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EFFICIENT AND ADAPTIVE LINEAR REGRESSION IN
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We consider the linear regression problem under semi-supervised set-
tings wherein the available data typically consists of: (i) a small or moderate
sized “labeled” data, and (ii) a much larger sized “unlabeled” data. Such data
arises naturally from settings where the outcome, unlike the covariates, is
expensive to obtain, a frequent scenario in modern studies involving large
databases like electronic medical records (EMR). Supervised estimators like
the ordinary least squares (OLS) estimator utilize only the labeled data. It
is often of interest to investigate if and when the unlabeled data can be ex-
ploited to improve estimation of the regression parameter in the adopted lin-
ear model.

In this paper, we propose a class of “Efficient and Adaptive Semi-
Supervised Estimators” (EASE) to improve estimation efficiency. The EASE
are two-step estimators adaptive to model mis-specification, leading to im-
proved (optimal in some cases) efficiency under model mis-specification, and
equal (optimal) efficiency under a linear model. This adaptive property, of-
ten unaddressed in the existing literature, is crucial for advocating “safe” use
of the unlabeled data. The construction of EASE primarily involves a flexi-
ble “semi-nonparametric” imputation, including a smoothing step that works
well even when the number of covariates is not small; and a follow up “re-
fitting” step along with a cross-validation (CV) strategy both of which have
useful practical as well as theoretical implications towards addressing two
important issues: under-smoothing and over-fitting. We establish asymptotic
results including consistency, asymptotic normality and the adaptive proper-
ties of EASE. We also provide influence function expansions and a “double”
CV strategy for inference. The results are further validated through extensive
simulations, followed by application to an EMR study on auto-immunity.

1. Introduction. In recent years, semi-supervised learning (SSL) has emerged
as an exciting new area of research in statistics and machine learning. A detailed
discussion on SSL including its practical relevance, the primary question of inter-
est in SSL, and the existing relevant literature can be found in Chapelle, Schölkopf
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and Zien (2006) and Zhu (2008). A typical semi-supervised (SS) setting is charac-
terized by two types of available data: (i) a small or moderate sized “labeled” data,
L, containing observations for both an outcome Y and a set of covariates X of in-
terest, and (ii) an “unlabeled” data, U , of much larger size but having observations
only for the covariates X. By virtue of its large size, U essentially gives us the dis-
tribution of X, denoted henceforth by PX. Such a setting arises naturally whenever
the covariates are easily available so that unlabeled data is plentiful, but the out-
come is costly or difficult to obtain, thereby limiting the size of L. This scenario is
directly relevant to a variety of practical problems, especially in the modern “big
data” era, with massive unlabeled datasets (often electronically recorded) becom-
ing increasingly available and tractable. A few familiar examples include machine
learning problems like text mining, web page classification, speech recognition,
natural language processing, etc.

Among biomedical applications, a particularly interesting problem where SSL
can be of great use is the statistical analysis of electronic medical records (EMR)
data. Endowed with a wealth of de-identified clinical and phenotype data for large
patient cohorts, EMR linked with bio-repositories are increasingly gaining pop-
ularity as rich resources of data for discovery research [Kohane (2011)]. Such
large scale datasets obtained in a cost-effective and timely manner are of great
importance in modern medical research for addressing important questions such
as the biological role of genetic variants in disease susceptibility and progression
[Kohane (2011)]. However, one major bottleneck impeding EMR driven research
is the difficulty in obtaining validated phenotype information [Liao et al. (2010)]
since they are labor intensive or expensive to obtain. Thus, gold standard labels
and genomic measurements are typically available only for a small subset nested
within a large cohort. In contrast, digitally recorded data on the clinical variables
are often available on all subjects, highlighting the necessity and utility of develop-
ing robust SSL methods that can leverage such rich source of auxiliary information
to improve phenotype definition and estimation precision.

SSL primarily distinguishes from standard supervised methods by making use
of U , an information that is ignored by the latter. The ultimate question of in-
terest in SSL is to investigate if and when the information on PX in U can be ex-
ploited to improve the efficiency over a given supervised approach. In recent years,
several graph based nonparametric SSL approaches have been proposed [Belkin,
Niyogi and Sindhwani (2006), Zhu (2005)] for regression or classification. These
approaches essentially target nonparametric SS estimation of E(Y |X) and, there-
fore, for provable improvement guarantees, must rely implicitly or explicitly on
assumptions relating PX to PY |X (the conditional distribution of Y given X), as
duly noted and characterized more formally in Lafferty and Wasserman (2007).
For nonparametric classification problems, the theoretical underpinnings of SSL
including its scope and the consequences of using U have been also studied earlier
by Castelli and Cover (1995, 1996). More parametric SS approaches, still aimed
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mostly at prediction, have also been studied for classification, including the “gen-
erative model” approach [Nigam (2001), Nigam et al. (2000)], which is based on
modeling the joint distribution of (Y,X) as an identifiable mixture of parametric
models, thereby implicitly relating PY |X and PX. However, these approaches de-
pend strongly on the validity of the assumed mixture model, violation of which can
actually degrade their performance compared to the supervised approach [Cozman
and Cohen (2001), Cozman, Cohen and Cirelo (2003)].

However, SS estimation problems, especially from a semiparametric point
of view, has been somewhat less studied in SSL. Such problems are gener-
ally aimed at estimating some (finite-dimensional) parameter θ0 ≡ θ0(P), where
P = (PY |X,PX), and the key to the potential usefulness of U in improving estima-
tion of θ0 lies in understanding when θ0(P) relates to PX. For simple parameters
like θ0(P) = E(Y ), unless E(Y |X) is a constant, θ0 clearly depends on PX, and
hence, improved SS estimation is possible compared to the supervised estimator
YL, the sample mean of Y based on L. The situation is however more subtle for
other choices of θ0, especially those where θ0 is the target parameter correspond-
ing to an underlying parametric working model for PY |X. This includes the least
squares parameter, as studied in this paper, targeted by a working linear model
for E(Y |X). Such models are often adopted due to their appealing simplicity and
interpretability.

In general, for such cases, if the adopted working model for PY |X is correct
and θ0 is not related to PX, then one cannot possibly gain through SSL by us-
ing the knowledge of PX [Seeger (2002), Zhang and Oles (2000)]. On the other
hand, under model mis-specification, θ0 may inherently depend on PX, and thus
imply the potential utility of U in improving the estimation. However, inappropri-
ate use of U may lead to degradation of the estimation precision. This therefore
signifies the need for robust and efficient SS estimators that are adaptive to model
mis-specification, so that they are as efficient as the supervised estimator under
the correct model and more efficient under model mis-specification. To the best
of our knowledge, work done along these lines is relatively scarce in the SSL lit-
erature, one notable exception being the recent work of Kawakita and Kanamori
(2013), where they use a very different approach based on density ratio estimation,
building on the more restrictive approach of Sokolovska, Cappé and Yvon (2008).
However, as we observe in our simulation studies, the extent of the efficiency gain
actually achieved by these approaches can be quite incremental, at least in finite
samples. Further, the seemingly unclear choice of the ideal (nuisance) model to be
used for density ratio estimation can also have a significant impact on the perfor-
mance, both finite sample and asymptotic, of these estimators.

We propose here a class of Efficient and Adaptive Semi-Supervised Estima-
tors (EASE) in the context of linear regression problems. We essentially adopt a
semiparametric perspective wherein the adopted linear “working” model can be
potentially mis-specified, and the goal is to obtain efficient and adaptive SS es-
timators of the regression parameter through robust usage of U . The EASE are
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two-step estimators with a simple and scalable construction based on a first step
of “semi-nonparametric” (SNP) imputation, which includes a smoothing step and
a follow-up “refitting” step. In the second step, we regress the imputed outcomes
against the covariates using the unlabeled data to obtain our SNP imputation based
SS estimator, and then further combine it optimally with the supervised estima-
tor to obtain the final EASE. Dimension reduction methods are also employed in
the smoothing step to accommodate higher dimensional X, if necessary. Further,
we extensively adopt cross-validation (CV) techniques in the imputation, leading
to some useful theoretical properties (apart from practical benefits) typically not
observed for smoothing based two-step estimators. We demonstrate that EASE
is guaranteed to be efficient and adaptive in the sense discussed above, and also
achieves semiparametric optimality whenever the SNP imputation is “sufficient”
or the linear model holds. We also provide data adaptive methods to optimally se-
lect the directions for smoothing when dimension reduction is desired, and tools
for inference with EASE.

The rest of this paper is organized as follows. In Section 2, we formulate the
SS linear regression problem. In Section 3, we construct a family of SS estimators
based on SNP imputation and establish all their properties, and further propose the
EASE as a refinement of these estimators. For all our proposed estimators, we also
address their associated inference procedures based on “double” CV methods. In
Section 4, we discuss a kernel smoothing based implementation of the SNP im-
putation and establish all its properties. In Section 5, we discuss SS dimension
reduction techniques, useful for implementing the SNP imputation. Simulation re-
sults and an application to an EMR study are shown in Section 6, followed by con-
cluding discussions in Section 7. Proofs of all theoretical results and associated
technical materials, and further numerical results and discussions are distributed
in the Appendix and the Supplementary Material [Chakrabortty and Cai (2018)].

2. Problem set-up.
Data representation. Let Y ∈ R denote the outcome random variable and

X ∈ R
p denote the covariate vector, where p is fixed, and let Z = (Y,X′)′.

Then the entire data available for analysis can be represented as S = (L ∪ U),
where L = {Zi ≡ (Yi,X′

i)
′ : i = 1, . . . , n} consists of n independent and identi-

cally distributed (i.i.d.) observations from the joint distribution PZ of Z, U = {Xi :
i = n + 1, . . . , n + N} consists of N i.i.d. observations from PX, and L ⊥⊥ U .
Throughout, for notational convenience, we use the subscript “j” to denote the
unlabeled observations, and re-index without loss of generality (w.l.o.g.) the N

observations in U as: U = {Xj : j = n + 1, . . . , n + N}.

ASSUMPTION 2.1 (Basic assumptions). (a) We assume that Z has finite 2nd
moments and � ≡ Var(X) is positive definite, denoted as � � 0. We also assume,
for simplicity, that X has a compact support X ⊆ R

p .
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(b) We assume N 	 n, that is, n/N → 0 as n,N → ∞, and L and U arise from
the same underlying distribution, that is, Z ∼ PZ for all subjects in S .

Notation. Let � = E(
−→
X

−→
X ′) � 0, where ∀v ∈ R

p , −→v = (1,v′)′ ∈ R
(p+1). Let

L2(PX) denote the space of all R-valued measurable functions of X having finite
L2 norm with respect to (w.r.t.) PX, and for any g(·) ∈ L2(PX), let �(g) � 0 denote

the (p +1)× (p +1) matrix �−1
E[−→X −→

X ′{Y −g(X)}2]�−1. Lastly, let ‖ · ‖ denote
the L2 vector norm, and for any integer a ≥ 1, let Ia denote the identity matrix
of order a, and Na[μ,�] denote the a-variate Gaussian distribution with mean
μ ∈ R

a and covariance matrix �a×a � 0.

REMARK 2.1. Assumption 2.1(b) enlists some fundamental characteristics of
SS settings. Indeed, the condition of L and U being equally distributed has usually
been an integral part of the definition of SS settings [Chapelle, Schölkopf and Zien
(2006), Kawakita and Kanamori (2013)]. Interpreted in missing data terminology,
it entails that Y in U are “missing completely at random” (MCAR), with the miss-
ingness/labeling being typically by design. Interestingly, the crucial assumption of
MCAR, although commonly required, has often stayed implicit in the SSL liter-
ature [Lafferty and Wasserman (2007)]. It is important to note that while the SS
set-up can be viewed as a missing data problem, it is quite different from standard
ones, since with n/N → 0, that is, |U | 	 |L|, the proportion of Y observed in
S tends to 0 in SSL. Hence, the “positivity assumption” typical in missing data
theory, requiring this proportion to be bounded away from 0, is violated here. It
is also worth noting that owing to such violations, the analysis of SS settings un-
der more general missingness mechanisms such as “missing at random” (MAR)
is considerably more complicated and to our knowledge, the literature for SS es-
timation problems under such settings is virtually nonexistent. Furthermore, for
such problems, the traditional goal in SSL, that of improving upon a “supervised”
estimator, can become unclear without MCAR, unless an appropriately weighted
version of the supervised estimator is considered. Given these subtleties and the
traditional assumptions (often implicit) in SSL, the MCAR condition is assumed
for most of this paper, although a brief discussion on possible extensions of our
proposed SS estimators to MAR settings is provided in the Supplementary Mate-
rial [Chakrabortty and Cai (2018)].

2.1. The target parameter and its supervised estimator. We consider the linear
regression working model given by

(2.1) Y = −→
X ′θ + ε, with E(ε|X) = 0,

where θ ∈ R
(p+1) is an unknown regression parameter. Accounting for the poten-

tial mis-specification of the working model (2.1), we define the target parameter
of interest as a model-free parameter, as follows:
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DEFINITION 2.1. The target parameter θ0 for linear regression may be de-

fined as the solution to the normal equations: E{−→X (Y − −→
X ′θ)} = 0 in θ ∈ R

(p+1),

or equivalently, θ0 = argminθ∈R(p+1) E(Y − −→
X ′θ)2.

Existence and uniqueness of θ0 in Definition 2.1 is clear. Further,
−→
X ′θ0 is the

L2 projection of E(Y |X) ∈ L2(PX) onto the subspace of all linear functions of X,
and hence, is the best linear predictor of Y given X. The linear model (2.1) is
correct (else, mis-specified) if and only if E(Y |X) lies in this space [in which

case, E(Y |X) = −→
X ′θ0]. When the model is correct, θ0 depends only on PY |X,

not on PX. Hence, improved estimation of θ0 through SSL is impossible in this
case unless further assumptions relating θ0 to PX are made. On the other hand,
under model mis-specification, the normal equations defining θ0 inherently depend
on PX, thereby implying the potential utility of SSL in improving the estimation
of θ0 in this case.

The usual supervised estimator of θ0 is the OLS estimator θ̂ , the solution in θ

to the equation: n−1 ∑n
i=1

−→
X i (Yi − −→

X ′
iθ) = 0, the normal equations based on L.

Under Assumption 2.1(a), it is well known that as n → ∞,

(2.2) n
1
2 (̂θ − θ0) = n− 1

2

n∑
i=1

ψ0(Zi ) + Op

(
n− 1

2
) d→ N(p+1)

[
0,�(gθ0)

]
,

where ψ0(Z) = �−1{−→X (Y − −→
X ′θ0)} and gθ (X) = −→

X ′θ ∀θ ∈ R
(p+1).

Our primary goal is to obtain efficient SS estimators of θ0 using the entire data
S and compare their efficiencies to that of θ̂ . It is worth noting that the estimation
efficiency of θ0 also relates to the predictive performance of the fitted linear model
since its out-of-sample prediction error is directly related to the mean squared error
(w.r.t. the � metric) of the parameter estimate.

3. A family of imputation based semi-supervised estimators. If Y in U
were actually observed, then one would simply fit the working model to the en-
tire data in S for estimating θ0. Our general approach is precisely motivated by
this intuition. We first attempt to impute the missing Y in U based on suitable
training of L in step (I). Then in step (II), we fit the linear model (2.1) to U with
the imputed outcomes. Clearly, the imputation is critical. Inaccurate imputation
would lead to biased estimate of θ0, while inadequate imputation would result in
loss of efficiency. We next consider SS estimators constructed under two impu-
tation strategies for step (I) including a fully nonparametric imputation based on
kernel smoothing (KS), and a semi-nonparametric (SNP) imputation that involves
a smoothing step and a follow up “refitting” step. Although the construction of the
final EASE is based on the SNP imputation strategy, it is helpful to begin with a
discussion of the first strategy in order to appropriately motivate and elucidate the
discussion on EASE and the SNP imputation strategy.
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3.1. A simple SS estimator via fully nonparametric imputation. We present
here an estimator based on a fully nonparametric imputation involving KS when p

is small. For simplicity, we shall assume here that X is continuous with a density
f (·). Let m(x) = E(Y |X = x) and l(x) = m(x)f (x). Consider the local constant
KS estimator of m(x):

(3.1) m̂(x) =
1

nhp

∑n
i=1{Kh(Xi ,x)}Yi

1
nhp

∑n
i=1 Kh(Xi ,x)

= l̂(x)

f̂ (x)
,

where Kh(u,v) = K{(u − v)/h} with K : Rp → R being some suitable kernel
function and h = h(n) > 0 being the bandwidth. With m̂(·) as defined in (3.1), we
now fit (2.1) to the imputed unlabeled data: [{m̂(Xj ),X′

j }′ : j = n+ 1, . . . , n+N ]
and obtain a SS estimator θ̂np of θ0 as the solution in θ to

(3.2)
1

N

n+N∑
j=n+1

−→
X j

{
m̂(Xj ) − −→

X ′
jθ

} = 0.

Here and throughout in our constructions of SS estimators, L with either the true
or the imputed Y is not included in the final fitting step mostly due to technical
convenience in the asymptotic analysis of our estimators, and also due to the fact
that the contribution of L, included in any form, in the final fitting step is asymp-
totically negligible since n/N → 0.

In order to study the properties of θ̂np , we require uniform (in L∞ norm) conver-
gence of m̂(·) to m(·), a problem that has been extensively studied in the nonpara-
metric statistics literature [Andrews (1995), Hansen (2008), Masry (1996), Newey
(1994)] under fairly general settings and assumptions. In particular, we would as-
sume the following regularity conditions to hold.

ASSUMPTION 3.1. (i) K(·) is a symmetric qth order kernel for some integer
q ≥ 2. (ii) K(·) is bounded, Lipschitz continuous and has a bounded support K ⊆
R

p . (iii) E(|Y |s) < ∞ for some s > 2. E(|Y |s |X = x)f (x) and f (x) are bounded
on X . (iv) f (x) is bounded away from 0 on X . (v) m(·) and f (·) are q times
continuously differentiable with bounded qth derivatives on some open set X0 ⊇
X . (vi) For any δ > 0, let Aδ ⊆ R

p denote the set {(x − X)/δ : x ∈ X }. Then, for
small enough δ, Aδ ⊇K almost surely (a.s.).

Conditions (i)–(v) are fairly standard in the literature. In (v), the set X0 is needed
mostly to make the notion of differentiability well defined, with both m(·) and
f (·) understood to have been analytically extended over (X0 \X ). Condition (vi)
implicitly controls the tail behaviour of X, requiring that perturbations of X in the
form of (X + δφ) with φ ∈ K (bounded) and δ small enough, belong to X a.s.
[PX]. We now present our result on θ̂np .
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THEOREM 3.1. Suppose n
1
2 hq → 0 and (logn)/(n

1
2 hp) → 0 as n → ∞, and

let rn = n
1
2 hq + (logn)/(n

1
2 hp) + (n/N)

1
2 . Then, under Assumption 3.1,

(3.3) n
1
2 (̂θnp − θ0) = n− 1

2

n∑
i=1

ψeff(Zi ) + Op(rn)
d→ N(p+1)

[
0,�(m)

]
,

where ψeff(Z) = �−1[−→X {Y − m(X)}].
REMARK 3.1. Theorem 3.1 establishes the efficient and adaptive nature of

θ̂np . The asymptotic variance �(m) of θ̂np satisfies �(g) − �(m) � 0 ∀g(·) ∈
L2(PX) and the inequality is strict unless g(·) = m(·) a.s. [PX]. Hence, θ̂np is
asymptotically optimal among the class of all regular and asymptotically linear

(RAL) estimators of θ0 with influence function (IF) of the form �−1[−→X {Y −
g(X)}] with g(·) ∈ L2(PX). In particular, θ̂np is more efficient than θ̂ when-
ever (2.1) is mis-specified, and equally efficient when (2.1) is correct, that
is, m(·) = gθ0(·). Further, it can also be shown that ψeff(Z) is the “efficient”
IF for estimating θ0 under the semiparametric model MX ≡ {(PY |X,PX) :
PX is known ,PY |X is unrestricted up to Assumption 2.1(a)}. Thus, θ̂np also glob-
ally achieves the semiparametric efficiency bound under MX. Lastly, note that at
any parametric sub-model in MX that corresponds to (2.1) being correct, θ̂ also
achieves optimality, thus showing that under MX, it is not possible to improve
upon θ̂ if the linear model is correct.

REMARK 3.2. The asymptotic results in Theorem 3.1 require a kernel of
order q > p and h smaller in order than the “optimal” bandwidth order hopt =
O(n−1/(2q+p)). This under-smoothing requirement, often encountered in two-step
estimators involving a first-step smoothing [Newey, Hsieh and Robins (1998)],
generally results in sub-optimal performance of m̂(·). The optimal under-smoothed
bandwidth order for Theorem 3.1 is given by O(n−1/(q+p)).

3.2. SS estimators based on semi-nonparametric (SNP) imputation. The sim-
ple and intuitive imputation strategy in Section 3.1 based on a fully nonparametric
p-dimensional KS is however often undesirable in practice owing to the curse of
dimensionality. In order to accommodate larger p, we now propose a more flexible
SNP imputation method involving a dimension reduction, if needed, followed by
a nonparametric calibration. An additional “refitting” step is proposed to reduce
the impact of bias from nonparametric estimation and possibly inadequate impu-
tation due to dimension reduction. We also introduce some flexibility in terms of
the smoothing methods, apart from KS, that can be used for the nonparametric
calibration.

Let r ≤ p be a fixed positive integer and let Pr = [p1, . . . ,pr ]p×r be any rank
r transformation matrix. Let XPr

= P′
rX. Given (r,Pr ), we may now consider ap-

proximating the regression function E(Y |X) by smoothing Y over the r dimen-
sional XPr

instead of the original X ∈ R
p . In general, Pr can be user-defined and
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data dependent. A few reasonable choices of Pr are discussed in Section 5. If Pr

depends only on the distribution of X, it may be assumed to be known given the SS
setting considered. If Pr also depends on the distribution of Y , then it needs to be
estimated from L and the smoothing needs to be performed using the estimated Pr .

For approximating E(Y |X), we may consider any reasonable smoothing tech-
nique T . Some examples of T include KS, kernel machine regression and smooth-
ing splines. Let m(x;Pr ) denote the “target function” for smoothing Y over XPr

using T . For notational simplicity, the dependence of m(x;Pr ) and other quanti-
ties on T is suppressed throughout. For T := KS, the appropriate target function is
given by: m(x;Pr ) = mPr

(P′
rx), where mPr

(z) ≡ E(Y |XPr
= z). For basis function

expansion based methods, m(x;Pr ) will typically correspond to the L2 projection
of m(x) ≡ E(Y |X = x) ∈ L2(PX) onto the functional space spanned by the basis
functions associated with T . The results in this section apply to any choice of T
that satisfies the required conditions. In Section 4, we provide more specific results
for the implementation of our methods using T := KS.

Note that we do not assume m(x;Pr ) = m(x) anywhere, and hence the name
“semi-nonparametric”. Clearly, with Pr = Ip and T := KS, it reduces to a fully
nonparametric approach. We next describe the two sub-steps involved in step (I)
of the SNP imputation: (Ia) smoothing, and (Ib) refitting.

(Ia) smoothing step. With Pr and m(x;Pr ) as defined above, let P̂r and m̂(x; P̂r ),
respectively, denote their estimators based on L. In order to address potential over-
fitting issues in the subsequent steps, we further consider generalized versions of
these estimators based on K-fold CV for a given fixed integer K ≥ 1. For any
K≥ 2, let {Lk}Kk=1 denote a random partition of L into K disjoint subsets of equal
sizes, nK = n/K, with index sets {Ik}Kk=1. Let L−

k denote the set excluding Lk with
size n−

K
= n − nK and respective index set I−

k . Let P̂r,k and m̂k(x; P̂r,k) denote the
corresponding estimators based on L−

k . Further, for notational consistency, we de-
fine for K = 1, Lk = L−

k = L; Ik = I−
k = {1, . . . , n}; nK = n−

K
= n; P̂r,k = P̂r and

m̂k(x; P̂r,k) = m̂(x; P̂r ).
(Ib) refitting step. In this step, we fit the linear model to L using X as predictors

and the estimated m(X;Pr ) as an offset. To motivate this, we recall that the fully
nonparametric imputation given in Section 3.1 consistently estimates E(Y |X), the
L2 projection onto a space that always contains the working model space, that is,

the linear span of
−→
X . This need not be true for the SNP imputation, since we do

not assume m(X;Pr ) = m(X) necessarily. The refitting step essentially “adjusts”
for this so that the final imputation, combining the predictions from these two
steps, targets a space that contains the working model space. In particular, for
T := KS with r < p, this step is critical to remove potential bias due to inadequate
imputation.

Interestingly, it turns out that the refitting step should always be performed, even
when m(X;Pr ) = m(X). It plays a crucial role in reducing the bias of the resulting
SS estimator due to the inherent bias from nonparametric curve estimation. In
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particular, for T := KS with any r ≤ p, it ensures that a bandwidth of the optimal
order can be used, thereby eliminating the under-smoothing issue as encountered
in Section 3.1. The target parameter for the refitting step is simply the regression
coefficient obtained from regressing the residual Y − m(X;Pr ) on X and may be

defined as: ηPr
, the solution in η ∈ R

(p+1) to the equation: E[−→X {Y − m(X;Pr ) −−→
X ′η}] = 0. For any K ≥ 1, we estimate ηPr

as η̂(Pr ,K), the solution in η to the
equation:

(3.4) n−1
K∑

k=1

∑
i∈Ik

−→
X i

{
Yi − m̂k(Xi; P̂r,k) − −→

X ′
iη

} = 0.

For Xi ∈ Lk , the estimate of m(Xi;Pr ) to be used as an offset is obtained from
m̂k(·; P̂r,k) that is based on data in L−

k . For K ≥ 2, with L−
k ⊥⊥ Lk , the residuals

are thus estimated in a cross-validated manner. For K = 1, however, m̂(·; P̂r ) is
estimated using the entire L which can lead to considerable underestimation of the
true residuals owing to over-fitting and consequently, substantial finite sample bias
in the resulting SS estimator of θ0. This bias can be effectively reduced by using
the CV approach with K ≥ 2. We next estimate the target function for the SNP
imputation given by

μ(x;Pr ) = m(x;Pr ) + −→x ′ηPr
as:(3.5)

μ̂(x; P̂r,K) = K
−1

K∑
k=1

m̂k(x; P̂r,k) + −→x ′η̂(Pr ,K),(3.6)

where P̂r,K = {P̂r,k}Kk=1. For notational simplicity, we suppress throughout the
inherent dependence of μ̂(·; ·) itself on K and {L−

k }Kk=1. Note that similar to
m(X;Pr ), we also do not assume μ(X;Pr ) = m(X). Apart from the geometric
motivation for the refitting step and its technical role in bias reduction, it also

generally ensures the condition: E[−→X {Y − μ(X;Pr )}] = 0, regardless of the true
underlying m(X). This condition is a key requirement for the asymptotic expan-
sions, in Theorem 3.2, of our resulting SS estimators. Using μ̂(·; P̂r,K), we now
construct our final SS estimator as follows.

SS estimator from SNP imputation. In step (II), we fit the linear model to the
SNP imputed unlabeled data: [{μ̂(Xj ; P̂r,K),X′

j }′ : j = n + 1, . . . , n + N ] and

obtain a SS estimator θ̂ (Pr ,K) of θ0 given by

(3.7) θ̂ (Pr ,K) is the solution in θ to
1

N

n+N∑
j=n+1

−→
X j

{
μ̂(Xj ; P̂r,K) − −→

X ′
jθ

} = 0.

For convenience of further discussion, let us define: ∀k ∈ {1, . . . ,K},
�̂k(x;Pr , P̂r,k) = m̂k(x; P̂r,k) − m(x;Pr ) ∀x ∈ X(3.8)
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and

Ĝk(x) = −→x �̂k(x;Pr , P̂r,k) −EX
{−→

X �̂k(X;Pr , P̂r,k)
} ∀x ∈ X ,(3.9)

where EX(·) denotes expectation w.r.t. X ∈ U . The dependence of Ĝk(·) on
(Pr , P̂r,k) and PX is suppressed here for notational simplicity. We now present
our main result summarizing the properties of θ̂ (Pr ,K).

THEOREM 3.2. Suppose that T satisfies: (i) supx∈X |m(x;Pr )| < ∞ and
(ii) supx∈X |m̂(x; P̂r ) − m(x;Pr )| = Op(cn) for some cn = o(1). With Ĝk(·) as

in (3.9), define Gn,K = n− 1
2
∑

K
k=1

∑
i∈Ik

Ĝk(Xi). Then, for any K≥ 1,

(3.10) n
1
2 (̂θ (Pr ,K) − θ0) = n− 1

2

n∑
i=1

ψ(Zi;Pr ) − �−1
Gn,K + Op

(
c∗
n,K

)
,

where ψ(Z;Pr ) = �−1[−→X {Y − μ(X;Pr )}] and c∗
n,K = cn−

K

+ n− 1
2 + (n/N)

1
2 =

o(1). Further, for any fixed K≥ 2, Gn,K = Op(cn−
K

), so that

(3.11) n
1
2 (̂θ (Pr ,K) − θ0) = n− 1

2

n∑
i=1

ψ(Zi;Pr ) + Op

(
cn−

K

+ c∗
n,K

)
,

which converges in distribution to N(p+1)[0,�{μ(·;Pr )}].

REMARK 3.3. If the imputation is “sufficient” so that μ(x;Pr ) = m(x), then
θ̂ (Pr ,K), for any K ≥ 2, enjoys the same set of optimality properties as those noted
in Remark 3.1 for θ̂np [while requiring less stringent assumptions about K(·) and
h, if KS is used]. If μ(x;Pr ) �= m(x), then it is however unclear whether θ̂ (Pr ,K)

is always more efficient than θ̂ . This will be addressed in Section 3.3 where we
develop the final EASE.

REMARK 3.4. Apart from the fairly mild condition (i), Theorem 3.2 only

requires uniform consistency of m̂(·; P̂r ) w.r.t. m(·;Pr ) for establishing the n
1
2 -

consistency and asymptotic normality (CAN) of θ̂ (Pr ,K) for any K ≥ 2. The uni-
form consistency typically holds for a wide range of smoothing methods T under
fairly general conditions. For T := KS in particular, we provide explicit results in
Section 4 under mild regularity conditions that allow the use of any kernel order
and the associated optimal bandwidth order. This is a notable relaxation from the
stringent requirements for Theorem 3.1 that necessitate under-smoothing and the
use of higher order kernels.

REMARK 3.5. The CAN property of θ̂ (Pr ,1) has not yet been established. The
term Gn,K in (3.10) behaves quite differently when K = 1, compared to K ≥ 2
when it has a nice structure due to the inherent “cross-fitting” involved and can
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be controlled easily, and quite generally, under mild conditions as noted in Re-
mark 3.4. For K= 1, however, Gn,K is simply a centered empirical process devoid
of any such structure and in general, controlling it requires stronger conditions
and the use of empirical process theory. In Section 4, we derive the properties of
θ̂ (Pr ,1) for the case of T := KS in Theorem 4.2 using a slightly different approach,
specialized for KS estimators, to control Gn,1. The main technical tools involved
therein are Lemmas A.2 and A.3 which may themselves be of independent interest.

3.3. Efficient and adaptive semi-supervised estimators (EASE). To ensure
adaptivity even when μ(x;Pr ) �= m(x), we now define the final EASE as an opti-
mal linear combination of θ̂ and θ̂ (Pr ,K). Specifically, for any fixed (p + 1)× (p +
1) matrix 	, θ̂ (Pr ,K)(	) = θ̂ + 	(̂θ (Pr ,K) − θ̂) is a CAN estimator of θ0 when-
ever θ̂ and θ̂ (Pr ,K) are, and an optimal 	 can be selected easily to minimize the
asymptotic variance of the combined estimator. For simplicity, we focus here on 	
being a diagonal matrix with 	 = diag(δ1, . . . , δp+1). Then the EASE is defined

as θ̂
E

(Pr ,K) ≡ θ̂ (Pr ,K)(	̂) with 	̂ being any consistent estimator (see Section 3.4 for
details) of the minimizer 	 = diag(δ1, . . . , δp+1), where ∀1 ≤ l ≤ (p + 1),

(3.12) δl = − lim
ε↓0

Cov{ψ0[l](Z),ψ [l](Z;Pr ) − ψ0[l](Z)}
Var{ψ [l](Z;Pr ) − ψ0[l](Z)} + ε

,

and for any vector a, a[l] denotes its lth component. Note that in (3.12), the ε

and the limit outside are included to formally account for the case: ψ0[l](Z) =
ψ [l](Z,Pr ) a.s. [PZ], when we define δl = 0 for identifiability.

It is straightforward to show that θ̂
E

(Pr ,K) and θ̂ (Pr ,K)(	) are asymptotically

equivalent, so that θ̂
E

(Pr ,K) is a RAL estimator of θ0 satisfying:

n
1
2
(̂
θ

E

(Pr ,K) − θ0
) = n− 1

2

n∑
i=1

ψ(Zi;Pr ,	) + op(1)
d→ N(p+1)

[
0,�Pr

(	)
]
,

as n → ∞, where ψ(Z;Pr ,	) = ψ0(Z) + 	{ψ(Z;Pr ) − ψ0(Z)} and �Pr
(	) =

Var{ψ(Z;Pr ,	)}. Note that when either the linear model holds or the SNP impu-

tation is sufficient, then ψ(Z;Pr ,	) = ψeff(Z), so that θ̂
E

(Pr ,K) is asymptotically

optimal in the sense of Remark 3.1. Further, when neither cases hold, θ̂
E

(Pr ,K) is
no longer optimal, but is still efficient and adaptive compared to θ̂ . Lastly, if the
imputation is certain to be sufficient (e.g., if r = p and T := KS), we may simply

define θ̂
E

(Pr ,K) = θ̂ (Pr ,K).

REMARK 3.6. It can be shown that under MX, defined in Remark 3.1,
the class of all possible IFs achievable by RAL estimators of θ0 is given by:
IFθ0,MX = {ψg(Z) ≡ ψeff(Z) + g(X) : E{g(X)} = 0, g[j ](·) ∈ L2(PX) ∀j}. The
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IFs achieved by θ̂ , θ̂ (Pr ,K) and θ̂
E

(Pr ,K) are clearly members of this class. The
SNP imputation, for various choices of the imputation function μ(·;Pr ), there-

fore, equips us with a family of RAL estimator pairs {̂θ (Pr ,K), θ̂
E

(Pr ,K)} for estimat-

ing θ0. The IF of θ̂
E

(Pr ,K) is further guaranteed to dominate that of θ̂ , and when
μ(·;Pr ) = m(·), it also dominates all other IFs ∈ IFθ0,MX .

3.4. Inference for EASE and the SNP imputation based SS estimators. We
now provide procedures for making inference about θ0 based on θ̂ (Pr ,K) and

θ̂
E

(Pr ,K) obtained using K ≥ 2. We also employ a “double” CV to overcome bias
in variance estimation due to over-fitting. A key step involved in the variance es-
timation is to obtain reasonable estimates of {μ(Xi;Pr )}ni=1. Although η̂(Pr ,K) in
(3.4) was constructed via CV, the corresponding estimate, μ̂(x; P̂r,K) in (3.6), of
μ(x;Pr ) is likely to be over-fitted for Xi ∈ L. To construct bias corrected esti-
mates of μ(Xi;Pr ), we first obtain K separate doubly cross-validated estimates of
ηPr

, {̂ηk
(Pr ,K) : k = 1, . . . ,K}, with η̂k

(Pr ,K), for each k, being the solution in η to∑
k′ �=k Sk′(η) = 0, where

Sk′(η) = ∑
i∈Ik′

−→
X i

{
Yi − m̂k′(Xi; P̂r,k′) − −→

X ′
iη

} ∀k′ ∈ {1, . . . ,K}.

For each k and k′ �= k, Sk′(η) is constructed such that {Zi : i ∈ Ik′ } used for ob-
taining η̂k

(Pr ,K) is independent of m̂k′(·; P̂r,k′) that is based on L−
k′ ⊥⊥ Lk′ . Then, for

each Xi ∈ Lk and k ∈ {1, . . . ,K}, we may estimate μ(Xi;Pr ) as

μ̂k(Xi; P̂r,K) = m̂k(Xi; P̂r,k) + −→
X ′

i η̂
k
(Pr ,K).

We exclude Sk(η) in the construction of η̂k
(Pr ,K) to reduce over-fitting bias in the

residuals {Yi − μ̂k(Xi; P̂r,K)}, which we now use for estimating the IFs.
For each Zi ∈ Lk and k ∈ {1, . . . ,K}, we estimate ψ0(Zi ) and ψ(Zi;Pr ), the

corresponding IFs of θ̂ and θ̂ (Pr ,K), respectively, as

ψ̂0(Zi ) = �̂
−1{−→

X i

(
Yi − −→

X ′
i θ̂

)}
and

ψ̂k(Zi;Pr ) = �̂
−1[−→

X i

{
Yi − μ̂k(Xi; P̂r,K)

}]
,

where �̂ denotes any consistent estimator of � from L and/or U (e.g., �̂ = �n ≡
n−1 ∑n

i=1
−→
X i

−→
X ′

i based on L, or �̂ = �N ≡ N−1 ∑n+N
j=n+1

−→
X j

−→
X ′

j based on U ).
Then, �{μ(·;Pr )} in (3.11) may be consistently estimated as

�̂
{
μ(·;Pr )

} = n−1
K∑

k=1

∑
i∈Ik

ψ̂k(Zi;Pr )ψ̂
′
k(Zi;Pr ).
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To estimate the combination matrix 	 in (3.12) and the asymptotic variance,
�Pr

(	), of EASE consistently, let us define, ∀1 ≤ l ≤ (p + 1),

σ̂l,12 = −n−1
K∑

k=1

∑
i∈Ik

ψ̂0[l](Zi )
{
ψ̂k[l](Zi;Pr ) − ψ̂0[l](Zi )

}
,

σ̂l,22 = n−1
K∑

k=1

∑
i∈Ik

{
ψ̂k[l](Zi;Pr ) − ψ̂0[l](Zi )

}2
,

and δ̂l = σ̂l,12/(σ̂l,22 + εn) for some sequence εn → 0 with n
1
2 εn → ∞. Then we

estimate 	 and �Pr
(	), respectively, as 	̂ = diag(̂δ1, . . . , δ̂p+1) and

�̂Pr
(	̂) = n−1

K∑
k=1

∑
i∈Ik

ψ̂k(Zi;Pr , 	̂)ψ̂
′
k(Zi;Pr , 	̂),

where ψ̂k(Z;Pr , 	̂) = ψ̂0(Z) + 	̂{ψ̂k(Z;Pr ) − ψ̂0(Z)} ∀k ∈ {1, . . . ,K}. Normal
confidence intervals (CIs) for the parameters of interest can also be constructed
accordingly based on these variance estimates.

4. Implementation based on KS. We next detail the specific implementation
of the SNP imputation based on KS estimators. With T := KS, the target func-
tion for the smoothing is given by: m(x;Pr ) = mPr

(P′
rx) ≡ E(Y |XPr

= P′
rx). For

simplicity, we assume that XPr
is continuous with a density fPr

(·) and support
XPr

≡ {P′
rx : x ∈ X } ⊆ R

r . Let us now consider the following class of local con-
stant KS estimators for m(x;Pr ):

(4.1) m̂k(x; P̂r,k) =
1

n−
K

hr

∑
i∈I−

k
{Kh(P̂′

r,kXi , P̂′
r,kx)}Yi

1
n−
K

hr

∑
i∈I−

k
Kh(P̂′

r,kXi , P̂′
r,kx)

∀1 ≤ k ≤K,

where Kh(·) and h are as in Section 3.1 with K(·) now being a suitable kernel on
R

r . In the light of Theorem 3.2, we focus primarily on establishing the uniform
consistency of m̂(x; P̂r ) ≡ m̂1(x; P̂r,1) in (4.1) with K = 1, accounting for the
additional estimation error from P̂r . For establishing the desired result, we shall
assume the following regularity conditions to hold.

ASSUMPTION 4.1. (i) K(·) is a symmetric kernel of order q ≥ 2 with finite
qth moments. (ii) K(·) is bounded, integrable and is either Lipschitz continu-
ous with a compact support or, has a bounded derivative ∇K(·) which satisfies:
‖∇K(z)‖ ≤ �‖z‖−ρ ∀z ∈ R

r with ‖z‖ > L, where � > 0, L > 0 and ρ > 1 are
some fixed constants, and ‖ · ‖ denotes the standard L2 vector norm. (iii) XPr

⊆ R
r

is compact. E(|Y |s) < ∞ for some s > 2. E(|Y |s |XPr
= z)fPr

(z) and fPr
(z) are

bounded on XPr
. (iv) fPr

(z) is bounded away from 0 on XPr
. (v) mPr

(z) and
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fPr
(z) are both q times continuously differentiable with bounded qth derivatives

on some open set X0,Pr
⊇ XPr

. Additional conditions (required only when Pr

needs to be estimated): (vi) K(·) has a bounded and integrable derivative ∇K(·).
(vii) ∇K(·) satisfies: ‖∇K(z1) − ∇K(z2)‖ ≤ ‖z1 − z2‖φ(z1) ∀z1, z2 ∈ R

r such
that ‖z1 − z2‖ ≤ L∗, for some fixed constant L∗ > 0, and some bounded and
integrable function φ : Rr → R

+. (viii) ∇K(·) is Lipschitz continuous on R
r .

(ix) E(X|XPr
= z) and E(XY |XPr

= z) are both continuously differentiable with
bounded first derivatives on X0,Pr

⊇ XPr
.

Assumption 4.1, mostly adopted from Hansen (2008), imposes some mild
smoothness and moment conditions most of which are fairly standard, except per-
haps the conditions on K(·) in (vi)–(viii) all of which are however satisfied by the
Gaussian kernel among others. We now propose the following result.

THEOREM 4.1. Suppose (P̂r −Pr ) = Op(αn) for some αn = o(1) with αn = 0
identically if Pr is known. Let q be the order of the kernel K(·) in (4.1) for some
integer q ≥ 2. Define

an,1 = αn

(
logn

nhr+2

) 1
2 + α2

nh
−(r+2) + αn, an,2 =

(
logn

nhr

) 1
2 + hq

and assume that each of the terms involved in an,1 = o(1) and an,2 = o(1). Then,
under Assumption 4.1, m̂(x; P̂r ), based on (4.1), satisfies

(4.2) sup
x∈X

∣∣m̂(x; P̂r ) − m(x;Pr )
∣∣ = Op(an,1 + an,2).

REMARK 4.1. Theorem 4.1 establishes the L∞ error rate of m̂(x; P̂r ) under
mild regularity conditions and restrictions on h. Among its various implications,
the rate also ensures uniform consistency of m̂(x; P̂r ) at the optimal bandwidth
order: hopt = O(n−1/(2q+r)) for any kernel order q ≥ 2 and any r ≤ p, as long as

αn = o(n−(r+2)/(4q+2r)) which always includes: αn = O(n− 1
2 ) and αn = 0. These

two cases are particularly relevant in practice as Pr being finite dimensional, n
1
2 -

consistent estimators of Pr should typically exist. For both cases, using hopt results
in an,1 to be of lower order (for q > 2) or the same order (for q = 2) compared
to that of the main term an,2, so that the usual optimal rate prevails as the overall
error rate.

Properties of θ̂ (Pr ,K) for K = 1. We now address the CAN property of θ̂ (Pr ,K)

for K= 1 under the KS framework. Based on (3.10) and Remark 3.5, the only step
required for this is to effectively control the term Gn,K in (3.10). We propose the
following result in this regard.
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THEOREM 4.2. Let K = 1, T := KS, Gn,K be as in (3.10), and m̂(x; P̂r ) be
the KS estimator based on (4.1). Let αn, an,1 and an,2 be as in Theorem 4.1 with
(P̂r − Pr ) = Op(αn). Assume that a∗

n,1 and a∗
n,2 are o(1), where

a∗
n,1 = αn + αn

n
1
2 h(r+1)

+ n
1
2 α2

nh
−2 + n

1
2 a2

n,1 + n
1
2 an,1an,2 and a∗

n,2 = n
1
2 a2

n,2.

Then, under Assumption 4.1, Gn,K = Op(a∗
n,1 + a∗

n,2) = op(1). Further, let c∗
n,K

be as in Theorem 3.2 with cn = (an,1 + an,2). Then, using (3.10),

(4.3) n
1
2 (̂θ (Pr ,K) − θ0) = n− 1

2

n∑
i=1

ψ(Zi ,Pr ) + Op

(
c∗
n,K + dn

)
,

where dn = a∗
n,1 + a∗

n,2. Hence, n
1
2 (̂θ (Pr ,K) − θ0)

d→ N(p+1)[0,�{μ(·;Pr )}].

REMARK 4.2. Note that the term a∗
n,2 always requires q > r/2 in order to

converge to 0, thus showing the contrasting behavior of the case K = 1 compared
to K ≥ 2 where no such higher order kernel restriction is required. Nevertheless,

when αn = O(n− 1
2 ) or αn = 0, the optimal bandwidth order: hopt = O(n−1/(2q+r))

can indeed be still used as long as q > r/2 is satisfied. Despite these facts and all
the theoretical guarantee in Theorem 4.2, empirical evidence however seems to
suggest that θ̂ (Pr ,1) can be substantially biased in finite samples, in part due to
over-fitting.

REMARK 4.3 (Technical benefits of refitting and CV). Suppose that Pr = Ip ,
so that the SNP imputation with T := KS is indeed sufficient. Further, assume that
all of Theorems 3.1–4.2 hold, so that the estimators θ̂np , θ̂ (Pr ,1) and θ̂ (Pr ,K) (K≥ 2)
are comparable and all asymptotically optimal. However, their constructions are
quite different which can significantly affect their finite sample performances. θ̂np

is based on KS only, and requires stringent under-smoothing and a kernel of order
q > p (Remark 3.2); θ̂ (Pr ,1) is based on KS and refitting (although the KS itself
is certain to be sufficient), and requires no under-smoothing but needs a (weaker)
kernel order condition (q > p/2) (Remark 4.2); while θ̂ (Pr ,K) (K≥ 2) additionally
involves CV, and requires no under-smoothing or higher order kernel conditions
(Remark 3.4). This highlights the critical role played by refitting and CV, apart
from their primary roles in the SNP imputation, in removing any under-smoothing
and/or higher order kernel restrictions when T := KS, and this continues to hold
for any other (r,Pr ) as well. In particular, it shows, rather surprisingly, that refitting
should be performed in order to avoid under-smoothing even if the smoothing is
known to be sufficient.

REMARK 4.4. As mentioned in Section 3.2, T := KS along with possible di-
mension reduction is just one reasonable choice of T for implementing the SNP
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imputation, all technical requirements for which have been thoroughly established
in Section 4. In general, other smoothing methods, as long as the requirements
are satisfied, can also be equally used as choices of T . One such choice could be
kernel machine (KM) regression (with possibly no use of dimension reduction,
as KM uses penalization to effectively regularize the target even with Pr = Ip).
We leave its implementation details to the reader as they are readily available in
a multitude of references, and also skip any theoretical treatment, considering the
primary goal and scope of this paper. However, detailed numerical results are pre-
sented in Section 6 for this choice of T as well to illustrate the wider applicability
of our proposed methods.

5. Choices of Pr : Dimension reduction techniques. We next discuss choos-
ing and estimating the matrix Pr (r < p) to be used for dimension reduction, if
required, in the SNP imputation, and which can play an important role in the suf-
ficiency of the imputation. Simple choices of Pr include r leading principal com-
ponent directions of X or any r canonical directions of X. Note that under the SS
setting, Pr is effectively known if it only involves the distribution of X, as is true
for these choices. We now focus primarily on the case where Pr also depends on
the distribution of Y , and hence, is unknown. Such a choice of Pr is often desirable
to ensure that the imputation is as “sufficient” as possible for predicting Y . Several
reasonable choices of such Pr and their estimation are possible based on suffi-
cient dimension reduction (s.d.r.) methods like Sliced Inverse Regression (SIR)
[Li (1991)], Principal Hessian Directions (PHD) [Cook (1998), Li (1992)], Sliced
Average Variance Estimation (SAVE) [Cook and Lee (1999), Cook and Weisberg
(1991)], etc.

In particular, we focus here on SIR where the choice of Pr is given by: P0
r =

�− 1
2 Pr , with Pr being the r leading eigenvectors of M = Var{E(X|Y)}, where

X = �− 1
2 (X−μ), with μ = E(X), denotes the standardized version of X. It is well

known [Li (1991)] that these directions lead to an optimal (in some appropriate
sense) r-dimensional linear transformation of X that can be predicted by Y . Apart
from these general optimality, they also have deeper implications in the context of
s.d.r. We refer the reader to [Li (1991)] and other relevant references in the s.d.r.
literature for further details.

For estimating P0
r , we consider the SIR algorithm of Li (1991) and further pro-

pose a SS modification to it. With K and {L−
k ,I−

k , P̂r,k}Kk=1 as before, let (μ̂k, �̂k)

denote the estimates of (μ,�) based on L−
k and define X

(k) = �̂
− 1

2
k (X − μ̂k).

Then the original SIR algorithm estimates P0
r based on L−

k as follows: (i) Divide
the range of {Yi}i∈I−

k
into H slices {I1, . . . , IH }, where H may depend on n−

K
. For

1 ≤ h ≤ H , let p̂h,k denote the proportion of {Yi}i∈I−
k

in slice Ih; (ii) For each Ih,

let M̂h,k denote the sample average of the set: {X(k)
i ∈ L−

k : Yi ∈ Ih}; (iii) Estimate

M as: M̂k = ∑H
h=1 p̂h,kM̂h,kM̂

′
h,k and P0

r as: P̂0
r,k = �̂

− 1
2

k P̂r,k , where P̂r,k denotes
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the r leading eigenvectors of M̂k . However, the SIR algorithm often tends to give
unstable estimates of P0

r , especially for the directions corresponding to the smaller
eigenvalues of M. To improve the efficiency in estimating P0

r , we now propose a
semi-supervised SIR (SS-SIR) algorithm as follows.

SS-SIR algorithm. Given {L−
k ,I−

k , P̂r,k}Kk=1, let (μ̂∗
k, �̂

∗
k) denote the estimates

of (μ,�) based on L−
k ∪ U and define X

(k∗) = �̂
∗− 1

2
k (X − μ̂∗

k). Then the SS-
SIR proceeds as follows. Step (i) stays the same as in SIR. In step (ii), for each
k, and each j ∈ {n + 1, . . . , n + N}, we impute Yj as Y ∗

j,k = Ŷij,k
, where îj,k =

argmini∈I−
k

‖X(k∗)
i −X

(k∗)
j ‖2. For each Ih, let M̂∗

h,k be the sample average of the

set: {X(k∗)
i ∈ L−

k : Yi ∈ Ih} ∪ {X(k∗)
j ∈ U : Y ∗

j,k ∈ Ih}. Then in step (iii), we estimate

M as: M̂∗
k = ∑H

h=1 p̂h,kM̂
∗
h,kM̂

∗′
h,k and then, P0

r as: P̂0∗
r,k = �̂

∗− 1
2

k P̂∗
r,k , where P̂∗

r,k

denotes the r leading eigenvectors of M̂∗
k .

The SS-SIR algorithm aims to improve the estimation of P0
r by making use of

U in step (ii) through a nearest neighbour approximation for the unobserved Y in
U using L−

k . With n−
K

large enough and m(·) smooth enough, the imputed and the
true underlying Y should belong to the same slice with a high probability. Thus
the set of X’s belonging to a particular slice is now “enriched”, and consequently,
improved estimation of M and P0

r is expected. The proposed method based on a
nearest neighbor approximation is also highly scalable and while other smoothing
based approximations may be used, they can be computationally intensive. The SS-

SIR algorithm is fairly robust to the choice of H , and H = O(n
1
2 logn) seems to

give fairly satisfactory performance. The slices may be chosen to have equal width

or equal number of observations. For SIR, n
1
2 -consistency of the estimates are

well established [Duan and Li (1991), Li (1991), Zhu and Ng (1995)] for various
formulations under fairly general settings (without any model based assumptions).
The theoretical properties of SS-SIR, although not derived here, are expected to
follow similarly. Our simulation results (not shown here) further suggest that SS-
SIR significantly outperforms SIR, leading to substantially improved estimation of
θ0 from the proposed methods.

6. Numerical studies.

6.1. Simulation studies. We conducted extensive simulation studies to exam-
ine the finite sample performance of our proposed point and interval estimation
procedures as well as to compare with existing methods. Throughout, we let
n = 500, N = 10,000 and considered p = 2,10 and 20. For our CV based meth-
ods, we let K = 5. The true values of the target parameter θ0 were estimated via
Monte Carlo with a large sample size of 50,000. For each configuration, the results
were summarized based on 500 replications. Results for p = 2 are summarized in
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the Supplementary Material [Chakrabortty and Cai (2018)], and the discussions
below focus primarily on p = 10 and 20.

We generated X ∼ Np[0, Ip] and restricted X to [−5,5]p to ensure its bound-
edness. Given X = x, we generated Y ∼ N1[m(x),1], where we considered four
different choices of m(x):

(i) Linear: m(x) = x′bp;
(ii) Nonlinear one component (NL1C): m(x) = (x′bp) + (x′bp)2;

(iii) Nonlinear two component (NL2C): m(x) = (x′bp)(1 + x′δp); and
(iv) Nonlinear three component (NL3C): m(x) = (x′bp)(1 + x′δp) + (x′ωp)2;

where, for each setting, we considered bp = b(1)
p ≡ (1′

p/2,0′
p/2)

′ and bp = b(2)
p ≡

1p , and set δp = (0′
p/2,1′

p/2)
′ and ωp = (1,0,1,0, . . . ,1,0)′p×1, where for any a,

1a = (1, . . . ,1)′a×1 and 0a = (0, . . . ,0)′a×1. Through appropriate choices of bp , δp

and ωp , as applicable, these models can incorporate commonly encountered linear,
quadratic and interaction effects.

For each setting, we used two choices of the smoothing method: (a) T :=
KS2,P2 denoting KS with 2-dimensional smoothing over P′

rX ≡ P′
2X, where P2

was estimated via SIR with H = 100 slices of equal width, following which
{m̂k(x; P̂r,k)}Kk=1 were obtained via KS using a Gaussian kernel; (b) T := KM
where we let Pr = Ip and then estimated {m̂k(x; Ip)}Kk=1 using kernel machine
(KM) regression based on a radial basis function (RBF) kernel. Throughout, h

for KS, and all tuning parameters for KM were selected via least squares CV.
For (a), with X ∼ Np[0, Ip], results from Li (1991) imply that the SNP imputa-
tion with r = 2 is sufficient for models (i)–(iii), and insufficient for model (iv).
For comparison, we also implemented two other SS estimators: the density ra-
tio based “DRESS” estimator of Kawakita and Kanamori (2013) and the esti-
mator of Sokolovska, Cappé and Yvon (2008) called “MSSL” by Kawakita and
Kanamori (2013). The density ratio estimation for the DRESS estimator was im-
plemented using either (i) linear bases {1, (X[j ])pj=1} (DRESS1); or (ii) cubic bases

{1, (Xd[j ])
p,3
j=1,d=1} (DRESS3).

First, we compare the various estimators with respect to their efficiencies based
on empirical mean squared error. In Table 1, we present the efficiencies of the
proposed SNP and EASE estimators as well as other SS estimators relative to the
OLS. As expected, under model mis-specification, our estimators are substantially
more efficient than the OLS with the relative efficiency (RE) as high as near 5-fold
when p = 10 and 3-fold when p = 20, for the nonlinear models. The efficiency
gain is generally lower for p = 20 than for p = 10, likely a consequence of over-
fitting of the nonparametric estimators involved in the SNP imputation for larger
p. Comparing EASE to SNP, the EASE generally perform better for both linear
and nonlinear settings, as expected. Comparing the two smoothers, it appears that
T := KM generally attains higher efficiency compared to that of T := KS2,P2 .
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TABLE 1
Efficiencies of θ̂ (Pr ,K) (SNP) and θ̂

E
(Pr ,K) (EASE) using T := KS2,P2 or T := KM, as well as

DRESS1, DRESS3 and MSSL, relative to θ̂ (OLS) with respect to the empirical mean squared error

(MSE) under models (i), (ii), (iii) and (iv) each with: (I) bp = b(1)
p or, (II) bp = b(2)

p

OLS (T := KS2,P2) (T := KM) Other SS estimators

Setting Models (Ref.) SNP EASE SNP EASE DRESS1 DRESS3 MSSL

(a) p = 10
(I) Linear 1 0.895 0.983 0.772 0.985 0.982 0.927 0.982

NL1C 1 4.481 4.424 4.501 5.543 1.136 1.110 1.135
NL2C 1 2.683 2.700 4.268 5.055 1.120 1.016 1.119
NL3C 1 2.772 2.795 4.481 5.560 1.102 1.025 1.103

(II) Linear 1 0.841 0.989 0.657 0.993 0.981 0.924 0.981
NL1C 1 4.511 4.585 4.416 5.471 1.132 1.030 1.130
NL2C 1 3.596 3.634 4.405 5.497 1.127 1.042 1.128
NL3C 1 3.280 3.301 4.636 5.566 1.110 1.079 1.109

(b) p = 20
(I) Linear 1 0.673 0.986 0.740 0.981 0.956 0.866 0.956

NL1C 1 2.256 2.288 2.680 3.630 1.035 0.920 1.035
NL2C 1 1.414 1.388 2.661 3.544 1.032 0.922 1.033
NL3C 1 1.539 1.531 2.605 3.510 1.049 0.931 1.051

(II) Linear 1 0.519 0.991 0.609 0.989 0.958 0.872 0.958
NL1C 1 2.290 2.346 2.669 3.660 1.032 0.908 1.031
NL2C 1 1.899 1.917 2.766 3.963 1.036 0.917 1.036
NL3C 1 1.937 1.949 2.682 3.702 1.046 0.958 1.046

This is in part due to the high variability in the SIR direction estimation which im-
pacts the performance of the resulting SS estimator in finite samples. Interestingly,
none of the existing SS estimators perform well with REs ranging only from about
0.9 to 1.1 across all settings.

We next examine the performance of the proposed inference procedures. In Ta-
ble 2(a) and (b), we present the bias, empirical standard error (ESE), the average of
the estimated standard error (ASE) and the coverage probability (CovP) of the 95%
CIs for each component of θ0 when p = 10 under the linear and NL2C models. In
general, the EASE with both the KS and the KM smoothers have negligible biases
although the KM based estimator appears to have slightly lower biases. The ASEs
are close to the ESEs and the CovPs are close to the nominal level, suggesting that
the variance estimators work well in practice with K= 5.

As shown in Table 2(c), the other SS estimators tend to have slightly larger
biases and substantially larger standard errors (SEs) compared to our estimators
under the NL2C model.
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TABLE 2
Coordinatewise bias, ESE, ASE and CovP of EASE, obtained using T := KS2,P2 or T := KM, for

estimating θ0 under the linear and NL2C models with p = 10 and bp = b(1)
p . Shown also are the

corresponding bias and ESE of the OLS, as well as the DRESS1, DRESS3 and MSSL estimators

OLS (̂θ) EASE (̂θ
E
(Pr ,K);T := KS2,P2) EASE (̂θ

E
(Pr ,K);T := KM)

Parameter Bias ESE Bias ESE ASE CovP Bias ESE ASE CovP

(a) OLS and EASE for the linear model
α0 = 0 −0.001 0.043 −0.001 0.043 0.044 0.95 0.000 0.043 0.044 0.96
β01 = 1 0.002 0.044 −0.003 0.045 0.044 0.94 0.004 0.047 0.044 0.93
β02 = 1 −0.001 0.044 −0.005 0.044 0.044 0.94 0.000 0.045 0.044 0.95
β03 = 1 −0.001 0.046 −0.005 0.046 0.044 0.95 −0.004 0.045 0.044 0.94
β04 = 1 −0.002 0.045 −0.006 0.045 0.044 0.94 0.001 0.047 0.044 0.94
β05 = 1 −0.004 0.048 −0.008 0.049 0.044 0.92 −0.001 0.046 0.044 0.95
β06 = 0 −0.000 0.045 −0.001 0.045 0.044 0.94 0.001 0.045 0.044 0.95
β07 = 0 0.003 0.046 0.003 0.046 0.044 0.93 0.001 0.043 0.044 0.96
β08 = 0 −0.001 0.045 −0.001 0.045 0.044 0.95 −0.000 0.048 0.044 0.94
β09 = 0 −0.002 0.047 −0.002 0.048 0.044 0.94 0.000 0.045 0.045 0.95
β010 = 0 0.003 0.045 0.003 0.045 0.044 0.94 −0.002 0.045 0.045 0.94

(b) OLS and EASE for the NL2C model
α0 = 0 −0.015 0.239 −0.016 0.146 0.136 0.93 0.013 0.105 0.096 0.93
β01 = 1 0.000 0.260 0.015 0.159 0.160 0.96 −0.004 0.124 0.112 0.93
β02 = 1 −0.004 0.269 0.017 0.173 0.158 0.93 0.010 0.127 0.113 0.93
β03 = 1 −0.015 0.249 0.018 0.156 0.158 0.95 −0.000 0.118 0.113 0.95
β04 = 1 −0.001 0.267 0.016 0.164 0.159 0.94 0.007 0.124 0.113 0.93
β05 = 1 0.013 0.260 0.019 0.164 0.158 0.94 0.002 0.120 0.113 0.94
β06 = 0 −0.010 0.281 0.008 0.164 0.155 0.94 0.005 0.119 0.112 0.94
β07 = 0 0.006 0.277 0.002 0.166 0.155 0.93 0.011 0.116 0.111 0.95
β08 = 0 −0.008 0.277 −0.004 0.167 0.156 0.94 −0.001 0.120 0.112 0.95
β09 = 0 0.002 0.279 0.003 0.160 0.157 0.95 0.007 0.118 0.113 0.95
β010 = 0 −0.008 0.272 0.002 0.160 0.155 0.95 0.004 0.130 0.111 0.91

Linear model NL2C model

DRESS1 DRESS3 MSSL DRESS1 DRESS3 MSSL

Bias ESE Bias ESE Bias ESE Bias ESE Bias ESE Bias ESE

(c) All other SS estimators for the models in (a) and (b) above
−0.001 0.043 −0.001 0.044 −0.001 0.043 −0.004 0.223 −0.003 0.226 −0.004 0.223
−0.002 0.044 −0.001 0.046 −0.002 0.044 −0.014 0.266 −0.009 0.279 −0.014 0.266

0.000 0.045 0.001 0.046 0.000 0.045 0.005 0.257 0.006 0.266 0.006 0.257
0.006 0.045 0.006 0.047 0.006 0.045 −0.013 0.256 −0.019 0.281 −0.011 0.256
0.003 0.045 0.003 0.046 0.003 0.045 −0.005 0.262 −0.007 0.274 −0.005 0.262

−0.004 0.047 −0.004 0.049 −0.004 0.047 0.002 0.250 −0.007 0.266 0.002 0.252
−0.001 0.045 −0.001 0.046 −0.001 0.045 −0.017 0.239 −0.009 0.247 −0.017 0.239
−0.000 0.048 −0.001 0.050 −0.000 0.048 −0.022 0.260 −0.019 0.270 −0.022 0.260
−0.004 0.043 −0.003 0.044 −0.004 0.043 −0.011 0.241 −0.013 0.261 −0.010 0.241
−0.001 0.048 −0.001 0.049 −0.001 0.048 −0.020 0.256 −0.019 0.259 −0.020 0.256
−0.003 0.047 −0.003 0.049 −0.003 0.047 −0.020 0.252 −0.022 0.269 −0.020 0.252
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6.2. Application to EMR data. We applied our proposed SS procedures to an
EMR study of rheumatoid arthritis (RA), a systemic auto-immune disease (AD),
conducted at the Partners HealthCare [Liao et al. (2010)]. The study cohort consists
of 3854 RA patients with blood samples stored. The outcome of interest is the (log-
arithm of) anti-CCP (antibodies to cyclic citrullinated polypeptide), a biomarker
that is often used to determine subtypes of RA. Due to cost constraints, anti-CCP
was measured only for a random subset of n = 355 patients, thereby leading to a SS
set-up. To investigate the validity of the MCAR assumption, we report in Table II
in the Supplementary Material [Chakrabortty and Cai (2018)] summary measures
of the distributions in the labeled and unlabeled data for each of the predictors,
as well as p-values from various tests for assessing equality of those distributions.
The results suggest that the MCAR assumption is appropriate in this study.

We relate the log anti-CCP level to a set of p = 24 clinical variables X re-
lated to ADs, including age, gender, race; total counts of codified and/or narrative
mentions extracted from physicians’ notes via natural language processing (NLP)
for various RA related conditions including RA, Lupus, Polymyalgiarheumatica
(PmR), Spondyloarthritis (SpA), as well as various RA medications; indicators of
seropositivity and radiological evidence of erosion; mentions of rheumatoid factor
(RF), as well as anti-CCP positivity from prior medical history. Since the tests for
RF and anti-CCP were not always ordered, missing indicators for these variables
were also included. All count variables were transformed as: x → log(1 + x) to
increase stability of the model fitting. All predictors were normalized to have unit
variance.

We obtained the OLS, the EASE using both T := KS2,P2 and T := KM in the
smoothing step, as well as the DRESS1 estimator for comparison. For EASE, we
again used K = 5 and for the KS2,P2 smoother, P2 was obtained using SIR with
H = 80 slices of equal width. In Table 3, we present the coordinatewise estimates
of the regression parameters along with their estimated SEs and the corresponding
p-values based on these estimates. Overall, the point estimators from all meth-
ods are quite close to each other. Our proposed EASE, with both KS and KM
smoothers, is substantially more efficient than the OLS across all coordinates with
efficiency ranging from about 1.4 to 2.4. The DRESS1 estimator improved estima-
tion for a few coordinates but the efficiency remains comparable to the OLS for
most coordinates. This again suggests the advantage of our proposed estimators
compared to both OLS and other SS estimators.

We also estimated the prediction errors (PEs) for each of the fitted linear mod-
els based on the aforementioned estimation methods via CV. To remove potential
randomness in the CV partitions, we averaged over 10 replications of leave-5-out
CV estimates. The PE was about 1.28 for EASE with both smoothers, 1.29 for
OLS and 1.30 for DRESS1. For prediction purposes, we may also directly employ
nonparametric estimates of the conditional mean rather than the fitted linear mod-
els. The PE in fact is slightly larger when we use m̂(x; P̂r ) or μ̂(x; P̂r,K). The PE
was 1.34 for KS and 1.33 for KM based on m̂(x; P̂r ), and 1.30 for KS and 1.28



SE
M

I-SU
PE

R
V

ISE
D

L
IN

E
A

R
R

E
G

R
E

SSIO
N

1563
TABLE 3

Estimates (Est) of the regression coefficients based on OLS, EASE obtained using either T := KS2,P2 or T := KM, as well as DRESS1, along with their
estimated standard errors (SE) and the corresponding p-values (Pval) for testing the null effect of each predictor. Shown also are the relative efficiencies

(RE) of all the estimators compared to the OLS

OLS EASE (KS2,P2) DRESS1 EASE (KM)

Predictors Est SE Pval Est SE Pval RE Est SE Pval RE Est SE Pval RE

Age 0.105 0.076 0.168 0.106 0.064 0.099 1.40 0.094 0.073 0.199 1.09 0.104 0.064 0.103 1.42
Gender −0.032 0.059 0.589 −0.028 0.050 0.570 1.41 −0.027 0.058 0.638 1.04 −0.031 0.049 0.524 1.44
Race −0.041 0.065 0.534 −0.042 0.055 0.452 1.40 −0.044 0.067 0.511 0.95 −0.040 0.055 0.462 1.41
Lupus 0.038 0.066 0.563 0.048 0.052 0.359 1.59 0.021 0.063 0.731 1.11 0.037 0.051 0.464 1.70
PmR −0.075 0.044 0.088 −0.076 0.031 0.013 2.07 −0.074 0.031 0.016 2.10 −0.075 0.030 0.014 2.04
RA 0.015 0.089 0.862 0.012 0.076 0.879 1.37 0.008 0.080 0.923 1.23 0.016 0.075 0.832 1.30
SpA −0.137 0.102 0.177 −0.133 0.072 0.063 2.02 −0.128 0.075 0.089 1.82 −0.136 0.066 0.038 2.37
Other ADs −0.022 0.078 0.775 −0.024 0.058 0.679 1.79 −0.018 0.067 0.792 1.35 −0.022 0.056 0.692 1.93
Erosion 0.076 0.070 0.278 0.078 0.059 0.184 1.44 0.085 0.069 0.221 1.03 0.076 0.058 0.189 1.47
Seropositivity 0.056 0.062 0.370 0.054 0.053 0.310 1.37 0.041 0.061 0.496 1.05 0.055 0.052 0.296 1.41
Anti-CCPprior 0.572 0.136 0.000 0.557 0.110 0.000 1.54 0.567 0.123 0.000 1.23 0.568 0.107 0.000 1.60
Anti-CCPmiss 0.527 0.123 0.000 0.520 0.097 0.000 1.61 0.508 0.115 0.000 1.15 0.523 0.096 0.000 1.64
RF 0.128 0.081 0.113 0.125 0.066 0.059 1.49 0.149 0.079 0.059 1.05 0.127 0.066 0.054 1.49
RFmiss 0.085 0.085 0.316 0.084 0.070 0.233 1.46 0.137 0.080 0.088 1.12 0.084 0.070 0.231 1.48
Azathioprine −0.080 0.071 0.263 −0.074 0.056 0.185 1.62 −0.075 0.062 0.225 1.33 −0.079 0.053 0.132 1.83
Enbrel 0.138 0.070 0.048 0.133 0.058 0.021 1.48 0.136 0.073 0.064 0.91 0.137 0.057 0.017 1.49
Gold salts 0.138 0.050 0.006 0.136 0.043 0.002 1.37 0.147 0.050 0.003 1.01 0.137 0.042 0.001 1.40
Humira −0.051 0.068 0.453 −0.049 0.057 0.391 1.43 −0.057 0.067 0.389 1.03 −0.051 0.056 0.360 1.49
Infliximab 0.003 0.069 0.968 0.008 0.057 0.887 1.50 0.000 0.067 0.994 1.07 0.003 0.055 0.959 1.57
Leflunomide −0.027 0.069 0.697 −0.023 0.058 0.693 1.40 −0.031 0.071 0.660 0.93 −0.026 0.057 0.644 1.45
Methotrexate −0.021 0.073 0.775 −0.024 0.061 0.699 1.42 −0.025 0.073 0.728 1.01 −0.022 0.060 0.720 1.46
Plaquenil −0.043 0.069 0.540 −0.038 0.057 0.503 1.47 −0.044 0.070 0.532 0.98 −0.042 0.057 0.460 1.48
Sulfasalazine −0.114 0.074 0.125 −0.116 0.063 0.064 1.39 −0.105 0.072 0.145 1.06 −0.113 0.061 0.065 1.45
Other meds. −0.042 0.074 0.570 −0.052 0.060 0.385 1.52 −0.052 0.071 0.466 1.10 −0.042 0.059 0.473 1.59
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for KM based on μ̂(x; P̂r,K). This confirms that while the linear model may be
mis-specified, it may often be preferable to nonparametric models in practice as it
may achieve simplicity without substantial loss in prediction performance.

7. Discussion. We have developed in this paper an efficient and adaptive es-
timation strategy for the SS linear regression problem. The adaptive property pos-
sessed by the proposed EASE is crucial for advocating “safe” use of the unlabeled
data and is often unaddressed in the existing literature. In general, the magnitude
of the efficiency gain with EASE depends on the inherent degree of nonlinearity in
E(Y |X) and the extent of sufficiency of the underlying SNP imputation. In partic-

ular, if the imputation is sufficient or the working linear model is correct, θ̂
E

(Pr ,K)

is further optimal among a wide class of estimators. We obtained theoretical re-

sults along with IF expansions for θ̂ (Pr ,K) and θ̂
E

(Pr ,K) substantiating all our claims
and also validated them based on numerical studies. The double CV method fur-
ther facilitates accurate inference, overcoming potential over-fitting issues in finite
samples due to smoothing. An R code for implementing EASE is available upon
request.

The proposed SNP imputation, the key component of EASE, apart from being
flexible and scalable, enjoys several useful properties. The refitting step and CV
play a crucial role in reducing the bias of θ̂ (Pr ,K), and for T := KS in particular,
eradicate any under-smoothing or higher order kernel requirements: two undesir-

able, yet often inevitable, conditions required for n
1
2 -consistency of two-step es-

timators based on a first step of smoothing. Theorem 4.2, apart from showing the
distinct behaviour of θ̂ (Pr ,1) compared to θ̂ (Pr ,K) for K≥ 2, also highlights the key
role of CV in completely removing kernel order restrictions, apart from address-
ing over-fitting issues. The error rates in the results of Theorems 4.1–4.2 are quite
sharp and account for any estimation error from P̂r . The regularity conditions re-
quired are also fairly mild and standard in the literature. The continuity assumption
on X in Sections 3.1 and 4 is mostly for the convenience of proofs, and the results
continue to hold for more general X. Lastly, while we have focussed here on lin-
ear regression for simplicity, our methods can indeed be easily adapted to other
regression problems such as logistic regression for binary outcomes.

When the goal is solely that of prediction, one obviously does not have to em-
ploy linear regression models, and models that incorporate nonlinear effects can
be helpful. For such settings, the estimators m̂(x; P̂r ) or μ̂(x; P̂r,K), obtained as
by-products of our SNP imputation, can themselves serve as potentially useful
nonlinear predictors. These SNP estimators may substantially outperform naive
nonparametric estimators such as a p-dimensional KS estimator, as demonstrated
in Table III of the Supplementary Material [Chakrabortty and Cai (2018)] for the
models considered in our simulation studies. In practice, when the covariates are
substantially correlated and the dimension of p is not small as in the EMR exam-
ple, it is unclear whether nonlinear models necessarily provide better prediction
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performance than the linear models. Under such settings, the linear model also has
a clear advantage due to its simplicity. Furthermore, while prediction is a vitally
important goal of predictive modeling, association analysis under interpretable
models is key to clinical studies for discovery research and efficient estimation
of the corresponding model parameters remains an important task.

We end with a comment on the choice of K≥ 2 in θ̂ (Pr ,K). While (3.11) holds for
any K≥ 2, the error term in (3.11) depends on K through cn−

K

and more precisely,

through c̃n−
K

=K
1
2 cn−

K

. Since K is fixed, cn−
K

and c̃n−
K

are asymptotically equivalent.
But for a given n, cn−

K

is expected to decrease with K, while c̃n−
K

is likely to in-
crease. It is however desirable that both are small since cn−

K

inherently controls the

efficiency of the SNP imputation, while c̃n−
K

directly controls the bias of θ̂ (Pr ,K).

Hence, a reasonable choice of K ≥ 2 may be based on minimizing: (c2
n−
K

+ λc̃2
n−
K

)

for some λ ≥ 0. Since the (first-order) asymptotic variance of θ̂ (Pr ,K) is indepen-
dent of K, this is equivalent to a penalized minimization of the asymptotic MSE
of θ̂ (Pr ,K) with λ denoting the weightage of the (lower order) bias relative to the
(first-order) variance. In general, the optimal K should be inversely related to λ.
Conversely, choice of any K may be viewed to have an associated regularization
effect (through λ) resulting in a “variance-bias trade-off” with smaller K leading
to lower bias at the cost of some efficiency, and higher K leading to improved effi-
ciency in lieu of some bias. In practice, we find that K= 5 works well, and K = 10
tends to give slightly smaller MSE at the cost of increased bias.

APPENDIX

A.1. Preliminaries. The following Lemmas A.1–A.3 would be useful in the
proofs of the main theorems. The proofs of these lemmas, as well as Theorems
3.1, 4.1 and 4.2, can be found in the Supplementary Material [Chakrabortty and
Cai (2018)].

LEMMA A.1. Let Z ∈ R
l be any random vector and g(Z) ∈ R

d be any mea-
surable function of Z, where l and d are fixed. Let Sn = {Zi}ni=1 ⊥⊥ Sm = {Zj }mj=1
be two random samples of n and m i.i.d. observations of Z, respectively. Let
ĝn(·) be any estimator of g(·) based on Sn such that the random sequence:
T̂n ≡ supz∈χ ‖̂gn(z)‖ is Op(1), where χ ⊆ R

l denotes the support of Z. Let Ĝn,m

denote the (double) random sequence: m−1 ∑
Zj∈Sm

ĝn(Zj ), and let Gn denote

the random sequence: ESm
(Ĝn,m) = EZ{̂gn(Z)}, where EZ(·) denotes expectation

w.r.t. Z ∈ Sm ⊥⊥ Sn, and all expectations involved are assumed to be finite almost
surely (a.s.) [Sn] ∀n.

Then: (a) Gn,m − Gn = Op(m− 1
2 ), and (b) as long as g(·) has finite 2nd mo-

ments, m−1 ∑
Zj∈Sm

g(Zj ) −EZ{g(Z)} = Op(m− 1
2 ).
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Controlling empirical processes indexed by KS estimators. The next two lem-
mas would be useful in the proof of Theorem 4.2. They may also be of more gen-
eral use in other applications that involve controlling empirical processes indexed
by kernel estimators—both linear and ratio-type estimators, where the smoothing
is further allowed to be performed over a possibly lower dimensional and esti-
mated transformation of the original covariate X. These allowances make the tech-
nical analyses of such processes considerably more involved and nuanced. The
results of these lemmas and the techniques used in their proofs may therefore be
of independent general interest.

Suppose Assumption 2.1(a) holds, and consider the KS framework introduced
in Section 4. Let ϕ̃

(�)

Pr
(w) = (nhr)−1 ∑n

i=1 Kh(w,P′
rXi)Y

�
i , for � = 0,1. Let

f̃Pr
(·) = ϕ̃

(0)
Pr

(·), l̃Pr
(·) = ϕ̃

(1)
Pr

(·) and m̃Pr
(·) = l̃Pr

(·)/f̃Pr
(·). Next, let ϕ

(0)
Pr

(·) =
fPr

(·) and ϕ
(1)
Pr

(·) = lPr
(·), where lPr

(·) = mPr
(·)fPr

(·). For each � ∈ {0,1}, let

ϕ(�)(x;Pr ) = ϕ
(�)

Pr
(P′

rx) and ϕ̃(�)(x;Pr ) = ϕ̃
(�)

Pr
(P′

rx). Further, let f̃ (·) = ϕ̃(0)(·),
l̃(·) = ϕ̃(1)(·) and m̃(·) = l̃(·)/f̃ (·).

Lastly, let Pn denote the empirical probability measure on R
p based on {Xi}ni=1,

and for any measurable (and possibly vector-valued) function γ (·) of X, where

γ (·) can be random itself, let G∗
n(γ ) = n

1
2
∫

γ (x)(Pn −PX)(dx), the (centered) n
1
2 -

scaled empirical process indexed by γ (·). Lemmas A.2–A.3 together, among other
more general implications, establish explicit rates of convergence of the quantity
G

∗
n{ĝ(·) − g(·)}, for any linear or ratio-type kernel estimator ĝ(·) of the type dis-

cussed above and its corresponding target g(·).
LEMMA A.2. Consider the set-up introduced above. For any fixed integer d ≥

1, let λ(·) be any R
d -valued measurable function of X that is bounded a.s. [PX].

Define b
(1)
n = n− 1

2 h−r +hq and an,2 = (logn)
1
2 (nhr)− 1

2 +hq . Assume b
(1)
n = o(1)

for (A.1) and n
1
2 a2

n,2 = o(1) for (A.2) below. Then, under Assumption 4.1(i)–(v),
and ∀� ∈ {0,1},

G
∗
n

[
λ(·){ϕ̃(�)(·;Pr ) − ϕ(�)(·;Pr )

}] = Op

(
b(1)
n

) = op(1) and(A.1)

G
∗
n

[
λ(·){m̃(·;Pr ) − m(·;Pr )

}] = Op

(
n

1
2 a2

n,2
) = op(1).(A.2)

Let ϕ̂(�)(x; P̂r ) = (nhr)−1 ∑n
i=1 Kh(P̂′

rx, P̂′
rXi )Y

�
i ∀� ∈ {0,1}, where P̂r is as

in Section 3.2 and all other notation are the same as in the set up of Lemma A.2.
Let f̂ (x; P̂r ) = ϕ̂(0)(x; P̂r ) and l̂(x; P̂r ) = ϕ̂(1)(x; P̂r ). Then we have the following.

LEMMA A.3. Consider the set-up of Lemma A.2. Let ϕ̂(�)(x; P̂r ) be as above,
and let λ(·) be as in Lemma A.2. Suppose (P̂r −Pr ) = Op(αn) for some αn = o(1).

Assume b
(2)
n = o(1), where b

(2)
n = αn +n− 1

2 αnh
−(r+1) +n

1
2 α2

n(h
−2 +n−1h−(r+2)).

Then, under Assumption 4.1,

(A.3) G
∗
n

[
λ(·){ϕ̂(�)(·; P̂r ) − ϕ̃(�)(·;Pr )

}] = Op

(
b(2)
n

) = op(1) ∀� ∈ {0,1}.



SEMI-SUPERVISED LINEAR REGRESSION 1567

A.2. Proof of Theorem 3.2. Let �n = 1
n

∑n
i=1

−→
X i

−→
X ′

i , and

T(1)
n = 1

n

n∑
i=1

−→
X i

{
Yi − μ(Xi;Pr )

}
,

T(2)
n,K = 1

n

K∑
k=1

∑
i∈Ik

−→
X i�̂k(Xi;Pr , P̂r,k).

Then, using (3.4)–(3.8), it is straightforward to see that:

E
[−→

X
{
Y − μ(X;Pr )

}] ≡ E
[−→

X
{
Y − m(X;Pr ) − −→

X ′ηPr

}] = 0 and(A.4)

�n(̂η(Pr ,K) − ηPr
) = T(1)

n − T(2)
n,K.(A.5)

Under (A.4), Assumptions 2.1(a) and (i), it follows from Lemma A.1(b) that T(1)
n =

Op(n− 1
2 ). Next, due to assumption (ii) and boundedness of X,

∥∥T(2)
n,K

∥∥ ≤ n−1
K∑

k=1

∑
i∈Ik

sup
x∈X

{‖−→x ‖∣∣�̂k(x;Pr , P̂r,k)
∣∣} = Op(cn−

K

).

Finally, under Assumption 2.1(a), we have �n = � + Op(n− 1
2 ) using Lem-

ma A.1(b). Further, since �n is invertible a.s., �−1
n = �−1 + Op(n− 1

2 ). Using

all these facts, we then have (̂η(Pr ,K) − ηPr
) = �−1

n (T(1)
n − T(2)

n,K) = �−1(T(1)
n −

T(2)
n,K) + Op{n− 1

2 (n− 1
2 + cn−

K

)}. Thus,

(̂η(Pr ,K) − ηPr
) = �−1(

T(1)
n − T(2)

n,K

) + Op

(
n−1 + n− 1

2 cn−
K

)
.(A.6)

Next, let us define

�N = N−1
n+N∑

j=n+1

−→
X j

−→
X ′

j ,

R(1)
N = N−1

n+N∑
j=n+1

−→
X j

{
μ(Xj ;Pr ) − −→

X ′
jθ0

}
and

R̂(K)
N,n = N−1

n+N∑
j=n+1

−→
X j

{
μ̂(Xj ; P̂r,K) − μ(Xj ;Pr )

}
.

Then, using (3.7), we have

�N (̂θ (Pr ,K) − θ0) = N−1
n+N∑

j=n+1

−→
X j

[
μ̂(Xj ; P̂r,K) − −→

X ′
jθ0

] = R(1)
N + R̂(K)

N,n.
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Next, using (3.4)–(3.8), we have R̂(K)
N,n = �N (̂η(Pr ,K) − ηPr

) + Ŝ(K)
N,n, where

Ŝ(K)
N,n =K

−1
K∑

k=1

{
N−1

n+N∑
j=n+1

−→
X j �̂k(Xj ;Pr , P̂r,k)

}
.

Hence, we have: �N (̂θ (Pr ,K) − θ0) = �N (̂η(Pr ,K) − ηPr
) + R(1)

N + Ŝ(K)
N,n.

Now, under Assumptions (i)–(ii) and Assumption 2.1(a), we have

(I)
K∑

k=1

sup
x∈X

∥∥−→x �̂k(x;Pr , P̂r,k)
∥∥ = Op(1),

so that using Lemma A.1(a), Ŝ(K)
N,n = K

−1 ∑
K
k=1 Ŝ∗

n,k + Op(N− 1
2 ), where Ŝ∗

n,k =
EX{−→X �̂k(X;Pr , P̂r,k)} ∀1 ≤ k ≤K;

(II) R(1)
N = E

[−→
X

{
μ(X;Pr ) − −→

X ′θ0
}] + Op

(
N− 1

2
) = Op

(
N− 1

2
)

from Lemma A.1(b) and E[−→X {μ(X;Pr ) − −→
X ′θ0}] = 0 due to (A.4) and Defini-

tion 2.1; and lastly, (III) �−1
N = �−1 + Op(N− 1

2 ). It then follows from (I)–(III)
that

θ̂ (Pr ,K) − θ0 = (̂η(Pr ,K) − ηPr
) +K

−1�−1
K∑

k=1

Ŝ∗
n,k + Op

(
N− 1

2
)
.(A.7)

Using (A.6) and (3.9) in (A.7), we then have

θ̂ (Pr ,K) − θ0

= 1

n

n∑
i=1

ψ(Zi;Pr ) − �−1 1

K

K∑
k=1

{
1

nK

∑
i∈Ik

Ĝk(Xi)

}
+ Op(bn,K),

where bn,K = n−1 + n− 1
2 cn−

K

+ N− 1
2 . It follows, as claimed in (3.10), that

(A.8) n
1
2 (̂θ (Pr ,K) − θ0) = n− 1

2

n∑
i=1

ψ(Zi;Pr ) − �−1
Gn,K + Op

(
c∗
n,K

)
.

We next show that Gn,K = Op(cn−
K

) for any fixed K≥ 2. To this end, let T(n)
k =

(nK)− 1
2
∑

i∈Ik
Ĝk(Xi), D̂k = supx∈X |�̂k(x;Pr , P̂r,k)| and C = supx∈X ‖−→x ‖ <

∞. For any subset A ⊆ L, let PA denote the joint distribution of the observa-
tions in A, and let EA(·) denote expectation w.r.t. PA. By definition, Gn,K =
K

− 1
2
∑

K
k=1 T

(n)
k = Op(cn−

K

) if and only if given any ε > 0, ∃Mε > 0 such that
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P(‖Gn,K‖ > Mεcn−
K

) ≤ ε ∀n. Note that for any M > 0,

P
(‖Gn,K‖ > Mcn−

K

)
≤ P

(
K

− 1
2

K∑
k=1

∥∥T(n)
k

∥∥ > Mcn−
K

)
(A.9)

≤
K∑

k=1

P

(
K

− 1
2
∥∥T(n)

k

∥∥ >
Mcn−

K

K

)
≤

K∑
k=1

p+1∑
l=1

P

{∣∣T(n)
k[l]

∣∣ >
Mcn−

K

K
1
2 (p + 1)

1
2

}

=
K∑

k=1

p+1∑
l=1

EL−
k

[
PLk

{∣∣T(n)
k[l]

∣∣ >
Mcn−

K

K
1
2 (p + 1)

1
2

∣∣∣L−
k

}]
,

where the steps follow from repeated use of Bonferroni’s inequality and other stan-

dard arguments. Now, conditional on L−
k (⊥⊥ Lk,with K≥ 2), n

1
2
K
T

(n)
k is a centered

sum of the i.i.d. random vectors {−→X i�̂k(Xi;Pr , P̂r,k)}i∈Ik
which, due to assump-

tion (ii) and the compactness of X , are bounded by: CD̂k < ∞ a.s. [PL−
k

] ∀k,n.

Hence, applying Hoeffding’s inequality to T
(n)
k[l] ∀l, we have

PLk

{∣∣T(n)
k[l]

∣∣ >
Mcn−

K

K
1
2 (p + 1)

1
2

∣∣∣L−
k

}

≤ 2 exp
{
−

M2c2
n−
K

2(p + 1)KC2D̂2
k

}
(A.10)

a.s. [PL−
k
] ∀n; for each k ∈ {1, . . . ,K} and ∀1 ≤ l ≤ (p + 1).

Now, since D̂k = Op(cn−
K

), (cn−
K

/D̂k) ≥ 0 is stochastically bounded away from
0. Thus, ∀k, and for any given ε > 0, ∃δ(k, ε) > 0 (independent of n) such that:
PL−

k
{(cn−

K

/D̂k) ≤ δ(k, ε)} ≤ ε∗ ∀n, where ε∗ = ε/{4K(p + 1)} > 0. Let δ̃(K, ε) =
min{δ(k, ε) : k = 1, . . . ,K} > 0 (as K is fixed). Let A(k, ε) denote the event:
{(cn−

K

/D̂k) ≤ δ̃(K, ε)}, and let Ac(k, ε) be its complement. Then PL−
k
{A(k, ε)} ≤

ε∗, while on A
c(k, ε), (cn−

K

/D̂k) > δ̃(K, ε). Thus, the bound in (A.10) is domi-

nated by: 2 exp[−M2δ̃2(K, ε)/{2(p + 1)KC2}] on A
c(k, ε), and trivially by 2 on

A(k, ε) ∀k. Plugging the bound of (A.10) into (A.9) and using all these facts, we
then have

P
(‖Gn,K‖ > Mcn−

K

)
≤

K∑
k=1

p+1∑
l=1

EL−
k

[
2 exp

{
−

M2c2
n−
K

2(p + 1)KC2D̂2
k

}]
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=
K∑

k=1

p+1∑
l=1

EL−
k

[
2 exp

{
−

M2c2
n−
K

2(p + 1)KC2D̂2
k

}
{1Ac(k,ε) + 1A(k,ε)}

]
(A.11)

≤
K∑

k=1

p+1∑
l=1

[
2 exp

{
− M2δ̃2(K, ε)

2(p + 1)KC2

}
PL−

k

{
A

c(k, ε)
} + 2PL−

k

{
A(k, ε)

}]

≤ 2K(p + 1)

[
exp

{
− M2δ̃2(K, ε)

2(p + 1)KC2

}
+ ε∗

]
≤ ε

2
+ ε

2
= ε (with some suitable choice Mε for M),

where the last step follows from noting the definition of ε∗ and choosing Mε

to be any M large enough such that 4 exp[−M2δ̃2(K, ε)/{2(p + 1)KC2}] ≤
ε/{K(p + 1)}. Thus, (A.11) shows Gn,K = Op(cn−

K

) for any fixed K ≥ 2. This
further establishes (3.11) and all its associated implications. The proof of Theo-
rem 3.2 is now complete.
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