumptions than the ones used by Biggins.
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1 Introduction

Biggins [8] proved local uniform convergence of additive martingales in a supercritical
branching random walk on Rd at complex parameters within a certain open set Λ ⊆ Cd.
He used the results obtained to derive a local large deviation result for the point process
of the positions in the nth generation as n→∞.

In some situations, the arguments from [8] cover parts of the boundary ∂Λ of Λ, but
typically only a proper, possibly empty, subset of ∂Λ. However, the ideas and results
required to deal with the boundary are available in the literature nowadays, but spread
over different papers [1, 11, 14] and not directly applicable. In this paper, we gather
these techniques and results and provide a complete treatment (up to mild moment
assumptions) of the convergence of additive martingales on the boundary ∂Λ.

Besides its value in the study of large deviation results for the branching random
walk and its intrinsic interest, there is further motivation to study the convergence of
additive martingales at complex parameters, particularly on the boundary ∂Λ.

First, in the recent applied probability literature, there are several examples of limit
theorems, in which the limiting behavior of a quantity of interest is described by the
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Convergence of complex martingales in the BRW

solution to a complex smoothing equation, see [20] for a discussion and a collection of
examples including fragmentation processes and Pólya urns. In each known example
and in the whole setup of [20], the main result of which is the description of the set of
all solutions to non-critical smoothing equations, this solution can always be chosen as
the limit of an additive martingale in a suitable branching random walk at a complex
parameter from Λ. If one aims at extending the results from [20] from non-critical to
critical smoothing equations, then limits of additive martingales in suitable branching
random walks at complex parameters from the boundary of Λ figure. As the application
to critical smoothing equations is the main motivation for us for writing the note at hand,
we will describe the link between smoothing equations and the convergence of additive
martingales at complex parameters in greater detail in Section 5.

Second, the additive martingales are intimately connected with cascade measures,
processes that have initially been introduced by Mandelbrot as statistical models for
turbulence [18, 19]. The parameters on the boundary ∂Λ correspond to boundaries
between different phases of the cascade model, see e.g. [6, 17] and the references therein.
Our main result, Theorem 2.1, suggests that one might expect that the general, not
necessarily Gaussian, complex cascade measures converge also on the phase boundary
between the diffuse phase and the glassy phase (on ∂Λ(1,2) in our notation given below).

The cascade measures are also toy models for multiplicative chaos measures. In the
particular Gaussian case studied in [15] these are measures of the form

eγX(x)+iβY (x)dx , (1.1)

where X and Y are two independent log-correlated Gaussian fields. The processes
X and Y cannot be defined as functions and therefore (1.1) is not a proper definition.
To overcome this issue one needs to work with approximations Xε, Yε and proper
normalizations (see [15] for more details). Our main result, Theorem 2.1, might be
viewed as a discrete, non-Gaussian counterpart of the convergence of the suitably
normalized approximations to complex Gaussian multiplicative chaos measures in the
diffuse phase and the boundary between the diffuse and the glassy phase.

2 Main results

Model description. We consider a branching random walk in Rd where d ∈ N =

{1, 2, . . .}. The process starts with an initial ancestor at the origin. The ancestor forms
generation 0 of the process and produces offspring placed on Rd at the points of a point
process Z =

∑N
j=1 δXj with intensity measure µ. The children of the ancestor form the

first generation of the process. Each member of the first generation has children with
positions relative to their parent’s position given by an independent copy of Z, and so on.
We suppose that the branching random walk is supercritical, that is, µ(Rd) = E[N ] > 1.

More formally, let I :=
⋃
n≥0N

n be the set of finite tuples of positive integers. If
u = (u1, . . . , un) ∈ Nn and v = (v1, . . . , vm) ∈ Nm, we write u1 . . . un for u and uv for
(u1, . . . , un, v1, . . . , vm). Further, we write u|k for (u1, . . . , uk∧n), k ∈ N0.

The ancestor is identified with the empty tuple ∅ and its position is S(∅) = 0.
On some probability space (Ω,A,P), let (Z(u))u∈I be a family of i.i.d. copies of Z.

For ease of notation, we assume Z(∅) = Z. We write Z(u) =
∑N(u)
i=1 δXi(u) where

(N(u), X1(u), X2(u), . . .) is an independent copy of (N,X1, X2, . . .). In particular, N(u) =

Z(u)(Rd), u ∈ I. Then G0 := {∅} is generation 0 of the process and, recursively,

Gn+1 := {uj ∈ Nn+1 : u ∈ Gn and 1 ≤ j ≤ N(u)}

is generation n + 1 of the process, n ∈ N0 := N ∪ {0}. Define the set of all individuals
by G :=

⋃
n∈N0

Gn. We write |u| = n for u ∈ Gn and |u| < n if u ∈ Gk for some k < n. The
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Convergence of complex martingales in the BRW

position of an individual u = u1 . . . un ∈ Gn is given by

S(u) := Xu1(∅) + . . .+Xun(u1 . . . un−1).

The point process of the nth generation people will be denoted by Zn, that is,

Zn =
∑
|u|=n

δS(u).

The sequence of point processes (Zn)n∈N0 is then called a branching random walk.
The multivariate Laplace transform m of µ is denoted by

m(λ) =
∫
e−λx µ(dx ),

where λ ∈ Cd and λ = θ + iη with θ, η ∈ Rd. (We adopt the convention from [8] and
always write θ for Re(λ) and η for Im(λ).) We are only interested in those λ for which
m(λ) is well-defined, i. e., λ from the set

D = {λ ∈ Cd : m(λ) converges absolutely} = {θ ∈ Rd : m(θ) <∞}+ iRd.

Throughout, we assume intD 6= ∅. Let F0 be the trivial σ-field and, for n ∈ N,

Fn := σ(Z(u) : u ∈ Nk for some k < n).

Then, for λ ∈ D with m(λ) 6= 0, the family

Zn(λ) = m(λ)−n
∑
|u|=n e

−λS(u), n ∈ N0

forms a complex martingale with respect to (Fn)n∈N0 .

Point of departure. Biggins [8, Theorem 1] proved that if

E[Z1(θ)γ ] <∞ for some γ ∈ (1, 2] (2.1)

and
m(pθ)
|m(λ)|p < 1 for some p ∈ (1, γ], (2.2)

then (Zn(λ))n≥0 converges almost surely and in pth mean to a limit variable Z(λ). What
is more, Biggins [8, Theorem 2] proved that this convergence is locally uniform (almost
surely and in mean) on the set Λ =

⋃
γ∈(1,2] Λγ where Λγ = Λ1

γ ∩ Λ3
γ and, for γ ∈ (1, 2],

Λ1
γ = int{λ ∈ D : E[Z1(θ)γ ] <∞} and Λ3

γ = int
{
λ ∈ D : inf1≤p≤γ

m(pθ)
|m(λ)|p < 1

}
.

The boundary of Λ. We decompose ∂Λ into several parts. The first part is ∂Λ0 :=

∂Λ∩Dc. Notice that ∂Λ0 may be non-empty, see Example 3.2 in Section 3. The martingale
(Zn(λ))n≥0 is not defined on ∂Λ0, so we will exclude this set from the further discussion.
We introduce a weaker form of (2.2), namely,

m(αθ)
|m(λ)|α = 1 and E

[∑
|u|=1 θS(u) e

−αθS(u)

|m(λ)|α
]
≥ − log(|m(λ)|) for some α ∈ [1, 2]. (C1)

Notice that the second condition in (C1) can be rewritten as d
dαm(θα)/|m(λ)|α ≤ 0.

Additionally, we use the following moment condition:

E[|Z1(λ)|α log2+ε
+ (|Z1(λ)|)] <∞ for some ε > 0 (C2)
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with the same α as in (C1). Subject to the moment condition (C2), there is convergence
almost surely and in mean of the martingales at λ from

∂Λ(1,2) := {λ ∈ ∂Λ ∩ D : (C1) holds with α ∈ (1, 2)},

see Theorem 2.1 below. On the set

∂Λ1 := {λ ∈ D ∩ ∂Λ : (C1) holds with α = 1},

we have from the first condition in (C1) with α = 1 that m(θ) = |m(λ)|. Notice that
this does not imply that λ is real as (higher-dimensional) lattice-type effects may occur,
see e.g. Example 3.2. Hence, Z1(λ) = Z1(θ) almost surely. Consequently, (Zn(λ))n≥0 is
a nonnegative martingale for λ ∈ ∂Λ1. Whether or not the additive martingale in the
branching random walk converges in the real case is known from Biggins’ martingale
convergence theorem [3, 7, 16]. We therefore omit the treatment of ∂Λ1 in what follows.
Further, typically (see Proposition 2.2 for the details), there is no convergence on

∂Λ2 := {λ ∈ D ∩ ∂Λ : (C1) holds with α = 2}
and ∂Λ3 := {λ ∈ D ∩ ∂Λ : E[|Z1(λ)|γ ] =∞ for every γ > 1}.

In most situations, it will hold that

∂Λ = ∂Λ0 ∪ ∂Λ1 ∪ ∂Λ(1,2) ∪ ∂Λ2 ∪ ∂Λ3, (2.3)

i.e., the sets defined above exhaust ∂Λ. There is a discussion including a set of (mild)
conditions that ensure (2.3) to hold in Section 3 below.

Main theorems. To unburden the notation, we fix λ ∈ D and set L(u) := m(λ)−ne−λS(u)

if u ∈ Gn for some n ∈ N0, and L(u) := 0, otherwise. We write Zn for Zn(λ), n ∈ N and Z
for Z(λ) if the latter exists. By construction, (Zn)n≥0 is a complex martingale with

E[Z1] = 1. (2.4)

To avoid trivialities, we assume that P(Z1 = 1) < 1. Condition (C1) in the simplified
notation becomes

E
[∑

|u|=1 |L(u)|α
]

= 1 and E
[∑

|u|=1 |L(u)|α log(|L(u)|)
]
≤ 0 for some α ∈ [1, 2]. (C1)

Condition (C2) in the simplified notation reads

E[|Z1|α log2+ε
+ (|Z1|)] <∞ for some ε > 0. (C2)

Sometimes, we will refer to the following condition:

E
[∑

|u|=1 |L(u)|ϑ
]
<∞ for some ϑ ∈ [0, α). (C3)

We further define Wn :=
∑
|u|=n |L(u)|α, n ∈ N0. Then, by (C1), (Wn)n≥0 is a nonnegative

martingale. The martingale convergence theorem and Fatou’s lemma give Wn → W

almost surely for a nonnegative random variable W with E[W ] ∈ {0, 1}. Whether
E[W ] = 0 or E[W ] = 1 is known from Biggins’ martingale convergence theorem [3, 7, 16].

The following theorem is the main result of the paper. It gives convergence of the
additive martingales to non-degenerate limits on ∂Λ(1,2).

Theorem 2.1. Suppose that (C1) and (C2) hold with α ∈ (1, 2). Then (Zn)n≥0 converges
almost surely and in Lp for every p < α to a non-degenerate limit Z.
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It is natural to wonder when (Zn)n≥0 converges in Lp for some p ≥ α. It follows from
classical martingale theory that Zn → Z in Lp holds iff Zn → Z in L1 and Z ∈ Lp. Hence,
in order to answer the question, one has to determine the tail behavior of the limit Z,
which solves a smoothing equation. The tail behavior of such solutions has been studied
extensively in the literature, we confine ourselves to referring to [10, Theorem 2.11].
Under a certain set of assumptions, the cited theorem guarantees that P(|Z| > t) is of the
order t−β where β is defined by the two requirements β > α and E[

∑
|u|=1 |L(u)|β ] = 1.

The following propositions are essentially contained in [14] and provide sufficient
conditions for the divergence of the additive martingales on ∂Λ2 and ∂Λ3, respectively.

Proposition 2.2. Suppose that P(N <∞) = 1 and that (C1) holds with α = 2. Then each
of the following two conditions is sufficient for (Zn)n≥0 not to converge in probability.

(i) E[
∑
|u|=1 |L(u)|2 log(|L(u)|)] ∈ (−∞, 0) and E[W1 log+W1] <∞,

(ii) E[
∑
|u|=1 |L(u)|2 log(|L(u)|)] = 0, (C3) holds and

E[
∑
|u|=1 |L(u)|2 log2(|L(u)|)] <∞, E[W1 log2

+(W1)] <∞ and E[W̃1 log+(W̃1)] <∞

where W̃1 :=
∑
|u|=1 |L(u)|2 log−(|L(u)|).

Proposition 2.3. Suppose that P(N <∞) = 1 and that (C1) with α > 1 and (C3) hold.
If E[|Z1|p] =∞ for some p ∈ (1, α), then (Zn)n≥0 does not converge in probability.

Remark 2.4. It is natural to ask whether on parts of the boundary where the martingales
do not converge there are constants an(λ) such that an(λ)Zn(λ) converges as n → ∞.
For instance, for λ ∈ ∂Λ1, Zn(λ) is nonnegative and hence converges almost surely to a
limit Z(λ). There is a criterion for P(Z(λ) = 0) 6= 1, see [3]. If P(Z(λ) = 0) = 1, there are
results that give sufficient conditions for the existence of scaling constants an(λ) such
that an(λ)Zn(λ) converges in probability to a nondegenerate limit. Biggins and Kyprianou
[9] proved the existence of such norming constants in the case where an “X logX”
condition fails. Aïdékon and Shi [1] showed that in the “boundary case” the scaling
constants can be chosen as an(λ) =

√
n, n ∈ N. In both papers, an(λ)/an+1(λ) → 1 so

that the limit distribution again is a solution (with infinite mean) of a smoothing equation.
The situation is different on ∂Λ2 and ∂Λ3. It follows from the theory developed in [20]

that when studying a given complex smoothing equation, there is an associated additive
martingale that is of major importance for understanding the smoothing equation. If
the martingale corresponds to a parameter from ∂Λ2 or ∂Λ3, then there are no scaling
constants such that the scaled martingale converges in probability to a solution of the
original smoothing equation. This is the reason why we do not address the problem of
finding norming constants here. More details can be found in Section 5.

Nevertheless, there is interest in renormalizing the martingales corresponding to
parameters from Λc that vanish in the limit or do not converge. The case of Gaussian
multiplicative chaos studied in [15] suggests that one can indeed find an(λ) such that
an(λ)Zn(λ) converges in distribution. On ∂Λ, from [15], we expect that an(λ) = n−1/2

if condition (i) of Proposition 2.2 is fulfilled and an(λ) = n−1/4 for λ ∈ cl(∂Λ(1,2)) ∩ ∂Λ(2)

(corresponding to the red curves and the red dots, respectively, in Figure 1).

Remark 2.5. In both propositions, we require P(N < ∞) = 1. This is because their
proofs are based on arguments from [4, 14] involving complex multiplicative martingales
and convergence of triangular arrays. It may be possible, but certainly tedious, to extend
those arguments to the case P(N =∞) > 0. As we want to keep the presentation short
and accessible, we refrain from trying to remove the assumption.

The rest of the paper is organized as follows. In Section 3, we give a brief discussion
of the shape of Λ, its boundary and the parts in which the boundary can be divided.
We further give an example to illustrate our results. Section 4 contains the proofs of
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our results, while Section 5 contains extensions of the main results to a more general,
multidimensional situation. Finally, there is an appendix comprising an auxiliary result
required in the proof of Theorem 2.1.

3 Discussion and examples

It is illustrative to first consider examples.

Examples. We begin with an example which is strongly reminiscent of the situation
studied in [17]. We also refer to [15], where the problem of convergence on Λ

(1,2)
γ is

studied in the different context of Gaussian multiplicative chaos.

Example 3.1 (The Gaussian case with binary splitting). Consider a branching random
walk with independent standard Gaussian increments and binary splitting, i. e., Z =

δX1 + δX2 where X1, X2 are i.i.d. random variables with standard normal laws. Then
m(λ) = 2 exp(λ2/2) for all λ ∈ C. For every θ ∈ R and every γ > 1, we have

E[Z1(θ)γ ] = 1
m(θ)γE[(e−θX1 + e−θX2)γ ] ≤ 2γ

m(θ)γE[e−θγX1 ] = 2γm(θγ)
m(θ)γ <∞.

Hence Λ = {λ ∈ C : m(pθ)/|m(λ)|p < 1 for some p ∈ (1, 2]}. Thus, λ ∈ Λ if and only if
there exists some p ∈ (1, 2] with m(pθ)/|m(λ)|p < 1. The latter inequality is equivalent to

(1− p)2 log 2 + p2θ2 − p(θ2 − η2) < 0. (3.1)

By symmetry, it suffices to consider θ, η ≥ 0 only. Next notice that sup{θ : λ ∈ Λ} =√
2 log 2. For fixed θ ∈ [0,

√
2 log 2], making (3.1) explicit in η2 gives:

η2 < p−1
p 2 log 2− (p− 1)θ2.

The right-hand side assumes its maximum (as a function of p ∈ (1, 2]) at p = (
√

2 log 2/θ)∧2

giving η <
√

2 log 2− θ for all
√

log 2/
√

2 ≤ θ <
√

2 log 2. For 0 ≤ θ ≤
√

(log 2)/2, we get
θ2 + η2 < log 2. In conclusion, we get the shape depicted in Figure 1 for Λ.

θ

η

Λ

1
2

i
2

Figure 1: The figure shows Λ (in yellow) and ∂Λ (in red, blue and with two black
dots) for the branching random walk with binary splitting and independent standard
Gaussian increments. Convergence of the additive martingales for λ from the yellow
phase follows from [8, Theorem 1], but also from our Theorem 2.1. The black dots form
∂Λ1 and correspond to the real martingale in what is called the boundary case in the
literature. There is no convergence at the black dots. The blue lines form ∂Λ(1,2) and
thus correspond to the case 1 < α < 2. Theorem 2.1 yields that there is convergence to a
nontrivial limit on the blue lines. The red lines including the endpoints form ∂Λ2, which
is dealt with in Proposition 2.2. The proposition yields that there is no convergence on
the red arcs without the endpoints and in the endpoints, respectively.
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We continue with a somewhat pathological example in which ∂Λ ∩ Dc 6= ∅.

Example 3.2. Let Z =
∑N
k=1 δXk with P(N = n(n+ 1)) = 1/(n(n+ 1)) for all n ∈ N and

P(Xk = n | N = n(n+1)) = 1 for k = 1, . . . , n(n+1). Then, for θ > 0, m(θ) = e−θ/(1−e−θ).
It is easily checked that E[Z1(θ)2] < ∞ for all θ > 0. We now explicitly determine Λ.
To this end, notice that any λ with θ > 0 is in Λ iff for some p ∈ (1, 2], we have
m(pθ)/|m(λ)|p < 1, equivalently,

|1− e−(θ+iη)|p = (|1− e−(θ+iη)|2)p/2 = (1− 2e−θ cos η + e−2θ)p/2 < 1− e−pθ.

Making this inequality explicit in cos η results in

1
2

(
eθ − (1− e−pθ)2/peθ + e−θ

)
< cos η.

Since p = 2 is the minimizer for the left-hand side as a function of p ∈ [1, 2], we have
λ ∈ Λ iff e−θ < cos η. Thus, since m(0) =∞, it holds that

Λ = {θ + iη : θ > 0, e−θ < cos η} =
⋃
n∈Z

(
2πin+ {θ + iη : θ > 0, |η| < π

2 , e
−θ < cos η}

)
.

π
2

3π
2

−π2
θ

iη

Figure 2: The figure shows Λ (in yellow) and ∂Λ (the red curves and green dots). As
Z is concentrated on Z, the Laplace transform m is 2πi-periodic, hence Λ consists of a
countable family of shifted copies of the connected part of Λ intersecting the halfline
{λ : θ > 0, η = 0}. Convergence of the additive martingales for λ from the yellow phase
follows from [8, Theorem 1] and Theorem 2.1. The green dots correspond to the domain
∂Λ0 = ∂Λ ∩ Dc. The martingale is not defined on this set. The red curves form ∂Λ2,
i.e., they correspond to the case α = 2. There is no convergence on the red curves by
Proposition 2.2(a) (there is some checking required to see that the proposition applies).

Discussion of the assumptions. There is a discussion of the shape of Λ on p. 141
of [8]. Here, we want to confine ourselves to explaining why one can expect that (2.3)
holds, i.e., that the boundary is typically exhausted by ∂Λ0 ∪ ∂Λ1 ∪ ∂Λ(1,2) ∪ ∂Λ2 ∪ ∂Λ3.

Lemma 3.3. Let λ ∈ ∂Λγ for some γ ∈ (1, 2]. If P(Z1(λ) ∈ [0,∞)) < 1, then (C1) holds
with α ∈ (1, γ].

Proof. We conclude m(θ) <∞ from E[Z1(θ)γ ] <∞. We further have

m(γθ) = E
[∑

|u|=1 e
−γθS(u)] ≤ E[(∑|u|=1 e

−θS(u))γ] = E[Z1(θ)γ ] <∞.

Define the functions, p 7→ f(p) := m(pθ)/|m(λ)|p and p 7→ fn(p) := m(pθn)/|m(λn)|p,
where λn ∈ Λγ are such that λn → λ. Then f, f1, f2, . . . are finite and continuous on [1, γ].
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Further, limn→∞ λn = λ implies fn → f pointwise on [1, γ] and hence inf1≤p≤γ f(p) ≤ 1.
Let α ∈ [1, γ] be minimal with f(α) = m(αθ)/|m(λ)|α = 1. This is the first condition of
(C1). Clearly, α > 1 since P(Z1(λ) ∈ [0,∞)) < 1. Thus, f is differentiable at α (from the
left if α = γ) with f ′(α) ≤ 0, which translates into the second condition of (C1).

The lemma explains the choice of ∂Λ(1,2). In the situation of the lemma, (C2) is
automatically fulfilled if γ > α. If α = γ, we have E[|Z1(λ)|α] ≤ E[Z1(θ)α] <∞ and (C2)
thus constitutes only a very mild additional moment assumption.

4 Proofs of the main results

Many-to-one lemma and auxiliary results for random walks. There is a well-
known simple formula with far-reaching implications that connects the branching random
walk (Zn)n∈N0 with an associated standard random walk (Sn)n∈N0 on R. This formula is
sometimes called the many-to-one lemma and takes the following form here:

E[f(S0, . . . , Sn)] = E

[ ∑
|u|=n

|L(u)|αf(0,− log(|L(u|1)|), . . . ,− log(|L(u)|))
]

(4.1)

for all nonnegative Borel-measurable functions f : Rn+1 → R. The formula is used
in many (possibly all) papers on branching random walks, a proof can be found, for
instance, in [9, Lemma 4.1]. We just mention an important consequence of (4.1),
namely, choosing n = 1 and f(x, y) = y, whenever the positive or negative part of
S1 or

∑
|u|=1 |L(u)|α(− log(|L(u)|)) is integrable, we get

E[S1] = E
[∑

|u|=1 |L(u)|α(− log(|L(u)|))
]
. (4.2)

Proofs of Theorem 2.1, Proposition 2.2 and Proposition 2.3. For the remainder
of this section, we denote by [·]u, u ∈ I the canonical shift-operators, i.e., if Ψ is a
function of (Z(v))v∈I , then [Ψ]u is the same function of (Z(uv))v∈I . For n ∈ N, introduce
the nth martingale difference Dn := Zn − Zn−1 =

∑
|u|=n−1 L(u)([Z1]u − 1).

Proof of Theorem 2.1. Let ε > 0 be as in (C2) and choose φ as in Lemma A.1 with
δ := 1 + ε/2. We extend φ to a function on C by letting φ(x + iy) := φ(x) + φ(y),
x, y ∈ R. Set `(x) := φ(x)x−α for x > 0 and notice that condition (C2) implies Cφ` :=

E[φ(|Z1 − 1| ∨ 1)`(|Z1 − 1| ∨ 1)] <∞.

For t > 0, we write D(t)
n for the truncated martingale differences

D(t)
n =

∑
|u|=n−1

L(u)1{|L(u|j)|≤t for j=0,...,n−1}([Z1]u − 1)

and set Z(t)
0 = 0 and Z

(t)
n := D

(t)
1 + · · · + D

(t)
n , n ∈ N. It is easy to check that (Z

(t)
n )n≥0

is a martingale with respect to (Fn)n≥0. Clearly, Z(t)
n = Zn for all n ≥ 0 on the set

{supu∈G |L(u)| ≤ t}. As in the proof of Proposition 2.1 in [11], we infer from (4.1) that

P
(

supu∈G |L(u)| > t
)
≤ E[#{u : |L(u)| > t and |L(u|k)| ≤ t for all k < |u|}]
= E

[∑
n≥0 e

αSn1{Sn<− log t and Sk≥− log t for k=0,...,n−1}
]
< t−α. (4.3)

In particular, limt→∞P(supu∈G |L(u)| > t) = 0. Therefore, if we show that (Z
(t)
n )n≥0

converges almost surely for every t > 0, then we infer that (Zn)n≥0 converges almost
surely to some finite limit Z.
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Convergence of complex martingales in the BRW

To prove convergence of (Z
(t)
n )n≥0, we apply the Topchĭı-Vatutin inequality for martin-

gales [5, Theorem 1] twice (for the second application note that D(t)
k conditional on Fk−1

is a weighted sum of independent, centered and φ-integrable random variables)

E[φ(Z(t)
n − 1)] ≤ 2

n∑
k=1

E[φ(D
(t)
k )]

≤ 4

n∑
k=1

E

[ ∑
|u|=k−1

φ(L(u)([Z1]u − 1))1{|L(u|j)|≤t for j=1,...,k−1}

]

≤ 8

n∑
k=1

E

[ ∑
|u|=k−1

φ(|L(u)([Z1]u − 1)|)1{|L(u|j)|≤t for j=1,...,k−1}

]
,

where we have used that φ(z) ≤ 2φ(|z|) for all z ∈ C. Using that

`(|zw|) ≤ `(|z|)`(|w|)2 (4.4)

for all z, w ∈ C with |w| ≥ 1 and the change of measure (4.1), we get

E[φ(Z(t)
n − 1)] ≤ 8Cφ`

n−1∑
k=0

E
[
φ(e−Sk)eαSk1{Si≥− log t for i=1,...,k}

]
≤ 8Cφ`

∞∑
k=0

E
[
`(e−Sk)1{Si≥− log t for i=1,...,k}

]
. (4.5)

To see that the latter series is finite, let τ0 := 0 and let τn denote the nth strictly
descending ladder epoch for the walk (Sk)k≥0, n ∈ N, we refer to [13, Chapter XII] for
the definition of and background on ladder epochs.

Notice that E[S1] ≥ 0 by (4.2), hence τn may be infinite with positive probability.
Then, for any k ≥ 0, there exist unique (random) numbers n ∈ N and j ∈ N0 such that
τn−1 ≤ k = τn−1 + j < τn. In this case, Si ≥ − log t for all i = 0, . . . , k if and only if
Sτn−1 ≥ − log t, and we infer from (4.4)

`
(
e−Sk

)
1{Si≥− log t for i=1,...,k}

= `
(
e−(Sτn−1+j−Sτn−1

)e−Sτn−1
)
1{Sτn−1

+log t≥0}

≤ `
(
e−(Sτn−1+j−Sτn−1

)
)
`
(
e−Sτn−1

)2
1{Sτn−1

+log t≥0}

≤ `(t)4`
(
e−(Sτn−1+j−Sτn−1

)
)
`
(
e−(Sτn−1+log t)

)2
1{Sτn−1

+log t≥0}.

We thus infer for the infinite series in (4.5):
∞∑
k=0

E
[
`(e−Sk)1{Si≥− log t for i=1,...,k}

]
≤ `(t)4E

[ ∞∑
n=1

1{τn−1<∞}`
(
e−(Sτn−1

+log t)
)2
1{Sτn−1

+log t≥0}

τn−τn−1−1∑
j=0

`
(
e−(Sτn−1+j−Sτn−1

)
)]

= `(t)4E

[ ∞∑
n=1

1{τn−1<∞}`
(
e−(Sτn−1

+log t)
)2
1{Sτn−1

+log t≥0}

]
E

[ τ1−1∑
j=0

`
(
e−Sj

)]
,

where we have used the strong Markov property for the random walk (Sk)k≥0. Let
σ0 := 0 and σn the nth weakly ascending ladder epoch of the walk (Sk)k≥0, i.e., σn :=

inf{k > σn−1 : Sk ≥ Sσn−1
}, n ∈ N. Then the duality lemma [13, p. 395] gives

E

[ τ1−1∑
j=0

`
(
e−Sj

)]
= E

[ ∞∑
n=0

`
(
e−Sσn

)]
. (4.6)
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Convergence of complex martingales in the BRW

By the choice of φ (see Lemma A.1), `(e−x) is decreasing and `(e−x) ∼ c−1x−1−ε/2 as
x→∞. Thus, x 7→ `(e−x)1[0,∞) is directly Riemann integrable, see [13, p. 362] for the
definition. Now E[S1] ≥ 0 implies P(σn <∞) for all n ∈ N. Hence (Sσn)n≥0 is a random
walk drifting to +∞. Taken together, we infer that the expectation in (4.6) is finite. Again
from the direct Riemann integrability of x 7→ `(e−x)1[0,∞), we conclude that

sup
t>0

E

[ ∞∑
n=1

1{τn−1<∞}`
(
e−(Sτn−1

+log t)
)2
1{Sτn−1

+log t≥0}

]
<∞.

So far we have shown that there is a constant C > 0, not depending on t, such that

supn≥1E[φ(Z
(t)
n − 1)] ≤ C`(t)4 (4.7)

for all t > 0. This implies that Z(t)
n → Z(t) almost surely for some random variable Z(t)

and, upon letting t→∞, also Zn → Z almost surely for Z := limt→∞ Z(t). What is more,

P(|Zn − 1| > t) ≤ P(φ(|Zn − 1|) > φ(t), supu∈G |L(u)| ≤ t) + P(supu∈G |L(u)| > t)

≤ P(φ(|Z(t)
n − 1|) > φ(t)) + t−α ≤ φ(t)−1 supn≥1E[φ(Z

(t)
n − 1)] + t−α

≤ t−α(C`(t)3 + 1)

for all sufficiently large t. As `(t) is of the order log1+ε/2 t as t → ∞, the bound above
implies that (|Zn − 1|p)n≥0 is uniformly integrable for all p < α. Consequently, Zn → Z in
Lp for all p < α. In particular, E[Z] = 1.

Proposition 2.2 and Proposition 2.3 can be proved using minor modifications of the
corresponding results in [14]. For the reader’s convenience, we sketch the corresponding
arguments in the given context.

Both propositions are based on the following lemma.

Lemma 4.1. Suppose that P(N < ∞) = 1 and that (C1) holds. Further, assume that
E
[∑

|u|=1 |L(u)|α log(|L(u)|)
]
∈ (−∞, 0) and E[W1 log+W1] <∞, or that (C3) holds. Then

Zn → Z in probability as n→∞ implies P(|Z| ≥ t) = o(t−p) as t→∞ and, in particular,
E[|Z1|p] <∞ for every p ∈ (1, α).

The proof of the lemma is lengthy and follows along the lines of the proofs of [4,
Lemma 4.9] and [14, Lemma 4.7]. We will therefore only give a sketch of the proof.

Sketch of the proof. First notice that if Zn → Z in probability as n→∞, then Z satisfies

Z =
∑
|u|=n L(u)[Z]u almost surely (4.8)

for every n ∈ N. This means that Z is a fixed point of a smoothing transformation. The
proof of Lemma 4.1 is based on a comparison of the survival probability P(|Z| > t) with
the Laplace transform ϕ at 0 solving the functional equation of a suitable smoothing
transform. To be more precise, there exists a probability measure on [0,∞), non-
degenerate at 0, such that its Laplace transform ϕ satisfies

ϕ(t) = E
[∏
|u|=1 ϕ(|L(u)|αt)

]
, t ≥ 0. (4.9)

Indeed, ϕ is the Laplace transform of a fixed point of a smoothing transformation on the
nonnegative halfline with tilted weights |L(u)|α, |u| = 1. Further, ϕ is such that 1− ϕ(t)

is regularly varying of index 1 at 0. These facts are summarized in [2], see in particular
Proposition 2.1 and Theorem 3.1 there. As in [14, Section 3.5], using multiplicative
martingales and the theory of independent, infinitesimal triangular arrays, one can
deduce that P(|Z| > t) = o(1 − ϕ(t−α)) as t → ∞. Thus, P(|Z| > t) = o(t−p) as t → ∞
for every p ∈ (1, α). In particular, for any p ∈ (1, α), we have E[|Z|p] < ∞ and thus, by
standard martingale theory, E[|Z1|p] = E[|E[Z|F1]|p] ≤ E[E[|Z|p|F1]] = E[|Z|p] <∞.
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Proposition 2.2 can be proved as Theorem 2.3 in [14]. We therefore keep the
presentation short here.

Proof of Proposition 2.2. Suppose that P(N < ∞) = 1 and that (C1) holds with α = 2

and that one of the additional conditions holds. Further, assume for a contradiction
that Zn → Z in probability as n→∞. Then we can apply Lemma 4.1 and deduce that
E[|Z|p] <∞ for every p ∈ (1, α). Standard martingale theory gives E[|Zn − Z|p]→ 0 as
n→∞ for each such p. On the other hand, from the Burkholder-Davis-Gundy inequality
[12, Theorem 11.3.1] and Jensen’s inequality for the concave function x 7→ xp/2 for x ≥ 0,
we get as in the proof of Theorem 2.3 in [14] that there exists a constant cp > 0 such that

E[|Re(Zn)− 1|p + |Im(Zn)|p] ≥ cpE
[
(
∑n
k=1 |Re(Dk)|2)p/2 + (

∑n
k=1 |Im(Dk)|2)p/2

]
≥ cpnp/2−1E

[
(
∑n
k=1 |Re(Dk)|p) + (

∑n
k=1 |Im(Dk)|p)

]
.

Here, using that given Fk−1, Dk is a weighted sum of centered i.i.d. random variables,
we can again apply the Burkholder-Davis-Gundy inequality and then Jensen’s inequality
on {Wk−1 > 0} to infer

E[|Re(Dk)|p + |Im(Dk)|p]
≥ cpE

[
(
∑
|u|=k−1 Re(L(u)([Z1]u − 1))2)p/2 + (

∑
|u|=k−1 Im(L(u)([Z1]u − 1))2)p/2

]
≥ cp2p/2−1E

[
(
∑
|u|=k−1(Re(L(u)([Z1]u − 1))2 + Im(L(u)([Z1]u − 1))2))p/2

]
= cp2

p/2−1E
[
(
∑
|u|=k−1 |L(u)([Z1]u − 1)|2)p/2

]
≥ cp2p/2−1E[|Z1 − 1|p]E[W

p/2
k−1].

Consequently,

E[|Zn − 1|p] ≥ 2p/2−1E[|Re(Zn)− 1|p + |Im(Zn)|p]

≥ c2p2p−2E[|Z1 − 1|p]np/2−1
∑n−1
k=0 E[W

p/2
k ]. (4.10)

Condition (i) of Proposition 2.2 implies that Wn → W in L1, see [16]. Hence the lower
bound in (4.10) is of the order np/2 which tends to +∞ as n → ∞. Condition (ii) of
Proposition 2.2 implies that np/4W p/2

n , n ∈ N converges in distribution as n → ∞ to a
non-degenerate limit and is also uniformly integrable, see [1, Theorem 1.1] and [14,
Remark 4.8]. Thus the lower bound in (4.10) is of the order np/4 and again diverges as
n→∞.

Proof of Proposition 2.3. The proposition follows from Lemma 4.1 via contraposition.

5 Results for higher dimensions and the connection to smoothing
transforms

As already pointed out in the introduction, to a large extent, our interest in the
problem of complex martingale convergence in the branching random walk comes from
its significance in the fixed-point theory for smoothing transformations. We will therefore
give a more detailed description of the link between smoothing equations and martingale
convergence here.

Suppose that Z =
∑N
u=1 δL(u) is a point process on C, i.e., the L(u), u = 1, . . . , N are

complex random variables and N is a nonnegative integer-valued random variable. A
fixed point of the smoothing transform associated with Z is a complex random variable
X satisfying

X
law
=
∑N
u=1 L(u)Xu (5.1)
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where X1, X2, . . . are i.i.d. copies of X and independent of Z. Eq. (5.1) is also called
a smoothing equation and the law of X is a solution to this equation. Fixed points of
smoothing transforms arise frequently as limit laws of quantities of interest in models
that have some kind of recursive structure.

It has been shown in [20, Theorem 1.2] that the solutions of a given complex smooth-
ing equation are the laws of random variables of the form

aZ +XW (5.2)

where XW is the value of a suitable independent Lévy process (Xt)t≥0 evaluated at an
independent random time W . The Lévy process (Xt)t≥0 further has a certain invariance
property related to α-stability. Moreover, Z is either 0 or the limit of a martingale
(Zn)n∈N0 defined as follows. Take independent copies Z(u), u ∈ I of Z on a suitable
probability space (Ω,A,P) and define Gn, G, Fn in obvious analogy to the corresponding
objects defined in Section 2. Let L(∅) := 1 and, for uj ∈ G, define recursively L(uj) :=

L(u)[L(j)]u. Then Zn :=
∑
|u|=n L(u), n ∈ N0. If E[Z1] = 1, then (Zn)n∈N0 is a martingale,

in fact, it is the additive martingale in a suitable branching random walk. Here, it is
important to stress that Z in (5.1) must be (up to a scaling constant) the limit of (Zn)n∈N0

without additional renormalization. This explains why in the paper at hand, we focus on
martingale convergence and do not consider Seneta-Heyde norming constants.

As the theory of smoothing equations has applications to problems that go (with
regard to the dimension) beyond the complex case, we now switch to a more general
multivariate setup and also explain how our main results can be extended to this setup.

To be precise, fix a dimension d ∈ N and let S(d) denote the set of real d× d similarity
matrices. A similarity matrix is the product of a positive scaling factor and an orthogonal
d × d matrix. Now suppose that Z =

∑N
u=1 δL(u) is a point process on S(d). A fixed

point of the smoothing transform associated with Z is a d-dimensional random vector X
satisfying (5.1) where X1, X2, . . . are i.i.d. copies of X and independent of Z. A similar
representation theorem as in the complex case holds for the set of solutions to (5.1). In
particular, an important problem arising when solving (5.1) is the following. Construct a
probability space (Ω,A,P) which carries i.i.d. copies Z(u), u ∈ I of Z and Gn, G, Fn as
in Section 2. Let L(∅) be the d × d identity matrix, and, for uj ∈ G, define recursively
L(uj) := L(u)[L(j)]u. Now suppose that the matrix E[

∑
|u|=1 L(u)] has finite entries

only and that it has a right eigenvector w 6= 0 to the eigenvalue 1. Then the sequence
(Znw)n∈N0

defined via

Znw :=
∑
|u|=n L(u)w, n ∈ N0

defines a d-dimensional martingale with respect to (Fn)n≥0. In slight abuse of notation,
we write | · | not only for the standard Euclidean norm in Rd but also for the usual matrix
norm. Since we only work with similarity matrices, this should cause no confusion.

Condition (C1) makes perfect sense in the given situation, and the following result
can be proved along the lines of the proof of Theorem 2.1:

Theorem 5.1. Suppose that (C1) holds with α ∈ (1, 2) and that (C2) holds with Z1

replaced by Z1w. Then (Znw)n≥0 converges almost surely and in Lp for every p < α to a
non-degenerate limit Zw.

This improves Proposition 1.1(c) in [20] in two ways. First of all, the assumptions on
finite absolute moments of Z1w are relaxed. Second, the theorem above includes the
boundary case m′(α) = 0, which is not covered in [20].

Also, with Wn :=
∑
|u|=n |L(u)|α, n ∈ N0, the analog of Lemma 4.1 holds in the given

context and thus allows to conclude the analogs of Propositions 2.2 and 2.3 with Zn
replaced by Zwn , n ∈ N0. We refrain from reformulating the corresponding results in the
more general context.
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A Auxiliary results

Lemma A.1. Let α ∈ (1, 2), δ > 0. Then there is an even convex function φ : R→ [0,∞)

with φ(0) = 0 having a concave derivative on (0,∞) such that `(x) := φ(x)x−α, x > 0 is
increasing and satisfies the following assertions:

(i) For all x > 0, we have `(x−1) = `(x)−1 > 0.

(ii) There exists a constant c > 0 such that `(x) ∼ c logδ(x) as x→∞.

(iii) For all x ≥ 1 and y > 0, we have `(xy) ≤ `(x)2`(y).

Proof. We set ε(u) := δu−10 1[0,u0](|u|) + δ|u|−11(u0,∞)(|u|) for some u0 > 0 to be specified
below, and

`(x) := exp
( ∫ log x

0
ε(u) du

)
, x > 0

where the integral has to be understood as an (oriented) Riemann integral. We then
define φ(0) := 0 and φ(x) := |x|α`(|x|) for x 6= 0. Then ` satisfies (i) since ε is sym-
metric around 0. From ε(u) = δu−1 for all u ≥ u0 we conclude that (ii) holds. For the
proof of (iii), first notice that since ε is decreasing on [0,∞), the integral

∫ x
0
ε(u) du

is subadditive as a function of x ≥ 0. Consequently, `(xy) ≤ `(x)`(y) ≤ `(x)2`(y) for
all x, y ≥ 1. Now suppose x ≥ 1 and y < 1. We distinguish two cases. If xy < 1,
then∫ log(xy)

0
ε(u) du =

∫ log x+log y

log y
ε(u) du −

∫ 0

log y
ε(u) du ≤

∫ log x

0
ε(u) du +

∫ log y

0
ε(u) du,

where we have used that ε is symmetric and decreasing on [0,∞). Again, we conclude
that `(xy) ≤ `(x)`(y) ≤ `(x)2`(y). Next, suppose xy ≥ 1. Then∫ log(xy)

0
ε(u) du ≤

∫ log x

0
ε(u) du ≤ 2

∫ log x

0
ε(u) du +

∫ log y

0
ε(u) du,

hence `(xy) ≤ `(x)2`(y).
Finally, we have to show that we can choose u0 > 0 such that φ is convex on

R with concave derivative on (0,∞). Clearly, φ is continuously differentiable with
derivative

φ′(x) = xα−1`(x)(α+ ε(log x)), t > 0.

As ε is smooth on (0,∞) \ {u0}, so is φ, and we get for the higher order derivatives:

φ′′(x) = xα−2`(x)(α(α− 1) + (2α− 1)ε(log x) + ε2(log x) + ε′(log x)),

φ′′′(x) = xα−3`(x)
(
α(α− 1)(α− 2) + p0(ε(log x)) + p1(ε′(log(x))) + p2(ε′′(log(x)))

)
for x > 0, x 6= u0, where p0, p1, p2 are polynomials with pj(0) = 0 for j = 0, 1, 2 and
coefficients depending only on α. Consequently, there exists a constant η > 0 such that
φ′′(x) > 0 and φ′′′(x) < 0 for all x > 0, x 6= u0 such that max{|ε(x)|, |ε′(x)|, |ε′′(x)|} ≤ η.
Now fix u0 > 0 so large that max{|ε(u)|, |ε′(u)|, |ε′′(u)|} ≤ η for all u ≥ u0. Then φ′′′(x) < 0

for all x > 0, x 6= eu0 , hence φ′′ is strictly decreasing on (0, eu0) and (eu0 ,∞). From the
explicit expression for φ′′ above, we conclude that φ′′(u0−) > φ′′(u+0 ) (the difference
between these expressions is given exactly by the difference of the limits of ε′(log x) as
x ↑ eu0 , which is 0, and as x ↓ eu0 , which is −δu−20 < 0). Thus φ′ is (strictly) concave.
Analogously, we infer that φ is (strictly) convex on [0,∞).
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