Improved bounds for the mixing time of the random-to-random shuffle

Chuan Qin * Ben Morris ${ }^{\dagger}$

Abstract

We prove an upper bound of $1.5321 n \log n$ for the mixing time of the random-to-random insertion shuffle, improving on the best known upper bound of $2 n \log n$. Our proof is based on the analysis of a non-Markovian coupling.

Keywords: random-to-random shuffle; mixing time; non-Markovian coupling.
AMS MSC 2010: 60J10.
Submitted to ECP on November 29, 2014, final version accepted on November 26, 2015.

1 Introduction

How many shuffles does it take to mix up a deck of cards? Mathematicians have long been attracted to card shuffling problems. This is partly because of their natural beauty, and partly because they provide a testing ground for the more general problem of finding the mixing time of a Markov chain, which has applications to computer science, statistical physics and optimization.

Let X_{t} be a Markov chain on a finite state space V that converges to the uniform distribution. For probability measures μ and ν on V, define the total variation distance $\|\mu-\nu\|=\frac{1}{2} \sum_{x \in V}|\mu(x)-\nu(x)|$, and define the ε-mixing time

$$
T_{\text {mix }}(\varepsilon)=\min \left\{t:\left\|\operatorname{Pr}\left(X_{t}=\cdot\right)-\mathcal{U}\right\| \leq \varepsilon \text { for all } x \in V\right\}
$$

where \mathcal{U} denotes the uniform distribution on V.
The random-to-random insertion shuffle has the following transition rule. At each step choose a card uniformly at random, remove it from the deck and then re-insert in to a random position. It has long been conjectured that the mixing time for the random-to-random insertion shuffle on n cards exhibits cutoff at a time on the order of $n \log n$. That is, there is a constant c such that for any $\varepsilon \in(0,1)$, the ε-mixing time is asymptotic to $c n \log n$. It has further been conjectured (see [4]) that the constant $c=\frac{3}{4}$.

Uyemura-Reyes [9] proved a lower bound of $\frac{1}{2} n \log n$. This was improved by Subag [7] to the conjectured value of $\frac{3}{4} n \log n$. However, a matching upper bound has not been found. Diaconis and Saloff-Coste [5] used comparison techniques to prove a $O(n \log n)$ upper bound. The constant was improved by Uyemura-Reyes [9] and then by Saloff-Coste and Zuniga [8], who proved upper bounds of $4 n \log n$ and $2 n \log n$, respectively. The main

[^0]contribution of this paper is to improve the constant in the upper bound to 1.5321 . We achieve this via a non-Markovian coupling that reduces the problem of bounding the mixing time to finding the second largest eigenvalue of a certain Markov chain on 10 states. We also use the technique of path coupling (see [1]).

2 Main result

For sequences a_{n} and b_{n}, we write $a_{n} \sim b_{n}$ if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$ and $a_{n} \lesssim b_{n}$ if $\lim _{\sup _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \leq 1 \text {. Let } P \text { be the transition matrix of the random-to-random insertion }}$ shuffle. Define

$$
d(t)=\max _{y}\left\|P^{t}(y, \cdot)-\mathcal{U}\right\|
$$

When the number of cards is n, we write $d_{n}(t)$ for the value of $d(t)$, and $T_{\text {mix }}^{(n)}(\varepsilon)$ for the ε-mixing time of the random-to-random insertion shuffle. Our main result is the following upper bound on $T_{\text {mix }}^{(n)}(\varepsilon)$.
Theorem 2.1. For any $\varepsilon \in(0,1)$ we have $T_{\text {mix }}^{(n)}(\varepsilon) \lesssim 1.5321 n \log n$.
We think of a permutation π in S_{n} as representing the order of a deck of n cards, with $\pi(i)=$ position of card i. Say x and x^{\prime} are adjacent, and write $x \approx x^{\prime}$, if $x^{\prime}=(i, j) x$ for a transposition (i, j). We prove Theorem 2.1 using a path coupling argument (see [1]) and the following lemma.
Lemma 2.2. If n is sufficiently large and x and x^{\prime} are adjacent permutations in S_{n}, then there exist positive constants c and α such that

$$
\left\|P^{t}(x, \cdot)-P^{t}\left(x^{\prime}, \cdot\right)\right\| \leq \frac{c}{n^{1+\alpha}} \quad \text { for all } t>1.5321 n \log n
$$

The proof of Lemma 2.2, which uses a non-Markovian coupling, is deferred to Section 3.

Proof of Theorem 2.1. Suppose that $t>1.5321 n \log n$. By convexity of the l^{1}-norm, and since $\mathcal{U}=\frac{1}{n!} \sum_{z \in S_{n}} P^{t}(z, \cdot)$, it follows that for any state y we have

$$
\begin{equation*}
\left\|P^{t}(y, \cdot)-\mathcal{U}\right\| \leq \max _{z}\left\|P^{t}(y, \cdot)-P^{t}(z, \cdot)\right\| \tag{2.1}
\end{equation*}
$$

Since any permutation in S_{n} can be written as a product of at most $n-1$ transpositions, by the triangle inequality the quantity on the righthand side of (2.1) is at most

$$
\begin{equation*}
(n-1) \max _{x \approx x^{\prime}}\left\|P^{t}(x, \cdot)-P^{t}\left(x^{\prime}, \cdot\right)\right\| \tag{2.2}
\end{equation*}
$$

By (2.1), (2.2), and Lemma 2.2, if n is sufficiently large, there exist positive constants c and α such that

$$
d(t)=\max _{y}\left\|P^{t}(y, \cdot)-\mathcal{U}\right\| \leq \frac{c(n-1)}{n^{1+\alpha}}
$$

which tends to zero as $n \rightarrow \infty$.

3 Proof of Lemma 2.2

Recall that we think of a permutation π in S_{n} as representing the order of a deck of n cards, with $\pi(i)=$ position of card i. Let $M_{i, j}: S_{n} \rightarrow S_{n}$ be the operation on permutations that removes the card of label i from the deck and re-inserts it

$$
\begin{cases}\text { to the right of the card of label } j & \text { if } i \neq j \\ \text { to the leftmost position } & \text { if } i=j\end{cases}
$$

We call such operations shuffles. If $\left\langle M_{1}, \ldots, M_{k}\right\rangle$ is sequence of shuffles, we write $x M_{1} M_{2} \cdots M_{k}$ for $M_{k} \circ M_{k-1} \cdots M_{1}(x)$.

The transition rule for the random-to-random insertion shuffle can now be stated as follows. If the current state is x, choose a shuffle M uniformly at random (that is, choose a and b uniformly at random and let $M=M_{a, b}$) and move to $x M$.

We call the numbers in $\{1, \ldots, n\}$ cards. If a shuffle M removes card c from the deck and then re-inserts it, we call M a c-move.

If $\mathcal{P}=\left\langle M_{1}, M_{2}, \ldots\right\rangle$ is a sequence of shuffles, we write $(\mathcal{P} x)_{t}$ for the permutation $x M_{1} \cdots M_{t}$. Note that if \mathcal{P} is a sequence of independent uniform random shuffles, then $\left\{(\mathcal{P} x)_{t}: t \geq 0\right\}$ is the random-to-random insertion shuffle started at x.

3.1 The Non-Markovian coupling

Fix a permutation x and $i, j \in\{1,2, \ldots, n\}$. The aim of this subsection is to define a coupling of the random-to-random insertion shuffle starting from x and $(i, j) x$, respectively. Suppose that we couple the processes so that the same labels are chosen for each shuffle. Note that if there is an i-move (respectively, j-move) followed at some point by a j-move (respectively, i-move), then the processes will couple at the time of the j-move (respectively, i-move) provided that any cards placed to the right of card j (respectively, i) at any intermediate time (and any cards placed to the right of those cards, and so on) were subsequently removed. We keep track of these "problematic" cards using a process we call the queue.

For positive integers k we will call a sequence $\left\langle M_{1}, \ldots, M_{k}\right\rangle$ of shuffles a k-path. For a k-path \mathcal{P}, define the \mathcal{P}-queue (or, simply the queue) as the following Markov chain $\left\{Q_{t}: t=0, \ldots, k\right\}$ on subsets of cards. Initially, we have $Q_{0}=\emptyset$. If the queue at time t is Q_{t}, and the shuffle at time $t+1$ is $M_{a, b}$, the next queue Q_{t+1} is

$$
\begin{cases}\{i\} & \text { if } a=j ; \\ \{j\} & \text { if } a=i ; \\ Q_{t} \cup\{a\} & \text { if } a \notin\{i, j\} \text { and } b \in Q_{t}-\{a\} \\ Q_{t}-\{a\} & \text { otherwise }\end{cases}
$$

We call a shuffle an i-or- j move if it is an i-move or a j-move. Note that at any time after the first i-or- j move the queue contains exactly one card from $\{i, j\}$. Let $\mathcal{P}=\left\langle M_{1}, \ldots, M_{k}\right\rangle$ be a k-path. For $t<k$, we say that t is a good time of \mathcal{P} if

1. M_{t} is an i-or- j move;
2. there is a time $t^{\prime} \in\{t+1, \ldots, k\}$ such that
(a) $M_{t^{\prime}}$ is the next i-or- j move after M_{t};
(b) the queue is a singleton at time $t^{\prime}-1$ (i.e., either $\{i\}$ or $\{j\}$);
(c) the card moved at time t^{\prime} is different from the card moved at time t.

Define

$$
T= \begin{cases}\max \{t<k: t \text { is a good time of } \mathcal{P}\}, & \text { if there is a good time of } \mathcal{P} \\ \infty, & \text { otherwise }\end{cases}
$$

and call T the last good time of \mathcal{P}. Let $\theta_{i, j} \mathcal{P}$ be the k-path obtained from \mathcal{P} by reversing the roles of i and j in each shuffle before time T (that is, by replacing shuffle $M_{a, b}$ with $M_{\pi(a), \pi(b)}$, where π is a transposition of i and j). Note that $\theta_{i, j} \mathcal{P}$ has i-or- j moves at the same times as \mathcal{P}. Furthermore, since the queue is reset at the times of i-or- j moves, the $\theta_{i, j} \mathcal{P}$-queue will have the same values as the \mathcal{P}-queue at all times $t \geq T$. It follows that the last good time of $\theta_{i, j} \mathcal{P}$ is the same as the last good time of \mathcal{P}, and hence
$\theta_{i, j}\left(\theta_{i, j}(\mathcal{P})\right)=\mathcal{P}$. Since $\theta_{i, j}$ is its own inverse, it is a bijection and hence if \mathcal{P} is a uniform random k-path, then so is $\theta_{i, j} \mathcal{P}$.

Let $x^{\prime}=(i, j) x$. Let \mathcal{P}_{k} be a uniform random k-path, and let T_{k} be the last good time of \mathcal{P}_{k}. Note that $T_{k}<k$ or $T_{k}=\infty$. For t with $0 \leq t \leq k$, define

$$
x_{t}=\left(\mathcal{P}_{k} x\right)_{t} \quad x_{t}^{\prime}=\left(\left(\theta_{i, j} \mathcal{P}_{k}\right) x^{\prime}\right)_{t} .
$$

It is clear that x_{t} and x_{t}^{\prime} have distributions $P^{t}(x, \cdot)$ and $P^{t}\left(x^{\prime}, \cdot\right)$, respectively, for all $t \leq k$.
Lemma 3.1. If $x_{k} \neq x_{k}^{\prime}$ then $T_{k}=\infty$.
Proof. Assume that $T_{k}<k$. Note that at any time $t<T_{k}$, the permutation $\left(\mathcal{P}_{k} x\right)_{t}$ can be obtained from $\left(\left(\theta_{i, j} \mathcal{P}_{k}\right) x^{\prime}\right)_{t}$ by interchanging the cards i and j. Suppose that the next i-or- j move after time T_{k} occurs at time T_{k}^{\prime}. Without loss of generality, there is an i-move at time T_{k} and a j-move at time T_{k}^{\prime}. We claim that for times t with $T_{k} \leq t<T_{k}^{\prime}$, the permutation x_{t}^{\prime} can be obtained from x_{t} by moving only the cards in Q_{t}, as shown in the diagram below. (In the diagram, the m th X in the top row represents the same card as the m th X in the bottom row, and Q represents all the cards in Q_{t}.)

$$
\begin{array}{ccccccccccc}
x_{t}: & X & X & X & X & X & X & Q & X & X & X \\
x_{t}^{\prime}: & X & X & X & Q & X & X & X & X & X & X
\end{array}
$$

To see this, note that it holds at time T_{k}, when the queue is the singleton $\{j\}$ (since at this time the i 's are placed in the same place), and the transition rule for the queue process ensures that if it holds at time t then it also holds at time $t+1$. The claim thus follows by induction. This means that at time $T_{k}^{\prime}-1$ the permutations differ only in the location of card j. That is, they are of the form:

$$
\begin{array}{ccccccccccc}
x_{T_{k}^{\prime}-1}: & X & X & X & X & X & X & j & X & X & X \\
x_{T_{k}^{\prime}-1}^{\prime} & X & X & X & j & X & X & X & X & X & X
\end{array}
$$

Thus at time T_{k}^{\prime}, when card j is removed and then re-inserted into the deck, the two permutations become identical, and they remain identical until time k.

3.2 Tail estimate of the coupling time

Recall that T_{k} is the last good time of a uniform random k-path.
Lemma 3.2. Suppose that $k>1.5321 n \log n$. Then there exist positive constants c and α such that $\mathbb{P}\left(T_{k}=\infty\right) \leq \frac{c}{n^{1+\alpha}}$ for sufficiently large n.

Proof. Consider a process $Y_{t} \in\{0,1, \ldots\} \cup \infty$ that is defined as follows. The process starts in state ∞ and remains there until the first i-or- j move. From this point on, the value of Y_{t} is the size of the queue, until the first time that either

1. card i is moved when the queue is $\{i\}$, or
2. card j is moved when the queue is $\{j\}$.

At this point Y_{t} moves to state 0 , which is an absorbing state. Note that $T_{k}=\infty$ exactly when $Y_{k}>0$.

For $l=1,2, \ldots$, define

$$
q(l)= \begin{cases}\frac{1}{n} & \text { if } l=1 \\ \frac{3 n-1}{n^{2}} & \text { if } l=2 \\ \frac{(l-1)(n-l+1)}{n^{2}} & \text { if } l \geq 3\end{cases}
$$

and define

$$
p(l)= \begin{cases}\frac{n-2}{n^{2}} & \text { if } l=1 \\ \frac{2 n-6}{n^{2}} & \text { if } l=2 \\ \frac{l(n-l-1)}{n^{2}} & \text { if } l \geq 3\end{cases}
$$

It is easy to check that Y_{t} is a Markov chain with the following transition rule. If the current state is 0 , the next state is 0 . If the current state is ∞ the next state is

$$
\begin{cases}1 & \text { with probability } \frac{2}{n} \\ \infty & \text { with probability } \frac{n-2}{n}\end{cases}
$$

If the current state is $l \in\{1,2, \ldots\}$, the next state is

$$
\begin{cases}l-1 & \text { with probability } q(l) \\ l+1 & \text { with probability } p(l) \\ 1 & \text { with probability } \frac{2}{n}, \text { if } l \geq 3 \\ l & \text { with the remaining probability. }\end{cases}
$$

Let \tilde{Y}_{t} be the Markov chain on $\{0,1, \ldots, 8\} \cup \infty$ obtained from Y_{t} by replacing transitions to state 9 with transitions to ∞. That is, if K and \tilde{K} denote the transition matrices of Y_{t} and \tilde{Y}_{t}, respectively, then

$$
\tilde{K}(l, m)= \begin{cases}K(l, m) & \text { if } m \in\{0,1, \ldots, 8\} \\ K(8,9) & \text { if } l=8 \text { and } m=\infty\end{cases}
$$

The possible transitions of Y_{t} and \tilde{Y}_{t} are indicated by the graph in Figure 1. We claim that if we start with $\tilde{Y}_{0}=Y_{0}=\infty$ then the distribution of \tilde{Y}_{t} stochastically dominates the distribution of Y_{t} for all t. To see this, note that Y_{t} changes state with probability less than $\frac{1}{2}$ at each step, and when it changes state, it either makes a ± 1 move or it transitions to 1 . Since for $m \in\{1,2, \ldots\} \cup \infty$, the transition probability $K(m, 1)$ is decreasing in m, it follows that Y_{t} is a monotone chain. (That is, $K(x, \cdot)$ is stochastically increasing in x; see [3].) The claim follows since \tilde{Y}_{t} is obtained from Y_{t} by replacing moves to 9 with moves to the (larger) state of ∞.

Let \tilde{K}_{n} be the value of the matrix \tilde{K} when the number of cards is n, and \hat{K}_{n} the matrix obtained by deleting the first row and the first column of \tilde{K}_{n}. If we write $A_{n} \rightarrow A$ for a sequence of matrices A_{n} and a fixed matrix A, it means that A_{n} converges to A component-wise as $n \rightarrow \infty$.

Define $C_{n}:=n\left(\hat{K}_{n}-I\right)$, where I is the identity matrix. A straightforward calculation shows that $C_{n} \rightarrow C$ where

$$
C=\left[\begin{array}{rrrrrrrrr}
-2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & -5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 & -7 & 3 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 3 & -9 & 4 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 4 & -11 & 5 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 5 & -13 & 6 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 6 & -15 & 7 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 7 & -17 & 8 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2
\end{array}\right]_{9 \times 9}
$$

Figure 1: Graph indicating the possible transitions of Y_{t} and \tilde{Y}_{t}. The dotted edge indicates a possible transition of Y_{t} and the dashed edge indicates a transition of \tilde{Y}_{t}. (Self loops are not included.)
and that the eigenvalues of C are real and distinct (and hence C is diagonalizable), and negative. Denote the largest eigenvalue of C by $-\lambda$, where $\lambda=0.652703 \ldots$ (We can improve the eigenvalue marginally by considering a Markov chain with more than 10 states. For example with 35 states we get an eigenvalue of $-0.6527363 \ldots$. However, we can't improve on this by more than 10^{-7} even if we use up to 100 states. Therefore, for simplicity we shall stick to our 10-state chain as a reasonable approximation to Y_{t}.)

Since C^{\top} is diagonalizable, there exists an invertible 9×9 matrix Q such that $Q^{-1} C^{\top} Q=D$, where D is a diagonal matrix whose diagonal entries are the eigenvalues of C. Let $D_{n}=Q^{-1} C_{n}^{\top} Q$, and note that $D_{n} \rightarrow D$. For matrices A, let $\|A\|$ denote matrix norm induced by the l^{1} norm on vectors. By continuity of the matrix exponential function and matrix norm, we have $\lim _{n \rightarrow \infty}\left\|e^{D_{n}}\right\|=\left\|e^{D}\right\|=e^{-\lambda}$. Since $\lambda>0.6527$, it follows that $\left\|e^{D_{n}}\right\| \leq e^{-0.6527}$ for sufficiently large n. Since $k / n>1.5321 \log n$, submultiplicativity of operator norms implies that for sufficiently large n we have

$$
\begin{equation*}
\left\|e^{\frac{k}{n} D_{n}}\right\| \leq e^{-0.6527 \times 1.5321 \log n} \leq \frac{1}{n^{1+\alpha}} \quad \text { for some } \alpha>0 \tag{3.1}
\end{equation*}
$$

Since for any nonnegative integer j we have $\left(C_{n}^{\top}\right)^{j}=Q D_{n}^{j} Q^{-1}$, it follows that

$$
\begin{equation*}
e^{\frac{1}{n} k C_{n}^{\top}}=Q e^{\frac{1}{n} k D_{n}} Q^{-1} \tag{3.2}
\end{equation*}
$$

Let X be a Poisson random variable with mean k that is independent of everything else. Then

$$
\begin{equation*}
e^{\frac{k}{n} C_{n}}=e^{k\left(\hat{K}_{n}-I\right)}=\sum_{j=0}^{\infty} e^{-k} \frac{k^{j}}{j!} \hat{K}_{n}^{j}=\sum_{j=0}^{\infty} \mathbb{P}(X=j) \hat{K}_{n}^{j} \tag{3.3}
\end{equation*}
$$

Let $x_{0}=(0,0, \ldots, 0,1) \in \mathbb{R}^{9}$. It follows from definition of \tilde{Y}_{t} and (3.3) that

$$
\mathbb{P}\left(\tilde{Y}_{X}>0\right)=\sum_{j=0}^{\infty} \mathbb{P}(X=j)\left\|x_{0} \hat{K}_{n}^{j}\right\|_{1}=\left\|\sum_{j=0}^{\infty} \mathbb{P}(X=j) x_{0} \hat{K}_{n}^{j}\right\|_{1}=\left\|x_{0} e^{\frac{k}{n} C_{n}}\right\|_{1} .
$$

Random-to-random shuffle

By (3.2) and (3.1), there exists some $c>0$ independent of n such that

$$
\left\|x_{0} e^{\frac{k}{n} C_{n}}\right\|_{1} \leq\left\|e^{\frac{k}{n} C_{n}^{\top}}\right\|=\left\|Q e^{\frac{k}{n} D_{n}} Q^{-1}\right\| \leq \frac{c}{2}\left\|e^{\frac{k}{n} D_{n}}\right\| \leq \frac{c}{2 n^{1+\alpha}}
$$

Since Y_{t} is stochastically dominated by \tilde{Y}_{t}, we have

$$
\mathbb{P}\left(Y_{X}>0\right) \leq \mathbb{P}\left(\tilde{Y}_{X}>0\right) \leq \frac{c}{2 n^{1+\alpha}}
$$

Also, we have

$$
\begin{aligned}
\mathbb{P}\left(Y_{X}>0\right) & =\sum_{j=0}^{\infty} \mathbb{P}(X=j) \mathbb{P}\left(Y_{j}>0\right) \\
& \geq \mathbb{P}\left(Y_{k}>0\right) \sum_{j=0}^{k} \mathbb{P}(X=j) \\
& \geq \frac{1}{2} \mathbb{P}\left(Y_{k}>0\right)
\end{aligned}
$$

where the last line follows from the fact that the median of X (defined as the least integer m such that $\mathbb{P}(X \leq m) \geq \frac{1}{2}$) equals $\mathbf{E}[X]=k$ (see [2]). Therefore, we have

$$
\mathbb{P}\left(T_{k}=\infty\right)=\mathbb{P}\left(Y_{k}>0\right) \leq 2 \mathbb{P}\left(Y_{X}>0\right) \leq \frac{c}{n^{1+\alpha}} \quad \text { for sufficiently large } n
$$

Proof of Lemma 2.2. Recall that for any two probability measures μ and ν on a probability space Ω, we have

$$
\|\mu-\nu\|=\min \{\mathbb{P}(X \neq Y):(X, Y) \text { is a coupling of } \mu \text { and } \nu\}
$$

The main lemma then follows immediately from Lemma 3.1 and Lemma 3.2.

References

[1] R. Bubley and M. Dyer, Path Coupling: A technique for proving rapid mixing in Markov Chains, Proceedings of the 38th Annual Symposium on Foundation of Computer Science, 223-231, 1997.
[2] K. P. Choi, On the Medians of Gamma Distributions and an Equation of Ramanujan, Proceedings of the American Mathematical Society 121 (1), 245-251, 1994. MR-1195477
[3] D. J. Daley, Stochastically monotone Markov chains, Z. Wahrscheinlichkeitstheorie verw. Geb. 10, 305-317, 1968. MR-0242270
[4] P. Diaconis, Mathematical developments from the analysis of riffle shuffling, In Groups, Combinatorics, Geometry (Durham 2001), 73-97, 2001.
[5] P. Diaconis and L. Saloff-Coste, Comparison techniques for random walks on finite groups, Ann. Probab. 21, 2131-2156, 1993.
[6] D. Levin, Y. Peres and E. Wilmer, Markov Chains and mixing time, American Mathematical Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson.
[7] E. Subag, A Lower Bound for the Mixing Time of the Random-to-Random Insertions Shuffle, Electron. J. Probab. 18, 1-20, 2013. MR-3035748
[8] L. Saloff-Coste and J. Zuniga, Refined estimates for some basic random walks on the symmetric and alternating groups, Latin American Journal of Probability and Mathematical Statistics 4, 359-392, 2008. MR-2461789
[9] J. Uyemura-Reyes, Random Walk, semi-direct products, and card shuffling, Ph.D. Thesis, Stanford University, 2002.

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *University of California, Davis. E-mail: lostconch@gmail.com
 ${ }^{\dagger}$ University of California, Davis. Research supported by NSF grant CNS-1228828. E-mail: morris@math. ucdavis.edu

[^1]: ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{2}$ EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
 ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
 ${ }^{5}$ Project Euclid: https://projecteuclid.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

