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HIGH-DIMENSIONAL ASYMPTOTICS OF PREDICTION:
RIDGE REGRESSION AND CLASSIFICATION

BY EDGAR DOBRIBAN1 AND STEFAN WAGER

University of Pennsylvania and Stanford University

We provide a unified analysis of the predictive risk of ridge regres-
sion and regularized discriminant analysis in a dense random effects model.
We work in a high-dimensional asymptotic regime where p,n → ∞ and
p/n → γ > 0, and allow for arbitrary covariance among the features. For
both methods, we provide an explicit and efficiently computable expression
for the limiting predictive risk, which depends only on the spectrum of the
feature-covariance matrix, the signal strength and the aspect ratio γ . Espe-
cially in the case of regularized discriminant analysis, we find that predictive
accuracy has a nuanced dependence on the eigenvalue distribution of the co-
variance matrix, suggesting that analyses based on the operator norm of the
covariance matrix may not be sharp. Our results also uncover an exact inverse
relation between the limiting predictive risk and the limiting estimation risk
in high-dimensional linear models. The analysis builds on recent advances in
random matrix theory.

1. Introduction. Suppose a statistician observes n training examples (xi,

yi) ∈ R
p × Y drawn independently from an unknown distribution D, and wants

to find a rule for predicting y on future unlabeled draws x from D. In other
words, the statistician seeks a function h :Rp → Y , h(x) = g(w�x) for which
ED[�(y,h(x))] is small, where �(·, ·) is a loss function; in regression Y = R and
� is the squared error loss, while in classification Y = {0,1} and � is the 0–1
loss. Such prediction problems lie at the heart over several scientific and industrial
endeavors in fields ranging from genetics [Wray, Goddard and Visscher (2007)]
and computer vision [Russakovsky et al. (2014)] to Medicare resource allocation
[Kleinberg et al. (2015)].

When the number of features p is large, accurate prediction is not always pos-
sible. Thus, in order to guarantee good results, the statistician needs to invoke
some “enabling hypothesis” that encodes domain-specific knowledge about the
problem and guides model fitting. Popular options include the “sparsity hypothe-
sis,” that is, that there is a good predictive rule depending only on w�x for some
sparse weight vector w [Donoho et al. (1992), Hastie, Tibshirani and Wainwright
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(2015), Candès and Tao (2007)], the “manifold hypothesis” positing that the xi

have useful low-dimensional geometric structure [Rifai et al. (2011), Simard et al.
(2000)], and several variants of an “independence hypothesis” that rely on inde-
pendence assumptions for the feature distribution [Bickel and Levina (2004), Ng
and Jordan (2001)]. The choice of enabling hypothesis is important from a practi-
cal perspective, as it helps choose which predictive method to use, for example, the
lasso with sparsity, neighborhood-based methods under the manifold hypothesis or
naive Bayes given independent features.

In many applications, however, the above enabling hypotheses are not known
to apply, yet practitioners still achieve accurate high-dimensional prediction us-
ing dense, that is, nonsparse, ridge-regularized linear methods trained on highly
correlated features. One striking example is the case of document classification
with dictionary-based features of the form “how many times does the j th word
in the dictionary appear in the current document.” Even though p � n, dense
ridge-regularized methods reliably work well across a wide range of problem set-
tings [Sutton and McCallum (2006), Toutanova et al. (2003)], and sometimes even
achieve state-of-the-art performance on important engineering tasks [Wang and
Manning (2012)]. Another example is bioinformatics, where in a recent test of
prediction algorithms [Bernau et al. (2014)], ridge regression—and a method that
was previously proposed by those same authors—performed best, better than lasso
regression and boosting.

The goal of this paper is to gain better understanding of the performance of
ridge-regularized linear prediction methods, which are so widely in use. We focus
on a random-effects hypothesis positing that the effect size of each feature is drawn
independently at random, and show how working under this hypothesis enables us
to get precise accuracy guarantees for ridge-regularized methods. Heuristically,
results obtained under this random-effects hypothesis can be viewed as average-
case analyses over dense parameters. The random-effects hypothesis is of course
very strong; however, it yields a qualitatively different theory for high-dimensional
prediction than popular approaches, and thus may motivate future developments.

HYPOTHESIS (Random effects). Each predictor has a small, independent ran-
dom effect on the outcome.

This hypothesis is fruitful both theoretically and methodologically. Using
random-matrix theoretic techniques [see, e.g., Bai and Silverstein (2010)], we de-
rive closed-form expressions for the limiting out-of-sample predictive risk of ridge
regularization in two settings: regression and discriminant analysis. We allow for
the features x to have a general covariance structure �. The resulting formulas are
pleasingly simple and depend on � through the Stieltjes transform of the limiting
empirical spectral distribution. More prosaically, � only enters into our formulas
through the almost-sure limits of p−1 tr((�̂ + λIp)−1) and p−1 tr((�̂ + λIp)−2),
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where �̂ is the sample covariance and λ > 0 the ridge-regularization parameter.
Notably, the same mathematical tools can describe the two settings.

From a practical perspective, we identify several high-dimensional regimes
where mildly regularized discriminant analysis performs strikingly well. We hope
that further work motivated by generalizations of the random-effects hypothesis
could yield a new theoretical underpinning for dense high-dimensional prediction.

1.1. Overview of results. In the first part of our paper, we study the predictive
risk of ridge regression in a high-dimensional asymptotic regime where n,p → ∞
and p/n converges to a limiting aspect ratio p/n → γ > 0. The spectral distribu-
tion, that is, the cumulative distribution function of the eigenvalues of the feature
covariance matrix � converges weakly to a limiting spectral measure supported on
[0,∞), which allows � to be general. After establishing formulas for the limiting
predictive risk under a suitable random effects hypothesis (Theorem 2.1), we use
them to gain qualitative insights about the behavior of ridge regression.

We show that, when the signal-to-noise ratio is high, the accuracy of ridge re-
gression has a sharp phase transition at γ = 1 regardless of �, essentially validat-
ing a conjecture of Liang and Srebro (2010) on the “regimes of learning” problem
(Section 2.1). Theorem 2.1 also implies a general inaccuracy principle for high-
dimensional linear models, whereby there are no correlation structures � for which
prediction and estimation are both easy (Section 2.2).

In the second part of the paper, we study regularized linear discriminant analysis
(RDA) [Friedman (1989), Serdobolskii (1983)] in the two-class Gaussian problem

(1) y ∼ {±1} with P[y = ±1] = π±1, and x ∼ N (μy,�),

where π±1 are known and μ±1 and � are unknown. We show that the out-
of-sample classification error of RDA converges to an almost-sure limit (Theo-
rem 3.1). This limit depends on the angle between the oracle separating hyperplane
and the estimated hyperplane, as well as on the limiting Bayes error (Section 3.2).
This result is generalized to unequal class sample sizes in Theorem 3.2.

We can again use our result to derive qualitative insights about the behavior
of RDA. We find that the limiting angle between the estimated and oracle hyper-
planes converges to a nontrivial quantity as the signal strength α2 goes to infinity
(formally, α2 = 4E[‖μ+1 − μ−1‖2]), implying that our analysis is helpful in un-
derstanding the asymptotics of RDA even in a very high signal-to-noise regime
(Corollary 3.4). Finally, by studying the limits as the “regularization strength” in
RDA becomes small or large, we can recover known results about Fisher’s linear
discriminant analysis and naive Bayes methods going back to Bickel and Levina
(2004), Raudys (1967), Saranadasa (1993), and even to early ideas discussed by
Kolmogorov (Section 3.4).

Mathematically, our results build on recent advances in random matrix the-
ory. A main difficulty here is finding explicit limits of certain trace functionals
involving both the sample and the population covariance matrix. For instance,
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the well-known Stieltjes transform m of the limiting empirical spectral distribu-
tion (i.e., the limit distribution of the eigenvalues �̂, which exists in our case, as
explained later) satisfies m(−λ) = limp→∞ p−1 tr((�̂ + λIp)−1). However, stan-
dard random matrix theory does not provide simple expressions for the limits
of functionals that come up in our analysis, such as p−1 tr(�(�̂ + λIp)−1) or
p−1 tr([�(�̂ + λIp)]−2), which involve both � and �̂. For this, we leverage and
build on recent results, including the work of Chen et al. (2011), Hachem, Louba-
ton and Najim (2007), and Ledoit and Péché (2011). Our contributions include
some new explicit formulas, for which we refer to the proofs. These formulas may
prove useful for the analysis of other statistical methods under high-dimensional
asymptotics, such as principal component regression.

1.2. A first example. A key contribution of our theory is a precise understand-
ing of the effect of correlations between the features on regularized discriminant
analysis, given our random-effects model. Correlated features have a nontrivial ef-
fect on predictive accuracy that cannot be summarized using standard notions such
as the condition number of � or the classification margin; rather, the full eigen-
value spectrum of � matters. A similar phenomenon also holds for PCA [Dobriban
(2016)]. This observation is at odds with popular analyses of high-dimensional
classification methods, in which the error bounds often depend on the operator
norm ‖�‖2 [see, e.g., Fan, Fan and Wu (2011)], thus suggesting that existing anal-
yses of many classification methods are not sharp.

Consider the following examples: First, � has eigenvalues corresponding to
evenly-spaced quantiles of the standard Exponential distribution; Second, �

has a depth-d BinaryTree covariance structure, used in genetics to model the
correlations between populations with an evolutionary history described by a bal-
anced binary tree [Pickrell and Pritchard (2012)]. In the second case, the eigen-
value spectrum equals Hp = ∑d

i=1 2−iδ2i + 2−dδ2d , where δc is the point mass
at c. In both cases, we set the class means μy such as to keep the Bayes error con-
stant across experiments. Figure 1 plots our formulas for the asymptotic error rate
along with empirical realizations of the classification error.

Both covariance structures are far from the identity, and have similar condi-
tion numbers. However, the Exponential problem is vastly more difficult for
RDA than the BinaryTree problem. This example shows that classical notions
like the classification margin or the condition number of � cannot satisfactorily
explain the high-dimensional predictive performance of RDA; meanwhile, our
asymptotic formulas are accurate even in moderate sample sizes. Our computa-
tional results are reproducible using software available from https://github.com/
dobriban/high-dim-risk-experiments/.

1.3. Related work. Random matrix theoretic approaches have been used to
study regression and classification in high-dimensional statistics [Serdobolskii
(2007), Yao, Bai and Zheng (2015)], as well as in wireless communications

https://github.com/dobriban/high-dim-risk-experiments/
https://github.com/dobriban/high-dim-risk-experiments/
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FIG. 1. Classification error of RDA in the BinaryTree and Exponential models. The the-
oretical formula (red, dashed) is overlaid with the results from simulations (blue, solid); we also
display the oracle error (yellow, dotted). The class means are drawn from μ±1 ∼N (0, α2p−1Ip),
where α is calibrated such that the oracle classifier always has an error rate of 1%. For Bina-
ryTree, we train on n = γ −1p samples, where p = 1024; for Exponential, we use n = 500
samples. The sizes of the two classes are equal. On the left, p is fixed, but on the right n is fixed (and
p changes). We test the trained model on 10,000 new samples, and report the average classification
error. Our asymptotically-motivated theoretical formulas appear to be accurate here, even though
we only have a moderate problem size. The parameter λ, defined in Section 3, quantifies the strength
of the regularization.
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[Couillet and Debbah (2011), Tulino and Verdú (2004)]. Various regression and
M-estimation problems have been studied in high dimensions using approximate
message passing [Bayati and Montanari (2012), Donoho and Montanari (2015)]
as well as using methods inspired by random matrix theory [Bean et al. (2013)].
A remarkably early random matrix theoretic analysis of regularized discriminant
analysis is due to Serdobolskii (1983). Kolmogorov and researchers around him
were interested in the area even earlier (Section 3.4). In wireless communications,
estimation with ridge regression is well understood; however, its prediction error
has apparently not been studied.

El Karoui and Kösters (2011) study the geometric sensitivity of random matrix
results, and discuss the consequences to ridge regression and regularized discrim-
inant analysis, under weak theoretical assumptions. In contrast, we make stronger
assumptions that enable explicit formulas for the limiting risk of both methods,
and allow us to uncover several qualitative phenomena. Our use of results from
Ledoit and Péché (2011) simplifies the proof.

We review the literature focusing on ridge regression or RDA specifically in
Sections 2.3 and 3.5, respectively. Important references include, among others,
Bickel and Levina (2004), Dicker (2014), El Karoui (2013), Fujikoshi, Ulyanov
and Shimizu (2011), Hsu, Kakade and Zhang (2014), Saranadasa (1993) and
Zollanvari and Dougherty (2015).

1.4. Basics and notation. We begin by reviewing some key concepts from ran-
dom matrix theory (RMT) used in our analysis. RMT lets us describe the asymp-
totics of the eigenvalues of large matrices [see, e.g., Bai and Silverstein (2010)].
These results are typically stated in terms of the spectral distribution, which for
a symmetric matrix A is the cumulative distribution function of its eigenvalues:
FA(x) = p−1 ∑p

i=1 I(λi(A) ≤ x). In particular, the well-known Marchenko–Pastur
theorem, given below, characterizes the spectral distribution of covariance matri-
ces. We will assume the following high-dimensional asymptotic model.

ASSUMPTION HDA (High-Dimensional Asymptotics). The following condi-
tions hold:

1. The data X ∈ R
n×p are generated as X = Z�1/2 for an n × p matrix Z with

i.i.d. entries satisfying E[Zij ] = 0 and Var[Zij ] = 1, and a deterministic p × p

positive semidefinite covariance matrix �.
2. The sample size n → ∞ while the dimensionality p → ∞ as well, such that

the aspect ratio p/n → γ > 0.
3. The spectral distribution F� of � converges to a limit probability distribution

H supported on [0,∞), called the population spectral distribution (PSD).

Families of covariance matrices � that fit the setting of this theorem include the
identity covariance, BinaryTree, Exponential and the autoregressive AR-1
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model with �ij = ρ|i−j | [see Grenander and Szegő (1984), for the last one]. For
other examples of such covariance structures, see Raudys and Saudargiene (1998)
or the Appendix of Raudys (2001).

THEOREM [Marchenko and Pastur (1967), Silverstein (1995)]. Under as-
sumption HDA, the spectral distribution F�̂ of the sample covariance matrix �̂

also converges weakly, with probability 1, to a limiting distribution supported on
[0,∞).

The limiting distribution F is called the empirical spectral distribution (ESD),
and is determined uniquely by a fixed-point equation for its Stieltjes transform.
This is defined for any distribution G supported on [0,∞) as

mG(z) =
∫ ∞
l=0

dG(l)

l − z
, z ∈ C \R+.

Given this notation, the Stieltjes transform of the spectral measure of �̂ satisfies

(2) m�̂(z) = p−1 tr
(
(�̂ − zIp)−1)

converges to m(z)

both almost surely and in expectation, for any z ∈ C \ R
+; here, we wrote

m(z) := mF (z). We also define the companion Stieltjes transform v(z), which is
the Stieltjes transform of the limiting spectral distribution of the n × n matrix
�̂ = n−1XX�. Note that �̂ is n × n while �̂ is p × p. The Stieltjes transform
v(z) is related to m(z) by

(3) γ

(
m(z) + 1

z

)
= v(z) + 1

z
for all z ∈ C \R+.

In addition, we denote by m′(−λ) the derivative of the Stieltjes transform m(z)

evaluated at z = −λ. We can write the derivatives as

m′(z) =
∫ ∞
l=0

dG(l)

(l − z)2 and v′(z) = γ

(
m′(z) − 1

z2

)
+ 1

z2 .

These derivatives can also be understood in terms of empirical quantities, through
the relation

p−1 tr
(
(�̂ + λIp)−2) →a.s. m

′(−λ).

Finally, our analysis also relies on several more recent formulas for limits of trace
functionals involving both � and �̂. In particular, we use a formula due to Ledoit
and Péché (2011), who in the analysis of eigenvectors of sample covariance ma-
trices showed that, under certain moment conditions detailed in the supplement
[Dobriban and Wager (2018)],

(4) p−1 tr
(
�(�̂ + λIp)−1) →a.s.

1

γ

(
1

λv(−λ)
− 1

)
as n,p → ∞.
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2. Predictive risk of ridge regression. In the first part of the paper, we study
the predictive behavior of ridge regression under high-dimensional asymptotics.
Suppose that we have data drawn from a p-dimensional random-design linear
model with n independent observations yi = x�

i w + εi . The noise terms εi are
independent, centered, with variance 1 and are independent of the other random
quantities. The xi are arranged as the rows of the n × p matrix X, and yi are
the entries of the n × 1 vector Y . We estimate w by ridge regression: ŵλ =
(X�X + λnIp)−1X�Y , for some λ > 0. We make the following random weights
assumption, where α2 = E[‖w‖2

2] is the expected signal strength.2

ASSUMPTION RRC (Random Regression Coefficients). The regression coef-
ficients w ∈ R

p are random with E[w] = 0, and Var[w] = p−1α2Ip .

Our result about the predictive risk of ridge regression is stated in terms of the
expected predictive risk rλ(X) = E[(y0 − ŷ0,λ)

2 | X], where ŷ0,λ = ŵ�
λ x0 and the

expectation is taken over an independent random test example (x0, y0) from the
same distribution as the training data, and over the randomness in w, ε. Here,
rλ(X) is conditioned on the random training data X, and is therefore a random
variable. Below, we will write γp = p/n.

THEOREM 2.1. Consider the linear model Y = Xw + ε as above. Under As-
sumptions HDA and RRC, suppose moreover that E[Z12

ij ] and ‖�‖2 are uniformly
bounded from above. Then the expected predictive risk rλ(X) converges almost
surely to the limiting predictive risk Rλ(H,α2, γ ), where

Rλ

(
H,α2, γ

) = 1

λv(−λ)

{
1 +

(
λα2

γ
− 1

)(
1 − λv′(−λ)

v(−λ)

)}
.

This function is minimized at the asymptotically optimal regularization parameter
λ∗ = γα−2, for which

(5) R∗(
H,α2, γ

) = 1

λ∗v(−λ∗)
.

Finally, the finite sample risk evaluated at λ∗
p = γpα−2 converges almost surely to

R∗.

2It is plausible that our results should also hold under weaker assumptions, where the signal
strength ‖w‖2 concentrates to α and w points in a “generic” direction; and other conditions that
achieve the same effect have in fact been considered in the literature. For example, in analyzing
ridge regression with identity covariance � = I , Dicker (2014) assumes that w is drawn uniformly
at random from the sphere with radius α; while El Karoui (2015) studies ridge-regularized robust
regression estimators under the condition that w be “diffuse,” meaning that each coordinate of w is
bounded as |wj | ≤ C/p1/2 for some C > 0. Understanding the most general conditions under which
the formulas developed here remain valid could lead to new insights; such investigations, however,
remain beyond the scope of the present paper.
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PROOF. We begin with some algebraic manipulation to reduce our problem
into a statement about trace functionals. Thanks to our generative model (part 1 of
Assumption HDA and the linear model assumption), we can write the predictive
risk as

rλ(X) = 1 +E
[
(ŵλ − w)��(ŵλ − w) | X]

.

Meanwhile, introducing the sample covariance matrix �̂ = n−1X�X, we obtain
by definition of the ridge regression estimator ŵλ that

ŵλ − w = −λ(�̂ + λIp)−1w + n−1(�̂ + λIp)−1X�ε.

In our setting of linear models, the true regression coefficients w and the noise ε

are independent. Thus, using the distributional assumptions on w (from RRC) and
ε (from the linear model assumption), we find that

rλ(X) = 1 + λ2 α2

p
tr

(
�(�̂ + λIp)−2)

+ n−1 tr
(
�(�̂ + λIp)−1�̂(�̂ + λIp)−1)

.

Splitting the last term in two by using the relation �̂ = (�̂ +λIp)−λIp , we finally
get that rλ(X) equals

1 + γp

p
tr

(
�(�̂ + λIp)−1) + (

λα2 − γp

) λ

p
tr

(
�(�̂ + λIp)−2)

.

This formula provides the starting point for an RMT analysis; specifically, we seek
almost sure limits for the two functionals

p−1 tr
(
�(�̂ + λIp)−1)

and p−1 tr
(
�(�̂ + λIp)−2)

.

The convergence of the first term follows directly from the theorem of Ledoit and
Péché (2011), which requires Assumption HDA, and the additional conditions that
‖�‖2 and E[Z12

ij ] are bounded. The limit of this term is given in (4). Meanwhile,
in the supplement we prove the following.

LEMMA 2.2. Under the conditions in Theorem 2.1,

p−1 tr
(
�(�̂ + λIp)−2) →a.s.

1

γ

v(−λ) − λv′(−λ)

[λv(−λ)]2 .

Given these results, we see that the risk rλ(X) converges almost surely for each
λ > 0 to the desired limit:

rλ(X) →a.s. Rλ = 1

λv(−λ)

{
1 +

(
λα2

γ
− 1

)(
1 − λv′(−λ)

v(−λ)

)}
.(6)

Finally, with λ∗ = γα−2 the second summand in the parentheses above vanishes
and we recover the formula (5) for R∗. Now, to verify that λ∗ is in fact optimal,
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suppose that we have a sequence of problems with Gaussian random weights w ∼
N (0,p−1α2Ip); this is a special case of assumption RRC. Then ridge regression
with tuning parameter λ∗

p = γpα−2 yields the Bayes posterior mean for w, which
is a Bayes optimal estimator for any quadratic loss, including �2 prediction error,
so that

E
[
rλ(X)

] ≥ E
[
rλ∗

p
(X)

]
for all λ > 0.

Now we note that rλ(X) is uniformly bounded in X, and so the convergence
statement (6) also holds in expectation, by the bounded convergence theorem. In
Lemma B.1 of the supplement, we show that rλ∗

p
(X) → R∗ almost surely and in

expectation. Thus, taking the limit as p → ∞ we conclude that Rλ ≥ R∗ for all
λ > 0, completing the proof. �

We highlight that for λ = λ∗
p this result is a calculation of limiting Bayes

risk—specifically, �2 predictive risk—in a Bayesian linear model, under high-
dimensional asymptotics. A naive calculation of this quantity, assuming for in-
stance that �̂ is very close to �, would lead to a different answer. RMT is used to
get the precise result.

The required functionals of the limiting empirical eigenvalue distribution can
be written in terms of almost-sure limits of simple quantities. For example,
rλ∗

p
(X) = Err(ŵλ∗

p
) can equivalently be characterized as

Err(ŵλ∗
p
) −

(
γ 2
p

α2 p−1 tr
[(

�̂ + γp

α2 Ip

)−1]
+ 1 − γ

)−1
→a.s. 0.

For general λ, the limiting error rate depends on the almost sure limits of both
p−1 tr((�̂ + λIp)−1) and p−1 tr((�̂ + λIp)−2). The limit Rλ can be computed ef-
ficiently using the methods detailed in the supplement.

To verify the finite-sample accuracy of Theorem 2.1, we perform a simulation
with the BinaryTree and Exponential models. We compute the limit risks
using the algorithms in the supplement. The results in Figure 2 show that the for-
mulas given in Theorem 2.1 appear to be accurate, even in small sized problems.
In Figure 2, for BinaryTree we train on n = γ −1p samples, where p = 24; for
Exponential on n = 20. We set the signal strength to α2 = 1 and generate w,
X, and ε as Gaussian random variables with i.i.d. entries. The results are averaged
over 500 simulation; we evaluate the empirical prediction error using a test set of
size 100.

Intriguingly, Figure 2 shows that the prediction performance of ridge regres-
sion is very similar on the two problems. This presents a marked contrast to the
RDA example given in the Introduction, where the two covariance structures led to
very different classification performance. Thus, the effect of covariance structure
depends on the loss function.

In the special case of identity covariance � = Ip , the quantity Rλ − 1 coin-
cides with estimation error, so we recover known results described in, for example,
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FIG. 2. Prediction error of ridge regression in the BinaryTree and Exponential model.
The theoretical formula (red, dashed) is overlaid with the results from simulations (blue, solid). The
signals are drawn from w ∼ N (0,p−1Ip). For BinaryTree, we train on n = γ −1p samples,
where p = 24; for Exponential on n = 20. We take 100 instances of random training data sets,
and for each we test on 500 samples. We report the average test error over all 50,000 test cases.

Tulino and Verdú (2004). The limit Stieltjes transform has an explicit expression
[e.g., Bai and Silverstein (2010), page 52]:

(7) mI(−λ;γ ) = −(1 − γ + λ) +
√

(1 − γ + λ)2 + 4γ λ

2γ λ
, λ > 0.
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As shown in the supplement, Theorem 2.1 then implies that the limit predictive
risk of ridge regression for general λ equals

Rλ

(
α2, γ

) = 1 + γmI (−λ;γ ) + λ
(
λα2 − γ

)
m′

I (−λ;γ ),

which has an explicit form. Furthermore, the optimal risk has the particularly sim-
ple form

R∗(
α2, γ

) = 1

2

[
1 + γ − 1

γ
α2 +

√(
1 − γ − 1

γ
α2

)2
+ 4α2

]
.

2.1. Regimes of learning. As an application of Theorem 2.1, we study the
effect of the signal strength α2 on the prediction error of ridge regression. Equiva-
lently, this is a study of limiting Bayes prediction risk in linear models. Liang and
Srebro (2010) call this the regimes of learning problem and argue that, for small α2

the Bayes error should be characterized by dimension-independent Rademacher
bounds, while for large α2 the error rate should only depend on γ . Liang and
Srebro (2010) justify their claims using generalization bounds for the identity-
covariance case � = Ip , and conjecture that similar relationships should hold in
general. Using our results, we give a precise analysis of regimes of learning with
general covariance �.

From Theorem 2.1, we know that given a signal strength α2, the predictive risk
of ridge regression with asymptotically optimal regularization converges to

(8) R∗(
H,α2, γ

) = 1

λ∗v(−λ∗)
with λ∗(α, γ ) = γ

α2 .

We now use this formula to examine the two limiting behaviors of the risk, for
weak and strong signals. In order to make use of (8), we begin by computing
some helpful limits involving the companion Stieltjes transform v. The proof of
the following lemma is provided in the supplement; recall that, in our notation, H

is the limiting population spectral distribution.

LEMMA 2.3. Suppose the limit population eigenvalue distribution H has sup-
port contained in a compact set bounded away from 0. Let v(z) be the companion
Stieltjes transform of the ESD. Then, in the large λ limit,

lim
λ→∞λv(−λ) = 1 and lim

λ→∞λ
[
1 − λv(−λ)

] = γEH [T ].
Meanwhile, in the small λ limit:

1. If γ < 1, then limλ↓0 λv(−λ) = 1 − γ ,
2. If γ > 1, then limλ↓0 v(−λ) = v(0), for a positive finite v(0) > 0 and
3. If γ = 1, then limλ↓0 λv(−λ)2 = EH [T −1].
Here, EH [T ] and EH [T −1] denote the large-sample limits of p−1 tr(�) and
p−1 tr(�−1), respectively.
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We can now proceed to read off the behavior of ridge regression in the weak- and
strong-signal limits. The weak-signal limit is relatively simple. Under the condi-
tions of Theorem 2.1, limα2→0 R∗(H,α2, γ ) = 1, reflecting that for a small signal,
we predict a near-zero outcome due to a large regularization. Moreover, by (8) and
Lemma 2.3,

lim
α2→0

R∗(H,α2, γ ) − 1

α2 = lim
λ→∞γ −1λ

(
1

λv(−λ)
− 1

)
= EH [T ].

Therefore, for small α, the difficulty of the prediction is determined to first order
by the average eigenvalue, or equivalently by the average variance of the features,
and does not depend on the aspect ratio γ = limp/n.

Conversely, the strong-signal limiting behavior of the risk depends on the aspect
ratio γ , and experiences a phase transition at γ = 1. When γ < 1, Lemma 2.3
implies that the predictive risk converges to

lim
α2→∞

R∗(
H,α2, γ

) = lim
λ→0

1

λv(−λ)
= 1

1 − γ

regardless of �. In the Gaussian case, this quantity is known to be the n,p → ∞,
p/n → γ limit of the risk of ordinary least squares (OLS) [Dicker (2013)]. The
same result for non-Gaussian data follows from the Marchenko–Pastur theorem.
Thus, when p < n and we have a very strong signal, ridge regression cannot out-
perform OLS, although of course it can do much better with a small α.

When γ > 1, the risk R∗(H,α2, γ ) can grow unboundedly large with α; and
Lemma 2.3 implies that

(9) lim
α2→∞

α−2R∗(
H,α2, γ

) = lim
λ→0

1

γ v(−λ)
= 1

γ v(0)
> 0.

Thus, the limiting error rate depends on the covariance matrix through v(0). In
general there is no closed-form expression for v(0), which is instead characterized
as the unique c > 0 for which

1

γ
=

∫ ∞
t=0

tc

1 + tc
dH(t).

In the special case � = Ip , however, the limiting expression simplifies to
1/[γ v(0)] = (γ − 1)/γ . In other words, when p > n, optimally tuned ridge re-
gression can capture a constant fraction of the signal, and its test-set fraction of
explained variance tends to γ −1.

Finally, in the threshold case γ = 1, the risk R∗(H,α2, γ ) scales with α:

(10) lim
α2→∞

α−1R∗(
H,α2, γ

) = lim
λ→0

1

λ1/2v(−λ)
= 1

EH [T −1]1/2 .

Thus, the absolute risk R∗ diverges to infinity, but the normalized error
α−2R∗(H,α2, γ ) goes to 0. This appears to be a rather unusual risk profile. In
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FIG. 3. Phase transition for predictive risk of ridge regression with identity covariance � = Ip .
Error rates based on our formulas are plotted for γ = 0.25,0.5,0.8,0.9,1,1.1,1.3,2,4 and 8.

the case � = Ip , our expression simplifies further and we get the finite-α formula
R∗(α2,1) = (

√
4α2 + 1 + 1)/2, which scales like α.

In summary, we find that for general covariance �, the strong-signal risk
R∗(α2, γ ) scales as �(1) if γ < 1, as �(α) if γ = 1, and as �(α2) if γ > 1.
We illustrate this phenomenon in Figure 3, in the case of the identity covariance
� = Ip . We see that when γ < 1 the error rate stabilizes, whereas when γ > 1, the
error rate eventually gets a slope of 1 on the log–log scale. Finally, when γ = 1,
the error rate has a log–log slope of 1/2.

Thus, thanks to Theorem 2.1, we can derive a complete and exact answer the
regimes of learning question posed by Liang and Srebro (2010) in the case of
linear models. The results (9) and (10) not only show that the scalings found by
Liang and Srebro (2010) with � = Ip hold for arbitrary �, but make explicit how
the slopes depend on the limiting population spectral distribution. The ease with
which we were able to read off this scaling from Theorem 2.1 attests to the power
of the random matrix approach.

2.2. An inaccuracy principle for high-dimensional linear models. Our results
also reveal an intriguing inverse relationship between the prediction and estimation
errors in high-dimensional linear models. Specifically, denoting the mean-squared
estimation error of ridge regression as RE,n(λ) = E[‖ŵλ −w∗‖2], it is known that
optimally tuned ridge regression satisfies, under the conditions of Theorem 2.1,

RE,n

(
λ∗

p

) →a.s. RE := γm
(−λ∗)

for λ∗ = γα−2,
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where m is the Stieltjes transform of the limiting empirical spectral distribution
[see, e.g., Tulino and Verdú (2004), Chapter 3]. This result gives the limiting Bayes
estimation error in high-dimensional Bayesian linear models. Combining this re-
sult with our result on prediction, Theorem 2.1 and with the duality relation (3),
we find the following relationship between the limiting predictive risk RP and the
limiting estimation risk RE .

COROLLARY 2.4. In high-dimensional linear models under the conditions of
Theorem 2.1, the asymptotic Bayes predictive and estimation risks are inversely
related. For all correlation structures, that is, all limit eigenvalue distributions H

of the covariance matrices �, one has

1 − 1

RP

= γ

(
1 − RE

α2

)
.

Both sides of the above equation are nonnegative: RP cannot fall below
the intrinsic noise level Var[Y | X] = 1, while RE ≤ lim supp→∞ RE,n(λ

∗) ≤
lim supp→∞ RE,n(0) = α2. When γ = 1, we get the even simpler equation

RERP = α2.

The product of the estimation and prediction risks equals the signal strength. Since
this holds for the optimal λ∗, it also implies that for any λ we have the lower bound
RE(λ) ·RP (λ) ≥ α2; we find the explicit formula relating the two risks remarkable.

The inverse relationship may be somewhat surprising, but it has an intuitive ex-
planation. When the features are highly correlated and v is correspondingly large,
prediction is easy because y lies close to the “small” column space of the feature
matrix X, but estimation of w is hard due to multicollinearity. As correlation de-
creases, prediction gets harder but estimation gets easier. A similar heuristic was
given by Liang and Srebro (2010), without theoretical justification.

2.3. Related work for high-dimensional ridge regression. Random-design
ridge regression in high dimensions is a thoroughly studied topic. In particular,
El Karoui (2013) and Dicker (2014) study ridge regression with identity covari-
ance � = Ip in an asymptotic framework similar to ours; this special case is con-
siderably more restrictive than a general covariance. The study of the estimation
error E[‖ŵλ − w‖2] of ridge regression has received substantial attention in the
wireless communication literature; see, for example, Couillet and Debbah (2011)
and Tulino and Verdú (2004) for references. To our knowledge, however, that lit-
erature has not addressed the behavior of prediction error. Finally, we also note the
work of Hsu, Kakade and Zhang (2014), who provide finite-sample concentration
inequalities on the prediction error of random-design ridge regression, without ob-
taining limiting formulas. In contrast, we give explicit limiting formulas for the
prediction error.
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3. Regularized discriminant analysis. In the second part of the paper, we re-
turn to regularized discriminant analysis and the two-class Gaussian discrimination
problem (1). For simplicity, we will first discuss balanced populations π+1 = π−1.
In this case, the Bayes oracle predicts using [Anderson (2003)]

ŷ(x) = sign
(
δ��−1

(
x − μ−1 + μ+1

2

))
with δ = μ+1 − μ−1

2
,

and has an error rate ErrBayes = �(−
n,p), where 
n,p = √
δ��−1δ is half the

between-class Mahalanobis distance. The Gaussian classification problem has a
rich history, going back to Fisher’s pioneering work on linear discriminant analysis
(LDA). When we have the same number of examples from both the positive and
negative classes, that is, n−1 = n+1 = n/2, LDA classifies using the linear rule

ŷ = sign
(
δ̂��̂−1

c

(
x − μ̂−1 + μ̂+1

2

))
,

where

δ̂ = μ̂+1 − μ̂−1

2
, �̂c = 1

n − 2

n∑
i=1

(xi − μ̂yi
)⊗2, and μ̂±1 = 2

n

∑
{i:yi=±1}

xi.

Here, �̂c is the centered covariance matrix. In the low-dimensional case where n

gets large while p remains fixed, LDA converges to the Bayes discrimination func-
tion [Anderson (2003), Efron (1975)]. When p is of order n, however, the matrix
inverse �̂−1

c is unstable and the performance of LDA declines, as discussed among
others by Bickel and Levina (2004). Instead, we will study regularized discrim-
inant analysis, defined as the the linear classification rule ŷ = hŵλ

(x − μ̂) with
μ̂ = (μ̂−1 + μ̂+1)/2, hw(x) = sign(w�x), and ŵλ = (�̂c + λIp)−1δ̂ [Friedman
(1989), Serdobolskii (1983)]. The notation was chosen to emphasize the similari-
ties between ridge regression and RDA; the RDA weight vector ŵλ ought not be
confused with the ridge regression weight vector, also denoted ŵλ.

3.1. High-dimensional asymptotics. Throughout this section, we make a
random-effects assumption about the class means. We denote the classification er-
ror of RDA as Err(ŵλ) = P[y �= sign{ŵ�

λ (x − μ̂)}]. The probability is with respect
to an independent test data point (x, y) from the same distribution as the training
data.

ASSUMPTION RWC (Random Weights in Classification). The following con-
ditions hold:

1. μ−1 and μ+1 are randomly generated as μ−1 = μ̄− δ and μ+1 = μ̄+ δ, where
δ has i.i.d. coordinates with

E[δi] = 0, Var[δi] = α2

p
, and E

[
δ

4+η
i

] ≤ C

p2+η/2

for some fixed constants η > 0 and C.
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2. μ̄ = (μ−1 + μ+1)/2 is either fixed, or random and independent of δ, X and
y, and satisfies lim supp→∞ ‖μ̄‖2

2/p
1/2−ζ ≤ C almost surely for some fixed

constants ζ > 0 and C.

We say that the eigenvalues of � are uniformly bounded if 0 < b < λmin(�) ≤
λmax(�) ≤ B for some fixed constants b and B independently of p.

THEOREM 3.1. Consider the two-class Gaussian classification problem (1).
Under parts 2 and 3 of Assumption HDA, and Assumption RWC, suppose more-
over that the eigenvalues of � are uniformly bounded. Finally, suppose that we
have equal class sizes n−1 = n+1. Then the classification error of RDA converges
almost surely

Err(ŵλ) →a.s. �
(−�(λ)

)
where �(λ) = α2τ(λ)√

α2η(λ) + ξ(λ)

and τ , η and ξ are determined by the limit population spectrum H and limit aspect
ratio γ :

τ(λ) = λmv, η(λ) = v − λv′

γ
, ξ(λ) = v′

v2 − 1.

Here, m = m(−λ) is the Stieltjes transform of the limit empirical spectral distri-
bution F of the covariance matrix �̂c, and v = v(−λ) is the companion Stieltjes
transform defined in (3).

The proof of Theorem 3.1, provided in Section 3.6, is similar to Theorem 2.1 but
more involved. The main difficulty is to evaluate the limits of certain functionals of
the population and sample covariance matrices. As a part of the proof, we extend
the result of Ledoit and Péché (2011), and build on technical ideas developed by
Chen et al. (2011) and Hachem, Loubaton and Najim (2007).

The above result can also be extended to RDA with uneven sampling propor-
tions. Since the limit error rates get more verbose, this is the only place where
we discuss uneven sampling. Suppose that the conditions of Theorem 3.1 hold,
except now our training set is comprised of n±1 samples with label yi = ±1 such
that p/n±1 → γ±1 > 0. We do not assume that n−1/(n−1 + n+1) → π−. Con-
sider a general regularized classifier sign(f̂λ(x)), where f̂λ(x) = [x − (μ̂+1 +
μ̂−1)/2]�(�̂c + λIp)−1[μ̂+1 − μ̂−1] + c for some c ∈ R, where �̂c, μ̂±1 are de-
fined in the usual way. We prove in the supplement, using a similar argument to
that of Theorem 3.1, that:

THEOREM 3.2. Under the conditions of Theorem 3.1, and with unequal sam-
pling, the classification error of RDA converges almost surely:

(11) P
(
sign

(
f̂λ(x) �= y

)) →a.s. π−�(−�−) + π+�(−�+),
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where the effective classification margins have the form

�± = ∓±α2m(−λ) + γ−1−γ+1
4

1
γ
( 1
λv

− 1) + c√
Q

, and

Q = α2 v − λv′

γ (λv)2 + γ−1 + γ+1

4

v′ − v2

λ2v4 .

It is worth mentioning that the regression and classification problems are very
different statistically. In the random effects linear model, ridge regression is a lin-
ear Bayes estimator, thus the ridge regularization �̂ + λIp of the covariance ma-
trix is justified statistically. However, for classification, the ridge regularization is
merely a heuristic to help with the ill-conditioned sample covariance. It is thus in-
teresting to know how much this heuristic helps improve upon unregularized LDA,
and how close we get to the Bayes error. We now turn to this problem, which can
be studied equivalently from a geometric perspective.

3.2. The geometry of RDA. The asymptotics of RDA can be understood in
terms of a simple picture. The angle between the Bayes decision boundary hyper-
plane and the RDA discriminating hyperplane tends to an asymptotically deter-
ministic value in the metric of the covariance matrix, and the limiting risk of RDA
can be described in terms of this angle.

Recall that, in the balanced case when n+ = n−, the estimated RDA weight
vector is ŵλ = (�̂c + λIp)−1δ̂, while the Bayes weight vector is w∗ = �−1δ. In
the metric induced by the inner product 〈a, b〉� = a��b, the cosine of the angle
between the two is

cos�

(
w∗, ŵλ

) = ŵ�
λ δ/

√
ŵ�

λ �ŵλ · δ��−1δ.

Now, as seen in the proof of Theorem 3.1,

ŵ�
λ δ/

√
ŵ�

λ �ŵλ →a.s. �
(
H,γ,α2, λ

)
,

where �(H,γ,α2, λ) is the classification margin of RDA with the dependence
on each parameter made explicit. Meanwhile, as discussed earlier, the Bayes error
rate for the two-class Gaussian problem is ErrBayes = �(−
n,p), and it is easy to
see that


n,p =
√

δ��−1δ →a.s. 
 = α

√
EH

[
T −1

]
.

Thus, it follows that our angle of interest converges

cos�

(
w∗, ŵλ

) →a.s. �
(
H,γ,α2, λ

) = �
(
H,γ,α2, λ

)
/
 ∈ [0,1],

and the limit of its cosine directly quantifies the inefficiency of the RDA estimator
relative to the Bayes one.
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We gain some insight into this angle for two special cases: when H = δ1, and
by taking the limit α2 → ∞. First, with H = δ1, or equivalently � = Ip , we curi-
ously find that the effects of estimating the class means and the covariance matrix
decouple completely, as shown in Corollary 3.3 below. The proof is provided in
Section 3.7.

COROLLARY 3.3. Under the conditions of Theorem 3.1, let � = Ip for all p.
Then the limiting cosine � of the angle between the Bayes and RDA hyperplanes
is

�
(
δ1, γ,α2, λ

) = α√
α2 + γ

√
1 + γ λm2

I (−λ;γ )

1 + γmI (−λ;γ )
,

where the Stieltjes transform mI(−λ;γ ) for � = Ip is given in (7). For γ = 1, this
expression simplifies further to

�
(
δ1,1, α2, λ

) = α√
α2 + 1

2[λ(λ + 4)]1/4

λ1/2 + (λ + 4)1/2 .

Examining �(δ1, γ,α2, λ), we can attribute the suboptimality to two sources
of noise: We need to pay a price α/

√
α2 + γ for estimating μ±1, and a price

of ([1 + γ λm2
I (−λ;γ )]/[1 + γmI (−λ;γ )])1/2 for estimating �. If we knew that

� = Ip , we could send λ → ∞. It is easy to verify that this would send the second

term to 1, leading to a loss of efficiency α/
√

α2 + γ .
In the case of a general covariance matrix �, we get a similar asymptotic decou-

pling in the strong-signal limit α2 → ∞. The following claim follows immediately
from Theorem 3.1.

COROLLARY 3.4. Under the conditions of Theorem 3.1, the cosine of the an-
gle between the optimal and learned hyperplanes has the limit as α2 → ∞:

lim
α→∞�

(
H,γ,α2, λ

) = τ(λ)√
η(λ)EH [T −1]

.

Thus, RDA is in general inconsistent for the Bayes hyperplane in the case of
strong signals. Corollary 3.4 also implies that, in the limit α → ∞, the optimal λ

for RDA converges to a nontrivial limit that only depends on the spectral distri-
bution H . No such result is true for ridge regression, where λ∗ = α−2γ → 0 as
α → ∞, regardless of �.

We illustrate the behavior of the cosine � for the AR-1(0.9) model in Figure 4,
which displays � for values of α ranging from α = 0.1 to α = 2. We see that
the �-curve converges to its large-α limit fairly rapidly. Moreover, somewhat un-
expectedly, the optimal regularization parameter λ∗, that is, the maximizer of �,
increases with the signal strength α2.
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FIG. 4. The cosine �(H,γ,α2, λ) for the AR-1(0.9) model, with α ∈ [0.1,2]. The values of α

used for each curve are evenly spaced, with a gap of 0.05 between each curve. The cosine quickly
converges to a limit as α increases.

Finally, we note that Efron (1975) studies the angle � in detail for low-
dimensional asymptotics where p is fixed while n → ∞; in this case, � con-
verges in probability to 1, and the sampling distribution of n(1 − �) converges
to a (scaled) χ2

p−1 distribution. Establishing the sampling distribution in high di-
mensions is interesting future work.

3.3. Do existing theories explain the behavior of RDA?. Theorems 3.1 and 3.2
give precise information about the error rate of RDA in our model. It is of inter-
est to compare this to classical theories, such as Vapnik–Chervonenkis theory or
Rademacher bounds, to see if they explain the behavior of RDA. In this section, we
study a simulation example, and conclude that existing theory does not precisely
explain the behavior of RDA.

We consider a setup with n = p = 500, equal class sizes, � an auto-regressive
(AR-1) matrix such that �ij = ρ|i−j |, and μ±1 ∼ N (0, α2p−1Ip). This is a nat-
ural model when the features can be ordered such that correlations decay with
distance; for instance in time series and genetic data. We run experiments for dif-
ferent values of ρ in two settings: once with constant effect size α2 = 1, and once
with constant oracle margin

√
E[
2

n,p] = 2.3. Given α ≥ 0 and ρ ∈ [0,1), one
can verify using the description of the limit population spectrum [Grenander and
Szegő (1984)], that the limiting oracle classification margin in the AR-1 model is


 = α

√
(1 + ρ2)/(1 − ρ2); thus, with constant α2 the oracle classifier improves

as ρ increases.
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FIG. 5. Classification error of RDA in an AR-1 model. The theoretical formula (red, dashed) is
overlaid with the results from simulations (blue, solid; we also display the oracle error (yellow,
dotted). In the first column, we keep the signal strength fixed at α2 = 1, whereas in the second column
we picked α such as to fix the oracle error at ErrBayes = 0.01. We test on 10,000 new samples, and
report the average classification error.

Existing results give us some intuition about what to expect. Since n = p, clas-
sical heuristics based on the theory of Vapnik and Chervonenkis (1971) as well as
more specialized analyses [Bickel and Levina (2004), Saranadasa (1993)] predict
that unregularized LDA will not work. As we will see, this matches our simulation
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results. Meanwhile, Bickel and Levina (2004) study worst-case performance of the
independence rule relative to the Bayes rule. In our setting, it can be verified that
their results imply �IR ≥ (1 −ρ2)/(1 +ρ2)
, where the error rate of the indepen-
dence rule is �(−�IR). This predicts that independence rules will work better for
small correlation ρ, which again will match the simulations.

The existing theory, however, is much less helpful for understanding the be-
havior of RDA for intermediate values of λ. A learning theoretic analysis based
on Rademacher complexity suggests that the generalization performance of RDA

should depend on terms that scale like
√

‖ŵλ‖2
2 tr�/n �

√
λ−2p/n for large val-

ues of λ [e.g., Bartlett and Mendelson (2003)]. In other words, based on a classical
approach, we might expect that mildly regularized RDA should not work, but us-
ing a large λ may help. Rademacher theory is not tight enough to predict what will
happen for λ ≈ 1.

Given this background, Figure 5 displays the performance of RDA for different
values of ρ, along with our theoretically derived error from Theorem 3.1. In the
α2 = 1 case, we find that—as predicted—unregularized LDA does poorly. How-
ever, when ρ is large, mildly regularized RDA does quite well.

Strikingly, RDA is able to benefit from the growth of the oracle classification
margin with ρ, but only if we use a small positive value of λ. The analyses based
on unregularized LDA or “infinitely regularized” independence rules do not cover
this case. Moreover, this phenomenon is not predicted by Rademacher theory,
which requires λ � 1 to improve over basic Vapnik–Chervonenkis bounds. Re-
sults from the constant margin case

√
E[
2

n,p] = 2.3 reinforce the same interpre-
tations. Finally, our formulas for the error rate are accurate despite the moderate
sample size n = p = 500. In conclusion, our results describe the behavior of RDA
much more precisely than existing general learning-theoretic analyses, under the
random-effects models considered here.

3.4. Linear discriminant analysis versus independence rules. Two points
along the RDA risk curve that allow for particularly simple analytic expressions
occur as λ → 0 and λ → ∞: the former is just classical linear discriminant analy-
sis while the latter is equivalent to an independence rule (or “naïve Bayes”). In this
section, we show that by taking these limits we can recover known results about
the high-dimensional asymptotics of LDA and naïve Bayes. Further, we compare
these two methods over certain parameter classes.

Note that λ → ∞ leads to a linear discriminant rule with weight vector
δ̂ = μ̂+1 − μ̂−1. Usual independence rules take the form diag(�̂c)

−1δ̂. We will
assume that all features are normalized to have equal variance, �ii = σ > 0. In
this case, the λ → ∞ rule corresponds to an independence rule with oracle infor-
mation about the equality of variances; which we still call “independence rule” for
simplicity.
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Extending our previous notation, we define the asymptotic margin of LDA and
independence rules, by taking the limits of �(λ) at 0 and ∞:

�LDA = lim
λ→0

α2τ(λ)√
α2η(λ) + ξ(λ)

and �IR = lim
λ→∞

α2τ(λ)√
α2η(λ) + ξ(λ)

.

Both limits are well defined and admit simple expressions, as given below; this
result is proved in Section 3.8. Let H be the limit population spectral distribution
of the covariance matrices �; and let T be a random variable with distribution H .

THEOREM 3.5. Under the conditions of Theorem 3.1, the margins of LDA and
independence rules are equal to

�LDA = α2√1 − γEH [T −1]√
α2EH [T −1] + γ

and �IR = α2√
α2EH [T ] + γEH [T 2]

.

The formula for LDA is valid for γ < 1 while that for IR is valid for any γ .

The formulas are simpler than Theorem 3.1, as they involve the population spec-
tral distribution H directly through its moments. For RDA, the error rate depends
on H implicitly through the Stieltjes transform of the ESD F .

These formulas are equivalent to known results, some of which were obtained
under slightly different parametrization. Raudys (1967) obtained the formula for
IR with H = δ1, while the LDA formula was derived by Deev (1970) and Raudys
(1972); see Section 3.5 for a more detailed historical account. Here, our goal was
to show how these simple formulas can be recovered from the more powerful The-
orem 3.1.

Saranadasa (1993) also obtains closed-form expressions for the limit risk of
two classification methods, the D-criterion and the A-criterion. One can verify that
these are asymptotically equivalent to LDA and IR, respectively. Our results are
consistent with those of Saranadasa (1993); but they differ slightly in the modeling
assumptions. In our notation, his results (as stated in his Theorem 3.2 and Corol-
lary 3.1) are: �S

LDA = α
√
EH [T −1]√1 − γ and �S

IR = α/
√
EH [T ]. These re-

sults are nearly identical to Theorem 3.5, but our equations have an extra term
involving γ in the denominator: γ for LDA and γEH [T 2] for IR. The reason is
that we consider μ±1 as random, whereas Saranadasa (1993) considers them as
fixed sequences of vectors; this extra randomness yields additional variance terms.

Theorem 3.5 enables us to compare the worst-case performance of LDA and IR
over suitable parameter classes of limit spectra. For 0 < k1 ≤ 1 ≤ k2, we define the
class

H(k1, k2) = {
H : PH

([k1, k2]) = 1,EH [T ] = 1
}
.

The bounds k1, k2 control the ill-conditioning of the population covariance matrix.
We normalize such that the average population eigenvalue is 1, to ensure that the
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scaling of the problem does not affect the answer. This parameter space is some-
what similar to the one considered by Bickel and Levina (2004). A direct compar-
ison over these natural problem classes appears to be missing from the literature,
and so we provide it below.

COROLLARY 3.6. Under the conditions of Theorem 3.5, consider the behav-
ior of LDA and independence rules for H ∈ H(k1, k2):

1. The worst-case margin of LDA is

�̄LDA
(
γ ;α2) := inf

H∈H(k1,k2)
�LDA

(
H,γ ;α2) = α2√1 − γ√

α2 + γ
.

The least favorable distribution for LDA from the class H(k1, k2) is the point
mass at 1: H = δ1, that is, � = Ip .

2. The worst-case margin for independence rules is

�̄IR
(
H, γ ;α2) := inf

H∈H(k1,k2)
�IR

(
H,γ ;α2) = α2√

α2 + γ (k1 + k2 − k1k2)
.

If k1 < k2, the least favorable distribution is the mixture H = w1δk1 + w2δk2 ,
where the weights are w1 = (k2 − 1)/(k2 − k1) and w2 = (1 − k1)/(k2 − k1);
while if k1 = k2 = 1, it is the point mass at 1: H = δ1.

PROOF. From Theorem 3.5, minimizing �LDA is equivalent to minimizing
EH [T −1] for H ∈ H(k1, k2). By Jensen’s inequality, EH [T −1] ≥ 1/EH [T ] = 1;
with equality if H = δ1. This shows the first claim.

Next, again by Theorem 3.5, minimizing �IR over H ∈ H(k1, k2) amounts to
maximizing EH [T 2] over that class. For this, note that k1 ≤ T ≤ k2 for a random
variable T distributed according to H ∈ H(k1, k2). Therefore, (T − k1)(T − k2) ≤
0, and taking expectations we get the upper bound:

EH

[
T 2] ≤ (k1 + k2)EH [T ] − k1k2 = k1 + k2 − k1k2.

This upper bound is achieved for any H = w1δk1 + w2δk2 . The weights wi given
in the corollary are required so that H has unit mean. �

This result shows a stark contrast between the worst-case behavior of LDA and
independence rules: for fixed signal strength, the worst-case risk of LDA over H
only depends on γ , and is attained with the limit of identity covariances � =
Ip regardless of the values of k1, k2. In contrast, the worst-case behavior of IR
occurs for a least favorable distribution H that is as highly spread as possible.
This highlights the sensitivity of IR to ill-conditioned covariance matrices. For
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0 < γ < 1, we see that IR is better than LDA in the worst case over H, that is,
�̄LDA(γ ;α2) < �̄IR(H, γ ;α2), if and only if

α2 + 1 > (1 − γ )(k1 + k2 − k1k2).

In particular, IR performs better than LDA for strong signals α; with weaker sig-
nals, LDA can sometimes have an edge, particularly if the covariance is poorly
conditioned, quantified by a large measure of spread k1 +k2 −k1k2 = (k2 −1)(1−
k1) + 1.

3.5. Literature review for high-dimensional RDA. There has been substantial
work in the former Soviet Union on high-dimensional classification; references
on this work include Raudys and Young (2004), Raudys (2001), and Serdobolskii
(2007). Raudys (1967) derived the n,p → ∞ asymptotic error rate of indepen-
dence rules in identity-covariance case � = Ip , while Deev (1970) and Raudys
(1972) obtained the error rate of unregularized linear discriminant analysis (LDA)
for general covariance �, again in the n,p → ∞ regime. A difference is that
Raudys (1972) establishes normality of the linear discriminant function, whereas
Deev (1970) expands the conditional probability of misclassification.

Serdobolskii (2007) calls the framework n,p → ∞, p/n → γ the “Kol-
mogorov asymptotic regime,” and suggests that around 1967 Kolmogorov was
interested in this area. As explained by one of our referees, Kolmogorov had sug-
gested the problem of studying Fisher’s LDA under n,p → ∞ asymptotics to
Y. Blagovechenskij and his PhD student, A. Deev.

For RDA, Serdobolskii (1983) [see also Chapter 5 of Serdobolskii (2007)] con-
sidered a more general setting than this paper: classification with a weight vector
of the form �(�̂c)

−1δ̂ instead of just (�̂c + λIp)−1δ̂, where the scalar function �

admits the integral representation �(x) = ∫
(x + t)−1 dη(t) for a suitable measure

η, and is extended to matrices in the usual way. He derived a limiting formula for
the error rate of this classifier under high-dimensional asymptotics. However, his
results are substantially more involved and much less explicit than ours. In some
cases, it is unclear to us how one could numerically compute his formulas. Fur-
thermore, his results are proved when γ < 1, and show convergence in probability,
not almost surely. We also note the work of Raudys and Skurichina (1995), who
derived results about the risk of usual RDA with vanishingly small regularization
λ = o(1), and for the special case γ < 1.

In another line of work, a Japanese school [e.g., Fujikoshi, Ulyanov and Shimizu
(2011), and references therein] has studied the error rates of LDA and RDA under
high-dimensional asymptotics, with a focus on obtaining accurate higher-order ex-
pansions of the risk. For instance, Fujikoshi and Seo (1998) obtained asymptotic
expansions for the error rate of unregularized LDA, which can be verified to be
equivalent to our results in the λ → 0 limit. More recently, Kubokawa, Hyodo and
Srivastava (2013) obtained a second-order expansion of the error rate of RDA with
vanishingly small regularization parameter λ = O(1/n) in the case γ < 1.
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Finally, in the signal processing and pattern recognition literature, Zollanvari,
Braga-Neto and Dougherty (2011) provided asymptotic moments of estimators of
the error rate of LDA, under an asymptotic framework where n,p → ∞; how-
ever, this paper assumes that the covariance matrix � is known. More recently,
Zollanvari and Dougherty (2015) provided consistent estimators for the error rate
of RDA in a doubly asymptotic framework, using deterministic equivalents for
random matrices. The goal of our work is rather different from theirs, in that we
do not seek empirical estimators of the error rate of RDA, but instead seek simple
formulas that help us understand its behavior.

3.6. Proof of main result for RDA. In this section we begin with an outline
of the argument for Theorem 3.1 that motivates several technical lemmas, whose
proof can be found in the supplementary materials. Given these technical results,
at the end of this section we provide the proof of Theorem 3.1 with the details
filled in.

In the Gaussian model (1), it is well known that the expected test error of an
arbitrary linear classifier hw,b(x) = sign(w�x + b) is

(12) Err0(w,b) = π−�

(
w�μ−1 + b√

w��w

)
+ π+�

(
−w�μ1 + b√

w��w

)
.

conditional on the weight parameters w, b and the means μ±1. The strategy is to
prove that the weight parameters estimated from the training data converge to the
desired limits. In the case of RDA, the relevant weight parameters are

ŵλ = (�̂c + λIp)−1δ̂ and b̂λ = δ̂�(�̂c + λIp)−1μ̂.

Moreover, we can asymptotically ignore the offset term b̂λ.

LEMMA 3.7. Under the conditions of Theorem 3.1, we have b̂λ →a.s. 0.

This lemma suggests that we should be able to use the following simpler
formula—that does not involve an offset b—in evaluating the limit of the error
rate:

(13) Err1(w) = π−�

(
w�μ−1√
w��w

)
+ π+�

(
− w�μ+1√

w��w

)
.

Recall that μ−1 = μ̄ − δ, μ+1 = μ̄ + δ. The second simplification we notice that
we can also asymptotically ignore cross-terms of the form ŵ�

λ μ̄.

LEMMA 3.8. Under the conditions of Theorem 3.1, we have ŵ�
λ μ̄ →a.s. 0.

Again, we may now hope to use the following even simpler formula that does
not involve μ̄ in evaluating the limit of the error rate:

(14) Err2(w) = �

(
− w�δ√

w��w

)
.
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To establish convergence of this quantity, we argue that the linear and quadratic
forms involving ŵλ concentrate around their means, and then apply random-matrix
results to find the limits of those means. We start with the numerator.

LEMMA 3.9. Under the conditions of Theorem 3.1, ŵ�
λ δ →a.s. α2m(−λ),

where m(z) is the Stieltjes transform of the limit empirical eigenvalue distribution
F of the covariance matrix �̂c.

Finding the limit of the denominator is slightly more involved. We begin by
decomposing the quadratic form as

(15) ŵ�
λ �ŵλ = δ̂�(�̂c + λIp)−1�(�̂c + λIp)−1δ̂ = Ã + 2B̃ + C̃,

where M := (�̂c + λIp)−1�(�̂c + λIp)−1 and

Ã := δ�Mδ, B̃ := δ�M(δ̂ − δ), C̃ := (δ̂ − δ)�M(δ̂ − δ).

One can show B̃ →a.s. 0 similar to the analysis of the error terms in the proof of
Lemmas 3.7 and 3.9; we omit the details. The two remaining terms will converge
to nonzero quantities. First, we show the following.

LEMMA 3.10. Under the conditions of Theorem 3.1, Ã := δ�Mδ →a.s.
α2|κ ′(λ)|, where

κ(λ) = 1

γ

(
1

λv(−λ)
− 1

)
,

and v(−λ) is the companion Stieltjes transform of the ESD of the covariance
matrix, defined in (3). Expressing the derivative explicitly, we have the limit
Ã →a.s. (v − λv′)/[γ (λv)2]. The limit is strictly positive.

The proof of the above lemma relies on the result of Ledoit and Péché (2011),
and a derivative trick similar to that employed in a similar context by El Karoui
and Kösters (2011), Rubio, Mestre and Palomar (2012) and Zhang et al. (2013). Fi-
nally, the last statement that we need is the following lemma, which can be proved
by building on results of Hachem et al. (2008) and Chen et al. (2011).

LEMMA 3.11. Under the conditions of Theorem 3.1,

C̃ := (δ̂ − δ)�M(δ̂ − δ) →a.s.
v′ − v2

λ2v4 ,

where v the companion Stieltjes transform of the ESD of the covariance matrix,
defined in (3).

With all these results, we are now ready to prove our main result.
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PROOF OF THEOREM 3.1. By the decomposition (15) and Lemmas 3.10 and
3.11, we have the convergence

ŵ�
λ �ŵλ →a.s. α

2 v − λv′

γ (λv)2 + v′ − v2

λ2v4 .

By Lemma 3.11, the second term is strictly positive. Therefore, combining with
Lemma 3.9 and the continuous mapping theorem, we have

(16)
ŵ�

λ δ√
ŵ�

λ �ŵλ

→a.s.
α2m(−λ)

[α2 v−λv′
γ (λv)2 + v′−v2

λ2v4 ]1/2
.

Denote by � the parameter on the right-hand side. After algebraic simplification,
we obtain that � has exactly the form stated in the theorem for the margin of RDA.
To complete the proof, we show that the error rate is indeed determined by �.
From (16) and the continuous mapping theorem, recalling the error rate Err2(w)

from (14), we have Err2(ŵλ) →a.s. �(−�).
From Lemma 3.8 and the definition of the error rate Err1(w) from (13), we can

move from Err2 to Err1:

Err2(ŵλ) − Err1(ŵλ) →a.s. 0.

Meanwhile, from Lemma 3.7 and the definition of the error rate Err0(w) in Equa-
tion (12), we can discard the offset b̂, and move from Err1 to Err0:

Err1(ŵλ) − Err0(ŵλ, b̂) →a.s. 0.

The last three statements imply that Err0(ŵλ, b̂) →a.s. �(−�), which completes
the proof of Theorem 3.1. �

3.7. Proof of Corollary 3.3. From the proof of Theorem 3.1, we know that the

limiting error rate of RDA is �(−�), with � = α2m(−λ)/
√

α2r(λ) + q(λ), and

r(λ) = lim
p→∞Ep−1 tr

(
�(�̂c + λI)−2)

, and

q(λ) = lim
p→∞Ep−1 tr

([
�(�̂c + λI)−1]2)

.

Since � = Ip , we have that r(λ) = q(λ); moreover, analogously to the argument
in the proof of Lemma 3.11, this limit equals m′

I (−λ;γ ). Therefore, we find that

� = α2√
α2 + γ

mI (−λ;γ )√
m′

I (−λ;γ )
.

The quantity m′
I (−λ;γ ) can be expressed in terms of mI by differentiating the

Marchenko–Pastur equation mI(z;γ ) = 1/(1−z−γ −γ zmI (z;γ )), thus yielding
m′ = m2(1 + γm)/(1 − γ zm2) and leading to the claimed expression for �. The
special-case formula for γ = 1 follows from elementary calculations starting from
the expression (7) for mI(z;γ ).
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3.8. Proof of Theorem 3.5. The strategy is to compute the limits of τ(λ),
η(λ) and ξ(λ), by first finding the limits of appropriate simpler quantities. It is
helpful to represent the Stieltjes transforms and their derivatives as expectations
with respect to the ESD, similar to Section 2.1. Thus, let Y be a random vari-
able distributed according to the ESD F , and let Y be a random variable dis-
tributed according to the companion ESD F . Then m, v are the Stieltjes trans-
forms of Y and Y , respectively. We note the following simple expressions, which
will be used repeatedly: m(−λ) = E[1/(Y + λ)], m′(−λ) = E[1/(Y + λ)2] and
m(−λ)−λm′(−λ) = E[Y/(Y +λ)2]. Furthermore, λv(−λ) = 1+γ (λm(−λ)−1),
so λv(−λ) = 1 − γE[Y/(Y + λ)].

3.8.1. The error rate of LDA. As is well known [e.g., Bai and Silverstein
(2010)], for γ < 1, Y is supported on a compact set bounded away from 0, so Y >

c > 0 for some c. This will allow us to take the limits as λ ↓ 0 inside the expecta-
tion, using the dominated convergence theorem; we will not repeat this fact. There-
fore, we can evaluate the limits of τ(λ) and η(λ) by noting that limλ↓0 m(−λ) =
E[Y−1], limλ↓0[v(−λ) − λv′(−λ)]γ −1 = limλ↓0 m(−λ) − λm′(−λ) = E[Y−1],
and from Lemma 2.3 we have limλ↓0 λv(−λ) = 1 − γ .

To evaluate the limit of ξ(λ), we differentiate the formula for the com-
panion Stieltjes transform, and see λ2v′(−λ) = 1 + γ (λ2m′(−λ) − 1). Hence,
limλ↓0 v′(−λ)/v2(−λ) equals

lim
λ↓0

1 + γ (λ2m′(−λ) − 1)

λ2v2(−λ)
= limλ↓0[1 + γ (λ2m′(−λ) − 1)]

(1 − γ )2 = 1

1 − γ
,

where we have used that limλ↓0 λ2m′(−λ) = limλ↓0 E[λ2/(Y + λ)2] = 0. We con-
clude that limλ↓0 ξ(λ) = γ /(1 − γ ). Putting everything together, we find

�LDA = lim
λ↓0

α2τ√
α2η + ξ

= α2
E[Y−1](1 − γ )√

α2E[Y−1] + γ /(1 − γ )
.

Let T be a random variable distributed according to the PSD H . By taking the
limit as z → 0, z ∈ C

+ in the Marchenko–Pastur equation

m(z) =
∫ ∞
t=0

dH(t)

t (1 − γ − γ zm(z)) − z
,

we find m(0) = ∫
1/[t (1 − γ )]dH(t), or equivalently E[Y−1] = E[T −1]/(1 − γ ).

We see that m is well-defined, bounded away from 0 and has positive imaginary
part for z ∈ C

+ in a neighborhood of 0, so the limit is justified by the dominated
convergence theorem. This leads to the formula for �LDA.

3.8.2. The error rate of IR. Since the Stieltjes transform E[1/(Y + λ)] de-
cays as 1/λ for λ → ∞, we will normalize by λ. First, we evaluate the limit of
λτ(λ) = λ2m(−λ)v(−λ) as λ → ∞. We have λm(−λ) = E[λ/(Y +λ)]. Since Y is
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a bounded random variable, limλ→∞ λm(−λ) = 1; similarly limλ→∞ λv(−λ) = 1.
Next, we find the limit of λ2η(λ) by noting

lim
λ→∞λ2[

m(−λ) − λm′(−λ)
] = lim

λ→∞E

[
Y

(
λ

Y + λ

)2]
= E[Y ].

Finally, we evaluate the limit of λ2ξ(λ) = λ2[v′(−λ)/v2(−λ) − 1]. Noting that λv

tends to 1, it is enough to find the limit of λ4(v′(−λ) − v2(−λ)). We compute

λ2(
v′(−λ) − v2(−λ)

) = E

[(
λ

Y + λ

)2]
−E

[
λ

Y + λ

]2

= E

[(
1 − Y

Y + λ

)2]
−

(
1 −E

[
Y

Y + λ

])2

= E

[(
Y

Y + λ

)2]
−E

[
Y

Y + λ

]2
.

Therefore,

lim
λ→∞λ4(

v′(−λ) − v2(−λ)
) = lim

λ→∞

{
E

[
Y 2

(
λ

Y + λ

)2]
−E

[
Y

λ

Y + λ

]2}
= E

[
Y 2] −E[Y ]2.

Using the relationship F = γF + (1 − γ )δ0, we can write E[Y ] = γE[Y ] and
E[Y 2] = γE[Y 2]. Putting everything together, we find

�IR = lim
λ→∞

α2λτ(λ)√
α2λ2η(λ) + λ2ξ(λ)

= α2√
α2E[Y ] + γ (E[Y 2] − γE[Y ]2)

.

Finally, it is known that E[Y ] = E[T ] and that E[Y 2] = E[T 2]+γE[T ]2 [see, e.g.,
Lemma 2.16 in Yao, Bai and Zheng (2015)]. This leads to the claimed formula.

4. Discussion. In one of our reviews, it was pointed out that the RRC and
RWC assumptions allow w to be sparse in the sense of ‖w‖0/p → c < 1, by
choosing a distribution with a point mass at 0 with some positive probability. In
such a case, it may still make sense to construct a classifier or regressor in high
dimension via thresholding. Comparing these with the dense methods could be a
topic of future work.
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SUPPLEMENTARY MATERIAL

Supplement to “High-dimensional asymptotics of prediction: Ridge regres-
sion and classification” (DOI: 10.1214/17-AOS1549SUPP; .pdf). In the supple-
mentary material, we give efficient methods to compute the risk formulas, and
prove the remaining lemmas and other results.
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