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Abstract. In this paper, a dimension reduction method is proposed by using
the first derivative of the conditional density function of response given pre-
dictors. To estimate the central subspace, we propose a direct methodology
by taking expectation of the product of predictor and kernel function about re-
sponse, which helps to capture the directions in the conditional density func-
tion. The consistency and asymptotic normality of the proposed estimation
methodology are investigated. Furthermore, we conduct some simulations to
evaluate the performance of our proposed method and compare with existing
methods, and a real data set is analyzed for illustration.

1 Introduction

Accompanying the advancement of sciences and technologies in various fields
such as biology, economics and finance, etc., scientific data has the tendency of
growing in both size and complexity. Analysis of high-dimensional data calls
for new statistical theories and methodologies. A natural way to analyze high-
dimensional data is to first reduce the dimensionality of the original data without
losing vital information. To reduce the problem of many covariates to one with a
few covariates, sufficient dimension reduction Cook (1998) aims at finding low-
dimensional linear combinations of the predictors without loss of information on
Y |X. Suppose X is a random vector in R

p and Y is a univariate random variable,
we need seek a p × d matrix B with d ≤ p satisfying

Y⊥⊥X|BτX, (1.1)

where τ is the transpose operator on a vector or a matrix and ⊥⊥ indicates inde-
pendence throughout this paper. That is, given BτX, Y and X are independent.
The space spanned by the column of B , which is denoted as S(B), is defined as a
dimension reduction subspace (Cook, 1994, 1998). In fact, we are not concerned

Key words and phrases. Central subspace, conditional density function, dimensional reduction,
kernel function.

Received March 2017; accepted July 2017.

851

http://imstat.org/bjps/
https://doi.org/10.1214/17-BJPS370
http://www.redeabe.org.br/


852 Zhang, He, Lu and Wen

about the specific form of B since any orthogonal transformation of B from right
does not affect the conditional independent property of (1.1). If all the other di-
mension reduction space include S(B) as their subspace, then S(B) is a so-called
central dimension reduction subspace (CS), and we denote the central dimension
reduction subspace (CS) as SY |X . Cook (1998) gives some mild conditions which
guarantee the unique existence of SY |X . Without notational confusion, we assume
that SY |X coincides with S(B) throughout this paper, namely, SY |X = S(B). The
dimension of SY |X is called the structural dimension and it is denoted as d in this
paper.

To estimate the central subspace SY |X , there are many useful methods available
in the literature which make use of effective tools to reduce high-dimensional vari-
ables to equivalent ones comprising only some linear combinations of the original
variables. For instance, ordinary least squares (Li and Duan, 1989, OLS), sliced
inverse regression (Li, 1991, SIR), principal hessian directions (Li, 1992, pHd),
sliced average variance estimation (Cook and Weisberg, 1991, SAVE), directional
regression (Li and Wang, 2007, DR), minimum average variance estimation (Xia
et al., 2002, MAVE), and outer product of gradient based on conditional density
functions (Samarov, 1993, dOPG), density-MAVE (Xia, 2007, dMAVE), score di-
mension reduction (Wang and Zhu, 2013) etc. These dimension reduction methods
are widely used for a large dataset and preserve

√
n consistency of the associated

estimators, furthermore, the computational cost is not expensive. Once the central
subspace is identified, subsequent analysis with the low-dimensional BτX will
help to construct another regression models or other statistical models based on
BτX. Specially, when the structural dimension is 1, model (1.1) reduces to the
popular single-index models (Liang et al., 2010; Li et al., 2014; Chen, Zou and
Cook, 2010; Peng and Huang, 2011; Cui, Härdle and Zhu, 2009). Moreover, if the
estimation structural dimension is 1, 2 or 3, the graphical visualization will gain
comprehensive insights about the data, see Cook (1998) with a deep discussion
about the graphical methodology. So, the dimension reduction method is widely
applied in practice. See, Zhu et al. (2016, 2017), Lansangan and Barrios (2017),
Luo, Zhu and Ghosh (2017), Yoshida (2017), Deng and Wang (2017), Sheng and
Yin (2016), Zhou and Zhu (2016).

The central subspace satisfying model (1.1) is equivalent to the conditional den-
sity function of Y |X being the same as that of Y |BτX for all possible value of X

and Y if the conditional density function of Y given X exists, that is,

fY |X(y|x) = fY |Bτ X

(
y|Bτx

)
. (1.2)

Model (1.2) indicates that all the directions can be captured in the conditional
density function fY |X(y|x). Then, an estimator of the conditional density function
fY |X(y|x) is needed to be proposed in the primary step to find the central subspace.
Xia (2007) used the “double-kernel” local linear smoothing method (Fan, Yao and
Tong, 1996) to estimate the conditional density function fY |X(y|x). They used the
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fact that the conditional density function fY |X(y|x) is asymptotically equivalent to
the conditional regression mean function, and the directions defined in model (1.1)
will be all captured in this conditional regression mean function.

In this paper, we introduce a simple methodology for dimension reduction that
based on the linear condition on X (Li, 1991) and the existence of the conditional
density function of Y given X. The linear condition on X is widely used in the di-
mension reduction literature, and the existence of conditional density function of
Y given X is also a mild assumption. The methodology proposed in this paper is
to take expectation of the product of X and the kernel function of Y . Specifically,
we use the idea of “double-kernel” local linear smoothing method (Fan, Yao and
Tong, 1996) to estimate the conditional density function fY |X(y|x) in the first step.
Due to the asymptotically equivalent conditional density function fY |X(y|x) and
the conditional regression mean function (Fan, Yao and Tong, 1996; Xia, 2007).
Together with model assumption (1.2), the conditional regression mean function
will be used to capture all the direction of central subspace. Next, the proposed
method in this paper is easy to implement by using a spectral decomposition on
a kernel matrix. As the bandwidth converges to zero, the kernel matrix will even-
tually recover the central subspace in the population level. In this paper, we also
provide the asymptotic properties of the estimators of the estimated kernel matrix
and associated eigenvalues and eigenvectors.

The reminder of the paper is organized as follows. In Section 2, we introduce the
rationale of the dimension reduction method at population level, and illustrate its
theoretical result. At the sample level, we introduce a direct estimation approach
to estimating SY |X , and establish the asymptotic properties of the resultant esti-
mators. We demonstrate the methodologies through simulations and an analysis of
a real data in Section 3. An analysis of a real data is presented in Section 4. We
conclude this paper with a brief discussion in Section 5. All proofs are given in the
Appendix.

2 Methodology development

2.1 The population level

We introduce the proposed dimension reduction method in the population level.
When the conditional density function of Y given X exists, model (1.1) is equiv-
alent to the conditional density function of Y |X being the same as that of Y |BτX

for all possible values of (x, y) over the support of (X,Y ), that is, fY |X(y|x) =
fY |Bτ X(y|Bτx). It implies that

∂fY |X(y|x)/∂x = B
[
∂fY |Bτ X

(
y|Bτx

)
/∂

(
Bτx

)]
. (2.1)

In other words, all the basis directions in SY |X can be captured by the first deriva-
tion of the conditional density function. Thus, to recover SY |X , we need to esti-
mate ∂fY |X(y|x)/∂x or E[∂fY |X(y|X)/∂X]. However, we could not estimate this
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derivative directly by nonparametric smoothing when the dimensions of X are
high. To avoid using nonparametric smoothing method in high-dimensional case,
if X is further assumed temporarily to be normally distributed with mean zero and
identical covariance matrix, a direct application of Stein’s (1981) Lemma 4 and
combining with equations (1.2) and (2.1) entail that

E
[
XfY |X(y|X)

] = E
[
∂fY |X(y|X)/∂X

]
= BE

[
∂fY |Bτ X

(
y|BτX

)
/∂

(
BτX

)]
.

(2.2)

It is seen that E[XfY |X(y|X)] can be used to seek the directions of SY |X . How-
ever, in the argument (2.2), the density fY |X(y|x) is still unknown and needs to be
estimated. Xia (2007) used the idea of “double-kernel” smoothing method stud-
ied in Fan, Yao and Tong (1996) to construct an estimator of conditional density
function fY |X(y|x). We denote K(·) as a symmetric density function and h is the
bandwidth, h > 0 and Kh(x) = h−1K(x/h). If h → 0 and n → ∞, we have

E
(
Kh(Y − y)|X = x

) = E
(
Kh(Y − y)|BτX = Bτx

)
−→ fY |Bτ X

(
y|Bτx

)
.

(2.3)

Combining with (2.2) and (2.3), if X follows a normal distribution with identical
covariance matrix, as h → 0 and n → ∞, we have

E
(
XKh(Y − y)

) = E
[
XE

(
Kh(Y − y)|X)]

−→ E(XfY |Bτ X

(
y|Bτx

)
= B

[
∂fY |Bτ X

(
y|Bτx

)
/∂

(
Bτx

)]
.

(2.4)

Equation (2.4) indicates all the directions can be captured by the E[XKh(Y − y)]
under normality assumption when h → 0 as n → ∞. In fact, we avoid to esti-
mate fY |X(y|x), ∂fY |X(y|x)/∂x and E[∂fY |X(y|X)/∂X] by using nonparametric
smoothing methods, while a simple moment-based estimator of E(XKh(Y − y))

helps to infer the central subspace SY |X . However, the normality assumption for X

is relatively restrictive. Without loss of generality, we assume EX = 0 and relax
the normality assumption of X to the widely used linearity condition (Li, 1991) in
the following

E
[
X|BτX

] = P τ
B(�X)X, (2.5)

where PB(�X) = B(Bτ�XB)−1Bτ�X , �X = Var(X). As a consequence, under
the linearity condition of X, E[XKh(Y −y)] still could be used to seek SY |X when
h → 0 and n → ∞. Define

Dh(y) = E
[
XKh(Y − y)

]
, (2.6)

DB(y) = P τ
BE

[
XfY |Bτ X

(
y|BτX

)]
. (2.7)

First of all, we list some conditions for our asymptotic results.
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(A1) The conditional density functions fY |X(y|x) and fY |Bτ X(y|Bτx) have con-
tinuous and bounded second order derivatives with respect to x. Further-
more, DB(y) < ∞ for all possible values of y on the support of Y , and
DB < ∞.

(A2) EXτX < ∞, Dh(y) < ∞, Dh < ∞ for all possible values of y on the sup-
port of Y as h → 0.

(A3) The kernel function K(·) is symmetric about 0 and has a compact support.
Moreover,∫

K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u) < ∞.

(A4) The density function g(·) of Y has bounded second order derivatives. More-
over, E(XτX)4 < ∞, E[DB(Y )g(Y )] < ∞.

Theorem 2.1. If EX = 0 and �X is a positive definite matrix, moreover, X sat-
isfies the linearity condition (2.5). Under the conditions (A1)–(A4), as h → 0,
n → ∞, we have

(1) �−1
X Dh(y) → �−1

X DB(y) ⊆ SY |X .
(2) Let Dh = E[Dh(Ỹ )Dτ

h(Ỹ )], DB = E[DB(Ỹ )Dτ
B(Ỹ )], where Ỹ is an indepen-

dent copy of Y . The kernel matrix V h, defined as V h = �−1
X Dh�

−1
X , satisfies

V h → V B = �−1
X DB�−1

X ⊆ SY |X .

Theorem 2.1 indicates that V B estimates the central subspace SY |X in the pop-
ulation level. If we apply a spectral decomposition on the kernel matrix V B to
get {β1, . . . , βk}, which are the eigenvectors of kernel matrix V B correspond-
ing to its largest k nonzero eigenvalues, then the space S(β1, . . . , βk) spanned by
{β1, . . . , βk} will recover SY |X . Theorem 2.1 entails a direct estimation approach
by using the kernel matrix V h to estimate SY |X when h → 0 as n → ∞. In next
subsection, we introduce the estimation procedures of Dh(y) and V h and present
the asymptotic properties of these estimators.

2.2 Estimation procedures and asymptotic results

Suppose that {(Xi, Yi)}ni=1 are i.i.d. sample from the model (1.2). Denote Kh(·) =
h−1K(·/h). The estimators of Dh(y) and �X are defined as

D̂h(y) = 1

n

n∑
i=1

(Xi − X̄)Kh(Yi − y), (2.8)

�̂X = 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)τ , X̄ = 1

n

n∑
i=1

Xi. (2.9)
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Using (2.8) and (2.9), the moment estimators of Dh and V h in Theorem 2.1 are
proposed as

D̂h = 1

n

n∑
i=1

D̂h(Yi)D̂
τ

h(Yi), (2.10)

V̂ h = �̂−1
X D̂h�̂

−1
X . (2.11)

Theorem 2.2. Under the conditions of Theorem 2.1, if h → 0 and nh → ∞ as
n → ∞, we have

V̂ h
P−→ V B.

The consistency of V̂ h to V B enables us to estimate SY |X by using the first
k eigenvectors of the estimated kernel matrix V̂ h associated with its k largest
nonzero eigenvalues.

Let Vech(A) = (a11, . . . , ap1, a22, . . . , ap2, a33, . . . , app)τ be a p(p + 1)/2 di-
mension vector for any symmetric p ×p dimensional matrix A = (aij )p×p . In the
following, we use notation A⊗2 = AAτ for any matrix or vector A.

Define

T h(x, y) = (
x⊗2 − �X

)
�−1

X DB + DB�−1
X

(
x⊗2 − �X

)
+ E

{
DB(y)g(y)

}
xτ + xE

{
Dτ

B(y)g(y)
}

+ E
(
D̂

0
h|(X1, Y1) = (x, y)

) − ED̂
0
h,

(2.12)

where D̂
0
h is defined as (A.2) in the Appendix. Next, we present the asymptotic

distribution of the estimated kernel matrix V̂ h.

Theorem 2.3. Under the conditions of Theorem 2.1, nh4 → 0 and nh2 → ∞
as n → ∞, moreover, aτ Cov(Vech(�−1

X T h(X,Y )�−1
X ))a → σ 2

a > 0 for any

a ∈ R
p(p+1)

2 and a 
= 0, we have

√
n(V̂ h − V B)

L−→ H, (2.13)

where aτ Vech(H) follows a normal distribution N(0, σ 2
a ) for any a ∈ R

p(p+1)
2 and

a 
= 0.

Let λ(A) stands for the vector of ordered eigenvalues of A, that is, denoted as
λ(A) = (λ1(A), . . . , λp(A))τ satisfying λ1(A) ≥ · · · ≥ λp(A). Denote λ1(V B) >

· · · > λl(V B) are the distinct eigenvalues of V B with the multiplicity of λi(V B)

being mi , i = 1, . . . , l, and m1 + m2 + · · · + ml = p.
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The orthogonal matrices Q makes

QτV BQ =

⎡⎢⎢⎢⎣
λ1(V B)Im1 0 . . . 0

0 λ2(V B)Im2 . . . 0
...

...
. . .

...

0 0 . . . λl(V B)Iml

⎤⎥⎥⎥⎦ ,

where H̃ = (H̃i,j ) denotes the partitioning of QτHQ in blocks of order mi × mj .
Theorem 2.3 entails to derive the asymptotic distribution of the eigenvalues of the
estimated kernel matrix V̂ h. By application of Theorem 3.1 and Theorem 3.2 in
Eaton and Tyler (1991), we have the following asymptotic result.

Theorem 2.4. Under the conditions of Theorem 2.3, λ1(V B) > λ2(V B) > · · · >

λl(V B) is the distinct eigenvalues of V B with the multiplicity of λi(V B) being mi ,
i = 1, . . . , l and m1 + m2 + · · · + ml = p, we have

√
n
(
λ(V̂ h) − λ(V B)

) L−→

⎡⎢⎢⎢⎢⎣
λ(H̃11)

λ(H̃22)
...

λ(H̃ll)

⎤⎥⎥⎥⎥⎦ .

From Theorem 2.4, if the first kth of the kernel matrix V B are nonzero, the first
kth nonzero eigenvalues {b̂1, . . . , b̂k} of the estimated kernel matrix V̂ h are root-
n consistent, and the first dth eigenvectors with d ≤ k corresponding to nonzero
eigenvalues helps to infer the central subspace SY |X .

Theorem 2.5. Let e be any unit length vector which is orthogonal to SY |X ,
and suppose that eτ Cov(�−1

X T h(X,Y )�−1
X bj )e → eτWje > 0 as h → 0, j =

1, . . . , k. Under the conditions of Theorem 2.3, we have
√

neτ b̂j
L−→ N

(
0, eτWje

)
.

3 Simulations studies

In this section, we conduct some simulations to evaluate the performance of our
proposed method. To evaluate the estimation accuracy, we use a measure between
two subspace of Rp . Let B is a p × k matrix spanning SY |X , and B̂ is a p × k

matrix to estimate B . The measure between SY |X and its estimator ŜY |X is defined
as

dist(SY |X, ŜY |X) = ‖PB − P
B̂
‖,

where PB and P
B̂

is the projection operator in the standard inner product of B and

B̂ , and ‖ · ‖ is the Euclidean matrix norm. The smaller value of dist(SY |X, ŜY |X),
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the better performance of ŜY |X . A more detailed discussion of the distance mea-
sure can be referred to Li, Zha and Chiaromonte (2005).

We compare our proposed method with some useful methods, SIR (Li, 1991),
SAVE (Cook and Weisberg, 1991), pHd (Li, 1992), DR (Li and Wang, 2007),
rMAVE (Xia et al., 2002), dMAVE (Xia, 2007). For SIR, SAVE, and DR, we con-
sider two cases with the slice number H = 5 and H = 10. For our method, we use
the kernel function K(t) = (15/16)(1 − t2)2I (t2 < 1) and bandwidth h = n−1/3

to satisfy the conditions in Theorems. The dimension of predictor X is chosen as
p = 5,10,20 for Example 1 and Example 2.

Example 1. The following three models are used:

Y = 1

2
exp(X1 − 1)ε; (3.1)

Y = sin
{

1√
2
X1 − 1√

2
X2 + ε

}
; (3.2)

Y = cos
{

exp
(

1√
2
X1 − 1√

2
X2 + ε

)}
; (3.3)

In these models, the structure dimension of SY |X is one. The variables Xij in-
dependently follows t (8) (t-distribution with 8 freedom-degree) for i = 1, . . . , n,
j = 1, . . . , p, and the error ε ∼ N(0,1) satisfying ε⊥⊥X. Among these dimension
reduction methods, we present estimation error for each model with 300 replica-
tions. In Table 1, we present the mean of distance measure dist(SY |X, ŜY |X) =
‖PB − P

B̂
‖ between these methods and the true central subspace and also the

standard error.
From Table 1, we see that our method outperforms SAVE, pHd and rMAVE

in this three models. As the numbers of predictor p increases, our method still
could detect the underlying true dimension reduction subspace and has better per-
formance than SAVE and rMAVR. Both SIR with slice number H = 5, H = 10
and dMAVE have comparable performance with our method, and the latter has a
slightly better performance than DR in the three models.

Example 2. The following two models are used:

Y = sign
(
βτ

1 X + ε1
) × log

(∣∣6 + βτ
2 X + ε2

∣∣), (3.4)

Y = sign
(
2βτ

1 X + ε1
) × log

(∣∣4 + 2βτ
2 X + ε2

∣∣), (3.5)

where sign(·) is the sign function. In this example, it is seen that that SY |X is
spanned by (β1, β2).

For model (3.4), the first five elements of β1 are (1,1,1,1,0)/2 and the rest are
all zeros. The first five elements of β2 are (−1,2,−2,1,1)/

√
11 and the rest are all
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Table 1 The mean ± standard error (sd) of dist(SY |X, ŜY |X) for Example 1

SIR
(H = 5,10)

SAVE
(H = 5,10)

DR
(H = 5,10)

pHd rMAVE dMAVE EPPK

p = 5, n = 300
Model (3.1) mean 0.14 0.12 0.26 0.25 019 0.14 0.77 0.57 0.13 0.13

sd 0.05 0.04 0.10 0.13 0.06 0.06 0.19 0.24 0.05 0.05
Model (3.2) mean 0.16 0.19 0.51 0.65 0.29 0.34 0.90 0.23 0.16 0.18

sd 0.06 0.06 0.25 0.24 0.14 0.16 0.15 0.14 0.05 0.07
Model (3.3) mean 0.17 0.17 0.45 0.60 0.23 0.24 0.79 0.34 0.19 0.19

sd 0.07 0.06 0.22 0.23 0.09 0.09 0.21 0.21 0.07 0.07

p = 10, n = 300
Model (3.1) mean 0.22 0.19 0.63 0.80 0.28 0.25 0.84 0.72 0.19 0.21

sd 0.05 0.05 0.25 0.19 0.08 0.06 0.12 0.17 0.04 0.05
Model (3.2) mean 0.29 0.28 0.85 0.93 0.50 0.56 0.96 0.32 0.25 0.30

sd 0.07 0.07 0.17 0.09 0.18 0.19 0.06 0.13 0.06 0.08
Model (3.3) mean 0.26 0.27 0.89 0.95 0.36 0.37 0.89 0.44 0.28 0.28

sd 0.08 0.07 0.11 0.07 0.12 0.11 0.11 0.18 0.07 0.07

p = 20, n = 300
Model (3.1) mean 0.32 0.28 0.97 0.99 0.43 0.36 0.89 0.86 0.28 0.30

sd 0.06 0.05 0.13 0.02 0.09 0.06 0.08 0.13 0.05 0.05
Model (3.2) mean 0.40 0.41 0.97 0.98 0.69 0.73 0.98 0.44 0.37 0.43

sd 0.07 0.08 0.04 0.02 0.17 0.16 0.03 0.14 0.06 0.07
Model (3.3) mean 0.39 0.38 0.97 0.99 0.57 0.57 0.97 0.59 0.42 0.41

sd 0.06 0.06 0.04 0.02 0.15 0.14 0.04 0.16 0.09 0.07

zeros. The distribution of X is N(0, Ip), where Ip is a p × p identical matrix, and
unobservable noise ε1 and ε2 follow from N(0,0.52). Moreover, X is independent
with (ε1, ε2), and ε1 is independent with ε2.

For model (3.5), the first five elements of β1 are (1,1,1,1,0)/2 and the rest are
all zeros. The first five elements of β2 are (1,−1,1,−1,0)/2, and the rest are all
zeros too. The distribution of X is also N(0, Ip) and independent with (ε1, ε2), and
unobservable noise ε1 and ε2 are independent and both are N(0,1). The models
investigated here are similar to Chen and Li (1998) and Xia (2007). The model
(3.5) is the same as the model in Example 4.1 in Xia (2007). We consider the
models (3.4)–(3.5) with different dimension reduction methods with sample size
n = 300 in this example. The slice numbers of SIR, SAVE and DR are also chosen
as H = 5 and H = 10. The simulation results of mean and standard error with 300
replications are reported in Table 2.

From Table 2, the mean of dist(SY |X, ŜY |X) by our method is better than SAVE,
pHd, rMAVE. As the numbers of predictor p increase, our method still has com-
parable performance with SIR and DR with the slice number H = 5, H = 10. For
model (3.5), when we change different parameter values of (β1, β2) and reduce



860 Zhang, He, Lu and Wen

Table 2 The mean ± standard error (sd) of dist(SY |X, ŜY |X) for Example 2

SIR
(H = 5,10)

SAVE
(H = 5,10)

DR
(H = 5,10)

pHd rMAVE dMAVE EPPK

p = 5, n = 300
Model (3.4) mean 0.13 0.11 0.18 0.21 0.15 0.14 0.95 0.85 0.71 0.16

sd 0.04 0.03 0.07 0.11 0.04 0.04 0.11 0.14 0.24 0.05
Model (3.5) mean 0.14 0.14 0.20 0.32 0.15 0.17 0.99 0.46 0.12 0.19

sd 0.05 0.05 0.08 0.16 0.05 0.06 0.02 0.22 0.04 0.06

p = 10, n = 300
Model (3.4) mean 0.19 0.18 0.42 0.76 0.23 0.22 0.99 0.93 0.91 0.24

sd 0.03 0.04 0.17 0.20 0.04 0.05 0.02 0.09 0.11 0.05
Model (3.5) mean 0.24 0.22 0.58 0.87 0.28 0.27 0.99 0.67 0.20 0.30

sd 0.05 0.05 0.20 0.15 0.06 0.06 0.02 0.20 0.04 0.06

p = 20, n = 300
Model (3.4) mean 0.30 0.27 0.93 0.99 0.36 0.34 0.99 0.97 0.97 0.36

sd 0.05 0.04 0.10 0.01 0.06 0.05 0.01 0.04 0.04 0.05
Model (3.5) mean 0.34 0.34 0.96 0.99 0.40 0.41 0.99 0.79 0.29 0.45

sd 0.05 0.05 0.06 0.02 0.06 0.07 0.01 0.15 0.05 0.08

the variance of (ε1, ε2), the performance of our method is better than dMAVE. For
model (3.4), dMAVE could not detect the underlying dimension reduction sub-
space when the number of predictors is relatively small p = 5, while our method
has stable performance in both cases even when the number of predictors p in-
creases to 20.

4 Real data analysis: Cars data

In this section, we apply our dimension reduction method to the Cars data. This
data is about the 1983 ASA Data Exposition of Statistical Graphics Technology.
There are 406 observations with eight variables: Y -miles per gallon, X1-number
of cylinders, X2-engine displacement (cu. inches), X3-horsepower, X4-vehicle
weight (lbs.), X5-time to accelerate from 0 to 60 mph (sec.), X6-model year
(modulo 100), and origin of car (1 = American, 2 = European, 3 = Japanese).
We transform the variable origin of car to the pairwise variable (X7,X8), where
(X7,X8) = (1,0), (0,1), (0,0) corresponding to American cars, European cars
and Japanese cars. Before applying our dimension reduction method, we standard-
ize all the covariates separately. The bandwidth is taken as three cases, h = n−1/3,
h = n−1/2 and h = n−4/5.

Denote the estimated central subspace by our method as ŜY |X in this dataset.
To determine the number of dimension d , we use bootstrap to select the dimen-
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sion based on Ye and Weiss (2003), and BIC type criterion proposed by Zhu, Miao
and Peng (2006). We re-sample n = 300 dataset without replacement and the stan-
dardized covariates, and we obtained a number of 500 bootstrap estimates Ŝ

b
Y |X ,

b = 1, . . . ,500 based on our method. To measure the distance between the data
estimator ŜY |X and bootstrap estimator Ŝ

b
Y |X , we adopt the vector correction co-

efficient q (Hotelling, 1936) and use arccos(q) as a measure, see more details in
Ye and Weiss (2003). The mean of bootstrap distance measure arccos(q̂b) is re-
ported in Table 3. From Table 3, the case of d = 2 has the smallest value and then
we suggest the dimension in this dataset is 2. The BIC type criterion proposed
by Zhu, Miao and Peng (2006) also suggests that the dimension is 2. Now we
use our method to this dataset and use the bandwidth h = n−1/2 here, the two di-
rections are β̂1 = (−0.11,0.73,−0.59,0.14,−0.15,−0.20,−0.09,−0.07)τ and
β̂2 = (0.01,−0.55,−0.43,0.68,−0.13,−0.15,0.05,−0.08)τ . The first two es-
timated direction indicate that the three predictors X2-engine displacement (cu.
inches), X3-horsepower and X4-vehicle weight (lbs.) are of dominating effects.
The plots of Y against β̂τ

1 X and β̂τ
2 X are shown in Figure 1. Figure 1 presents

the scatter plot with the response Y -miles per gallon and the first two estimated

Table 3 Bootstrap mean of arccos(q̂b) between Ŝ
b
Y |X and ŜY |X

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

h = n−1/3 21.9695 14.1481 20.3936 14.9362 15.5745 20.5963 30.1306
h = n−1/2 22.8674 14.2178 21.6424 14.9306 15.4797 20.3341 28.8257
h = n−4/5 24.8663 14.1931 21.8925 14.7187 15.6498 21.5143 27.2937

Figure 1 Cars data. The left panel, the scatter plots of Y against the first direction. The right
panel, the scatter plots of Y against the second direction. The origins of cars are denoted by “+” for
American cars, “◦” for European cars and “·” for Japanese cars.
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directions. In the left panel plot, the response Y has a linear trend in the first direc-
tion for American and Japanese cars. In the right panel plot, the response Y has a
slight linear trend in the second direction for European and Japanese cars and has
no trend for American cars.

5 Discussion and further research

This paper gives a topic of the estimation procedure for dimension reduction by
using the conditional density function. We present the asymptotic results of the
proposed estimators and investigate the numerical performance. We can study the
proposed methods in this paper to consider the estimation in the divergent parame-
ters (Wu and Li, 2011; Zhu, Miao and Peng, 2006) and variable selection problems
(Chen, Zou and Cook, 2010). One can also use the proposed methods in this paper
to consider the measurement errors data (Li and Yin, 2007), longitudinal data (Bi
and Qu, 2015; Li and Yin, 2009), missing data (Ding and Wang, 2011; Guo et al.,
2014) in a future work. The research for this topic is ongoing.

Appendix

In this section, we give the proofs of our main results. Without loss of generality,
in the following we assumes EX = 0.

A.1 Proof of Theorem 2.1

Proof. Invoking the assumption of that the conditional density function of Y |X
being the same as that of Y |BτX, that is, fY |X(y|x) = fY |Bτ X(y|BτX), when the
linear condition (2.5) of X holds, we have

E
[
XfY |X(y|X)

] = E
[
XfY |Bτ X

(
y|BτX

)]
= E

{
E

[
XfY |Bτ X

(
y|BτX

)|BτX
]}

= E
{
fY |Bτ X

(
y|BτX

)
E

[
X|BτX

]}
= E

[
fY |Bτ X

(
y|BτX

)
P τ

BX
] = P τ

BE
[
XfY |Bτ X

(
y|BτX

)]
,

(A.1)

where P τ
B(�X) = B(Bτ�XB)−1Bτ�X . From the expression (A.1), we see that

�−1
X E[XfY |X(y|X)] ⊆ SY |X . Fan, Yao and Tong (1996) shows that E(Kh(Y −

y)|X = x) → fY |X(y|x) as h → 0, n → ∞. Using this results, we have

Dh(y) = E
[
XKh(Y − y)

] = E
{
XE

[
Kh(Y − y)|X]}

→ E
{
XfY |X(y|X)

} = E
[
XfY |Bτ X

(
y|BτX

)]
= P τ

BE
[
XfY |Bτ X

(
y|BτX

)] = DB(y),
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that is, �−1
X Dh(y) → �−1

X DB(y) ⊆ SY |X as h → 0, n → ∞. If we take Ỹ as an
independent copy of Y , then we obtain that the kernel matrix V h = �−1

X Dh�
−1
X =

�−1
X E[D⊗2

h (Ỹ )]�−1
X → �−1

X E[D⊗2
B (Ỹ )]�−1

X = V B ⊆ SY |X . So that V h will
seek out the central subspace SY |X as h → 0, n → ∞. �

A.2 Proof of Theorem 2.2

Proof. Step 2.1 In this step, we prove the consistency of the estimator D̂h.

D̂h = 1

n3

n∑
i=1

n∑
j=1

n∑
s=1

(Xi − X̄)(Xj − X̄)τKh(Yi − Ys)Kh(Yj − Ys)

= 6an

n(n − 1)(n − 2)

n∑
1≤i<j<s≤n

uh

(
(Xi, Yi), (Xj ,Yj ), (Xs,Ys)

) + Rn

= anD̂
0
h + Rn,

(A.2)

where an = (n−1)(n−2)

n2 and

uh

(
(Xi, Yi), (Xj ,Yj ), (Xs,Ys)

)
= 1

6

[(
XiX

τ
j + XjX

τ
i

)
Kh(Yi − Ys)Kh(Yj − Ys)

+ (
XiX

τ
s + XsX

τ
i

)
Kh(Yi − Yj )Kh(Ys − Yj )

+ (
XjX

τ
s + XsX

τ
j

)
Kh(Yj − Yi)Kh(Ys − Yi)

]
.

(A.3)

From expressions (A.2) and (A.3), we see that D̂
0
h is a U−statistics with symmetric

kernel uh(·). Furthermore, as h → 0, n → ∞,

Euh

(
(X1, Y1), (X2, Y2), (X3, Y3)

)
= E

{
Euh

(
(X1, Y1), (X2, Y2), (X3, Y3)

)|(X3, Y3)
}

= E
[
D⊗2

h (Y3)
] = E

[
D⊗2

h (Ỹ )
]

→ E
Ỹ

{
EX

[
XfY |Bτ X

(
Ỹ |BτX

)]
EX

[
XτfY |Bτ X

(
Ỹ |BτX

)]|Ỹ }
= P τ

BE
Ỹ

{
EX

[
XfY |Bτ X

(
Ỹ |BτX

)]
EX

[
XτfY |Bτ X

(
Ỹ |BτX

)]|Ỹ }
PB

= E
[
D⊗2

B (Ỹ )
] = DB,

where Ỹ is an independent copy of Y , PB = B(Bτ�XB)−1Bτ�X , and EX(·)
stands for taking expectation about X and E

Ỹ
(·) stands for taking expectation

about Ỹ . Since Euh((X1, Y1), (X2, Y2), (X3, Y3)) → DB , thus, ED̂
0
h → DB . By
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the convergence of the U -statistics, we have D̂
0
h

P−→ DB . Moreover, an → 1, then

anD̂
0
h

P−→ DB .
Next, we prove Rn = oP (1) in the following.

Rn = 1

n3

n∑
i=1

n∑
j=1

n∑
s=1

[(
X̄⊗2 − XiX̄

τ − X̄Xτ
j

)
Kh(Yi − Ys)Kh(Yj − Ys)

]

+ 1

n3

n∑
i=1

∑
j 
=i

[
(Xi − X̄)(Xj − X̄)τKh(0)Kh(Yj − Yi)

]

+ 1

n3

n∑
j=1

∑
i 
=j

[
(Xi − X̄)(Xj − X̄)τKh(0)Kh(Yi − Yj )

]

+ 1

n3

n∑
i=1

∑
s 
=i

[
(Xi − X̄)⊗2K2

h(Yi − Ys)
]

+ 1

n3

n∑
i=1

[
(Xi − X̄)⊗2K2

h(0)
]

= R1n + R2n + R3n + R4n + R5n.

(A.4)

Note that EX = 0, then
√

nX̄ = OP (1). Similar to proof of the consistency of D̂
0
h,

we have

R1n = X̄⊗2 1

n3

n∑
i=1

n∑
j=1

n∑
s=1

Kh(Yi − Ys)Kh(Yj − Ys)

+
[

1

n3

n∑
i=1

n∑
j=1

n∑
s=1

XiKh(Yi − Ys)Kh(Yj − Ys)

]
X̄τ

+ X̄

[
1

n3

n∑
i=1

n∑
j=1

n∑
s=1

Xτ
j Kh(Yi − Ys)Kh(Yj − Ys)

]

= OP

(
1√
n

)
.

(A.5)

It follows that

R2n = K(0)

nh

[
1

n2

n∑
i=1

∑
j 
=i

(
XiX

τ
j − XiX̄

τ − X̄Xτ
j − X̄⊗2)

Kh(Yi − Yj )

]

= OP

(
1

nh

)
.

(A.6)
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The analysis of R3n, R4n are similar to R2n and will be OP ( 1
nh

). For R5n,

R5n = K(0)2

(nh)2

1

n

n∑
i=1

(Xi − X̄)⊗2 = OP

(
1

n2h2

)
. (A.7)

Based on (A.5)–(A.7), provided h → 0 and nh → ∞ as n → ∞, Rn = oP (1).

Step 2.2 Note that �̂X = 1
n

∑n
i=1(Xi − X̄)⊗2 P−→ �X , then �̂X − �X = oP (1).

We have proved that D̂h − DB = oP (1), then

V̂ h − V B = �̂−1
X D̂h�̂

−1
X − �−1

X DB�−1
X

= �̂−1
X (�X − �̂X)�−1

X D̂h�̂
−1
X + �−1

X (D̂h − DB)�̂−1
X

+ �−1
X DB�̂−1

X (�X − �̂X)�−1
X

= oP (1),

(A.8)

which indicates that V̂ h
P−→ V B ⊆ SY |X , and we have completed the proof of

Theorem 2.2. �

A.3 Proof of Theorem 2.3

Proof. In this section, we drive the asymptotic distribution of V̂ h. Based on (A.8),√
n(V̂ h − V B)

= √
n
(
�̂−1

X D̂h�̂
−1
X − �−1

X DB�−1
X

)
= �̂−1

X

√
n(�X − �̂X)�−1

X D̂h�̂
−1
X + �−1

X

√
n(D̂h − DB)�̂−1

X

+ �−1
X DB�̂−1

X

√
n(�X − �̂X)�−1

X .

First, we derive
√

n(D̂h − DB) as a sum of i.i.d. random variable and an asymp-
totic negligible part. According to (A.2), (A.4) and (A.6)–(A.7), if

√
nh2 → 0 and√

nh → ∞, we have
√

n(D̂h − DB)

= √
n
(
anD̂

0
h + R1n − DB

) + √
n(R2n + R3n + R4n + R5n)

= √
n
(
an

(
D̂

0
h − ED̂

0
h

) + R1n

) + √
n
(
anED̂

0
h − DB

) + OP

(
1√
nh

)
= √

n
(
an

(
D̂

0
h − ED̂

0
h

) + R1n

)
+ O

(
an

√
nh2 + √

n(an − 1)
) + OP

(
1√
nh

)
= an

√
n
(
D̂

0
h − ED̂

0
h

) + √
nR1n + oP (1).

(A.9)
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Note that D̂
0
h is a U -statistic, and by Hajek projection (Serfling, 1980), we have√

n(D̂
0
h − ED̂

0
h) = 1√

n

∑n
i=1[E(D̂

0
h|(Xi, Yi)) − ED̂

0
h] + oP (1), which implies

√
n(D̂h − DB)

= 1√
n

n∑
i=1

[
E

(
D̂

0
h|(Xi, Yi)

) − ED̂
0
h

] + OP

(√
n(an − 1)

) + oP (1)

= 1√
n

n∑
i=1

[
E

(
D̂

0
h|(Xi, Yi)

) − ED̂
0
h

] + oP (1).

(A.10)

We calculate the second part
√

nR1n in (A.5). Based on (A.5),

√
nR1n =

[
1

n3

n∑
i=1

n∑
j=1

n∑
s=1

XiKh(Yi − Ys)Kh(Yj − Ys)

]√
nX̄τ

+ √
nX̄

[
1

n3

n∑
i=1

n∑
j=1

n∑
s=1

Xτ
j Kh(Yi − Ys)Kh(Yj − Ys)

]
+ OP

(
1√
n

)
.

The analysis of 1
n3

∑n
i=1

∑n
j=1

∑n
s=1 XiKh(Yi − Ys)Kh(Yj − Ys) is similar to D̂h

and is expressed as a sum of U -statistic and a negligible part. Note that

E
[
X1Kh(Y1 − Y3)Kh(Y2 − Y3)

]
= P τ

BE
Ỹ

{
EX

[
XfY |Bτ X

(
Ỹ |BτX

)]
g(Ỹ )

} + O
(
h2)

= E
{
DB(Ỹ )g(Ỹ )

} + O
(
h2)

,

where g(·) is the density function of Y . Then, we have

√
nR1n = E

{
DB(Ỹ )g(Ỹ )

}√
nX̄τ + √

nX̄E
{
Dτ

B(Ỹ )g(Ỹ )
}

+ oP (1).
(A.11)

Together with (A.10) and (A.11), we have

√
n(D̂h − DB)

= 1√
n

n∑
i=1

[
E

(
D̂

0
h|(Xi, Yi)

) − ED̂
0
h + E

{
DB(Ỹ )g(Ỹ )

}
Xτ

i

+ XiE
{
Dτ

B(Ỹ )g(Ỹ )
}] + oP (1).

(A.12)
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Second, the
√

n(�̂X −�X) = 1√
n

∑n
i=1(X

⊗2
i −�X)+ oP ( 1√

n
). Note that D̂h

P−→
DB and �̂X

P−→ �X , then√
n(V̂ h − V B) = √

n
(
�̂−1

X D̂h�̂
−1
X − �−1

X DB�−1
X

)
= 1√

n

n∑
i=1

�−1
X T h(Xi, Yi)�

−1
X + oP (1),

where

T h(Xi, Yi)

= (
X⊗2

i − �X

)
�−1

X DB + DB�−1
X

(
X⊗2

i − �X

)
+ E

(
D̂

0
h|(Xi, Yi)

) − ED̂
0
h + E

{
DB(Ỹ )g(Ỹ )

}
Xτ

i

+ XiE
{
Dτ

B(Ỹ )g(Ỹ )
}
.

(A.13)

Note that {T h(Xi, Yi), i = 1, . . . , n} are i.i.d. random variables. For any a ∈
R

p(p+1)
2 and a 
= 0, if aτ Cov(vech(�−1

X T h(X1, Y1)�
−1
X ))a → σ 2

a > 0 as h →
0, n → ∞ , the CLT theorem entails that

√
naτ (Vech(�−1

X T h(Xi, Yi)�
−1
X ) −

Vech(�−1
X ET h(Xi, Yi)�

−1
X ))

L−→ N(0, σ 2
a ), and we write it as

√
n(V̂ h − V B)

L−→ H. (A.14)

We have completed the proof of Theorem 2.3. �

A.4 Proof of Theorem 2.4

Proof. In this section, we get the asymptotic distribution of the nonzero eigen-
values of V̂ h. Denote λ1 > λ2 > · · · > λl is the distinct eigenvalues of positive
semi-definite matrix V B with the multiplicity of λi being mi , i = 1, . . . , l and
m1 + m2 + · · · + ml = p. There exists orthogonal matrices Q such that

QτV BQ =

⎡⎢⎢⎢⎣
λ1Im1 0 . . . 0

0 λ2Im2 . . . 0
...

...
. . .

...

0 0 . . . λlIml

⎤⎥⎥⎥⎦ .

From the results (A.14), we have
√

n(Qτ V̂ hQ − QτV BQ)
L−→ QτHQ, and we

partition Qτ V̂ hQ in the similar way of QτV BQ as

Qτ V̂ hQ =

⎡⎢⎢⎢⎣
Vn,11 Vn,12 . . . Vn,1l

Vn,21 Vn,22 . . . Vn,2l

...
...

. . .
...

Vn,l1 Vn,l2 . . . Vn,ll

⎤⎥⎥⎥⎦ .



868 Zhang, He, Lu and Wen

We define that λ(A) stands for the vector of ordered eigenvalues of A, that is,
denoted as λ(A) = (λ1(A),λ2(A), . . . , λk(A))τ , and let 1mi

∈ R
mi stand for the

vector of ones for i = 1, . . . , l. Applying the result of Theorem 3.1 in Eaton and
Tyler (1991), we have

√
n(λ

(
Qτ V̂ hQ

) − λ
(
QτV BQ

) = √
n

⎡⎢⎢⎢⎣
λ(Vn,11) − λ11m1

λ(Vn,22) − λ21m2
...

λ(Vn,ll) − λl1ml

⎤⎥⎥⎥⎦ + oP (1).

Since
√

n(Qτ V̂ hQ − QτV BQ)
L−→ QτHQ, we have

√
n

⎡⎢⎢⎢⎣
Vn,11 − λ1Im1

Vn,22 − λ2Im2
...

Vn,ll − λlIml

⎤⎥⎥⎥⎦ L−→ H̃ =

⎡⎢⎢⎢⎢⎣
H̃11

H̃22
...

H̃ll

⎤⎥⎥⎥⎥⎦ ,

where H̃ = (H̃i,j ) is the partitioning of QτHQ in blocks of order mi ×mj . More-
over, the eigenvalue vector λ(A) is a continuous function about matrix A, and Q is
an orthogonal matrix, then λ(Qτ V̂ hQ) = λ(V̂ h), λ(QτV BQ) = λ(V B). We have

√
n
(
λ(V̂ h) − λ(V B)

) L−→

⎡⎢⎢⎢⎢⎣
λ(H̃11)

λ(H̃22)
...

λ(H̃ll)

⎤⎥⎥⎥⎥⎦ .

We have completed the proof of Theorem 2.4. �

A.5 Proof of Theorem 2.5

Proof. For any vector e is orthogonal to SY |X , satisfying eτ e = 1. Note that
V̂ hb̂j = λ̂j b̂j , j = 1, . . . , k, then

√
neτ b̂j =

√
n

λ̂j

eτ V̂ hb̂j

= 1

λj

eτ
√

n{V̂ h − V B}bj + λj − λ̂j

λj λ̂j

eτ
√

n{V̂ h − V B}bj

+ 1

λj

eτ
√

n{V̂ h − V B}{b̂j − bj } + 1

λ̂j

√
neτV Bb̂j

= In,1 + In,2 + In,3 + In,4.
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Using the proof of Theorem 2.3, we have

√
n{V̂ h − V B} = 1√

n

n∑
i=1

�−1
X T h(Xi, Yi)�

−1
X + oP (1),

where T h(Xi, Yi) is defined in (A.13), then

In,1 = √
neτ {V̂ h − V B}bj = 1√

n

n∑
i=1

eτ�−1
X T h(Xi, Yi)�

−1
X bj + oP (1).

Here, {eτ�−1
X T h(Xi, Yi)�

−1
X bj }ni=1 are i.i.d. random variables, and if the limit of

variance eτ Cov(�−1
X T h(Xi, Yi)�

−1
X bj )e → eτWje > 0 as h → 0, n → ∞. The

CLT theorem entails that

In,1
L−→ N

(
0, eτWje

)
. (A.15)

Next, we show In,2, In,3, In,4 are oP (1). Theorem 2.4 entails that λ̂j = λj +
Op( 1√

n
), and using In,1 = OP (1), we have

In,2 = λj − λ̂j

λj λ̂j

In,1 =
OP ( 1√

n
)

λj (λj + OP ( 1√
n
))

OP (1) = oP (1). (A.16)

By the perturbation theory and V̂ h = V B + oP (1), we obtain b̂j = bj + oP (1),
and then

In,3 = 1

λj

eτ
√

n{V̂ h − V B}{b̂j − bj } = OP (1)oP (1) = oP (1). (A.17)

As e is orthogonal to SY |X , and V B ⊆ SY |X , then eτV B = 0, and also

In,4 = 1

λ̂j

√
neτV Bb̂j = oP (1). (A.18)

Together with the result (A.15)–(A.18), we have

√
neτ b̂j = I1 + I2 + I3 + I4 = I1 + oP (1)

L−→ N
(
0, eτWje

)
.

We have completed the proof of Theorem 2.5. �
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