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Abstract. We discuss infinite causal triangulations and equivalence to the
size biased branching process measure—the critical Galton–Watson branch-
ing process distribution conditioned on non-extinction. Using known results
from the theory of branching processes, this relation is used to prove a novel
weak convergence result of the joint length-area process of a infinite causal
triangulations to a limiting diffusion. The diffusion equation enables us to de-
termine the physical Hamiltonian and Green’s function from the Feynman–
Kac procedure, providing us with a mathematical rigorous proof of certain
scaling limits of causal dynamical triangulations.

1 Introduction

Models of planar random geometry provide a rich field with an interplay between
mathematical physics and probability.

On the physics side so-called dynamical triangulations (DT) have been intro-
duced as models for two-dimensional Euclidean quantum gravity and string the-
ory (see, e.g., Ambjørn, Durhuus and Jonsson (1997) for an overview). The basic
idea is to define the gravitational path integral as a sum over triangulated surfaces.
Any physical observable is then defined on the ensemble of all such triangula-
tions. At the end, continuum physics is obtained by performing a scaling limit in
which one takes the size of the triangulations to infinity keeping the physical area
constant.

On the probabilistic side Angel and Schramm (2003) first introduced the uni-
form measure on infinite planar triangulations proving the existence of the above
scaling limit as a weak limit. This construction was essential to prove several prop-
erties of such uniform infinite triangulations. In particular Angel (2003) proved
that the volume of a ball B(R) of radius R is of order R4 and that the length of the
boundary is of order R2. This proved rigorously that the fractal dimension of such
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Figure 1 A time slice from time t to time t +1. The left and right side of the strip should be identified
to form a band with topology S1 × [t, t + 1].

triangulations is dH = 4,2 a result long known to physicists (see, e.g., Ambjørn,
Durhuus and Jonsson (1997)). Later Krikun (2005) obtained the exact limit theo-
rem for the scaled boundary length of B(R).

While two-dimensional Euclidean quantum gravity defined through DT defi-
nitely has a rich mathematical structure as pointed out above, as a model of quan-
tum gravity it failed to be numerically extended to higher dimensions. This leads
to the development of a different approach of so-called Causal Dynamical Trian-
gulations (CDT) by Ambjørn and Loll (1998). In contrast to the Euclidean model,
CDT provides a nonperturbative definition of the Lorentzian gravitational path in-
tegral (the informal definition of gravitational path integral for mathematicians
see, for example, the introduction in Napolitano and Turova (2016)). These causal
triangulations differ from their Euclidean analogs in the fact that they have a time-
sliced structure of fixed spatial topology. Here we consider triangulations of an
overall topology of a cylinder (extensions to other topologies are straightforward).
Then the triangulation consists of slices S1 × [t, t + 1] from time t to time t + 1
as illustrated in Figure 1. Here, edges connecting vertices in slices of equal time
are called space-like edges, while edges connecting subsequent slices are called
time-like edges.

Note that this class of triangulations forms a causal structure needed to model
Lorentzian geometries. In particular, we can think that a vertex v′ lies in the future
of a vertex v, that is, vertices v and v′ are causally related, iff there is a path of time-
like edges leading from v to v′. For example, the vertices v and v′ as illustrated in
Figure 1 are not causally related.

The physical properties of the ensemble of causal triangulations behaves much
more regular than its Euclidean counterpart. For example, it has a fractal dimension
of dH = 2 instead of dH = 4 for DT. Also when coupled to simple matter models,
such as the Ising model, it behaves much more like a regular lattice such as Z

2,
Ambjørn, Anagnostopoulos and Loll (1999).

2Recall that the fractal dimension is defined through |B(R)| ∼ RdH as R → ∞, i.e. dh =
limR→∞ log |B(R)|/ logR.
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While the approach of CDT has recently lead to a number of interesting physical
results, especially with respect to higher-dimensional numerical implementations
(see Ambjørn et al. (2010) for a review), the probabilistic aspects of this model
have hardly been studied. In fact, recently Durhuus, Jonsson and Wheater defined
the uniform measure on infinite causal triangulations, cf. Durhuus, Jonsson and
Wheater (2010) (see also Durhuus (2003) for earlier ideas), proving almost surely
(a.s.) recurrence, that a.s. the fractal dimension is dH = 2 and that the spectral di-
mension is a.s. bounded from above by ds ≤ 2. A similar definition of the uniform
measure has previously also been used by one of the authors of this article and
M. Krikun to prove the existence of a phase transition for the Ising model coupled
to CDT Krikun and Yambartsev (2012).

In this article, we extend the results by Durhuus, Jonsson and Wheater (2010)
to obtain weak convergence results of the rescaled length and length-area pro-
cesses. Firstly, we give a more detailed existence proof of the measure on infinite
causal triangulations. Second, in the line of Angel and Schramm (2003) and Krikun
(2005), we obtain novel weak convergence limits for the distribution of the area
and length of the boundary of a ball of radius t . We see that they scale as t2 and t ,
respectively consistent with the fractal dimension of dH = 2. These results follow
from a bijection between causal triangulations and certain Galton–Watson branch-
ing processes through the size biased branching process measure Lamperti and
Ney (1968)—the critical branching process distribution conditioned on survival at
infinity. Exploiting the relation to conditioned critical Galton–Watson processes,
one can go further and obtain weak convergence of the joint length and area pro-
cess. The process is diffusive and the corresponding Kolmogorov equation enables
us to derive the physical Hamiltonian, providing us with a mathematical rigorous
formulation of scaling limits of CDT.

In the next section, we give basic definitions and introduce infinite causal tri-
angulations and show existence of the measure on infinite causal triangulations in
an alternative presentation to Durhuus, Jonsson and Wheater (2010). In Section 3,
we then present the relation to critical Galton–Watson processes conditioned to
never die out. In Section 4, we exploit this relation to obtain weak convergence of
the length process (Theorem 4.1) and the joint length-area process (Theorem 4.2).
Theorem 4.1 is proven in Appendix. These results provide a mathematical rigorous
formulation of certain scaling limits of CDT which we discuss in Section 5.

2 Infinite causal triangulations

We consider rooted causal triangulations of Ch = S1 × [0, h], h = 1,2, . . . , and of
C = S1 × [0,∞), where S1 stands for a unite circle.

Let Ch be the cylinder Ch with two open discs with radius one O0 and Oh, such
that Ch ∪ O0 ∪ Oh is homeomorphic to the unit sphere. The basic notion we need
is embedding of a (finite) graph G on the surface Ch. Informally, an embedding i :
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G → Ch of a graph G into Ch is its representation on Ch in such a way that its edges
may intesect only at their endpoints. Ch is homeomorphic to a two-dimensional
unit sphere, thus G belongs to class of planar graphs. Remember that all connected
components of Ch \ i(G) are homeomorphic to a two-dimensional unit ball and are
called faces. Let the size of a face be the number of edges incident to it, with the
convention that an edge incident to the same face on both sides counts for two. We
then call a face with size 3 (or 3-sided face) a triangle.

Remark 1. Some care has to be put into the definition of what is meant by a
triangle due to self-loops and multiple edges, and in particular, a simple definition
like “the face is a triangle if its boundary meets precisely three edges of the graph”
is not enough.

Definition 1. Consider a (finite) connected graph G. Its embedding i : G → Ch is
called a causal triangulation T of Ch if the following conditions hold:

• the (open) disks attached to Ch in order to get Ch are faces of T , and all faces,
with possible exception of these two disks, are triangles;

• each face of T that belongs to Ch belongs to some strip S1 × [j, j + 1], j =
0,1, . . . , h − 1 and has all vertices and exactly one side on the boundary (S1 ×
{j}) ∪ (S1 × {j + 1}) of the strip S1 × [j, j + 1].

Definition 2. A causal triangulation T of Ch is called rooted if it has a root. The
root (x, e) of T consists of a vertex x and a directed edge e that runs from x,
they are called root vertex and root edge correspondingly. The root vertex and the
root edge belong to S1 × {0}. The orientation induced by the ordered pair that
consists of the root edge and the vector that runs from the root vertex in positive
time direction coincides with the fixed orientation of Ch.

Definition 3. Two rooted causal triangulations of Ch, say T and T ′, are equivalent
if the following conditions hold:

1. T and T ′ are embeddings of the same graph G, that is, T is embedding
i : G → Ch and T ′ is embedding j : G → Ch;

2. there exists a self-homeomorphism h̃ : Ch → Ch such that h̃i = j . Here we
suppose that h̃ not only takes i(G) to j (G) but also transforms each slice S1 ×{j},
j = 0, . . . , h to itself and sends the root of T to the root of T ′.

For convenience, we usually abbreviate “equivalence class of rooted causal tri-
angulations” to “causal triangulation” or CT.

Cutting off the stripe S1 × (h,h + 1] from Ch+1 we obtain a natural map from
the set of causal triangulations of Ch+1 to the set of causal triangulations of Ch that
we denote by rh.
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Definition 4. We say that T is a causal triangulation of C, if T = (T1, T2, . . . ),
where Th is a causal triangulation of Ch, h = 1,2, . . . , and the sequence is subject
to consistency condition Th = rh(Th+1), h = 1,2, . . . .

By CT∞ denote the set of all causal triangulations of C and by CTh denote the
set of all causal triangulations of Ch. Let

LTh =
h⋃

i=1

CTi , h = 1,2, . . . and LT∞ = CT∞ ∪
∞⋃
i=1

CTi .

The restriction map rh : CTh+1 → CTh can be naturally generalized to become
the restriction map rh : LT∞ → LTh. We see that T ∈ LT∞ is identified by the
sequence (T1, T2, . . . ), where Th ∈ LTh are subject only to consistency condition
Th = rh(Th+1), h = 1,2, . . . .

We use the standard formalism for plane trees (see Neveu (1986) or Aldous and
Pitman (1998)). Let

U =
∞⋃

n=0

N
n,

where N = {1,2, . . .} and by convention N
0 = {∅}. The height of u = (u1, . . . ,

un) ∈ N
n is |u| = n. If u = (u1, . . . um) and v = (v1, . . . , vn) belong to U , then

uv = (u1, . . . , um, v1, . . . , vn) denotes the concatenation of u and v. In particular,
u∅ = ∅u = u. If v is of the form v = uj for u ∈ U and j ∈ N, we say that u is the
predecessor of v, or that v is a successor of u. More generally, if v is of the form
v = uw for u,w ∈ U , we say that u is an ancestor of v, or that v is a descendant
of u.

Definition 5. A (finite or infinite) family tree τ is a subset of U such that

(i) ∅ ∈ τ ;
(ii) if u ∈ τ and u 	=∅, the predecessor of u belongs to τ ;

(iii) for every u ∈ τ , there exists an integer ku(τ ) ≥ 0 such that uj ∈ τ if and
only if 1 ≤ j ≤ ku(τ ).

The height of a finite tree is the maximum height of all vertices in the tree. Let
T

(∞) be the set of all family trees and T
(h) the set of all finite family trees of height

at most h. There is a natural restriction map rh : T(∞) → T
(h) such that if τ is a

family tree, then rhτ is the tree formed by all vertices of τ of height at most h. Let
T∞ be the set of all infinite family trees and Th the set of family trees of height h.

A family tree τ ∈ T
(∞) is identified by the sequence (rhτ, h ≥ 1). Note that the

rhτ ∈ T
(h) are subject only to the consistency condition that rhτ = rh(rh+1τ).

Theorem 2.1. There is a bijection φ : LT∞ → T
(∞) such that
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Figure 2 Tree parametrization. The following two steps outline how to go from a causal triangula-
tion to a tree: Step 1. The first step is cutting. We construct the sequence of root vertices (or triangles)
on each slice S1 × {i} by the following rule. Let v1 be the vertex in the slice S1 × {1} which belongs
to the rooted triangle containing the root edge [v0, v′

0]. One chooses the right most neighbour v′
1

of v1 on the slice S1 × {1} as the new rooted edge. Following this procedure we can cut open the
triangulation along the left-hand side of the root triangles. Step 2. We add one vertex in the slice
below the initial boundary and connect all vertices on the initial boundary to this vertex. We then
remove all spatial (horizontal edges) and each leftmost outgoing time-like edge of every vertex. The
lowest vertex is then connected to the root. The resulting graph is a tree. The inverse relation should
now be clear from the construction.

• φ ◦ rh = rh ◦ φ, that is, φ respects rh, h = 1,2, . . . ;
• for t = 1,2, . . . ,∞, restrictions of φ to CTt denoted by φt : CTt → Tt are also

bijections that respect rh, h = 1,2, . . . .

This theorem dates back to Di Francesco, Guitter and Kristjansen (2001) and
a detailed proof can be found in Durhuus, Jonsson and Wheater (2010) (see also
Malyshev, Yambartsev and Zamyatin (2001)). We refer to Figure 2 for an illustra-
tion of the proof.

The set T(∞) is now identified as a subset of an infinite product of countable
sets

T
(∞) ⊂ T

(0) ×T
(1) ×T

(2) × · · · .

We give T
(∞) the topology derived by this identification from the product of dis-

crete topologies on T
(h). Therefore, a sequence of family trees τn has a limit

lim τn = τ ∈ T
(∞)

iff for every h there exist a τ (h) ∈ T
(h) and n(h) such that rhτn = τ (h) for all

n ≥ n(h); the limit is then the unique τ ∈ T
(∞) with rhτ = τ (h). In particular, for

each τ ∈ T
(∞) the sequence rhτ has limit τ as n → ∞. The topology is metrizable,

for example, set d(τ, τ ′) = k−1, where

k = sup
{
h : rhτ = rhτ

′}.
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It is easy to see that the metric space is complete and separable.
The topology gives us the Borel σ -algebra to define probability measures on it.

Besides, we can define the weak convergence of measures. As usual, a measure μ

is the weak limit of the sequence of measures μn if∫
f dμn →

∫
f dμ, as n → ∞

for every bounded continuous real-valued function f given on T
(∞).

Let T = ⋃∞
h=0 T

(h). Consider a system of nonnegative numbers

π = {
p(τ), τ ∈ T

}
such that the following conditions hold:

1. for h = 0,1,2, . . . we have∑
p(τh+1) = p(τh) for any τh ∈ T

(h),

where the sum is over τh+1 ∈ T
(h+1) such that rhτh+1 = τh;

2. p(τ0) = 1 for τ0 ∈ T
(0).

Note that if μ is a probability measure on T
(∞), then

π = {
μ

({
τ ∈ T

(∞) : rhτ = τh

}) : τh ∈ T
(h), h = 0,1,2, . . .

}
is a system of numbers that satisfies the above two conditions.

The following fact can easily be checked (it is proved in the same way as Kol-
mogorov extension theorem), and it helps to define a measure on T

(∞). The fact
is that for every system of nonnegative numbers π satisfying the two conditions
above there is a probability measure μ on T

(∞) such that

p(τh) = μ
({

τ ∈ T
(∞) : rhτ = τh

})
for all τh ∈ T

(h), h = 0,1,2, . . . .

In other words, a random family tree is a random element of T(∞), formally spec-
ified by its sequence of restrictions, say T = (rhT , h = 0,1, . . . ), where each rhT
is a random variable with values in the countable set T(h), and rhT = rh(rh+1T )

for all h. The distribution of T is determined by the sequence of distributions of
rhT for h ≥ 0. Such a distribution is determined by a specification of the condi-
tional distributions of rh+1T given rhT for h ≥ 0. To give a more exact specifica-
tion of the distribution of T , we need some definitions.

For every v ∈ U , let cvτ be the number of successors of v (if v /∈ τ , then
cvτ = 0). For every τ ∈ T

(∞) and g ≥ 0, let the gth generation of individuals
in τ , denoted by gen(g, τ ), be the set of u ∈ τ such that the height of u is g,
also let Zgτ be the number of elements of the set gen(g, τ ) (to simplify notation
let Z = Z0). Note that T(0) contains only one family tree that consists of only
one element ∅, and for any τ ∈ T

(∞), we have r0τ = {∅}. A family tree τ is
conveniently specified as the unique τ ∈ T

(∞) such that rhτ = τ (h) for all h for
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some sequence of trees τ (h) ∈ T
(h) determined recursively as follows. Given that

τ (h) ∈ T
(h) has been defined (τ (0) is the unique tree from T

(h)), the set of ver-
tices gen(h, τ ) = gen(h, τ (h)) = rhτ \ rh−1τ is determined, hence so is the size
Zhτ = Zhτ

(h) of this set; for each possible choice of Zhτ non-negative integers
(av, v ∈ gen(h, τ )), there is a unique τ (h+1) ∈ T

(h+1) such that rhτ
(h+1) = τ (h)

and cvτ
(h+1) = av for all v ∈ gen(h, τ ). So a unique τ ∈ T

(∞) is determined by
specifying for each h ≥ 0 the way in which these Zhτ non-negative integers are
chosen given that rhτ = τ (h) for some τ (h) ∈ T

(h).
Thus a more exact specification of the distribution of T is a specification of the

joint conditional distribution given rhτ of the numbers of children cvτ as v ranges
over gen(h, τ ) for h ≥ 0.

Since the topology on T
(∞) is a product of discrete topologies on T

(h), h ≥
0, the weak convergence of measures on T

(∞) can be easily reformulated in the
following way. For random family trees Tn, n = 1,2, . . . and T , we say that Tn

converges in distribution to T , and write dist(Tn) → dist(T ) if

P(rhTn = τ) → P(rhT = τ) ∀h ≥ 0, τ ∈ T.

3 Infinite causal triangulations and critical branching processes

Let p(·) = (p(0),p(1), . . . ) be a probability distribution on the non-negative inte-
gers with p(1) < 1. Call a random family tree G a Galton–Watson (GW) tree with
offspring distribution p(·) if the number of children ZG of the root has distribution
p(·):

P(ZG = n) = p(n) ∀n ≥ 0

and for each h = 1,2, . . . , conditionally given rhG = t (h), the numbers of children
cvG, v ∈ gen(h, t(h)), are i.i.d. according to p(·).

Introduce the generating function f (s) = ∑
n≥0 p(n)sn. We consider only the

critical GW process which has f ′(1) = 1. Suppose further that ν = f ′′(1)/2 < ∞.
A random family tree G∞, which we call G conditioned on non-extinction is de-
rived from the family tree G in the way described in Theorem 3.1 below. The prob-
abilistic description of G∞ involves the size-biased distribution p∗(·) associated
with probability distribution p(·):

p∗(n) = np(n) ∀n ≥ 0.

Putting together Proposition 2 and Proposition 5 from Aldous and Pitman (1998)
(they correspond to reformulation in this family tree language of theorems from
Kesten (1986) and Kennedy (1975)), we have the following theorem.
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Theorem 3.1.

1. Let #G be the number of vertices in the tree G. Then

dist(G|#G = n) → dist
(
G∞)

as n → ∞, (3.1)

where dist(G∞) is the distribution of a random family tree G∞ specified by

P
(
rhG∞ = τ

) = ZhτP(rhG = τ) ∀τ ∈ T
(h), h ≥ 0. (3.2)

2. Almost surely G∞ contains a unique infinite path (V0,V1,V2, . . . ) such that
V0 = ∅ and Vh+1 is a successor of Vh for every h = 0,1,2, . . . .

3. For each h the joint distribution of rhG∞ and Vh is given by

P
(
rhG∞ = τ,Vh = v

) = P(rhG = τ) ∀τ ∈ T
(h), v ∈ gen(h, τ ), h ≥ 0. (3.3)

4. The joint distribution of (V0,V1,V2, . . . ) and G∞ is determined recursively
as follows: for each h ≥ 0, given (V0,V1, . . . , Vh) and rhG∞, the numbers of suc-
cessors cvG∞ are independent as v ranges over gen(h,G∞), with distribution p(·)
for v 	= Vh, and with the size-biased distribution p∗(·) for v = Vh; given also the
numbers of successors cvG∞ for v ∈ gen(h,G∞), the vertex Vh+1 has uniform
distribution on the set of cVh

G∞ successors of Vh.

Remark 2. The UICT (Uniform Infinite Causal Triangulation) is a special case for
which the critical branching process has off-spring probability p(n) = (1/2)n+1.
In this case the conditional probability of the left-hand side of (3.1) provides the
same probability for any tree as well as CT with n vertices and thus defines the uni-
form measure on this set. The measure on the right-hand side of (3.1) determines
the uniform measure on the set of infinite causal triangulation (UICT).

Remark 3. Another measure of interest is the Gibbs measure on the set of CTs.
Its Hamiltonian H is simply the number of triangles multiplied by a coupling λ̃

(the “bare” cosmological constant). There is a correspondence between the num-
ber of triangles and vertices in a tree: let τ (h) be some finite tree of height h and
t (h) its corresponding causal triangulation. The number of triangles in t (h) is equal
to 1 + 2

∑h−1
k=1 Zkτ

(h) + Zhτ
(h) = H(t(h)). The probability of t (h) on the set of

casual triangulations of the “disc” with height h is given by the Gibbs measure
Ph(t

(h)) = Z−1
h e−λ̃H(t(h)), where Z−1

h is the normalisation. Moreover, it is not dif-
ficult to prove that for λ̃ = ln 2 the measure Ph also converges to the UICT as
h → ∞.

4 Weak convergence from conditioned critical branching processes

Having established the relation between infinite causal triangulations and critical
Galton–Watson processes conditioned to never die out in the previous section, one
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can now use several known convergence results for the conditioned branching pro-
cess to determine the corresponding convergence of several observables.

From the point of view of universality one expects that the continuum processes
shall be the same for any kind of underlying critical Galton–Watson process. We
will see that this is indeed the case. Let us therefore consider an arbitrary critical
Galton–Watson process G with generating function f (s) = ∑

n≥0 p(n)sn of the
off-spring distribution p(·). Since the process is critical we have f ′(1) = 1. Let
us further assume that ν = f ′′(1)/2 < ∞. For short hand denote the size of the
t’s generation by ηt ≡ ZtG. It was shown by Lindvall (1972, 1974) that if η0 =
νtx + o(t) with x > 0:

η[tτ ]
νt

⇒ Xτ , 0 ≤ τ < ∞,

where ⇒ denotes weak convergence on the functions space D[0,∞) and the con-
tinuous process solves the following Itô’s equation

dXτ = √
2Xτ dBτ , X0 = x,

with Bτ standard Brownian motion of variance 1.
Let us note that the finite-dimensional distributions of ηt can be easily obtained

from the following relation due to Kesten, Ney and Spitzer for the generating
function of the size of the t’s generation of a critical Galton–Watson process with
ν = f ′′(1)/2 < ∞ and η0 = 1 (e.g., see, Athreya and Ney (1972))

1

1 − ft (s)
= 1

1 − s
+ νt + o(t), uniformly for 0 ≤ s < 1.

Tightness can then be obtained by standard techniques (e.g., see Billingsley
(1999)). An alternative detailed proof of Lindvall’s theorem using convergence
of the generator of the Markov process can be found in Ethier and Kurtz (1986).

We now investigate the convergence of the length of the boundary of an infi-
nite CT as a process of time. Since any Galton–Watson tree conditioned to never
die out is in bijection with an infinite CT, we refer to the corresponding proba-
bility measure as an infinite CT constructed from a critical Galton–Watson pro-
cess. The UICT is a special case for which the critical branching process has
off-spring probability p(n) = (1/2)n+1. In particular, this off-spring probability
satisfies f (n)(1) < ∞ for all n ∈ N.

By the relation discussed in the previous section, the size of the boundary kt of
an infinite CT constructed from a critical Galton–Watson process at time t corre-
sponds to the size of the t’s generation of the Galton–Watson process conditioned
to never die out, denoted by η̂t ≡ ZtG∞. Define the length process

k(t)
τ := k[tτ ]

νt
≡ η̂[tτ ]

νt
, 0 ≤ τ < ∞. (4.1)

The convergence of the finite-dimensional distributions of the process {η̂t } was
studied in Lamperti and Ney (1968), and we can deduce the following theorem for
the length process (4.1):
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Theorem 4.1. For an infinite CT constructed from a critical Galton–Watson pro-
cess with ν = f ′′(1)/2 < ∞ and f ′′′(1) < ∞, and initial boundary m0 ≡ k0 =
νtl + o(t) with l ≥ 0 we have

k(t)
τ ⇒ Lτ , 0 ≤ τ < ∞,

in the sense of weak convergence on the functions space D[0,∞), where the con-
tinuous process solves the following Itô’s equation

dLτ = 2dτ + √
2Lτ dBτ L0 = 	.

The process Lτ is diffusive and the Feynman–Kac equation for φξ (	, τ ) =
E[exp(−ξLτ )|L0 = 	] is given by

− ∂

∂τ
φξ (	, τ ) = Ĥφξ (	, τ ), Ĥ = −2

∂

∂	
− 	

∂2

∂	2 , φξ (	,0) = e−ξ	.

Here the operator Ĥ is known in the physics literature as the Hamiltonian of
two-dimensional CDT (having cosmological constant equal zero, see, for example,
Ambjørn and Loll (1998)).

In order to prove the convergence of the process one also has to prove tightness.
The complete proof of Theorem 4.1 is presented in the Appendix.

Corollary 4.1. In the special case of l = 0, corresponding to an infinite CT con-
structed from a critical Galton–Watson process with zero initial boundary, we have

E
[
e−ξLτ |L0 = 0

] = 1

(1 + ξτ )2

which for τ = 1 is a random variable with gamma distribution with parameter
two, that is, P(L1 ∈ dx)/dx = xe−x , x ≥ 0. (The sum of two independent random
variables with exponential distribution with rate 1.)

This gives the distribution of the rescaled upper boundary L1, i.e. of the random
variable kt/t in the limit t → ∞. It is hence the analog of Theorem 4 of Krikun
(2005) which states the corresponding result for uniform infinite planar triangula-
tions.

We now want to discuss the convergence of the rescaled area of a neighbourhood
�t with time-radius t . Let us denote the number of triangles in �t by αt and define
the area process as

α(t)
τ := α[tτ ]

νt2 , 0 ≤ τ < ∞. (4.2)

We then have the following theorem based on a theorem of Pakes for conditioned
critical Galton–Watson processes Pakes (1999):
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Theorem 4.2. For an infinite CT constructed from a critical Galton–Watson pro-
cess with ν = f ′′(1)/2 < ∞ and f ′′′(1) < ∞, and initial boundary m0 ≡ k0 =
νtl + o(t) we have

(
k(t)
τ , α(t)

τ

) ⇒
(
Lτ ,2

∫ τ

0
Lu du

)
, 0 ≤ τ < ∞,

in the sense of weak convergence on the functions space D[0,∞) × D[0,∞),
where the continuous process Lτ solves the Itô’s equation as in Theorem 4.1

dLτ = 2dτ + √
2Lτ dBτ L0 = l.

The Feynman–Kac equation for φξ,λ(l, τ ) = E[exp(−ξLτ − 2λ
∫ τ

0 Lu du)|L0 = l]
is given by

− ∂

∂τ
φξ,λ(l, τ ) = Ĥφξ,λ(l, τ ),

Ĥ = −2
∂

∂l
− l

∂2

∂l2 + 2λl, φξ,λ(l,0) = e−ξ l .

Proof. By construction of the bijection between CTs and Galton–Watson trees we
have αt = k0 + 2(k1 + · · · + kt−1) + kt , that is, each internal spatial (horizontal)
edge is connected to two triangles while each boundary edge is connected to one
triangle (see Figure 1). Hence,

α(t)
τ = α[tτ ]

νt2 = 1

νt2

(
2

[tτ ]∑
i=0

η̂i − η̂0 − η̂[tτ ]
)

= 2
∫ τ

0
k(t)
u du + o(1). (4.3)

Following ideas of Pakes (1999), Theorem 3.3, the weak convergence of (k
(t)
τ , α

(t)
τ )

then follows from the weak convergence of(
k(t)
τ ,2

∫ τ

0
k(t)
u

)
⇒

(
Lτ ,2

∫ τ

0
Lu du

)
.

It is enough to note that by (4.3) we have that h(k
(t)
τ ) := (k

(t)
τ , α

(t)
τ ) is a continu-

ous functional of k
(t)
τ and hence the convergence of (k

(t)
τ , α

(t)
τ ) ⇒ (Lτ ,2

∫ τ
0 Lu du)

follows by the continuous mapping theorem (Theorem 2.7, Billingsley (1999)) ap-
plied to Theorem 4.1.

Having established the convergence, we can then apply the Feynman–Kac for-
mula to

φξ,λ(l, τ ) = E
[
e−ξLτ −2λ

∫ τ
0 Lu du|L0 = l

]
with

dLτ = 2dt + √
2Lτ dBτ L0 = l
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which yields

− ∂

∂τ
φξ,λ(l, τ ) =

(
−2

∂

∂l
− l

∂2

∂l2 + 2λl

)
φξ,λ(l, τ ), φξ,λ(l,0) = e−ξ l . �

The last equation is again known from the physics literature in the context of
CDT with cosmological constant λ. In fact, one can easily solve the differential
equation leading to

φξ,λ(l, τ ) = ξ̄2(ξ, τ ) − 2λ

ξ2 − 2λ
e−lξ̄ (ξ,τ ) (4.4)

with

ξ̄ (ξ, τ ) = √
2λ coth(

√
2λτ) − 2λ

sinh2(
√

2λτ)[ξ + √
2λ coth(

√
2λτ)] .

Corollary 4.2. Setting τ = 1 and l = 0 in (4.4) one has

φξ,λ(0,1) = 2λ

(
√

2λ cosh
√

2λ + ξ sinh
√

2λ)2

which also follows from Pakes (1999), Theorem 3.3. In particular, for λ = 0 one
recovers

E
[
e−ξL1 |L0 = 0

] = 1

(1 + ξ)2

as in Corollary 4.1 and for ξ = 0

E
[
e−λA1 |L0 = 0

] = 1

cosh2(
√

2λ)
(4.5)

with A1 = 2
∫ 1

0 Lu du.

This gives the distribution of the random variable A1, that is, αt/t2 in the limit
t → ∞. The distribution of A1 appears at several places related to the study of
Brownian motion as has been exposed for example, in Biane, Pitman and Yor
(2001) and based on their discussion we can make two remarks:

Remark 4. The random variable A1, as introduced in Remark 4.2, can be written
in the following series representation

A1 = 2

π2

∞∑
n=1

�n

(n − 1/2)2 ,

where the �n, n ≥ 1 are i.i.d. random variables with gamma distribution with pa-
rameter two, that is, P(�n ∈ dx)/dx = xe−x , x ≥ 0. The relation can easily be
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seen by noting that

E
(
e−λ�n

) = 1

(1 + λ)2 and cosh z = ∏
n≥1

(
1 + z2

π2(n − 1/2)2

)
. (4.6)

Remark 5. In the framework of Lévy–Khintchine representations a distribution
is called infinitely divisible iff its Laplace transform φ(λ) admits the following
representation

φ(λ) = exp
(
−cλ −

∫ ∞
0

(
1 − e−λx)

ν(dx)

)
.

for some c ≥ 0. Here, ν(dx) is the so-called Lévy measure and for the present ap-
plication it is sufficient to consider the form of a simple density ν(dx) = ρ(x) dx.
By a straightforward and explicit computation using (4.5) and (4.6) one sees that
the distribution of A1 is infinitely divisible and has a Lévy–Khintchine representa-
tions with c = 0 and Lévy density

ρ(x) = 2

x

∑
n≥1

e−π2(n−1/2)2x/2.

5 Discussion

We obtain weak convergence results for infinite causal triangulations extending the
work of Durhuus, Jonsson and Wheater (2010). Under this measure the probability
of a causal triangulation of a cylinder is related to a critical Galton–Watson process
conditioned to never die out. We use this relation to prove novel weak convergence
of the joint rescaled length-area process (k

(t)
τ , α

(t)
τ ) of an infinite CT constructed

from an arbitrary critical Galton–Watson process to a limiting diffusion process
(Lτ ,Aτ ), with Aτ = 2

∫ τ
0 Lu du, where the Itô’s equation for Lτ is given by (e.g.,

Theorems 4.1 and 4.2)

dLτ = 2dτ + √
2Lτ dBτ , L0 = l.

In particular, we show that the Feynman–Kac formula for E[exp(−ξLτ −
λAτ )|L0 = l] corresponds to a imaginary time Schrödinger equation with the fol-
lowing Hamiltonian

Ĥ (l, ∂l) = −2
∂

∂l
− l

∂2

∂l2 + 2λl.

This is the well-known Hamiltonian for two-dimensional CDT with cosmological
constant λ (see Ambjørn and Loll (1998)).3

3In fact, it is the Hamiltonian acting on an non-rooted boundary. This is due to the fact that by the
construction of the Feynman–Kac or Kolmogorov backwards equation we are acting on the upper,
non-rooted boundary. Alternatively, one could have also used the Kolmogorov forward equation to
obtain the Hamiltonian acting on the rooted, lower boundary.
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By calculating the inverse Laplace transform of (4.4) one can also obtain the
transition amplitude or Green’s function

φλ(l1, l2, τ ) = E
[
I{Lτ ∈ dl2} · e−2λ

∫ τ
0 Lu du|L0 = l1

]
/dl2

=
√

2λl2√
l1l2

e−√
2λ(l1+l2) coth(

√
2λτ)

sinh(
√

2λτ)
I1

(
2
√

λl1l2

sinh(
√

2λτ)

)
,

where I{·} is the indicator function and I1(·) is the modified Bessel function of
first kind. This expression is also known in physics as the CDT propagator. In
particular, setting λ = 0 one obtains the transition amplitude for the length process

φ0(l1, l2, τ ) = l2

τ
√

l1l2
e− l1+l2

τ I1

(
2
√

l1l2

τ

)
.

This is related to the fact that if one transforms Lt as given above to a new process
Zτ with Lτ = Z2

τ /2, then Zτ is a Bessel process.
In conclusion, Theorems 4.1 and 4.2 provide us with a mathematical rigorous

proof of certain scaling limits of two-dimensional causal dynamical triangulations
(CDT). In the work Sisko, Yambartsev and Zohren (2013), we show how to ob-
tain these results in a slightly different manner from a certain growth process of
UICT. While in this article we gave a mathematical rigorous derivation for several
correlations functions of CDT from the infinite causal triangulation, it would be
interesting to obtain the full scaling limit using a framework like in Le Gall and
Miermont (2011) work on the Brownian map in the context of DT.

Appendix: Proof of Theorem 4.1

Define ν = f ′′(1)/2 < ∞ as before and μ = f ′′′(1)/2 < ∞. Recall that we want
to show convergence of

k(t)
τ = η̂[tτ ]

νt
⇒ Lτ , 0 ≤ τ < ∞, (A.1)

on the functions space D[0,∞). To do so, we consider the rescaled process

k̃(t)
τ = νk(t)

τ ⇒ L̃τ = νLτ , (A.2)

where then L̃τ is a diffusion process with generator

Ag(x) = 2νg′(x) + νxg′′(x), (A.3)

where by Theorem 2.1 of Chapter 8 of Ethier and Kurtz (1986) one has g ∈
C∞

c ([0,∞)), that is, the set of continuous functions f : [0,∞) → R which are
infinitely differentiable and have compact support in [0,∞). To show convergence
of the process k̃

(t)
τ to the diffusion L̃τ with the above generator, we follow closely
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the strategy employed in Theorem 1.3 of Chapter 9 in Ethier and Kurtz (1986) to
prove Lindvall’s theorem.

Note that η̂n/t is a Markov chain taking values in Et = {l/t |l = 1,2,3, . . .}.
Given η̂n = tx we can then write

η̂n+1 =
tx−1∑
k=1

ξk + ξ0, (A.4)

where ξk for k ≥ 0 are i.i.d. random variables with generating function f (s) and
ξ0 is a random variable with generating functions sf ′(s). Recall that f (s) is the
generating function of the off-spring probabilities. The above statement follows
directly from Theorem 3.1. Indeed, by Theorem 3.1 we have

∑
k≥0

P(η̂n+1 = k|η̂n = tx)sk = 1

tx
s

d

ds
f tx(s) = f tx−1(s) · sf ′(s) (A.5)

which is the generating function for (A.4). We have

Eξk = 1, Eξ2
k = 1 + 2ν, for k ≥ 1,

(A.6)
Eξ0 = 1 + 2ν, Eξ2

0 = 1 + 6ν + 2μ.

We now define

Ttg(x) = E

{
g

(
1

t

[
tx−1∑
k=1

ξk + ξ0

])}
. (A.7)

By Theorem 6.5 of Chapter 1 and Corollary 8.9 of Chapter 4 of Ethier and Kurtz
(1986), to prove the convergence (A.2) it is enough to show that

lim
t→∞ sup

x∈Et

∣∣t(Ttg(x) − g(x)
)

(A.8)
− 2νg′(x) − νxg′′(x)

∣∣ = 0, g ∈ C∞
c

([0,∞)
)
.

For x ∈ Et we define

εt (x) = t
(
Ttg(x) − g(x)

) − 2νg′(x) − νxg′′(x)

= E

{
tg

(
1

t

[
tx−1∑
k=1

ξk + ξ0

])
− tg(x) − (ξ0 − 1)g′(x)

(A.9)

− 1

2
g′′(x)

1

t

[(
tx−1∑
k=1

(ξk − 1)

)2

+ ξ0 − 1

]}

= �1
t (x) + �2

t (x),



Infinite causal triangulations 613

where

�1
t (x) = 1

t
μg′′(x), (A.10)

�2
t (x) = E

{∫ 1

0
S2

txx(1 − u)

[
g′′

(
x + u

√
x

t
Stx

)
− g′′(x)

]
du

}
(A.11)

and

Stx = 1√
tx

(
tx−1∑
k=1

(ξk − 1) + (ξ0 − 1)

)
. (A.12)

Now, since μ = f ′′′(1)/2 < ∞, we have

lim
t→∞ sup

x∈Et

∣∣�1
t (x)

∣∣ ≤ μ
∥∥g′′∥∥ lim

t→∞
1

t
= 0. (A.13)

Let us suppose that g has support in [0, c]. Then, since ξk ≥ 0 for k ≥ 1 and ξ0 ≥ 1
we have

x + u

√
x

t
Stx ≥ x(1 − u) (A.14)

hence one gets that∣∣∣∣
∫ 1

0
S2

txx(1 − u)

[
g′′

(
x + u

√
x

t
Stx

)
− g′′(x)

]
du

∣∣∣∣
(A.15)

≤ 2xS2
tx

∫ 1

0∨(1−c/x)
(1 − u)

∥∥g′′∥∥du = x
∥∥g′′∥∥(

(c/x) ∧ 1
)2

S2
tx .

To show that limt→∞ supx∈Et
|�2

t (x)| = 0 it suffices to show that one has
limt→∞ |�2

t (xt )| = 0 for any convergent series xt , as well as for xt → 0 and
xt → ∞. Let us first treat the special cases limt→∞ xt = 0 and limt→∞ xt = ∞.
Note that

ES2
tx = 2ν + 2μ

tx
≤ 2(ν + μ), for all t and x ∈ Et . (A.16)

From (A.15) and (A.16), it then follows that limt→∞ |�2
t (xt )| = 0 if limt→∞ xt =

0 or limt→∞ xt = ∞.
We now consider the case limt→∞ xt = x, where 0 < x < ∞. In this case, one

has

lim
t→∞EerStxt = eνr2

(A.17)

and hence Stxt ⇒ � with � ∼ N (0,2ν). Following the steps of Theorem 1.3 in
Ethier and Kurtz (1986) Chapter 9, one then obtains limt→∞ |�2

t (xt )| = 0 from
(A.15) and the dominant convergence theorem.
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Hence, we showed that

lim
t→∞ sup

x∈Et

∣∣εt (x)
∣∣ = 0. (A.18)

Noting that the initial condition converges k̃t
0 → νl with l ≥ 0 one completes the

proof. �
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