THE SCALING LIMITS OF THE MINIMAL SPANNING TREE AND INVASION PERCOLATION IN THE PLANE

By Christophe Garban*, ${ }^{*}$, GÁBor Pete ${ }^{\dagger, \ddagger, 2}$ and Oded Schramm ${ }^{\S}$
Université Lyon 1*, Hungarian Academy of Sciences ${ }^{\dagger}$, Budapest University of Technology and Economics ${ }^{\ddagger}$ and Microsoft Research ${ }^{\S}$

We prove that the Minimal Spanning Tree and the Invasion Percolation Tree on a version of the triangular lattice in the complex plane have unique scaling limits, which are invariant under rotations, scalings, and, in the case of the MST, also under translations. However, they are not expected to be conformally invariant. We also prove some geometric properties of the limiting MST. The topology of convergence is the space of spanning trees introduced by Aizenman et al. [Random Structures Algorithms 15 (1999) 319-365], and the proof relies on the existence and conformal covariance of the scaling limit of the near-critical percolation ensemble, established in our earlier works.

CONTENTS

1. Introduction 3502
1.1. The Minimal Spanning Tree MST 3503
1.2. The Invasion Percolation Tree InvPerc 3507
1.3. The scaling limit of the near-critical ensemble 3508
1.4. Strategy of the proof and organization of the paper 3510
2. Topological and measurability preliminaries 3512
2.1. The space of essential spanning forests 3512
2.2. The quad-crossing topology 3515
2.3. Pivotals and pivotal measures 3518
3. Enhanced networks and cut-off forests built from the near-critical ensemble 3523
4. Approximation of MST_{η} by the cut-off trees $\mathrm{MST}_{\eta}^{\lambda, \varepsilon}$ 3534
4.1. Preparatory lemmas and the definition of $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$ 3534
4.2. Approximation as $\varepsilon \rightarrow 0$ and $\left(\lambda, \lambda^{\prime}\right) \rightarrow(-\infty, \infty)$ 3538
5. Proof of the main result 3541
5.1. Putting the pieces together for MST on tori \mathbb{T}_{M}^{2} 3541
5.2. Extension to the full plane; invariance under translations, scalings and rotations 3542
6. Geometry of the limit tree MST_{∞} 3544
6.1. Degree types and pinching 3544

Received January 2017; revised December 2017.
${ }^{1}$ Supported in part by the ANR project Liouville (ANR-15-CE40-0013)
${ }^{2}$ Supported in part by the Hungarian National Research, Development and Innovation Office, NKFIH Grant K109684 and by the MTA Rényi Institute "Lendület" Research Group.

MSC2010 subject classifications. Primary $60 \mathrm{~K} 35,82 \mathrm{~B} 27,82 \mathrm{~B} 43,05 \mathrm{C} 05$; secondary 60D05, 81T27, 81T40.

Key words and phrases. Minimal spanning tree, invasion percolation, critical and near-critical percolation, scaling limit, conformal invariance, Hausdorff dimension.
6.2. A dimension bound for the trunk3550
7. Invasion percolation 3551
8. Questions and conjectures 3553
Acknowledgements 3554
References 3554

The MST in a box, and InvPerc started from the midpoint of the left boundary of the box until reaching the right boundary, on \mathbb{Z}^{2}.

1. Introduction. The Minimal Spanning Tree of weighted graphs is a classical combinatorial object [14, 30, 38], and is also very interesting from the viewpoint of probability theory and statistical physics: when the weights on the edges of a graph are chosen at random, using i.i.d. variables, then the resulting random tree turns out to be closely related to the near-critical regime of Bernoulli bond percolation on that graph.

In Bernoulli bond percolation at density $p \in[0,1]$, each edge of the graph is kept open with probability p or becomes closed with probability $1-p$, independently, and then one looks at the connected open components, called clusters. In site percolation, the vertices are chosen to be open or closed instead of the edges. These are among the most important spatial stochastic processes, due to their simultaneous simplicity and richness [15, 31, 35]. The main interest is in the phase transition near the critical density p_{c}, below which all clusters are small, above which a cluster (sometimes clusters) of positive density emerge. The theory of critical percolation in the plane has seen a lot of progress lately, starting with Smirnov's proof of conformal invariance of crossing probabilities for site percolation on the triangular lattice [50], and with the introduction of the Stochastic Loewner Evolution [47] that describes the conformally invariant curves that are the scaling limits of interfaces between open and closed clusters. These SLE curves can be used to understand critical percolation in depth [57], including the computation of critical exponents that had been predicted by physicists using nonrigorous conformal field theory techniques.

Beyond the static critical system, it is natural to consider dynamical versions: first, to slowly change p near p_{c} and observe how the phase transition exactly takes place-called near-critical percolation; second, to apply a stationary dynamics and observe how the critical system is changing in time-called dynamical percolation. Indeed, by "perturbing" critical percolation, the static results of the previous paragraph have also given way to an exhaustive study of dynamical and near-critical percolation [25, 27, 28, 33, 49]; see also the surveys [29, 52]. In particular, in [27, 28] we have proved the existence and conformal covariance of the scaling limit of the near-critical percolation ensemble, w.r.t. the quad-crossing topology introduced in [48]. Very roughly, this near-critical scaling limit is constructed from the critical scaling limit, plus independent randomness that governs how macroscopic clusters merge as we raise p.

It turns out that the macroscopic structure of the Minimal Spanning Tree (MST) and the Invasion Percolation Tree (InvPerc) can also be described based on this merging process. Thus, building on [27, 28], in the present paper we prove the existence and some conformal properties of the scaling limits of MST and InvPerc on the triangular lattice, in the space of essential spanning forests introduced in [4]. In that paper, tightness results were proved, implying that subsequential scaling limits of the Minimal and Uniform Spanning Trees in the plane exist. Our proof of the uniqueness of the scaling limit has the important implication that the conjectural universality of critical percolation implies universality for many processes related to the near-critical ensemble, including MST and InvPerc. That this program of describing near-critical objects from the critical scaling limit may have a chance to work was suggested in [17]. Another motivation for our work is that it leads to interesting new objects: these two scaling limits are invariant under rotations and scalings, but conjecturally, not under general conformal maps. Furthermore, the methods developed to establish these scaling limits also give information about the large-scale geometry of the discrete trees.
1.1. The Minimal Spanning Tree MST. For each edge of a finite graph, $e \in$ $E(G)$, let $U(e)$ be an independent Unif[0, 1] label. The Minimal Spanning Tree, denoted by MST, is the spanning tree T for which $\sum_{e \in T} U(e)$ is minimal. This is well known to be the same as the union of lowest level paths between all pairs of vertices (i.e., the path between the two points for which the maximum label on the path is minimal). One can also use the so-called reversed Kruskal algorithm to construct MST: delete from each cycle the edge with the highest label U. This algorithm also shows that MST depends only on the ordering of the labels, not on the values themselves. Moreover, this algorithm also makes sense on any infinite graph, and produces what in general is called the Free Minimal Spanning Forest (FMSF) of the infinite graph. The Wired Minimal Spanning Forest (WMSF) is the one when we also remove the edge with the highest label (if such edge exists) from each cycle that "goes through infinity", that is, which is the union of two disjoint infinite simple paths starting from a vertex. For the case of Euclidean planar
lattices, these two measures on spanning forests are known to be the same, again denoted by MST, and it almost surely consists of a single tree [7]. This measure can also be obtained as a thermodynamical limit: take any exhaustion by finite subgraphs $G_{n}\left(V_{n}, E_{n}\right)$, introduce a boundary condition by identifying some of the vertices on the boundary of G_{n} (i.e., elements of V_{n} that have neighbours in G outside of V_{n}), and then take the weak limit. On a general infinite graph, when no identifications are made in the boundary, one gets the FMSF, and when all vertices are glued into a single vertex, one gets the WMSF. Studying these measures has a rich history on \mathbb{Z}^{d}, on point processes in \mathbb{R}^{d}, and on general transitive graphs; see $[5,6,19,41-43,46,54,55,60]$ and the references therein.

One can use the same Unif[0, 1] labels that defined the MST to obtain a coupling of percolation for all densities $p \in[0,1]$: an edge is "open at level p " if $U(e) \leq p$. This way we get a coupling between the MST and the percolation ensemble. Moreover, as we explain in the next paragraph, the macroscopic structure of the MST is basically determined by the labels in the near-critical regime of percolation, and hence one may hope that the scaling limit of the MST is determined by the scaling limit of the near-critical ensemble.

Consider the p-clusters (i.e., open components at level p) in the percolation ensemble on some large finite graph. Contract each component into a single vertex, keeping the edges (together with their labels) between the clusters, resulting in the "cluster graph". It is easy to verify that making these contractions on the MST we get exactly the MST on the cluster graph. We denote this cluster tree by MST^{p}; see Figure 1. Now assume that p_{1} is small enough so that even the largest p_{1}-clusters are of small macroscopic size-then the tree $\mathrm{MST}^{p_{1}}$ will tell us the macroscopic structure of MST. On the other hand, if $p_{2}>p_{1}$ is large enough, then most sites are in just one giant p_{2}-cluster. Note that, for any $p>p_{1}$, we get the tree MST^{p} from $\mathrm{MST}^{p_{1}}$ by contracting the edges with labels in ($\left.p_{1}, p\right]$. Thus, if we have the collection of all the p-clusters for all $p \in\left(p_{1}, p_{2}\right)$, then by following how they merge as we are raising p, we can reconstruct the tree $\mathrm{MST}^{p_{1}}$. Now, one may hope that in order to tell the macroscopic structure of $\mathrm{MST}^{p_{1}}$, it is enough to

FIG. 1. The MST connects the percolation p-clusters without creating cycles, yielding the clus-ter-tree MST^{p}.
know only the macroscopic p-clusters for all $p \in\left(p_{1}, p_{2}\right)$ and follow how those merge. The near-critical window of percolation is exactly the window (p_{1}, p_{2}) in which the above phase transition of the cluster sizes takes place, and the scaling limit of the near-critical ensemble is exactly the object that describes the macroscopic p-clusters in this window. Therefore, the above hope has the interpretation that the scaling limit of the near-critical ensemble should describe the scaling limit of the MST. This, of course, raises several questions: May the dust of microscopic p-clusters condensate into a new macroscopic p^{\prime}-cluster at some $p^{\prime}>p$, ruining the strategy of "following how macroscopic clusters merge"? Could MST ${ }^{p_{1}}$ go through microscopic p_{1}-clusters in a way that significantly influences its macroscopic structure?

Our work addresses these questions in the case of planar lattices. The nearcritical window for $\operatorname{Bernoulli}(p)$ percolation on the triangular lattice $\eta \mathrm{T}$ or the square lattice $\eta \mathbb{Z}^{2}$ with mesh $\eta>0$ is given by

$$
\begin{equation*}
p=1 / 2+\lambda r(\eta) \quad \text { with } \lambda \in(-\infty, \infty) \text { fixed and } \eta \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where $r(\eta)=\eta^{2} / \alpha_{4}(\eta, 1)$, with $\alpha_{4}(\eta, 1)$ being the alternating 4-arm probability of critical percolation [57]. It was proved on η T using SLE $_{6}$ computations [51] that $r(\eta)=\eta^{3 / 4+o(1)}$. As shown in [37], for $\lambda \ll-1$ we are at the subcritical end of the near-critical window, for $\lambda \gg 1$ we are at the supercritical end, and for any fixed $\lambda \in \mathbb{R}$, box-crossing probabilities are comparable to the critical case (just they are close to 0 for $\lambda \ll-1$, and close to 1 for $\lambda \gg 1$). That is, (1.1) is indeed the nearcritical window. Then it was proved in $[27,28]$ that for any $\lambda \in \mathbb{R}$ there is a unique scaling limit as $\eta \rightarrow 0$; moreover, the entire coupled percolation ensemble, viewed near the critical point via the parametrization (1.1), where all the macroscopic changes happen, has a scaling limit as a Markov process in $\lambda \in \mathbb{R}$. It is important to keep in mind that even for any given $\lambda \neq 0$, this scaling limit is an interesting new object, known to be different from the critical scaling limit: the interfaces are singular w.r.t. SLE $_{6}$ [45]. (See also [10] and [28], Theorem 13.4, for the much simpler result that the full scaling limits are singular.)

Since we have a proof of the existence and properties of the scaling limit of the near-critical ensemble only for site percolation on the triangular lattice T, if we want to use that to build the MST scaling limit, we will need a version of the MST that uses Unif[0, 1] vertex labels $\{V(x)\}$ on T. So, assign to each edge $e=(x, y)$ the vector label

$$
\begin{equation*}
U(e):=(V(x) \vee V(y), V(x) \wedge V(y)) \tag{1.2}
\end{equation*}
$$

and consider the lexicographic ordering on these vectors to determine the MST; see Figure 2. With a slight abuse of terminology, this is what we will call the MST on the lattice T. Our strongest results will apply to this model, but some of them will also hold for subsequential limits of the usual MST on \mathbb{Z}^{2}, known to exist by [4].

Let us make an important remark here. The use of the lexicographic ordering for the vector labels (1.2) is somewhat arbitrary, and starting from the same vertex

FIG. 2. The minimal spanning tree associated to vertex labels of the triangular lattice T , with a periodic boundary condition.
labels, using a different way to get edge labels or using a different natural ordering, one could a priori get a MST with a very different global structure. In fact, this does happen if the vertex labels are assigned maliciously. Nevertheless, with the Unif $[0,1]$ labels, for any rule to construct the MST on T that ensures that any two p-clusters are connected by a unique path of this MST (which is exactly how our definition works), our approximation of the macroscopic structure of the MST using the near-critical ensemble will work with large probability, and hence the scaling limit will be the same.

We can now state our main theorem.

THEOREM 1.1 (Limit of MST_{η} in \mathbb{C}). As $\eta \rightarrow 0$, the spanning tree MST_{η} on $\eta \mathrm{T}$ converges in distribution, in the metric d_{Ω} of Definition 2.2 below, to a unique scaling limit MST_{∞} that is invariant under translations, scalings and rotations.

The strategy of the proof will be described in Section 1.4. As a key step, we also prove convergence in any fixed torus \mathbb{T}_{M}^{2}; see Theorem 5.1. We work in tori to avoid the technicalities related to boundary issues, but with not too much additional work the extension to finite domains with free or wired boundary conditions would be certainly doable.

In Section 6, strengthening the results of [4], we study the geometry of the limiting tree MST_{∞}. The degree of a vertex in a tree graph has the usual meaning, but the degree of a point in a spanning forest of the plane needs to be defined carefully, which we will do in Section 6.1. To give an example, a pinching point on a MST_{∞} path should not be called a branching point, but it still gives rise to a degree 4 point. Consequently, stating the results on the geometry of the limiting tree also needs some care, to be done precisely only in Theorem 6.2. Nevertheless, here are some of the earlier results and our new ones in rough terms. It was proved in [4] that there is an unspecified absolute bound k_{0} such that almost surely all
degrees in any subsequential limit of MST_{η} are at most k_{0}. Furthermore, the set of branching points was shown to be almost surely countable. Here, we will prove that there are almost surely no pinching points, all degrees are bounded by 4 , and the set of points with degree 4 is at most countable. We will also prove, in Section 6.2, that the Hausdorff dimension of the trunk is strictly below 7/4. However, we do not have a guess for the exact dimension; the situation is similar to the somewhat related problem of finding the percolation chemical distance exponent [22].

To conclude this subsection, let us note that the recent works [1, 2] follow a strategy similar to ours, but in a very different setting: namely, in the mean-field case. It is well known that there is a phase transition at $p=1 / n$ for the Erdös-Rényi random graphs $G(n, p)$. Similar to the above case of planar percolation, it is a natural problem to study the geometry of these random graphs near the transition $p_{c}=$ $1 / n$. It turns out in this case that the nontrivial rescaling is to work with $p=1 / n+$ $\lambda / n^{4 / 3}, \lambda \in \mathbb{R}$. If $R_{n}(\lambda)=\left(C_{n}^{1}(\lambda), C_{n}^{2}(\lambda), \ldots\right)$ denotes the sequence of clusters at $p=1 / n+\lambda / n^{4 / 3}$, ordered in decreasing order of size, say, then it is proved in [1] that as $n \rightarrow \infty$, the normalized sequence $n^{-1 / 3} R_{n}(\lambda)$ converges in law to a limiting object $R_{\infty}(\lambda)$ for a certain topology on sequences of compact spaces which relies on the Gromov-Hausdorff distance. This near-critical ensemble $\left\{R_{\infty}(\lambda)\right\}_{\lambda \in \mathbb{R}}$ has then been used in [2] to obtain a scaling limit as $n \rightarrow \infty$ (in the Gromov-Hausdorff sense) of the MST on the complete graph with n vertices. One could say that [28] is the Euclidean $(d=2)$ analogue of the mean-field case [1], and our present paper is the analogue of [2]. However, an important difference is that in the mean-field case one is interested in the intrinsic metric properties (and hence works with the Gromov-Hausdorff distance between metric spaces), while in the Euclidean case one is first of all interested in how the graph is embedded in the plane.
1.2. The Invasion Percolation Tree InvPerc. The connection between WMSF and critical percolation on infinite graphs can also be seen through invasion percolation. For a vertex x in an infinite graph $G(V, E)$, and the labels $\{U(e)\}$, let $T_{0}=\{x\}$, then, inductively, given T_{n}, let $T_{n+1}=T_{n} \cup\left\{e_{n+1}\right\}$, where e_{n+1} is the edge between T_{n} and $V \backslash T_{n}$ that has the smallest label U. The Invasion Percolation Tree of x is then $\operatorname{InvPerc}(x):=\bigcup_{n \geq 0} T_{n}$. It is easy to see that, even deterministically, if $U: E(G) \longrightarrow \mathbb{R}$ is an injective labelling of a locally finite graph, then WMSF $=\bigcup_{x \in V(G)} \operatorname{InvPerc}(x)$.

Once the invasion tree enters an infinite p-cluster \mathcal{C}, it will not use edges outside it. Furthermore, it is not surprising (though nontrivial to prove, see [32]) that for any transitive graph G and any $p>p_{c}(G)$, the invasion tree eventually enters an infinite p-cluster. Therefore, $\lim \sup \{U(e): e \in \operatorname{InvPerc}(x)\}=p_{c}(G)$ for any $x \in V(G)$. This way, invasion percolation can be considered as a "self-organized criticality" version of critical percolation; finer results for the planar case are given in [20, 23, 24]. Moreover, InvPerc can be used to study Bernoulli percolation itself: for example, for the well-behavedness of the supercritical phase on $\mathbb{Z}^{d}, d>2$ [21],
and for uniqueness monotonicity on nonamenable graphs [32]. Invasion percolation can be analyzed very well on regular trees [8], with a scaling limit that can be described using diffusion processes [9].

For planar lattices, since $\operatorname{InvPerc}_{\eta}$ is so intimately related to MST_{η}, it will be quite easy to modify the proof of Theorem 1.1 for the case of InvPerc; see Section 7.
1.3. The scaling limit of the near-critical ensemble. We need to recall how the scaling limit of the near-critical ensemble is constructed in [27, 28], because the present paper is heavily built on this. To start with, we slightly change the near-critical parametrization given in (1.1).

DEFINITION 1.2. The near-critical ensemble $\left(\omega_{\eta}^{\lambda}\right)_{\lambda \in \mathbb{R}}$ will denote the following process:
(i) Sample $\omega_{\eta}^{\lambda=0}$ according to \mathbf{P}_{η}, the law of critical percolation on η T. We will sometimes represent this as a black-and-white coloring of the faces of the dual hexagonal lattice, with white hexagons standing for closed (empty) sites.
(ii) As λ increases, closed sites (white hexagons) switch to open (black) at an exponential rate $r(\eta)$, as given after (1.1).
(iii) As λ decreases, black hexagons switch to white at rate $r(\eta)$.

Note that, for any $\lambda \in \mathbb{R}$, the near-critical percolation ω_{η}^{λ} corresponds exactly to a percolation configuration on η T with parameter

$$
\begin{cases}p=p_{c}+\left(1-p_{c}\right)\left(1-e^{-\lambda r(\eta)}\right) & \text { if } \lambda \geq 0 \\ p=p_{c} e^{-|\lambda| r(\eta)} & \text { if } \lambda<0\end{cases}
$$

For any site x, the value $\lambda(x) \in \mathbb{R}$ where x switches from closed to open will be called the near-critical percolation label of x.

The same definitions can be made on $\eta \mathbb{Z}^{2}$.

It is easy to understand intuitively why $r(\eta)$ is the right time rescaling to obtain the near-critical window. Assume that in the unit square there is no left-right crossing in $\omega_{\eta}^{\lambda=0}$. Then the expected number of those sites that are closed at $\lambda=0$ but are pivotal for the left-right crossing (i.e., opening any of them would establish the crossing) and which actually become open in ω_{η}^{λ} is known to be of order λ. Therefore, for $\lambda>0$ small, it is unlikely that a left-right crossing has been established if it was not already there, hence the system must have stayed very close to critical ; on the other hand, one may expect that for $\lambda \gg 1$ a crossing is already quite likely, hence the system should already be quite supercritical. This was rigorously proved in [37]. Then, if one wants to describe the scaling limit of ω_{η}^{λ} as $\eta \rightarrow 0$, a natural idea that was detailed in [17] is that this should be possible by following which of those points get opened (for $\lambda>0$) or get closed (for $\lambda<0$) that were
pivotal at $\lambda=0$ for at least some small macroscopic distance $\varepsilon>0$. To this end, one should look at the counting measure on ε-pivotal points at criticality, normalized such that the measure stays non-trivial as $\eta \rightarrow 0$, and hope that these ε-pivotal measures have limits that are measurable w.r.t. the scaling limit of critical percolation itself. This is the main result of [27] (with a slight change of what ε-pivotal means). Then the scaling limit of the near-critical ensemble may be described by taking Poisson point processes of switch times, with intensity measures being these ε-pivotal measures, and by updating the crossings of all the quads (certain generalized rectangles) according to these pivotal switches. This is done in [28]. Here, there are roughly two main issues: first, it is not immediately clear how one can update the crossings of all the quads by pivotal switches that are happening at all spatial and time scales. For this, one should code the percolation configuration in a suitable manner that is minimal enough so that the updates can be done, but rich enough so that it contains all the relevant information. This coding and updating takes up a large part of [28], done through the so-called ε-networks that we will actually recall in Section 3. The second main issue is that one needs to prove that despite all the switches that take place as λ increases, following the switches of all the initially ε-pivotal sites gives a good idea about the ε-pivotal switches at later times. For this, the key discrete result from [24, 28] is the following proposition, which we will often use also in the present paper.

Proposition 1.3 (Near-critical stability). For any fixed $-\infty<\lambda<\lambda^{\prime}<\infty$, in the near-critical ensemble on $\eta \mathrm{T}$, let $\mathcal{A}_{k}^{\lambda, \lambda^{\prime}}(r, R)$ denote the following nearcritical polychromatic k-arm event: there exist $k \geq 2$ disjoint paths in the lattice that connect the boundary pieces of the annulus $B_{R}(0) \backslash B_{r}(0)$, each called either "primal" or "dual", and all the percolation ensemble labels along all the primal arms are at most λ^{\prime}, while all the labels along the dual arms are at least λ. Note that $\lambda=\lambda^{\prime}$ gives back the usual notion of primal and dual arms in the percolation configuration ω_{η}^{λ}. Then

$$
\boldsymbol{P}\left[\mathcal{A}_{k}^{\lambda, \lambda^{\prime}}(r, R)\right] \leq C_{\lambda, \lambda^{\prime}} \alpha_{k}(r, R)
$$

where $\alpha_{k}(r, R)=\alpha_{k}^{\eta}(r, R)$ is the polychromatic k-arm probability in critical percolation on the same lattice. Similarly, for the monochromatic k-arm events, $k \geq 1$, where all arms are primal,

$$
\boldsymbol{P}\left[\mathcal{A}_{k}^{\lambda^{\prime}}(r, R)\right] \leq C_{\lambda^{\prime}}^{\prime} \alpha_{k}^{\prime}(r, R)
$$

where $\alpha_{k}^{\prime}(r, R)=\alpha_{k}^{\prime \eta}(r, R)$ is the monochromatic k-arm probability at criticality. For $\alpha_{1}^{\prime}(\cdot, \cdot)$, we will just use $\alpha_{1}(\cdot, \cdot)$.

The same statements hold for bond percolation on $\eta \mathbb{Z}^{2}$, just with dual arms being paths in the dual lattice, in the usual manner.

REMARK 1.4. For fixed radii $0<r<R<\infty$, the discrete multi-arm probabilities $\alpha_{k}^{\eta}(r, R)$ and $\alpha_{k}^{\prime \eta}(r, R)$ converge, as $\eta \rightarrow 0$, to their SLE $_{6}$ counterparts (see [57]). In the present paper, we will be interested in these quantities only up to constant factors, not in the details of their convergence; hence their dependence on η is not important and will be omitted from the notation. Formulas like $\alpha_{k}(\eta, 1)$ will also be understood on the discrete lattice, always with mesh η. We will also use the quasi-multiplicativity of multi-arm probabilities (both for the discrete and continuum versions): for any $k \geq 1$, there exists $c_{k}>0$ such that

$$
c_{k} \alpha_{k}\left(r_{1}, r_{2}\right) \alpha_{k}\left(r_{2}, r_{3}\right) \leq \alpha_{k}\left(r_{1}, r_{3}\right) \leq \alpha_{k}\left(r_{1}, r_{2}\right) \alpha_{k}\left(r_{2}, r_{3}\right)
$$

for all $0<r_{1}<r_{2}<r_{3}<\infty$. Similarly for α_{k}^{\prime}, see, for example, [44], Section 4.5.
The proof of Proposition 1.3 for the alternating 4 -arm event is given in [24], Lemma 6.3, or follows directly from [28], Lemma 8.4, which is more general in that it does not assume that the dynamics is monotone in λ. For general k, the case of $\lambda=\lambda^{\prime}$ is known as Kesten's near-critical stability [37]. And just as in Kesten's approach, the proof for general k and general $\lambda<\lambda^{\prime}$ is a simple modification of the proof for the alternating 4 -arm event: the key point is that the pivotality of a site for a general k-event still depends on an alternating 4 -arm event around that site, and hence the near-critical stability of the alternating 4 -arm probability, proved using a recursion in [28], easily implies the stability of the general k-arm event, as well. We omit the details.

The above sketch of the contents of [27,28] should make it clear that the scaling limit of the near-critical ensemble is constructed entirely from the critical scaling limit, plus independent randomness of the pivotal switch times. Moreover, all the proofs in [27,28] are universal in the sense that they use lattice-independent discrete percolation technology that have been available since [37]. Altogether, once one proves Cardy's formula for critical percolation on $\eta \mathbb{Z}^{2}$, which would imply the same scaling limit as on η T, we would also immediately get that the scaling limit for the entire near-critical ensemble is the same. This universal aspect remains true for the present paper.
1.4. Strategy of the proof and organization of the paper. First of all, in Section 2.1, we describe the topological space in which the convergence of our random trees will take place: the space of essential spanning forests in \mathbb{C}, introduced in [4]. There are possible alternatives to using this topology, such as the quadcrossing topology of [48] (suggested to us for this purpose by Nicolas Broutin) or the topology introduced in [47] for the scaling limit of the Uniform Spanning Tree. Especially the quad-crossing topology (recalled in Section 2.2) would seem natural, since the scaling limit of near-critical percolation is taken in this space. Nevertheless, we chose the topology of [4] for several reasons: that was the first paper dealing with subsequential scaling limits of MST_{η}, proving results that we are sharpening here; using this topology to describe paths in the spanning trees is not harder than using quad-crossings, while it also gives a natural way to glue
the paths into more complicated trees; there is a simple explicit metric generating this topology. However, we will unfortunately need more topological preparations than just recalling these definitions, because the minimalist structure, based on just the pivotal measures of [27], which was enough to describe the scaling limit of the near-critical ensemble in [28], will not be enough for the tree structures of the present paper. In particular, in Proposition 2.6, we will prove that that set of colored pivotals also has a limit as $\eta \rightarrow 0$.

In Section 3, we first recall the definition of the networks $N_{\eta}^{\bar{\lambda}, \varepsilon}$ and $N_{\infty}^{\bar{\lambda}, \varepsilon}$ introduced in [28], where $\bar{\lambda}=\left(\lambda, \lambda^{\prime}\right)$ is a pair of near-critical parameters with $\lambda<\lambda^{\prime}$. These are graphs with vertex sets X given by those ε-pivotals in the configuration ω^{λ} on a torus \mathbb{T}_{M}^{2} that experience a switch between level λ and λ^{\prime}, and edges given roughly by the primal and dual connections in $\omega^{\lambda} \backslash X$. Then we need to add a bit more structure to these networks, creating the so-called enhanced networks: roughly, we will need to know which of these pivotals are connected together by an open cluster of $\omega^{\lambda} \backslash X$, and will need to know the colors of these pivotals in ω^{λ}. For this, we will use Proposition 2.6 mentioned in the previous paragraph and Proposition 3.6 saying that clusters of large diameter also have large volume (which excludes certain pathological geometric behaviour that would ruin the construction). From these enhanced networks, we will obtain finite labelled graphs whose vertices will basically be open λ-clusters that have ε-pivotals switching in the time interval ($\lambda, \lambda^{\prime}$), with edges labelled by the times of the pivotal switches, showing how the λ-clusters merge. We will define the MST on this finite labelled graph, denoted by $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$ in the discrete and $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$ in the continuum case-these are basically the macroscopic approximations to the cluster trees that we discussed in Section 1.1. To be more precise, in Section 3 we define only some Minimal Spanning Forests, and we need a bit more work until in Lemma 4.4 we can actually define the trees. The fact that these approximating cut-off trees $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$ and $\operatorname{MST} T_{\infty}^{\bar{\lambda}, \varepsilon}$ are close to each other if the underlying near-critical ensembles $\omega_{\eta}^{\left[\lambda, \lambda^{\prime}\right]}$ and $\omega_{\infty}^{\left[\lambda, \lambda^{\prime}\right]}$ are close follows easily from [28].

In Section 4, we prove that the cut-off trees $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$ are close to the true MST_{η} if $\lambda \ll-1, \lambda^{\prime} \gg 1$, and $\varepsilon>0$ is small. Here, the key technique is near-critical stability, Proposition 1.3.

Summarizing, we get that MST_{η} is close to $\mathrm{MST}_{-\infty}^{\bar{\lambda}, \varepsilon}$. Since the latter does not depend on η, while the former does not depend on $\bar{\lambda}$ and ε, they both need to be close to an object that does not depend on any of these parameters: this will be the scaling limit MST_{∞}. To give a succinct pictorial summary of this strategy:

This conclusion will be materialized in Section 5, together with the extension from the case of the tori \mathbb{T}_{M}^{2} to the full plane, and with the proof of the claimed invariance properties.

As already advertised in Sections 1.1 and 1.2, the results on the geometry of MST_{∞} are discussed in Section 6, while Section 7 establishes the existence and invariance properties of $\operatorname{InvPerc}_{\infty}$. We conclude the paper with some open problems in Section 8.

2. Topological and measurability preliminaries.

2.1. The space of essential spanning forests. The following topological setup for discrete and continuum spanning trees was introduced in [4]. We are summarizing here the definitions and the notation, with small modifications; the main difference is roughly that Ω will also contain spanning trees of subsets of the complex plane, to accommodate the invasion percolation tree InvPerc and our approximating trees $\mathrm{MST}^{\bar{\lambda}, \varepsilon}$.

We will work in a one-point compactification of $\mathbb{C}=\mathbb{R}^{2}$, denoted by $\hat{\mathbb{C}}=\mathbb{C} \cup$ $\{\infty\}$, with the Riemannian metric

$$
\begin{equation*}
\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}}\left(d x^{2}+d y^{2}\right) \tag{2.1}
\end{equation*}
$$

by stereographic projection, $\widehat{\mathbb{C}}$ is isometric with the unit sphere. Note that this metric is equivalent to the Euclidean metric in bounded domains, while the distance between any two points outside the square of radius M around the origin in \mathbb{C} is at most $O(1 / M)$. This will imply that convergence of spanning trees in $\widehat{\mathbb{C}}$ is the same as convergence within bounded subsets of \mathbb{C}. This is necessary, since convergence of random spanning trees cannot be uniform in \mathbb{C} : on $\eta \mathbb{Z}^{2}$, inside the infinitely many pieces $[i, i+1) \times[j, j+1), i, j \in \mathbb{Z}$, one can find arbitrary topological behavior (e.g., macroscopically vanishing areas with arbitrarily large numbers of macroscopic branches emanating from them) that will be very far from the almost sure behavior of the continuum tree.

Spanning trees on infinite graphs are usually defined and studied as weak limits of spanning trees in finite subgraphs exhausting the infinite graph. For these finite graphs, one may consider different boundary conditions: most importantly, free or wired. As mentioned in the Introduction, for the MST on Euclidean planar lattices, all such boundary conditions give the same limit measure, and we will work in the tori \mathbb{T}_{M}^{2} of side-length $2 M$, which can be realized as the subdomains $[-M, M)^{2}$ of \mathbb{C}, or even as subgraphs of $\eta \mathrm{T}$ for suitable values of M, with a periodic boundary condition (which is sandwiched between the free and the wired conditions); see Figure 2 in the Introduction.

Definition 2.1. A reference tree τ is a tree with a finite set of leaves (or external vertices), denoted by $\xi(\tau)$, with each edge considered to be a unit interval.

FIG. 3. A reference tree τ with four leaves, with one immersion into \mathbb{Z}^{2} and another into \mathbb{C}. The image in \mathbb{C} is not a tree, but this is allowed. In the scaling limit of any discrete random tree in $\hat{\mathbb{C}}$, one cannot see such self-intersections, but could see touch-points, and self-intersections might happen in scaling limits in higher dimensions.

A reparametrization is a continuous map $\phi: \tau \longrightarrow \tau$ that fixes all the vertices and is monotone on the edges. An immersed tree indexed by τ is an equivalence class of continuous maps $f: \tau \longrightarrow \hat{\mathbb{C}}$, where f_{1} and f_{2} are considered equivalent if there exist reparametrizations ϕ_{1}, ϕ_{2} with $f_{1} \circ \phi_{1}=f_{2} \circ \phi_{2}$. The collection of immersed trees indexed by τ is denoted by \mathcal{S}_{τ}, and we set

$$
\begin{equation*}
\mathcal{S}^{(\ell)}:=\bigcup_{\tau:|\xi(\tau)|=\ell} \mathcal{S}_{\tau} \tag{2.2}
\end{equation*}
$$

the set of immersed trees with ℓ leaves. A tree with leaves $x_{1}, \ldots, x_{\ell} \in \hat{\mathbb{C}}$ will often be denoted by $T\left(x_{1}, \ldots, x_{\ell}\right) \in \mathcal{S}^{(\ell)}$.

We will also consider trees immersed into the torus \mathbb{T}_{M}^{2} with the flat Euclidean metric; the corresponding collection of immersed trees with ℓ leaves is denoted by $\mathcal{S}_{M}^{(\ell)}$.

One may consider trees immersed not just into $\hat{\mathbb{C}}$ or \mathbb{T}_{M}^{2}, but into a graph $G(V, E)$ that is embedded into $\hat{\mathbb{C}}$ or \mathbb{T}_{M}^{2}, and then the image of τ is required to be a subtree of $G(V, E)$, with its vertices mapped into V and any of its edges mapped to a union of edges from E. See Figure 3.

Note that if a reference tree τ^{\prime} is given by contracting some edges of some τ, denoted by $\tau^{\prime} \prec \tau$, then $\mathcal{S}_{\tau^{\prime}}$ is naturally a subset of \mathcal{S}_{τ}, represented by maps $f: \tau \longrightarrow \widehat{\mathbb{C}}$ that are constants on the contracted edges. By contractions in two nonisomorphic trees, τ_{1} and τ_{2}, we may reach the same tree $\tau^{\prime} \prec \tau_{i}$, hence $\mathcal{S}^{(\ell)}$ may be viewed as covered by patches \mathcal{S}_{τ} that are sewn together along "smaller dimensional" patches $\mathcal{S}_{\tau^{\prime}}$, similar to a simplicial complex. [In particular, after these identifications, (2.2) stops being a disjoint union.]

We now equip each \mathcal{S}_{τ} with a very natural metric, extending the notion of uniform closeness up to reparametrization of curves: for two immersed
trees $f_{1}, f_{2}: \tau \longrightarrow \widehat{\mathbb{C}}$,

$$
\begin{equation*}
\operatorname{dist}_{\tau}\left(f_{1}, f_{2}\right)=\inf _{\phi_{1}, \phi_{2}} \sup _{t \in \tau} \operatorname{dist}_{\widehat{\mathbb{C}}}\left(f_{1} \circ \phi_{1}(t), f_{2} \circ \phi_{2}(t)\right) \tag{2.3}
\end{equation*}
$$

where the ϕ_{i} 's run over all reparametrizations of τ. This can be easily extended to immersed trees indexed by different reference trees: by the above remark about patches, for any pair of reference trees τ, τ^{\prime} there exist sequences $\tau=\tau_{0}, \tau_{1}, \ldots, \tau_{m}=\tau^{\prime}$ such that $\tau_{i} \prec \tau_{i+1}$ or $\tau_{i} \succ \tau_{i+1}$ for all $i=0, \ldots, m-1$, and then for any $f: \tau \longrightarrow \widehat{\mathbb{C}}$ and $f^{\prime}: \tau^{\prime} \longrightarrow \widehat{\mathbb{C}}$ we can take

$$
\begin{aligned}
\operatorname{dist}\left(f, f^{\prime}\right)= & \inf \left\{\sum_{i=0}^{m-1} \operatorname{dist}_{\tau_{i} \curlyvee \tau_{i+1}}\left(f_{i}, f_{i+1}\right):\right. \\
& \left.f_{0}=f, f_{m}=f^{\prime}, \tau_{i} \xrightarrow{f_{i}} \hat{\mathbb{C}} \text { for } i=1, \ldots, m-1\right\},
\end{aligned}
$$

where, with a rather obvious notation, $\tau_{i} \curlyvee \tau_{j}=\tau_{i}$ if $\tau_{i} \succ \tau_{j}$. Note that for any τ, τ^{\prime} there exists a $\tau^{\prime \prime}$ with $\tau, \tau^{\prime} \prec \tau^{\prime \prime}$ and $\left|\xi\left(\tau^{\prime \prime}\right)\right| \leq|\xi(\tau)|+\left|\xi\left(\tau^{\prime}\right)\right|-2$, hence distances between immersed trees in $\mathcal{S}^{(\ell)}$ can be measured inside $\mathcal{S}^{(2 \ell-2)}$, and $\operatorname{dist}\left(f, f^{\prime}\right) \leq \operatorname{dist}_{\tau^{\prime \prime}}\left(f, f^{\prime}\right)<\infty$.

With this metric, $\mathcal{S}^{(\ell)}$ is clearly a complete separable metric space, called the space of ℓ-trees. Of course, a Cauchy sequence of trees contained fully in \mathbb{C} might have a limit that has an edge going through ∞. Similarly, $\mathcal{S}_{M}^{(\ell)}$ is complete and separable with the analogous metric, just using the Euclidean metric on \mathbb{T}_{M}^{2} in (2.3).

Now that we have a definition for the space of finite trees immersed in $\widehat{\mathbb{C}}$ or \mathbb{T}_{M}^{2}, we can start defining what a spanning tree of $\hat{\mathbb{C}}$ or \mathbb{T}_{M}^{2} should be: a set of finite trees that satisfy certain compatibility conditions.

The set of nonempty closed subsets of $\mathcal{S}^{(\ell)}$ in the above metric, equipped with the Hausdorff metric, is denoted by $\Omega^{(\ell)}$. We will consider graded sets

$$
\mathcal{F}=\left(\mathcal{F}^{(\ell)}\right)_{\ell \geq 1} \in \Omega^{\times}:=\operatorname{XX}_{\ell \geq 1} \Omega^{(\ell)}
$$

with the product topology. Clearly, Ω^{\times}is again complete, separable and metrizable; in one word, it is a Polish metric space.

Extending the map $\tau \mapsto \xi(\tau)$ giving the external vertices of an index tree, for any $\mathcal{F} \in \Omega^{\times}$we can define

$$
\xi(\mathcal{F}):=\bigcup\left\{f(\xi(\tau)): \tau \xrightarrow{f} \hat{\mathbb{C}} \in \mathcal{F}^{(\ell)}, \ell \geq 1\right\} \subset \hat{\mathbb{C}}
$$

which gives the set of external vertices occurring in \mathcal{F}. It is clearly a Borel measurable function, since for any open $U \subset \hat{\mathbb{C}}$, the preimage $\xi^{-1}(U)$ is a countable intersection (over $\ell \geq 1$) of open sets.

Let $\mathcal{S}_{B_{1}, \ldots, B_{\ell}}$ be the set of immersed trees with endpoints $x_{i} \in B_{i}$, where each B_{i} is a closed subset of $\hat{\mathbb{C}}$. Note that this is a closed subset of $\mathcal{S}^{(\ell)}$, hence the map

$$
\Omega^{\times} \longrightarrow \Omega_{B_{1}, \ldots, B_{\ell}} \subseteq \Omega^{(\ell)}, \quad \mathcal{F} \mapsto \mathcal{F}^{(\ell)} \cap \mathcal{S}_{B_{1}, \ldots, B_{\ell}}
$$

is measurable. In words, extracting the subtrees of \mathcal{F} with leaves in prescribed closed sets (e.g., the branches of \mathcal{F} connecting two given points) is a measurable map.

DEFINITION 2.2. A graded set $\mathcal{F}=\left(\mathcal{F}^{(\ell)}\right)_{\ell \geq 1} \in \Omega^{\times}$is called an essential spanning forest on its external vertices $\xi(\mathcal{F})$ if it satisfies the following properties:
(i) for each $\ell \in \mathbb{N}^{+}$and any ℓ-tuple $\left\{x_{1}, \ldots, x_{\ell}\right\}$ of vertices in $\xi(\mathcal{F})$, there exists at least one immersed tree $T\left(x_{1}, \ldots, x_{\ell}\right) \in \mathcal{F}^{(\ell)}$ with those leaves;
(ii) for any immersed tree $T \in \mathcal{F}^{(\ell)}$, any subtree $T^{\prime} \subset T$ (given by restricting the immersion to a combinatorial subtree of the index tree τ) is again in some $\mathcal{F}^{\left(\ell^{\prime}\right)}$;
(iii) for any two trees $T_{i} \in \mathcal{F}^{\left(\ell_{i}\right)}, i=1,2$, there is a tree in some $\mathcal{F}^{(\ell)}$ that contains both T_{i} 's as subtrees and has no leaves beyond those of the T_{i} 's.

Note that (ii) implies that $\xi(\mathcal{F})$ contains all the vertices of all the embedded trees.

An essential spanning forest \mathcal{F} is called a spanning tree if $\xi(\mathcal{F}) \subset \mathbb{C}$ and every path $T(x, y) \in \mathcal{F}^{(2)}$ stays within a bounded region of \mathbb{C}. A spanning tree is called quasi-local if for any bounded $\Lambda \subset \mathbb{C}$ there exists a bounded domain $\bar{\Lambda}(\mathcal{F}, \Lambda) \subset \mathbb{C}$ such that every tree of \mathcal{F} with leaves in Λ is contained in $\bar{\Lambda}$.

The set of essential spanning forests in $\hat{\mathbb{C}}$ [with an arbitrary set of vertices $\xi(\mathcal{F})$] will be denoted by Ω. It is easy to check that Ω is a closed subset of the Polish space Ω^{\times}, hence itself is Polish. A simple explicit metric, denoted by d_{Ω}, is given by the restriction from Ω^{\times}to Ω of the sum over ℓ of the Hausdorff distance on $\mathcal{S}^{(\ell)}$ multiplied by the weight $2^{-\ell}$.

For the tori \mathbb{T}_{M}^{2}, the spaces $\Omega_{M}^{(\ell)}, \Omega_{M}^{\times}, \Omega_{M}$ are defined analogously, with the only difference being that any essential spanning forest here is a single tree. The metric $d_{\Omega_{M}}$ is defined the same way as d_{Ω}.

The only way in which two vertices may be disconnected in an essential spanning forest \mathcal{F} in $\widehat{\mathbb{C}}$ is that all the paths between them go through ∞; therefore, either \mathcal{F} is a spanning tree, or no component of it is contained in a bounded domain of \mathbb{C}. This is the property that the adjective "essential" for these spanning forests refers to. (In the setting of discrete infinite graphs, this reduces to saying that all components of the forest are infinite trees.) Also, note that the above definition allows for having more than one path between two vertices, which will in fact happen in the scaling limit of the MST.
2.2. The quad-crossing topology. Let us quickly recall the notation and the basic results for the quad-crossing topology of percolation configurations, introduced in [48] and studied further in [27, 28].

Let $D \subset \widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ be open, or be equal to the torus \mathbb{T}_{M}^{2}. A quad in the domain D can be considered as a homeomorphism Q from $[0,1]^{2}$ into D. The
space of all quads in D, denoted by \mathcal{Q}_{D}, can be equipped with the following metric: $d_{\mathcal{Q}}\left(Q_{1}, Q_{2}\right):=\inf _{\phi} \sup _{z \in \partial[0,1]^{2}}\left|Q_{1}(z)-Q_{2}(\phi(z))\right|$, where the infimum is over all homeomorphisms $\phi:[0,1]^{2} \longrightarrow[0,1]^{2}$ which preserve the 4 corners of the square. A crossing of a quad Q is a connected closed subset of $[Q]:=$ $Q\left([0,1]^{2}\right)$ that intersects both $\partial_{1} Q=Q(\{0\} \times[0,1])$ and $\partial_{3} Q=Q(\{1\} \times[0,1])$. We say that Q has a dual crossing between $\partial_{1} Q$ and $\partial_{3} Q$ by some closed subset $S \subseteq[Q]$ if there is no crossing in S between $\partial_{2} Q=Q([0,1] \times\{0\})$ and $\partial_{4} Q=Q([0,1] \times\{1\})$.

From the point of view of crossings, there is a natural partial order on \mathcal{Q}_{D} : we write $Q_{1} \leq Q_{2}$ if any crossing of Q_{2} contains a crossing of Q_{1}. Furthermore, we write $Q_{1}<Q_{2}$ if there are open neighbourhoods \mathcal{N}_{i} of Q_{i} (in the uniform metric) such that $N_{1} \leq N_{2}$ holds for any $N_{i} \in \mathcal{N}_{i}$. A subset $S \subset \mathcal{Q}_{D}$ is called hereditary if whenever $Q \in S$ and $Q^{\prime} \in \mathcal{Q}_{D}$ satisfies $Q^{\prime}<Q$, we also have $Q^{\prime} \in S$. The collection of all closed hereditary subsets of \mathcal{Q}_{D} will be denoted by \mathscr{H}_{D}. Any discrete percolation configuration ω_{η} of mesh $\eta>0$, considered as a union of the topologically closed percolation-wise open hexagons in the plane, naturally defines an element $S\left(\omega_{\eta}\right)$ of \mathscr{H}_{D} : the set of all quads for which ω_{η} contains a crossing. In particular, near-critical percolation at level $\lambda \in \mathbb{R}$, as defined in Definition 1.2, induces a probability measure on \mathscr{H}_{D}, which will be denoted by $\mathbf{P}_{\eta}^{\lambda}$.

By introducing a natural topology, \mathscr{H}_{D} can be made into a compact metric space. Indeed, let

$$
\boxminus_{Q}:=\left\{S \in \mathscr{H}_{D}: Q \in S\right\} \quad \text { for any } Q \in \mathcal{Q}_{D}
$$

and let

$$
\bullet_{U}:=\left\{S \in \mathscr{H}_{D}: S \cap U=\varnothing\right\} \quad \text { for any open } U \subset \mathcal{Q}_{D}
$$

Then define \mathcal{T}_{D} to be the minimal topology that contains every \boxminus_{Q}^{c} and \square_{U}^{c} as open sets. It is proved in [48], Theorem 3.10, that for any nonempty open D, the topological space $\left(\mathscr{H}_{D}, \mathcal{T}_{D}\right)$ is compact, Hausdorff and metrizable. Furthermore, for any dense $\mathcal{Q}_{0} \subset \mathcal{Q}_{D}$, the events $\left\{\boxminus_{Q}: Q \in \mathcal{Q}_{0}\right\}$ generate the Borel σ-field of \mathscr{H}_{D}. An arbitrary metric generating the topology \mathcal{T}_{D} will be denoted by $d_{\mathscr{H}}$. Now, since Borel probability measures on a compact metric space are always tight, we have subsequential scaling limits of $\mathbf{P}_{\eta}^{\lambda}$ on \mathscr{H}_{D}, as $\eta=\eta_{k} \rightarrow 0$. Moreover, the following convergence of probabilities holds. For critical percolation, $\lambda=0$, it is Corollary 5.2 of [48]; for general λ, the exact same proof works, using that the RSW estimates hold in near-critical percolation.

Lemma 2.3. For any $\lambda \in \mathbb{R}$, any subsequential scaling limit $\boldsymbol{P}_{\eta_{k}}^{\lambda} \rightarrow \boldsymbol{P}_{\infty}^{\lambda}$, and any quad $Q \in \mathcal{Q}_{D}$, one has $\boldsymbol{P}_{\infty}^{\lambda}\left[\partial \boxminus_{Q}\right]=0$. Therefore, by the weak convergence of $\boldsymbol{P}_{\eta_{k}}^{\lambda}$ to $\boldsymbol{P}_{\infty}^{\lambda}$,

$$
\boldsymbol{P}_{\eta_{k}}^{\lambda}\left[\boxminus_{Q}\right] \rightarrow \boldsymbol{P}_{\infty}^{\lambda}\left[\boxminus_{Q}\right] .
$$

For the case of site percolation on $\eta \mathrm{T}$, we know much more than just the existence of subsequential limits. As explained in [27], Section 2.3, the existence of a unique quad-crossing scaling limit for $\lambda=0$ follows from the loop scaling limit result of $[18,50]$. The case of general λ is Theorem 1.4 of [28].

THEOREM 2.4 (Near-critical scaling limit). For any $\lambda \in \mathbb{R}$, there is a unique measure $\boldsymbol{P}_{\infty}^{\lambda}$ for percolation configurations $\omega_{\infty}^{\lambda}$ in $\left(\mathscr{H}_{D}, \mathcal{T}_{D}\right)$ such that the weak convergence $\omega_{\eta}^{\lambda} \xrightarrow{d} \omega_{\infty}^{\lambda}$ holds.

We have shown in [27] that the arm events between the boundary pieces of an annulus are measurable w.r.t. the quad-crossing topology, and the convergence of probabilities (analogous to Lemma 2.3) holds. Namely, for any topological annulus $A \subset D$ with piecewise smooth inner and outer boundary pieces $\partial_{1} A$ and $\partial_{2} A$ (and for the case of $D=\mathbb{T}_{M}^{2}$, we also require A to be null-homotopic), we define the alternating 4-arm event in A as $\mathcal{A}_{4}=\bigcup_{\delta>0} \mathcal{A}_{4}^{\delta}$, where \mathcal{A}_{4}^{δ} is the existence of quads $Q_{i} \subset D, i=1,2,3,4$, with the following properties (see the left-hand side of Figure 4):
(i) Q_{1} and Q_{3} are disjoint and are at distance at least δ from each other; the same for Q_{2} and Q_{4};
(ii) for $i \in\{1,3\}$, the sides $\partial_{1} Q_{i}=Q_{i}(\{0\} \times[0,1])$ lie inside $\partial_{1} A$ and the sides $\partial_{3} Q_{i}=Q_{i}(\{1\} \times[0,1])$ lie outside $\partial_{2} A$; for $i \in\{2,4\}$, the sides $\partial_{2} Q_{i}=$ $Q_{i}([0,1] \times\{0\})$ lie inside $\partial_{1} A$ and the sides $\partial_{4} Q_{i}=Q_{i}([0,1] \times\{1\})$ lie outside $\partial_{2} A$; all these sides are at distance at least δ from the annulus A and from the other Q_{j} 's;
(iii) the four quads are ordered cyclically around A according to their indices;
(iv) For $i \in\{1,3\}$, we have $\omega \in \boxminus_{Q_{i}}$, while for $i \in\{2,4\}$, we have $\omega \in \boxminus_{Q_{i}}^{c}$. In plain words, the quads Q_{1}, Q_{3} are crossed, while the quads Q_{2}, Q_{4} are dual crossed between the boundary pieces of A, with a margin δ of safety.

FIG. 4. Defining the alternating 4-arm event (in Section 2.2) and the color of a pivotal point (in Section 2.3) using quad-crossings. Quads with a primal crossing are in solid red, quads with a dual crossing are in dashed blue.

The definitions of general (mono- or polychromatic) k-arm events in A are of course analogous: for arms of the same color we require the corresponding quads to be completely disjoint, and we still require all the boundary pieces lying outside the annulus A to be disjoint.

The next lemma is proved for critical percolation in [27], Lemma 2.9. For nearcritical percolation, the same proofs work, using the stability of multi-arm probabilities (see [28], Lemma 8.4, Proposition 11.6, or [37]), together with the existence of the near-critical scaling limit [28], Theorem 1.4.

Lemma 2.5. Let $A \subset D$ be a piecewise smooth topological annulus (with finitely many nonsmooth boundary points). Then the 1-arm, the alternating 4-arm and any polychromatic 6 -arm event in A, denoted by $\mathcal{A}_{1}, \mathcal{A}_{4}$ and \mathcal{A}_{6}, respectively, are measurable w.r.t. the scaling limit of critical percolation in D, and one has

$$
\lim _{\eta \rightarrow 0} \boldsymbol{P}_{\eta}^{\lambda}\left[\mathcal{A}_{i}\right]=\boldsymbol{P}_{\infty}^{\lambda}\left[\mathcal{A}_{i}\right]
$$

Moreover, in any coupling of the measures $\left\{\boldsymbol{P}_{\eta}^{\lambda}\right\}$ and $\boldsymbol{P}_{\infty}^{\lambda}$ on $\left(\mathscr{H}_{D}, \mathcal{T}_{D}\right)$ in which $\omega_{\eta}^{\lambda} \rightarrow \omega_{\infty}^{\lambda}$ a.s. as $\eta \rightarrow 0$, we have

$$
\begin{equation*}
\boldsymbol{P}\left[\left\{\omega_{\eta}^{\lambda} \in \mathcal{A}_{i}\right\} \triangle\left\{\omega_{\infty}^{\lambda} \in \mathcal{A}_{i}\right\}\right] \rightarrow 0 \quad(\text { as } \eta \rightarrow 0) \tag{2.4}
\end{equation*}
$$

2.3. Pivotals and pivotal measures. In [28], we managed to describe the changes of macroscopic connectivities in a percolation configuration under the stationary or the asymmetric near-critical dynamics using just the pivotal measures of [27], without making explicit use of notions like clusters or the set of pivotal sites in continuum percolation. Unfortunately, the situation is slightly more complicated for the models in the present paper, hence we need some foundational work in addition to what was done in [27], Section 2.4.

Let x be a point surrounded (with a positive distance) by a piecewise smooth Jordan curve $\gamma \subset D$, where "surrounded" means that $D \backslash \gamma$ has two connected components, with the one containing x being homeomorphic to a disk. For any $\varepsilon>0$, fix a lattice $\varepsilon \mathbb{Z}^{2}$ in D, and let $B_{\varepsilon}(x)$ be the ε-square $[i, i+1) \varepsilon \times[j, j+1) \varepsilon$ in the lattice that contains x. We say that x is pivotal for γ in $\omega_{\infty}^{\lambda}$ if, for any $\varepsilon>0$ such that $B_{2 \varepsilon}(x)$ is surrounded by γ, the alternating 4-arm event occurs in the annulus with boundary pieces $\partial B_{2 \varepsilon}(x)$ and γ, as defined in Section 2.2. We let \mathcal{P}^{γ} denote the set of pivotal points for γ in D. Furthermore, we can identify the color of a pivotal point $x \in \mathcal{P}^{\gamma}$ as open (black) versus closed (white, empty), as follows. We let $\mathcal{P}_{\text {open }}^{\gamma, \varepsilon}$ denote the set of points x for which γ surrounds x without intersecting or touching $B_{2 \varepsilon}(x)$, and there exist quads $Q_{\varepsilon, i}, i=1,2,3,4$, exhibiting the 4arm event from $\partial B_{2 \varepsilon}(x)$ to γ such that the quad \bar{U}_{ε}, given by taking the union of $U_{\varepsilon}:=Q_{\varepsilon, 1} \cup Q_{\varepsilon, 3} \cup B_{2 \varepsilon}(x)$ and the bounded components of $\mathbb{C} \backslash U_{\varepsilon}$, is crossed between the boundary pieces $Q_{\varepsilon, 1}(\{1\} \times[0,1])$ and $Q_{\varepsilon, 3}(\{1\} \times[0,1])$; see the
right-hand side of Figure 4 in the previous subsection. Then we let the set of open pivotals for γ be

$$
\mathcal{P}_{\text {open }}^{\gamma}:=\left\{x \in D: x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon} \text { for all } \varepsilon>0 \text { s.t. } B_{2 \varepsilon}(x) \text { is surrounded by } \gamma\right\} .
$$

Clearly, the event $x \in \mathcal{P}_{\text {open }}^{\gamma}$ is measurable w.r.t. the quad-crossing topology. We will use the notation $x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon, \delta}$ for the event that all the crossing events in $\mathcal{P}_{\text {open }}^{\gamma, \varepsilon}$ are satisfied even with a δ margin of safety. Finally, we set $x \in \mathcal{P}_{\text {closed }}^{\gamma}$ if the analogous dual crossing holds in the quad given by $Q_{\varepsilon, 2} \cup Q_{\varepsilon, 4} \cup B_{2 \varepsilon}(x)$, for each small enough $\varepsilon>0$.

For a discrete percolation configuration ω_{η}^{λ}, the above definitions do not work: instead of taking all small enough $\varepsilon>0$, we just need to take the annulus between γ and the hexagon of the point $x \in D$. In particular, the previous definition would render every η-hexagon that intersects γ to be pivotal automatically, something that we will not do. Also, here it is clear what the sets $\mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)$ and $\mathcal{P}_{\text {closed }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)$ are: their disjoint union is the set of pivotal hexagons $\mathcal{P}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)$, and the color is determined by the color of the hexagon itself. We will nevertheless use notation like $x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right)$: it has the meaning given above, using quad-crossings, and of course it cannot hold unless η is small enough, say $\varepsilon>\eta$, so that $\partial B_{2 \varepsilon}(x)$ already intersects at least four η-hexagons.

Proposition 2.6 (The set of pivotals, with colors). In any coupling of the measures $\left\{\boldsymbol{P}_{\eta}^{\lambda}\right\}$ and $\boldsymbol{P}_{\infty}^{\lambda}$ on $\left(\mathscr{H}_{D}, \mathcal{T}_{D}\right)$ in which $\omega_{\eta}^{\lambda} \xrightarrow{\text { a.s. }} \omega_{\infty}^{\lambda}$ as $\eta \rightarrow 0$, for any piecewise smooth null-homotopic Jordan curve $\gamma \subset D$ we have the following statements:
(i) $\mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)$ converges in probability to $\mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$ in the Hausdorff metric of closed sets; same for $\mathcal{P}_{\text {closed }}^{\gamma}$ and \mathcal{P}^{γ}.
(ii) Almost surely, $\mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right) \cup \mathcal{P}_{\text {closed }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)=\mathcal{P}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$, a disjoint union.
(iii) Almost surely, whenever $x \in \mathcal{P}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$ for some γ, the color of x is the same for all such γ.

In (i), it is not obvious that the sets $\mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right), \mathcal{P}_{\text {closed }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right), \mathcal{P}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$ are topologically closed, but this will follow from the proof. Note also that (ii) is not a tautology (neither that the two colored sets are disjoint, nor that their union is the set of all the pivotals), since in $\omega_{\infty}^{\lambda}$ we did not define the set of closed pivotals as the complement of open pivotals.

The main difficulty in proving (i) is that the event $x \in \mathcal{P}_{\text {open }}^{\gamma}$ is not an open set in the quad-crossing topology $\left(\mathscr{H}_{D}, \mathcal{T}_{D}\right)$: perturbing a configuration even by an arbitrary small amount may destroy a pivotal for γ, making the 4-arm event happen only from a strictly positive distance $\varepsilon>0$ to γ. In terms of discrete percolation configurations, if there is an open pivotal connecting two halves of a cluster, then making the connection between the two halves a bit thicker is a small change
w.r.t. the quad-crossing topology, but it kills the pivotal. In particular, the harder direction in (i) will be to prove that there are "enough" pivotals in $\omega_{\infty}^{\lambda}$, since this requires controlling all scales simultaneously.

Proof of Proposition 2.6. For (i), we need to prove that for any $\varepsilon>0$, if $\eta>0$ is small enough, then with probability at least $1-\varepsilon$, for every $x_{\eta} \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)$ there exists some $x \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$ within distance ε from x_{η}, and vice versa, for every $x \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$ there exists $x_{\eta} \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)$.

There will be three key ingredients. First, we have the following relationship between the discrete and the quad-crossing definitions of open pivotality: for every $\alpha>0$ if $\varepsilon>0$ is small enough, then for all $\eta>0$ small enough,

$$
\begin{equation*}
\mathbf{P}\left[\mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right) \supseteq \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)\right]>1-\alpha . \tag{2.5}
\end{equation*}
$$

To see this, note that, since γ is piecewise smooth, the 3 -arm half-plane exponent being 2 (larger than 1) implies that with high probability there are no pivotals close to γ. (See, e.g., the end of the proof of Theorem 1.1 in [27], Section 4.6.) That is, for ε small enough, $B_{2 \varepsilon}(x)$ is surrounded by γ for every $x \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)$. It is also easy to check that the condition $x \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)$ implies the existence of the necessary quads $Q_{\varepsilon, 1}$ and $Q_{\varepsilon, 3}$ in the definition of $\mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right)$: taking either open arm from x to γ, and the arc on $\partial B_{2 \varepsilon}(x)$ between its first and last exit from $B_{2 \varepsilon}(x)$, the quad $Q_{\varepsilon, i}$ should contain this arc.

Second, for any small $\alpha, \varepsilon>0$ there exists $\delta, \bar{\eta}>0$ such that for all $0<\eta<\bar{\eta}$,

$$
\begin{equation*}
\mathbf{P}\left[\mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right)=\mathcal{P}_{\text {open }}^{\gamma, \varepsilon, \delta}\left(\omega_{\eta}^{\lambda}\right)\right]>1-\alpha . \tag{2.6}
\end{equation*}
$$

The existence of a δ that still depends on $x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right)$, or rather on its lattice square $B_{2 \varepsilon}(x)$, is just a special case of [27], Corollary 2.10. Then, taking the probability α of the error much smaller than ε^{2}, we can find a $\delta>0$ that, with large probability, works for all points in $\mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right)$ simultaneously, proving (2.6).

The point of introducing the δ margin of safety is that now (2.6) immediately implies that there exists some monotone function $f=f_{\alpha, \varepsilon}:[0, \infty) \longrightarrow[0, \infty)$ that could be described using the dyadic uniformity structures of [27], Lemma 2.5, and [28], Proposition 3.9) such that

$$
\begin{align*}
& \mathbf{P}\left[\forall x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right) \text { and } \forall \tilde{\omega} \in \mathscr{H}_{D} \text { with } d_{\mathscr{H}}\left(\tilde{\omega}, \omega_{\eta}^{\lambda}\right)<f(\delta),\right. \tag{2.7}\\
& \left.\quad \text { we have } x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon, \delta / 2}(\tilde{\omega})\right]>1-\alpha
\end{align*}
$$

for some $\delta>0$ and any $0<\eta<\bar{\eta}$, as given by (2.6).
The third key ingredient is that for any small $\alpha, \beta>0$, if $\varepsilon, \hat{\eta}>0$ are small enough, then

$$
\begin{equation*}
\mathbf{P}\left[\forall x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right) \exists \tilde{x} \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right) \text { with } d(\tilde{x}, x)<\beta\right]>1-\alpha \tag{2.8}
\end{equation*}
$$

for all $0<\eta<\hat{\eta}$. Before proving this, let us see how (2.5), (2.7) and (2.8) imply item (i). We start with the first direction.

Fix $\alpha, \beta>0$ small. Corresponding to them, (2.8) gives some $\varepsilon_{0}, \hat{\eta}_{0}>0$. We also make sure that they are small enough for (2.5) to hold. Now, corresponding to α and this ε_{0}, there are $\delta_{0}, \bar{\eta}_{0}>0$ given by (2.7). Take $0<\eta_{0}<\bar{\eta}_{0} \wedge \hat{\eta}_{0}$ so small that

$$
\begin{equation*}
\mathbf{P}\left[d_{\mathscr{H}}\left(\omega_{\eta}^{\lambda}, \omega_{\infty}^{\lambda}\right)<f\left(\delta_{0}\right) / 2 \text { holds for all } \eta \leq \eta_{0}\right]>1-\alpha \tag{2.9}
\end{equation*}
$$

in the coupling $\omega_{\eta}^{\lambda} \xrightarrow{\text { a.s. }} \omega_{\infty}^{\lambda}$ that we have. If the event of (2.9) holds, then we also have $d_{\mathscr{H}}\left(\omega_{\eta}^{\lambda}, \omega_{\eta_{0}}^{\lambda}\right)<f\left(\delta_{0}\right)$, and hence, together with (2.7) and (2.8), we get that, for all $\eta \leq \eta_{0}$,

$$
\mathbf{P}\left[\forall x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon_{0}}\left(\omega_{\eta_{0}}^{\lambda}\right) \exists \tilde{x} \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right) \text { with } d(\tilde{x}, x)<\beta\right]>1-3 \alpha .
$$

Similarly, for $k \geq 1$, corresponding to $\alpha / 2^{k}$ and $\beta / 2^{k}$, there are $\varepsilon_{k}, \hat{\eta}_{k}>0$ given by (2.8); we can make sure that $\varepsilon_{k}<\varepsilon_{k-1} / 2$. Then, corresponding to $\alpha / 2^{k}$ and ε_{k}, there are $\delta_{k}, \bar{\eta}_{k}>0$ given by (2.7). Take $0<\eta_{k}<\eta_{k-1} / 2 \wedge \bar{\eta}_{k} \wedge \hat{\eta}_{k}$ so small that $d_{\mathscr{H}}\left(\omega_{\eta}^{\lambda}, \omega_{\infty}^{\lambda}\right)<f\left(\delta_{k}\right) / 2$ is satisfied for all $\eta \leq \eta_{k}$ with probability at least $1-\alpha / 2^{k}$. Then, for all $\eta<\eta_{k}$, (2.7) and (2.8) together give that

$$
\mathbf{P}\left[\forall x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon_{k}}\left(\omega_{\eta_{k}}^{\lambda}\right) \exists \tilde{x} \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\eta}^{\lambda}\right) \text { with } d(\tilde{x}, x)<\beta / 2^{k}\right]>1-3 \alpha / 2^{k} .
$$

Iterating this procedure, we get that there exist sequences $\eta_{k} \rightarrow 0$ and $\varepsilon_{k} \rightarrow 0$ such that with probability at least $1-3 \alpha \sum_{k \geq 0} 2^{-k}=1-6 \alpha$, for any $x_{0} \in$ $\mathcal{P}_{\text {open }}^{\gamma, \varepsilon_{0}}\left(\omega_{\eta_{0}}^{\lambda}\right)$ there exist
(2.10) $\quad x_{k} \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon_{k}}\left(\omega_{\eta_{k}}^{\lambda}\right) \quad$ for $k=0,1,2, \ldots$, satisfying $d\left(x_{k+1}, x_{k}\right)<\beta / 2^{k}$.

These points have a limit $x_{k} \rightarrow \tilde{x}_{0}$, which satisfies $d\left(x_{0}, \tilde{x}_{0}\right)<2 \beta$. Unsurprisingly, we claim that $\tilde{x}_{0} \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$. Indeed, otherwise there would exist some $\tilde{\varepsilon}>0$ such that $\tilde{x}_{0} \notin \mathcal{P}_{\text {open }}^{\gamma, \tilde{\varepsilon}}\left(\omega_{\infty}^{\lambda}\right)$, but for some small enough ε, this would clearly contradict the existence of an $\omega_{\eta_{k}}^{\lambda}$ satisfying $d_{\mathscr{H}}\left(\omega_{\eta_{k}}^{\lambda}, \omega_{\infty}^{\lambda}\right)<\varepsilon$ and having an almostpivotal $x_{k} \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta_{k}}^{\lambda}\right)$ at distance $d\left(x_{k}, \tilde{x}_{0}\right)<\varepsilon$, which we have from (2.10). Since we can take α and β arbitrarily small, this argument and (2.5) together complete the proof of the first direction of item (i).

For the other direction, if $x \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$, then, by definition, for all $\varepsilon>0$ with $B_{2 \varepsilon}(x)$ surrounded by γ, there is some $\delta>0$ such that $x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon, \delta}\left(\omega_{\infty}^{\lambda}\right)$. Now, if ω_{η}^{λ} is close enough to $\omega_{\infty}^{\lambda}$ (again quantifiable in the sense of dyadic uniformity structures), then $x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon, \delta / 2}\left(\omega_{\eta}^{\lambda}\right)$ also occurs. By (2.8), if $\varepsilon>0$ is small enough, this means with large probability that there is an actual pivotal of ω_{η}^{λ} close to x, as required.

We still owe the proof of (2.8). Assume that $x \in \mathcal{P}_{\text {open }}^{\gamma, \varepsilon}\left(\omega_{\eta}^{\lambda}\right)$ but there are no open pivotal sites in $B_{\beta}(x)$. This implies that there is a 6 -arm event from $\partial B_{2 \varepsilon}(x)$ to $\partial B_{\beta}(x)$: the interfaces between the open and closed arms cannot touch each other within $B_{\beta}(x)$, hence their open sides form two disjoint open paths, creating

Fig. 5. Left: an open ε-almost pivotal event without actual pivotals in the β-square implies a 6-arm event (four open and two closed arms) between radii ε and β. Right: having both an open and a closed γ-pivotal in an ε-square implies a 6-arm event from 2ε to γ.
four open arms besides the two closed ones; see the left-hand side of Figure 5. Since the 6 -arm exponent is strictly larger than 2 at any fixed near-critical level λ (see [49], Corollary A.8, for $\lambda=0$, and [28], Proposition 11.6, or Proposition 1.3 in the present paper for general λ), we can take $\beta:=\varepsilon^{\zeta}$ with $\zeta>0$ small enough for the polychromatic 6 -arm probability satisfy $\alpha_{6}(2 \varepsilon, \beta)=o\left(\varepsilon^{2}\right)$, and then the probability that such a 6 -arm event occurs anywhere in the domain tends to zero as $\varepsilon \rightarrow 0$, and we are done.

For $\mathcal{P}_{\text {closed }}^{\gamma}$, the proof is of course identical. For \mathcal{P}^{γ}, the harder direction [that there exist points of $\mathcal{P}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$ close to the points of $\left.\mathcal{P}^{\gamma}\left(\omega_{\eta}^{\lambda}\right)\right]$ is automatic from the same results for $\mathcal{P}_{\text {open }}^{\gamma}$ and $\mathcal{P}_{\text {closed }}^{\gamma}$, since in the discrete configuration ω_{η} every pivotal has a color. For the easier direction, the proof we gave for $\mathcal{P}_{\text {open }}^{\gamma}$ via (2.8) did not in fact use that the point in $\mathcal{P}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$ had a definite color, only the 4 -arm events on all scales, hence it also applies here.

In item (ii), the fact that the union of the two colored sets gives all the pivotals follows immediately from the discrete analogue and item (i). To prove the disjointness claim, by part (i) it is enough to prove that the probability of having a closed and an open pivotal for γ within distance ε from each other goes to 0 as $\varepsilon \rightarrow 0$. But this event implies the existence of 6 disjoint arms from ε to γ (see the righthand side of Figure 5), and hence, as usual, the 6 -arm exponent being larger than 2 implies the claim.

For item (iii), if γ_{1} and γ_{2} both surround x, with $x \in \mathcal{P}_{\text {open }}^{\gamma_{1}}\left(\omega_{\infty}^{\lambda}\right) \cap \mathcal{P}_{\text {closed }}^{\gamma_{2}}\left(\omega_{\infty}^{\lambda}\right)$, then we would also have $x \in \mathcal{P}_{\text {open }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right) \cap \mathcal{P}_{\text {closed }}^{\gamma}\left(\omega_{\infty}^{\lambda}\right)$, where γ is the part of $\gamma_{1} \cup \gamma_{2}$ that is visible from x. However, this is impossible by item (ii).

Beyond the set of pivotals, we are also interested in the normalized counting measure on them. In [28], Section 2.6, for any fixed $\varepsilon>0$, we defined the set of
ε-important points $\mathscr{P}^{\varepsilon}\left(\omega_{\eta}\right)$ of any discrete percolation configuration in a bounded domain $D \subset \hat{\mathbb{C}}$, relative to the $(\varepsilon, 3 \varepsilon)$-annuli given by a fixed lattice $\varepsilon \mathbb{Z}^{2}$. Namely, for $x \in D$, we let $B_{\varepsilon}(x)$ be the lattice square as before, let $\tilde{B}_{\varepsilon}(x)$ be the 3ε-square centered at $B_{\varepsilon}(x)$ and let $x \in \mathscr{P}^{\varepsilon}$ iff $x \in \mathcal{P}^{\partial \tilde{B}_{\varepsilon}(x)}$. Then we considered the normalized counting measure $\mu^{\varepsilon}\left(\omega_{\eta}\right)$ on this set $\mathscr{P}^{\varepsilon}$. Of course, the same discrete definition works for near-critical percolation configurations ω_{η}^{λ}. Then the main result of [27] is the following convergence of μ^{ε} for $\lambda=0$, extended to general $\lambda \in \mathbb{R}$ by [28], Theorem 11.5.

THEOREM 2.7. For any $\varepsilon>0$, there exists a measurable map $\mu^{\varepsilon}: \mathscr{H}_{D} \longrightarrow$ \mathfrak{M}_{D}, into the space of finite Borel measures on D, such that, for $\lambda \in \mathbb{R}$, as $\eta \rightarrow 0$,

$$
\left(\omega_{\eta}^{\lambda}, \mu^{\varepsilon}\left(\omega_{\eta}^{\lambda}\right)\right) \xrightarrow{d}\left(\omega_{\infty}^{\lambda}, \mu^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)\right)
$$

in the quad-crossing topology $\left(\mathscr{H}_{D}, \mathcal{T}_{D}\right)$ in the first coordinate and in the LévyProkhorov distance of measures in the second one. Furthermore, the above Proposition 2.6 implies immediately the convergence

$$
\left(\mathscr{P}_{\text {open }}^{\varepsilon}\left(\omega_{\eta}^{\lambda}\right), \mathscr{P}_{\text {closed }}^{\varepsilon}\left(\omega_{\eta}^{\lambda}\right)\right) \xrightarrow{d}\left(\mathscr{P}_{\text {open }}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right), \mathscr{P}_{\text {closed }}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)\right)
$$

in the Hausdorff metric of closed sets.
3. Enhanced networks and cut-off forests built from the near-critical ensemble. The pivotal measures of [27] that we recalled in Theorem 2.7 were used in [28] as the intensity measures for the Poisson point processes of pivotal sites that switch as the near-critical parameter $\lambda \in \mathbb{R}$ changes. Here is the exact notation that we will use.

DEFINITION 3.1. Let $\bar{\lambda}=\left(\lambda, \lambda^{\prime}\right) \in \mathbb{R}^{2}$ be any pair of near-critical parameters with $\lambda<\lambda^{\prime}$, and let $\varepsilon>0$ be fixed. Let ω^{λ} be a near-critical configuration ω_{η}^{λ} or $\omega_{\infty}^{\lambda}$ in \mathbb{T}_{M}^{2}. We will denote by $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}=\operatorname{PPP}_{\bar{\lambda}}\left(\mu^{\varepsilon}\left(\omega^{\lambda}\right)\right)$ the Poisson point process

$$
\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}=\left\{\left(x_{i}, t_{i}\right), 1 \leq i \leq p\right\} \subset \mathscr{P}^{\varepsilon}\left(\omega^{\lambda}\right) \times\left[\lambda, \lambda^{\prime}\right]
$$

of intensity measure $\mu^{\varepsilon}\left(\omega^{\lambda}\right)(d x) \times \mathbf{1}_{\left[\lambda, \lambda^{\prime}\right]}(t) d t$. The set $\left\{x_{1}, \ldots, x_{p}\right\}$ of pivotals will usually be denoted by X. For the case of ω_{η}^{λ}, the process PPP $\frac{\varepsilon}{\lambda}$ can clearly be constructed measurably from $\omega_{\eta}^{\left[\lambda, \lambda^{\prime}\right]}$, and we will always work in this natural coupling.

In Section 6 and Section 11.2 of [28], for any quad $Q \subset \mathbb{C}$, any $\varepsilon>0$, any discrete or continuum near-critical percolation configuration ω^{λ} and the associated Poisson point process $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega^{\lambda}\right)$, we constructed an edge-colored graph $\mathrm{N}_{Q}\left(\omega^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$, called an ε-network, whose vertex set was the Poisson point set
$X=\left\{x_{1}, \ldots, x_{p}\right\}$ of pivotals together with the four boundary arcs of Q, and whose edge set was given by the primal and dual connections in ω^{λ} between the vertices. Since in this paper we are primarily interested in spanning trees, not in quadcrossings, it will be useful to change the boundary conditions in the definition slightly (but still using the quad-crossing topology). We will also need to add a bit more structure to these networks: roughly, we will need to know which pivotals in X are connected together by an open cluster of $\omega^{\lambda} \backslash X$, and will need to know the colors of these pivotals in ω^{λ}. The resulting structures will be called enhanced networks. Just as in [28], we start with the following simple definition.

DEFINITION 3.2 (A nested family of dyadic coverings). For any $b>0$ in $2^{-\mathbb{N}}=\left\{2^{-k}: k=0,1,2, \ldots\right\}$, let G_{b} be a disjoint covering of \mathbb{T}_{M}^{2} using the lattice b-squares $\left\{[k, k+1) b \times[\ell, \ell+1) b:(k, \ell) \in \mathbb{Z}^{2}\right\}$. Now, for any $r \in 2^{-\mathbb{N}}$ and any finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\} \subset \mathbb{T}_{M}^{2}$, one can associate uniquely r-squares $B_{x_{1}}^{r}, \ldots, B_{x_{p}}^{r}$ in the following manner: for all $1 \leq i \leq p$, there is a unique square $\tilde{B}_{x_{i}} \in G_{r / 2}$ which contains x_{i} and we define $B_{x_{i}}^{r}$ to be the r-square in the grid $r \mathbb{Z}^{2}-(r / 4, r / 4)$ centered around the $r / 2$-square $\tilde{B}_{x_{i}}$. We will denote by $B^{r}(X)$ this family of r-squares. This family has the following two properties:
(i) Each point x_{i} is at distance at least $r / 4$ from $\partial B_{x_{i}}^{r}$.
(ii) For any set $X,\left\{B^{r}(X)\right\}_{r \in 2^{-\mathbb{N}}}$ forms a nested family of squares in the sense that for any $r_{1}<r_{2}$ in $2^{-\mathbb{N}}$, and any $x \in X$, we have $B_{x}^{r_{1}} \subset B_{x}^{r_{2}}$.

For a finite set of points $X \subset \mathbb{T}_{M}^{2}$, let $r^{*}(X)>0$ denote one-tenth of the smallest distance between any pair $x_{i} \neq x_{j} \in X$. With minor changes from the case of a domain with a boundary to the case of a torus, it is proved in [28], Proposition 5.2, that for X being the pivotals in $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}$, the random variable $r^{*}\left(\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ is almost surely positive (with a small abuse of notation, since $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}$ is a subset of $\mathbb{T}_{M}^{2} \times$ $\left.\left[\lambda, \lambda^{\prime}\right]\right)$.

DEFINITION 3.3. For $0<r<r^{*}\left(\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$, the r-mesoscopic ε-network $\mathrm{N}_{M}^{r-m e s o}\left(\omega^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ associated to a near-critical percolation configuration ω^{λ} in the torus \mathbb{T}_{M}^{2} and the Poisson point process $\operatorname{PPP} \frac{\varepsilon}{\lambda}$ of Definition 3.1 is the graph with vertex set $\left\{x_{1}, \ldots, x_{p}\right\}$ and two types of edges, labelled primal or dual, with a primal edge connecting x_{i} and x_{j} if there exists a quad R such that $\partial_{1} R$ and $\partial_{3} R$ remain strictly inside $B_{x_{i}}^{r}$ and $B_{x_{j}}^{r}$, and R remains strictly away from the squares $B_{x_{k}}^{r}, k \notin\{i, j\}$, and for which $\omega^{\lambda} \in \boxminus_{R}$. Dual edges are defined analogously (still w.r.t. ω^{λ}).

We consider two r-mesoscopic networks to be the same if the r-squares for the vertices (as embedded in \mathbb{T}_{M}^{2}) and the labelled graph structures coincide. For $r_{1}<r_{2}$, we can compare an r_{1}-mesoscopic network with a r_{2}-mesoscopic network by considering the unique r_{2}-squares containing the r_{1}-squares of the first network.

We will now take $r \rightarrow 0$, get a network $\mathrm{N}_{M}\left(\omega^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ and then compare these networks for ω_{η}^{λ} and $\omega_{\infty}^{\lambda}$. The following results were proved in [28], Theorem++ 6.14, and [28], Section 7.4, for $\lambda=0$, extended to general λ in [28], Section 11.2, for networks defined using slightly different boundary conditions than here, but with the same proofs working fine.

PROPOSITION 3.4 (r-stabilization and η-convergence of networks). (i) There exists a measurable $r_{M}=r_{M}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)<r^{*}\left(\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)\right)>0$ such that for all $r \in\left(0, r_{M}\right)$ we get the same r-mesoscopic ε-network $\mathrm{N}_{M}^{r-m e s o}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$. This stabilized network will be called the ε-network $\mathrm{N}_{\infty}^{\bar{\lambda}, \varepsilon}=\mathrm{N}_{M}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP} \overline{\bar{\lambda}}_{\bar{\lambda}}\right)$. For discrete percolation configurations, the definition of $\mathrm{N}_{\eta}^{\bar{\lambda}, \varepsilon}=\mathrm{N}_{M}\left(\omega_{\eta}^{\lambda}, \operatorname{PPP} \overline{\bar{\lambda}}^{\varepsilon}\right)$ is the obvious one.
(ii) For any $\alpha>0$, there is a scale $r_{\alpha}=r_{\alpha}(M, \bar{\lambda}, \varepsilon)$ such that in any coupling with $\omega_{\eta}^{\lambda} \xrightarrow{\text { a.s. }} \omega_{\infty}^{\lambda}$ in \mathbb{T}_{M}^{2}, for all sufficiently small $\eta>0$ there is a coupling of $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\eta}^{\lambda}\right)$ and $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)$ such that with probability at least $1-\alpha$ the following holds: r_{α} is less than both $r_{M}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)<r^{*}\left(\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)\right)$ and $r^{*}\left(\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\eta}^{\lambda}\right)\right)$, and for all $r<r_{\alpha}$ we have

$$
\mathrm{N}_{M}^{r \text {-meso }}\left(\omega_{\eta}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\eta}^{\lambda}\right)\right)=\mathrm{N}_{M}^{r \text {-meso }}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)\right) ;
$$

that is, $\mathrm{N}_{\eta}^{\bar{\lambda}, \varepsilon}=\mathrm{N}_{M}\left(\omega_{\eta}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ coincides with $\mathrm{N}_{\infty}^{\bar{\lambda}, \varepsilon}=\mathrm{N}_{M}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ in this sense. [Only in this sense, not exactly, since the vertex sets $\operatorname{PPP} \frac{\varepsilon}{\lambda}\left(\omega_{\infty}^{\lambda}\right)$ and $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\eta}^{\lambda}\right)$ are only close to each other, but do not coincide.]

Note that a network in itself may completely fail to describe the structure of clusters; see Figure 6. This is a bit of a problem for the purposes of the present paper, hence we are going to add some extra structure to our networks that will be measurable w.r.t. the quad-crossing topology (in particular, it makes sense for $\omega_{\infty}^{\lambda}$), while it describes how the pivotals of $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}$ are connected to each other in ω^{λ}.

DEFINITION 3.5 (Mesoscopic sub-routers). Fix $0<r<\rho<\infty$. Utilizing the notation introduced in Definition 3.2, let $B^{r}\left(\mathbb{T}_{M}^{2}\right)$ be the finite covering of \mathbb{T}_{M}^{2}

FIG. 6. The same graph structure in a network (the middle picture) may correspond to very different cluster structures (on the two sides).
by overlapping r-squares. Given a subset Y of the set $X=\left\{x_{1}, \ldots, x_{p}\right\}$ of the pivotals in $\operatorname{PPP} \frac{\varepsilon}{\lambda}$, with $|Y| \geq 2$, an (r, ρ)-mesoscopic sub-router for Y is an r square $B \in B^{r}\left(\mathbb{T}_{M}^{2}\right)$ with the following properties:

- it is at distance at least 2ρ from each $x_{i} \in X$;
- there is an open circuit (i.e., no dual arm) in the square annulus with inner face B and outer radius ρ; the largest s-square with some $s \in 2^{-\mathbb{N}}$ that is concentric with B, contains it, and is surrounded by the open circuit will be denoted by \widehat{B};
- for each $x_{i} \in Y$, there exists a quad R with $\partial_{1} R$ contained in $\widehat{B}, \partial_{3} R$ contained in $B_{x_{i}}^{r}$, remaining strictly away from all the squares $B_{x_{k}}^{r}$ with $x_{k} \in X \backslash\left\{x_{i}\right\}$, and for which $\omega^{\lambda} \in \boxminus_{R}$.

Let $\mathcal{R}_{Y}(B)$ denote the event that an r-square B is an (r, ρ)-mesoscopic subrouter for some $Y \subseteq X$. This is measurable w.r.t. ω^{λ}, and using Lemmas 2.3 and 2.5, in the coupling of Proposition 3.4(ii), the set of r-squares B for which $\mathcal{R}_{Y}(B)$ holds in ω_{η}^{λ} is the same with probability tending to 1 (as $\eta \rightarrow 0$) as in $\omega_{\infty}^{\lambda}$. Furthermore, by choosing (r, ρ) appropriately, this set will turn out to be nonempty with high probability, for all possible Y. For this, a key proposition, interesting in its own right, is the following.

Proposition 3.6 (The volume of clusters). For any $\lambda \in \mathbb{R}, M>\rho>0$ and $\zeta>0$ fixed, for percolation ω_{η}^{λ} in \mathbb{T}_{M}^{2}, with probability tending to 1 as $\eta \rightarrow 0$, all clusters with diameter of at least ρ have at least $(\rho / \eta)^{91 / 48-\zeta}$ sites. (Note that 91/48 equals 2 minus the one-arm exponent 5/48 [39].)

Similarly, with probability tending to 1 as $r \rightarrow 0$, uniformly in the mesh η, all these clusters have a "large r-volume" in the following sense: the number of r squares in $B^{r}\left(\mathbb{T}_{M}^{2}\right)$ that intersect the cluster is at least $(\rho / r)^{91 / 48-\zeta}$.

After the first version of this paper was posted, Rob van den Berg pointed out that this proposition follows from (3.15) of [34]. However, since the proof there is hard to read, we decided to keep our proof for the sake of completeness. Earlier, similar but weaker results were proved in [36], Lemma 3.20, and [13], Theorem 3.3. Finally, [56], Lemma 2.7, gives a bit more elegant version of our argument, but proving a little less; in particular, it is not proved there that all the radial crossings of a $(\rho / 3, \rho)$-annulus are everywhere well separated from each other (see our proof below).

Proof of Proposition 3.6. The proof will rely only on multi-arm exponents; hence, in view of Proposition 1.3, the reader may just think of $\lambda=0$. We will do the case of the standard volume (number of sites in the η-mesh); the proof works the same way for the case of the r-volume.

Take the lattice $(\rho / 3) \mathbb{Z}^{2}$, and centered around each $\rho / 3$-square, consider the square of side-length ρ and the annulus between these two square boundaries. It is
easy to check that any cluster of diameter at least ρ produces a radial crossing of such a $(\rho / 3, \rho)$-annulus. The number of such annuli is $\asymp(M / \rho)^{2}$.

Whether a given $(\rho / 3, \rho)$-annulus A_{ρ} is radially crossed can be decided using the radial exploration process started at any point along the boundary at radius $\rho / 3$, with open hexagons on the right-hand side, closed hexagons on the left, stopped when reaching the boundary at radius ρ. (See around Figure 2.6 of [27] or [57], Section 4.3, for the definition of this exploration process.) If the annulus is crossed, there are two cases: either (a) there is also an open circuit, or (b) there is also at least one radial dual crossing.
(a) Condition on having an open circuit; this is slightly more general than the first of the two above cases, since we do not condition on having also a radial crossing. Condition on the smallest open circuit, Γ. The radial exploration process finds it from inside; hence the configuration in the annulus between Γ and $\partial_{2} A_{\rho}$, denoted by A_{Γ}, is undisturbed percolation. Moreover, by the half-plane 3-arm exponent being 2 , the probability that the distance between Γ and $\partial_{2} A_{\rho}$ is smaller than $\delta \rho$ is $O(\delta)$. Let this distance be the random variable $\delta_{\Gamma} \rho$, take any $0<\delta<\delta_{\Gamma}$ and take the set of points of A_{Γ} whose distance from Γ is less than $\delta \rho$. It is clear that this set, denoted by $\tilde{A}_{\Gamma, \delta}$, contains a collection of $K=K(\delta) \geq c / \delta$ disjoint balls of diameter $\delta \rho$, denoted by $\tilde{A}_{i}, i=1, \ldots, K$, such that all their pairwise distances are at least $\delta \rho$; for instance, take a family of vertical parallel lines with mesh $\delta \rho$, and in every other slab, take the uppermost ball of diameter $\delta \rho$ that touches Γ; see the first picture in Figure 7. We will still fine-tune the value of δ later.

If a site in some \tilde{A}_{i} has an open arm to distance at least $c \delta \rho$, then with a uniformly positive probability it is connected to Γ, within the $\delta \rho / 2$-neighbourhood of \tilde{A}_{i} that will be denoted by \tilde{B}_{i}. Vice versa, most sites in \tilde{A}_{i} need to have an arm of length $c \delta \rho$ in order to be connected to Γ. Thus, letting $X_{i}(\delta)$ be the number of sites in \tilde{A}_{i} that are connected to Γ within \tilde{B}_{i}, and using quasi-multiplicativity of

Fig. 7. If the annulus A_{ρ} has an open circuit or is crossed radially, then the radial exploration process gives an open path Γ that has macroscopically wide unexplored space on one side, collecting large enough volume connected to Γ with high probability.
the one-arm probability $\alpha_{1}(\cdot, \cdot)$ (see Remark 1.4), we have

$$
\mathbf{E}_{\eta}^{\lambda}\left[X_{i}(\delta)\right] \asymp(\delta \rho / \eta)^{2} \alpha_{1}(\eta, \delta \rho)=(\delta \rho / \eta)^{91 / 48+o(1)}
$$

It is a standard argument using quasi-multiplicativity and a summation over dyadic scales that the second moment of X_{i} is comparable to the square of the first moment (see, e.g., [25], Lemma 3.1, for the second moment of the number of pivotals). Thus, by the Paley-Zygmund second moment inequality (a simple consequence of Cauchy-Schwarz; see, e.g., [41], Section 5.5), there exists a uniform constant $c=c_{\lambda}>0$ such that

$$
\mathbf{P}_{\eta}^{\lambda}\left[X_{i}(\delta)>c \mathbf{E}_{\eta}^{\lambda} X_{i}(\delta)\right]>c .
$$

Using the independence of the variables X_{i} (conditionally on Γ) that follows from the disjointness of the neighbourhoods \tilde{B}_{i}, we get that

$$
\begin{align*}
& \mathbf{P}_{\eta}^{\lambda}\left[\text { cluster of } \Gamma \text { has volume } \leq c \mathbf{E}_{\eta}^{\lambda}\left[X_{i}(\delta)\right] \mid \Gamma\right] \\
& \quad \leq \mathbf{P}_{\eta}^{\lambda}\left[X_{i}<c \mathbf{E}_{\eta}^{\lambda}\left[X_{i}(\delta)\right] \text { for all } i=1, \ldots, K(\delta) \mid \Gamma\right] \tag{3.1}\\
& \\
& \leq(1-c)^{K(\delta)}=\exp \left(-c^{\prime} / \delta\right)
\end{align*}
$$

Now we want to choose δ so that the bound $c \mathbf{E}_{\eta}^{\lambda}\left[X_{i}(\delta)\right]=(\delta \rho / \eta)^{91 / 48+o(1)}$ on the cluster size becomes at least $(\rho / \eta)^{91 / 48-\zeta}$. This means that δ should be at least $(\rho / \eta)^{-48 \zeta / 91+o(1)}$, but this choice is allowed only if this value is less than δ_{Γ}. As mentioned above, this fails with probability $(\rho / \eta)^{-48 \zeta / 91+o(1)}$, which, for η small enough, is much smaller than $(\rho / M)^{2}$. Therefore, with probability tending to 1 as $\eta \rightarrow 0$, in all the at most $O\left((M / \rho)^{2}\right)$ annuli where case (a) occurs, δ_{Γ} is large enough and the event of (3.1) fails to hold, hence the cluster of Γ has volume at least $(\rho / \eta)^{91 / 48-\zeta}$.
(b) Condition on the second case, and let Γ be the clockwise-most radial open crossing that the exploration process has found. We claim that, similar to case (a), there is a random variable δ_{Γ}, uniformly positive in η, such that no hexagons have been explored in the clockwise $\delta_{\Gamma} \rho$-neighbourhood of Γ. Indeed, this was already used in [27], Lemma 2.9, in the proof of the quad-measurability of the 1arm event, and the reason is simply that this maximal distance δ_{Γ} can be less than some $\delta>0$ only if the radial exploration path comes to distance $\delta \rho$ to itself without touching, which would imply a full plane 6-arm event from distance $\delta \rho$ to distance of order ρ (or a half-plane 3-arm event, if it happens close to one of the boundary components of A_{ρ}). See the second and third pictures in Figure 7. Now, we can repeat the rest of the proof of case (a) within this unexplored space of width $\delta_{\Gamma} \rho$, and we are almost done: we have just proved that, with very high probability as $\eta \rightarrow 0$, the cluster found by the radial exploration process started at some arbitrary (say, uniform random) point at radius $\rho / 3$ has large volume. However, we want this for all clusters that cross A_{ρ}, while the above procedure finds larger clusters with larger probability.

FIG. 8. Consecutive radial exploration processes.

To this end, once we have found one crossing cluster, we start a new radial exploration from radius $\rho / 3$, at the first point on $\partial B_{\rho / 3}$ to the right of the last boundary touching point of the first exploration path that has an open site on the right and a closed site on the left-hand side. We stop the process either when it reaches an open site explored by the previous exploration path, and hence turns inside, towards $\partial B_{\rho / 3}$, or when it reaches ∂B_{ρ} (which we may call a "success"). See Figure 8. Then we take the next point on $\partial B_{\rho / 3}$ that has an open site on the right and a closed site on the left-hand side, and so on, until the entire boundary $\partial B_{\rho / 3}$ has been explored, and hence all radially crossing clusters have been found. Now, before each success, the right boundary of what has been built by the sequence of unsuccessful explorations is an open arm from $\partial B_{\rho / 3}$ to ∂B_{ρ}, and from each point of this open arm, there is also a closed arm to $\partial B_{\rho / 3}$. Therefore, if the next successful exploration path comes $\delta \rho$-close to this right boundary, then it creates a full plane 6 -arm or a half-plane 3-arm event (the third picture of Figure 7 applies locally), which do not happen anywhere in \mathcal{A}_{ρ} if δ is small enough. Therefore, all these right boundaries have the open unexplored space to their right that is required for our argument to work. Since each radially crossing cluster has, as a subset, such a right boundary (not necessarily the right boundary of the entire cluster), the proof of Proposition 3.6 is complete.

We can now prove that the (r, ρ)-mesoscopic sub-routers of Definition 3.5 exist.
LEMMA 3.7. With probability tending to 1 as $\eta \rightarrow 0$ and then $r \rightarrow 0$, for any $0<\rho<r^{*}(X)$, for all $Y \subseteq X$ with $|Y| \geq 2$ whose points are connected together by a single open cluster of $\omega_{\eta}^{\lambda} \backslash X$ (more precisely, there is a cluster of $\omega_{\eta}^{\lambda} \backslash X$ that

FIG. 9. Connections from possible sub-routers B can avoid other r-squares $B_{x_{k}}^{r}$ unless a 6-arm event happens.
neighbours each hexagon in Y), the set of (r, ρ)-mesoscopic sub-routers for Y is nonempty.

Proof. Assume that in a configuration ω_{η}^{λ}, some $Y \subseteq X$ satisfies the above conditions. Let ρ be less than $r^{*}(X)$, take $r \ll \rho$, and consider any r-square B that intersects the cluster and whose distance from $B_{r}(X)$ is at least ρ. By the definition of $r^{*}(X)$ and by $|Y| \geq 2$, such a B certainly exists. We are going to examine when such a B could be a mesoscopic sub-router. Simply aiming at $\widehat{B}=B$, the required quad connecting B with an $x_{i} \in Y$ can fail to exist only if all the connections from B to $B_{x_{i}}^{r}$ are r-close to some $x_{k} \in X \backslash\left\{x_{i}\right\}$; however, this would imply a 6 -arm event from radius r to $\rho \wedge \varepsilon$ (see Figure 9), which does not occur anywhere in \mathbb{T}_{M}^{2} if r is small enough.

We still need to show that, among the r-squares B as above, there is at least one that also has the open circuit in the (r, ρ)-annulus around it.

If $\rho<r^{*}(X)$, then any cluster \mathcal{C} connecting the points of Y has a connected subset \mathcal{C}^{\prime} of diameter at least ρ that has a distance at least ρ from all points of X. [We used here the definition of $r^{*}(X)$ and that $|Y| \geq 2$.] For the maximal such \mathcal{C}^{\prime}, the proof of Proposition 3.6 clearly applies, and for $r \ll \rho$, the number of r-squares in $B^{r}\left(\mathbb{T}_{M}^{2}\right)$ intersected by \mathcal{C}^{\prime} is at least $(\rho / r)^{91 / 48-\zeta}$ with probability tending to 1 as $r \rightarrow 0$. On the other hand, any of these r-squares fails to be an (r, ρ)-mesoscopic sub-router only if there is no open circuit in the (r, ρ)-annulus around B. In such a case, we have both a primal and a dual arm in the (r, ρ)-annulus, which event has probability $(r / \rho)^{1 / 4+o(1)}$, uniformly in $\eta>0$, by the 2 -arm exponent [51]. Thus the number of such r-squares is $(\rho / r)^{7 / 4+o(1)}$ in expectation, and by Markov's inequality, it is unlikely to be much larger, for any of the possible subsets $Y \subseteq X$ (whose number is independent of r). Since $(\rho / r)^{7 / 4+o(1)}$ is negligible compared to the r-volume $(\rho / r)^{91 / 48-\zeta}$ if $\zeta>0$ is small enough, with probability going to 1 as $r \rightarrow 0$, we do have (r, ρ) sub-routers in every cluster spanned by some $Y \subseteq X$.

If B_{1}, B_{2} are (r, ρ) sub-routers for $Y_{1}, Y_{2} \subseteq X$, respectively, we will call them connected if there exists a quad R with $\partial_{1} R$ contained in $\widehat{B_{1}}, \partial_{3} R$ contained in $\widehat{B_{2}}$, remaining strictly away from all the squares B_{X}^{r}, and for which $\omega^{\lambda} \in \exists_{R}$. As before, in the coupling of Proposition 3.4(ii), for $\rho<r_{M}$, the relation of being connected converges in probability as $\omega_{\eta} \rightarrow \omega_{\infty}$, which also implies that it is an equivalence relation even in ω_{∞}. If B_{i} is an (r, ρ) sub-router for $Y_{i} \subseteq X, i=1,2$, and B_{1} and B_{2} are connected, then both B_{i} 's are (r, ρ) sub-routers for $Y_{1} \cup Y_{2}$, since we can glue the path between B_{1} and B_{2}, the circuit around B_{2}, and the path from B_{2} to any of the r-squares $B \in B^{r}\left(Y_{2}\right)$ to get a path from B_{1} to B. Therefore, for each equivalence class of (r, ρ) sub-routers there exists a maximal subset $Y \subseteq X$ for which all elements of the equivalence class are sub-routers. Such a maximal subset Y will sometimes be called a cluster of pivotals, and a corresponding equivalence class is said to be spanned by Y. For instance, in Figure 6, the left configuration has two clusters, spanned by the same three pivotals, while the right configuration has three clusters, each with a maximal Y of two elements.

In each equivalence class of sub-routers, we want to single out one of them. In order to do this in a way that is typically continuous w.r.t. ω^{λ}, we need to restrict ourselves to the case when every open cluster of ω^{λ} in \mathbb{T}_{M}^{2} has diameter less than $M / 3$; this will turn out to be typically the case when λ is very negative. (For continuum percolation configurations, the diameter is the lim sup $r \rightarrow 0$ of distances between r-boxes that are connected in the usual sense that there is a crossed quad with its opposite sides contained in the r-boxes. It is clear from Lemma 2.3 that, in any coupling with $\omega_{\eta}^{\lambda} \xrightarrow{\text { a.s. }} \omega_{\infty}^{\lambda}$, the event that this diameter is at most $M / 3$ converges almost surely.) Then, for $r<M / 10$, the set of (r, ρ) sub-routers for any Y has an isometric embedding into $[-M / 2, M / 2)^{2} \subset \mathbb{C}$. The leftmost sub-router of the lowermost ones in such an embedding will be the same in any of these embeddings; moreover, its location in \mathbb{T}_{M}^{2} can change only a little if we move each sub-router a little, to at most distance $M / 10$. The set of these "leftmost of lowermost" sub-routers will be the (r, ρ)-mesoscopic routers of X, or after fixing $\rho=r_{M} / 2$ (from Proposition 3.4), the set of r-mesoscopic routers. Note that by restricting ourselves to subsets $|Y| \geq 2$, clusters containing only one pivotal from X will not have routers.

Although we will not really need them, for the sake of symmetry in our presentation, analogously to the above routers that used primal (open) connections, we also define dual clusters of pivotals and dual r-mesoscopic routers.

We can now define the enhanced networks we promised.

Definition 3.8. Assuming that the diameter of every cluster in ω^{λ} is at most $M / 3$, the r-mesoscopic enhanced ε-network $\mathrm{EN}_{M}^{r-m e s o}\left(\omega^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ is the following vertex- and edge-labeled bipartite graph. One part of the vertex set is the set X of the pivotals of $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}$, the other part is the r-mesoscopic routers of X (both the primal and dual ones). The vertices in PPP $\frac{\bar{\lambda}}{\varepsilon}$ are colored open or closed, according

FIG. 10. A schematic picture of a percolation configuration ω_{η}^{λ} with the pivotals of $\operatorname{PPP} \frac{\varepsilon}{\lambda}$ on a torus, and the corresponding enhanced network. Pivotals are represented by circles, routers are represented by squares. Primal connections are shown using red solid lines, dual connections are shown using blue dashed lines.
to the definitions before Proposition 2.6; the routers are colored in the obvious way. The edge set consists of the connections between the routers and the elements of their maximal $Y \subset X$, labelled primal or dual according to the color of the router. The edges are drawn on the torus so that they are homotopic (with fixed endpoints) to the connections they represent; clearly, one can also achieve that they do not intersect each other; see Figure 10.

If the assumption on the diameters is not satisfied, let $\mathrm{EN}_{M}^{r-\text {-meso }}\left(\omega^{\lambda}, \operatorname{PPP} \frac{\varepsilon}{\lambda}\right)$ be empty.

Note that the networks of Definition 3.3 are measurable functions of these enhanced networks in a very simple way: there exists a primal (or dual) router with edges to $x_{i}, x_{j} \in X$ in $\operatorname{EN}_{M}^{r-m e s o}\left(\omega^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ if and only if there is a primal (dual, resp.) edge between x_{i} and x_{j} in $\mathrm{N}_{M}^{r \text {-meso }}\left(\omega^{\lambda}, \operatorname{PPP} \bar{\lambda}_{\bar{\lambda}}\right)$. Moreover, the same proof as for Proposition 3.4, together with Theorem 2.7, implies the following.

PROPOSITION 3.9 (r-stabilization and η-convergence of enhanced networks). (i) There is a measurable scale $\tilde{r}_{M}=\tilde{r}_{M}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right) \in\left(0, r^{*}\right)$ such that for all $r \in$ $\left(0, \tilde{r}_{M}\right)$ we get the same r-mesoscopic enhanced ε-network $\operatorname{EN}_{M}^{r \text {-meso }}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP} \frac{\varepsilon}{\lambda}\right)$ in the sense that the networks are the same, plus the colors in X and the collections of primal and dual clusters of pivotals are also the same. [The corresponding routers do not exactly stabilize, since for a smaller r new ($r, r_{M} / 2$) sub-routers can appear; but they cannot disappear, and hence each router does converge to a point in \mathbb{T}_{M}^{2} as $r \rightarrow 0$.] This stabilized network will be called the enhanced ε-network $\mathrm{EN}_{\infty}^{\bar{\lambda}, \varepsilon}=\mathrm{EN}_{M}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$. For discrete percolation configurations, the definition of $\mathrm{EN}_{\eta}^{\bar{\lambda}, \varepsilon}=\mathrm{EN}_{M}\left(\omega_{\eta}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ is the obvious one.
(ii) In any coupling with $\omega_{\eta}^{\lambda} \xrightarrow{\text { a.s. }} \omega_{\infty}^{\lambda}$ in \mathbb{T}_{M}^{2}, there is a coupling of $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\eta}^{\lambda}\right)$ and $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)$ such that with probability tending to 1 as $\eta \rightarrow 0, \mathrm{EN}_{\eta}^{\bar{\lambda}, \varepsilon}=$ $\mathrm{EN}_{M}\left(\omega_{\eta}^{\lambda}, \operatorname{PPP} \overline{\bar{\lambda}}^{\varepsilon}\right)$ is the same as $\mathrm{EN}_{\infty}^{\bar{\lambda}, \varepsilon}=\mathrm{EN}_{M}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ in the sense that the vertex sets for η and ∞ (consisting of the pivotals in $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}$ and the routers) are arbitrarily close to each other, and the labelled graph structures coincide.

REMARK 3.10. These enhanced networks are very useful planar (more precisely, toroidal) representations of the discrete and continuous percolation configurations, which was not a priori obvious how to achieve, since the quad-crossing space allows for nonplanar configurations, and hence is not ideal to express planarity.

Using the enhanced networks, we are now going to define a spanning forest $\mathrm{MSF}^{\bar{\lambda}, \varepsilon}$ with vertices being the primal routers in $\mathrm{EN}^{\bar{\lambda}, \varepsilon}$. We will show in Section 4 that, for $\lambda<0$ very negative, $\lambda^{\prime}>0$ very large, and $\varepsilon>0$ small, this forest has a unique giant tree component, which will be the cut-off tree $M S T^{\bar{\lambda}, \varepsilon}$ that approximates well the macroscopic structure of MST in \mathbb{T}_{M}^{2}. This forest MSF ${ }^{\bar{\lambda}, \varepsilon}$ may have edges that intersect each other besides their endpoints; nevertheless, it consists of trees immersed into the torus \mathbb{T}_{M}^{2} in the sense of Section 2.1, and the fact it turns out to approximate MST_{η} implies in particular that these possible intersections vanish in the limit.

DEFINITION 3.11 (Constructing the cut-off spanning forest $\mathrm{MSF}^{\bar{\lambda}, \varepsilon}$ on \mathbb{T}_{M}^{2}). 1. The vertices are the primal routers in $\mathrm{EN}^{\bar{\lambda}, \varepsilon}$. Connect two routers by an edge if they are both connected in $E N^{\bar{\lambda}, \varepsilon}$ to the same open pivotal of ω^{λ}. The resulting graph usually has several components (e.g., six of them on the left-hand picture of Figure 11), which more-or-less represent the λ-clusters in ω^{λ} (this will be made more precise in the next section).
2. In each component of this graph, choose a spanning tree in an arbitrary deterministic way, and label each edge of this tree by λ.
3. For each pivotal x_{i} of PPP $\frac{\varepsilon}{\lambda}$ that is closed in ω^{λ}, add an edge between the corresponding routers, and label it by its $t_{i} \in\left(\lambda, \lambda^{\prime}\right)$ value. Note that these edges may be loops, as the one labelled by -5 on the left-hand picture of Figure 11, for instance.
4. As in the so-called reversed Kruskal algorithm, from each cycle delete the edge with the largest label, and get a minimal spanning tree in each component of the above graph.
5. Draw all the edges of the thus constructed forest as straight line segments, respecting the torus topology [i.e., choosing the line segment on the torus that is homotopic to the concatenation of the embedded edges of $\operatorname{EN}_{M}^{r-\text { meso }}\left(\omega^{\lambda}, \operatorname{PPP} \frac{\varepsilon}{\lambda}\right)$ that gave rise to this edge of the forest]. See the right-hand picture of Figure 11.

FIG. 11. Building the cut-off forest $\mathrm{MSF}^{\bar{\lambda}, \varepsilon}$ from the enhanced network of Figure 10. On level λ, there was a cycle that had to be broken. The numbers from -6 to 6 on the closed pivotals of ω_{η}^{λ} represent their levels $t_{i} \in\left(\lambda, \lambda^{\prime}\right)$ in $\operatorname{PPP} \frac{\varepsilon}{\lambda}$ at which they become open. The resulting spanning forest has two components.

Note that the edges may intersect each other besides their endpoints (even if this does not happen on this particular picture).

4. Approximation of MST_{η} by the cut-off trees $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$.

4.1. Preparatory lemmas and the definition of $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$. Our first lemma is a RSW-type result that is interesting even in the critical case. Nevertheless, the simplest proof we have found uses our dynamical and near-critical stability results from [28], Section 8.

Lemma 4.1 (Local ring lemma). There exists $\delta>0$ such that for any $\lambda \leq 0$ and any radius $R<|\lambda|^{-4 / 3}$, for all small enough mesh $0<\eta<\eta_{0}(\lambda, R)$, one has

$$
\boldsymbol{P}_{\eta}\left[\mathcal{A}_{R, \lambda, \delta}\right]>1-\frac{1}{100},
$$

where $\mathcal{A}_{R, \lambda, \delta}$ stands for the event that there exist λ-clusters for the restriction of ω_{η}^{λ} to the annulus $\mathcal{A}_{R, 2 R}: \mathcal{C}_{1}, \ldots, \mathcal{C}_{N}, \mathcal{C}_{N+1}=\mathcal{C}_{1}$ which satisfy the following conditions:

1. for each $i \in[1, N], \operatorname{diam}\left(\mathcal{C}_{i}\right) \geq \delta R$; in particular, the clusters of the percolation configuration nonrestricted to $A_{R, 2 R}$ that contain these \mathcal{C}_{i} 's also have diameter $\geq \delta R$;
2. for each $i \in[1, N]$, there exists at least one closed site y_{i} neighbouring both \mathcal{C}_{i} and \mathcal{C}_{i+1};
3. the circuit $\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{N}\right\}$ disconnects the annulus $A_{R, 2 R}$ in the sense that the two boundaries of the annulus are not connected in the graph $A_{R, 2 R} \backslash \bigcup_{i=1}^{N}\left(\mathcal{C}_{i} \cup\right.$ $\left\{y_{i}\right\}$).

Moreover, we can choose the clusters \mathcal{C}_{i} and the points y_{i} such that all the y_{i} 's are elements of the Poisson point set $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}$, with $\varepsilon=\delta R$ and λ^{\prime} large enough (depending on R).

Proof. Consider the near-critical coupling $\left(\omega_{\eta}^{t}\right)_{t \in \mathbb{R}}$. For $\lambda^{\prime} \geq \lambda$ large enough (on the order of $R^{-3 / 4}$), there is a probability at least $995 / 1000$ that $\omega_{\eta}^{\lambda^{\prime}}$ has an open circuit even in the smaller annulus $A_{5 R / 4,7 R / 4}$; this follows from known results on the correlation length, for example, [28], Theorem 10.7. Now sample ω_{η}^{λ}, consider some small $\varepsilon>0$ to be fixed in a second, and let $\tilde{\omega}_{\eta}^{\lambda^{\prime}}$ be the configuration where we open only those vertices in the coupling while getting from λ to λ^{\prime} that are given in $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}$. The assumption $R<|\lambda|^{-4 / 3}$, below the correlation length given by [28], Theorem 10.7, implies that we can choose $\eta>0$ small enough compared to R so that ω_{η}^{λ} has 4-arm probabilities inside the domain $A_{R, 2 R}$ that are comparable to the critical ones. Therefore, the critical case computations of [28], Section 8, apply uniformly in $\lambda \leq 0$ and $R<|\lambda|^{-4 / 3}$, and by a straightforward modification of [28], Proposition 8.6, from quad-crossings to annulus circuits, for $\varepsilon=\delta R>0$ with $\delta>0$ small enough (uniformly in λ and R), the probability that $\omega_{\eta}^{\lambda^{\prime}}$ has an open circuit in $A_{5 R / 4,7 R / 4}$ but $\tilde{\omega}_{\eta}^{\lambda^{\prime}}$ does not have one in $A_{R, 2 R}$ is less than 5/1000. Altogether, the probability that $\tilde{\omega}_{\eta}^{\lambda^{\prime}}$ has an open circuit in $A_{R, 2 R}$ is at least $99 / 100$. But such a circuit must be composed of λ-clusters and ε-important points that have become open, which implies that all these λ-clusters must have diameter at least ε, and the lemma is proved.

Lemma 4.2 (Global ring lemma). Fix $\delta>0$ as in Lemma 4.1. For any $\lambda \leq 0$ and $\alpha>0$, there is a radius $r=r(\lambda, \alpha)<\frac{\delta}{2}|\lambda|^{-4 / 3}$ such that, for any small enough η, with probability at least $1-\alpha$, one can find around all points $x \in \mathbb{T}_{M}^{2}$ an annulus $A_{R, 2 R}$ surrounding x with $\bar{r}=r / \delta \leq R \leq|\lambda|^{-4 / 3}$ that satisfies the event $\mathcal{A}_{R, \lambda, \delta}$. (The choice $\bar{r}=r / \delta$ is made so that the clusters we find are at least of diameter r.)

Proof. Consider the covering of \mathbb{T}_{M}^{2} by the squares given by $\bar{r} \mathbb{Z}^{2}$, and around each such \bar{r}-square, consider the dyadic annuli up to scale $|\lambda|^{-4 / 3}$. By Lemma 4.1, the probability that there is an \bar{r}-square for which all the dyadic annuli fail to have the required ring of clusters is at most

$$
O(1)(M / \bar{r})^{2}(1 / 100)^{\log _{2} \frac{|\lambda|^{-4 / 3}}{\bar{r}}}=O\left(M^{2}\right)|\lambda|^{4 / 3 \log _{2} 100} \bar{r}^{-2+\log _{2} 100}
$$

which can be made arbitrarily small as $\bar{r} \rightarrow 0$.
Part (ii) of the next lemma again has a RSW feeling to it, and is again proved using [28], Section 8.

Lemma 4.3 (Subcritical lakes joining the supercritical ocean). Consider percolation ω_{η}^{λ} on \mathbb{T}_{M}^{2} with $\lambda<-1$, and fix an arbitrarily small $\alpha>0$:
(i) For any $s>0$, if $\lambda<-1$ is small enough, then for all $\eta>0$ small enough, with probability at least $1-\alpha$, all clusters in ω_{η}^{λ} have diameter less than s.
(ii) Using part (i), take $\lambda<-1$ small enough so that with probability more than $1-\alpha / 3$, all clusters in ω_{η}^{λ} have diameter less than $M / 3$. Then, for any $r>0$ there is a $\lambda_{0}^{\prime}(\lambda, r, \alpha)>0$ and an $\varepsilon_{0}(\lambda, r, \alpha)>0$ such that for all $\lambda^{\prime} \geq \lambda_{0}^{\prime}$ and $\varepsilon \leq \varepsilon_{0}$, for all small enough $\eta>0$, with probability at least $1-\alpha$, all the clusters in ω_{η}^{λ} of diameter at least r are connected via primal paths in the enhanced network $\mathrm{EN}_{\eta}^{\bar{\lambda}, \varepsilon}=\mathrm{EN}_{M}\left(\omega_{\eta}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ with $\bar{\lambda}=\left(\lambda, \lambda^{\prime}\right)$, defined in Proposition 3.9, in the sense that each such cluster contains a primal router and these routers are all connected by primal edges (through closed or open pivotals, as in Definition 3.11) in the enhanced network.

Proof. It is proved in [28], Theorem 10.7, that, for any fixed $s>0$, as $\lambda^{\prime} \rightarrow \infty$, the probability of having an open circuit in a given annulus $A_{s / 3, s}$ in $\omega_{\eta}^{\lambda^{\prime}}$ converges to 1 . Consider a tiling of \mathbb{T}_{M}^{2} by $s / 3$-squares, and the annuli of sidelength s centered around them. By a union bound, the probability of having open circuits in all of them converges to 1 . When all these circuits are present, their union is a single component, and any subset of \mathbb{T}_{M}^{2} of diameter at least s intersects this cluster.

Running the above argument for dual circuits in ω_{η}^{λ} with $\lambda \rightarrow-\infty$ gives that, with probability tending to 1 , the diameter of the largest open cluster must be less than s, which proves item (i).

For item (ii), we will use the first paragraph with $s=r / 10$. Note that any cluster \mathcal{C} of ω_{η}^{λ} with diameter at least r will radially cross two such $(s / 3, s)$-annuli at distance at least $r / 2$ from each other, A_{1} and A_{2}. Moreover, assuming that \mathcal{C} has diameter at most $M / 3$ (which is satisfied for all clusters \mathcal{C} with probability more than $1-\alpha / 3$), we can choose A_{1} and A_{2} with the additional property that, for each of them, not all of the eight neighbouring inner squares are intersected by \mathcal{C}. On the other hand, the first paragraph says that if $\lambda^{\prime} \geq \lambda_{0}^{\prime}$ is large enough, then with probability more than $1-\alpha / 3$, all the $(s / 3, s)$-annuli will have open circuits in $\omega_{\eta}^{\lambda^{\prime}}$. Now we use [28], Proposition 8.1, which implies that in the configuration $\tilde{\omega}_{\eta}^{\lambda^{\prime}}$ that we get by starting from the configuration ω_{η}^{λ} and opening only the pivotal points of $\operatorname{PPP} \frac{\bar{\lambda}}{\varepsilon}$, with $\bar{\lambda}_{0}=\left(\lambda, \lambda^{\prime}\right)$, all these open circuits in the $(s / 3, s)$-annuli will already be there with probability more than $1-2 \alpha / 3$, provided that $0<\varepsilon \leq \varepsilon_{0}\left(\lambda^{\prime}, r, \alpha\right)$ is small enough. This can happen in our two above annuli A_{1}, A_{2} only if \mathcal{C} neighbours points of $\operatorname{PPP} \frac{\varepsilon}{\lambda}$ in both annuli that are closed in ω_{η}^{λ} but open in $\tilde{\omega}_{\eta}^{\lambda^{\prime}}$. These ε-pivotal points appear in the enhanced network $\mathrm{EN}_{\eta}^{\bar{\lambda}, \varepsilon}=\mathrm{EN}_{M}\left(\omega_{\eta}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$, and \mathcal{C} has a primal router connecting these pivotals with high probability (as $\eta \rightarrow 0$).

Furthermore, the open circuits of $\tilde{\omega}_{\eta}^{\lambda^{\prime}}$ in the $(s / 3, s)$-annuli must be composed of clusters of ω_{η}^{λ} with diameter at least $\min \{s / 3, \varepsilon\}$, joined by ε-pivotals. The expected number of disjoint such clusters is bounded from above by some
$K=K(M, \lambda, r, \varepsilon)<\infty$, uniformly in η (as follows from [3]), hence in all of them we have primal routers with probability tending to 1 , as $\eta \rightarrow 0$. That is, altogether, with probability at least $1-\alpha$, all the λ-clusters of diameter at least r have diameter at most $M / 3$, and they are all connected in the enhanced network $\mathrm{EN}_{\eta}^{\bar{\lambda}, \varepsilon}$, for λ^{\prime} chosen large enough, then $\varepsilon\left(\lambda^{\prime}, r, \alpha\right)$ and then η chosen small enough.

Using the above lemmas, we can now see why there is typically a unique giant component in the cut-off forests $\mathrm{MSF}_{\eta}^{\bar{\lambda}, \varepsilon}$ and $\mathrm{MSF}_{\infty}^{\bar{\lambda}, \varepsilon}$ of Definition 3.11.

LEMMA 4.4 (Defining the cut-off trees $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$ and $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$). For any $M>0$, any small $s>0$ and $\alpha>0$, if $\lambda<-1$ is very negative, $\varepsilon>0$ is small, and $\lambda^{\prime}>1$ is large enough, then with probability at least $1-\alpha$ for any small enough mesh $\eta>0$, there is a unique giant component in the cut-off forest $\mathrm{MSF}_{\eta}^{\bar{\lambda}, \varepsilon}$ (and hence, by Proposition 3.9, in $\mathrm{MSF}_{\infty}^{\bar{\lambda}, \varepsilon}$), with the properties that it comes to distance at most s from any point of \mathbb{T}_{M}^{2}, while all other components of $\mathrm{MSF}_{\eta}^{\bar{\lambda}, \varepsilon}$ have diameter at most s. This giant tree component will be our approximating cut-off tree, denoted by $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$ and $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$; whenever the above large probability event fails to occur, we set $\mathrm{MS}^{\bar{\lambda}^{\bar{\lambda}}, \varepsilon}$ to be a single point in \mathbb{T}_{M}^{2}, and call this tree degenerate.

Proof. Take $\lambda<-1$ such that $2|\lambda|^{-4 / 3}<s$ holds and the diameter bound of Lemma 4.3(i) applies. By Lemma 4.2, with probability at least $1-\alpha / 2$, every point of \mathbb{T}_{M}^{2} has in its s-neighbourhood a ring of λ-clusters of diameter at least $r(\lambda, \alpha)$ each (possibly a single cluster, but still of diameter in \mathbb{T}_{M}^{2} less than s). Now, if we take $\varepsilon>0$ small and $\lambda^{\prime}>0$ large, then Lemma 4.3(ii) says that with probability at least $1-\alpha / 2$ all λ-clusters of diameter at least $r(\lambda, \alpha)$ get connected in the enhanced network $\mathrm{EN}_{\eta}^{\bar{\lambda}, \varepsilon}$. Therefore, with probability altogether at least $1-\alpha$, there is a component of the graph of Definition 3.11 that has distance at most s from any point of \mathbb{T}_{M}^{2}, while all other components have diameter at most $r(\lambda, \alpha) \leq s$. The spanning trees of these components inherit these properties, hence we are done.

So, we have finally defined the trees $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$ and $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$. Naturally, they are also immersed spanning trees in the sense of Definition 2.2. Now, using Proposition 3.9, we can easily show that they are close to each other in the space of essential spanning forests, introduced in that definition.

Corollary 4.5. For any $M>0$ and $s, \alpha>0$, if $\lambda<-1$ is very negative, $\varepsilon>0$ is small, and $\lambda^{\prime}>1$ is large enough, then, in the coupling of Proposition 3.9(ii) between $\left(\omega_{\eta}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ and $\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$, we have

$$
\boldsymbol{P}\left[d_{\Omega_{M}}\left(\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}, \mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}\right)<s\right]>1-\alpha
$$

for all $\eta>0$ small enough.

Proof. The parameters $\lambda, \lambda^{\prime}, \varepsilon$ can be set so, by Lemma 4.4, that both $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$ and $\operatorname{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$ are nondegenerate with probability at least $1-\alpha / 2$, for any $\eta>0$ small enough. Now, by Proposition 3.9(ii), we can take $\eta>0$ so small that, with probability at least $1-\alpha / 2$, the enhanced networks $E N_{\eta}^{\bar{\lambda}, \varepsilon}$ and $\mathrm{EN}_{\infty}^{\bar{\lambda}, \varepsilon}$ agree as graphs and the Hausdorff distance between their vertex sets is less than s. On the event that both trees exist, the networks agree, and the vertex sets are closer than s to each other, which occurs with probability at least $1-\alpha$, the uniform distance between the corresponding ℓ-trees is always less than s, and hence the sum with the weights $2^{-\ell}$ is also less than s, and we are done.
4.2. Approximation as $\varepsilon \rightarrow 0$ and $\left(\lambda, \lambda^{\prime}\right) \rightarrow(-\infty, \infty)$. After these preparations, we can turn to approximating MST_{η} on the lattice $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$ by the cut-off trees $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$. First of all, note that if two vertices of $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$ are in the same λ-cluster, then the path in MST_{η} that connects them remains in that λ-cluster. This also means that for any two λ-clusters of $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$, there is a unique path in MST_{η} that connects them.

The next lemma is a key step in approximating MST_{η} by cut-off trees.
LEMMA 4.6 (Paths through macroscopic clusters). Fix any $\alpha>0$. If $\lambda<-1$ is small enough, $\rho>0$ is arbitrary, $\varepsilon>0$ is small and $\lambda^{\prime}>0$ is large enough, then, for any $\eta>0$ small enough, with probability at least $1-\alpha$, for any two clusters of diameter at least ρ in ω_{η}^{λ}, there is a unique path in $\mathrm{MSF}_{\eta}^{\lambda, \varepsilon}$ that connects the two clusters, and the unique path in MST_{η} doing the same goes through the same closed pivotals of $\operatorname{PPP} \bar{\lambda}$, and hence the distance of these two paths in the uniform metric is at most the maximal diameter of all λ-clusters.

Proof. Choose $\lambda<-1$ then $\varepsilon_{1}>0$ and $\lambda_{1}^{\prime}>1$ so that the event of Lemma 4.3(ii), with $r:=\rho$ there, occurs with probability at least $1-\alpha / 3$. Condition on this event, set $\bar{\lambda}_{1}=\left(\lambda, \lambda_{1}^{\prime}\right)$, and consider the path in $\mathrm{MSF}_{\eta}^{\bar{\lambda}_{1}, \varepsilon_{1}}$ that connects two of the clusters. There is a corresponding path in $\eta \mathrm{T}$, going through the same finitely many ε_{1}-important points of ω_{η}^{λ} and some λ-clusters, using labels at most λ_{1}^{\prime}. Therefore, the true path in MST_{η} also uses labels at most λ_{1}^{\prime}. Assume now that this path goes through some λ-cluster \mathcal{C} of diameter at most $r \ll \rho$. This path must go through a vertex x of $\eta \mathrm{T}$, neighbouring \mathcal{C}, with the following properties (see Figure 12):

- it is closed in ω_{η}^{λ} but open in $\omega_{\eta}^{\lambda_{1}^{\prime}}$;
- it has two λ-closed arms emanating from it, which together separate the two clusters of diameter at least ρ that we started with;
- on the side of these two closed arms that contains \mathcal{C}, there is a λ-open arm from x only to distance at most r. (Note here that x might be neighbouring λ clusters of diameter more than r, but we can choose the closed arms so that they separate those clusters from \mathcal{C}.)

FIG. 12. The path in MST_{η} connecting two large λ-clusters does not go through very small λ-clusters, basically because of the near-critical stability of 4-arm probabilities.

If x had the alternating 4-arm event to a distance more than r in ω_{η}^{λ}, that could happen only if the two open arms out of these four were on the side of the two long closed arms that does not contain \mathcal{C}. This would altogether yield a 5 -arm event to distance r, of type closed-open-closed-open-closed, where the extra closed arm in the middle is needed to get an alternating 4-arm event. Moreover, since the labels along the path in MST_{η} are all at most λ_{1}^{\prime}, we would get a $\left(\lambda, \lambda_{1}^{\prime}\right)$-near-critical sixarm event from x to distance r, as defined in Proposition 1.3 (the sixth arm is of length at least $\rho / 2$, because of being λ_{1}^{\prime}-connected to the λ-cluster of diameter at least ρ). By that proposition and by the 6 -arm exponent being larger than two (see [49], Corollary A.8), this happens with very small probability if η is small enough. So, we can basically assume that x is not r-pivotal in ω_{η}^{λ}. On the other hand, if we now change all the labels above λ along the path in MST_{η} to λ, then, in the new configuration, x will have the alternating 4 -arm event to distance at least ε_{1}. Since the labels we have changed are all in $\left[\lambda, \lambda_{1}^{\prime}\right]$, we can apply another version of near-critical stability, Lemma 8.5 of [28], saying that the probability that the importance of a given vertex x can be changed from r to ε_{1} by such label changes is at most

$$
O_{\lambda, \lambda_{1}^{\prime}}(1) r^{2} \alpha_{4}(\eta, r) \alpha_{4}\left(\varepsilon_{1}, 1\right)^{-1}
$$

Additionally, the probability that the status of this vertex x is different in $\omega_{\eta}^{\lambda_{1}^{\prime}}$ than in ω_{η}^{λ} is $O_{\lambda, \lambda_{1}^{\prime}}(1) \eta^{2} / \alpha_{4}(\eta, 1)$, independently of everything. The number of possible vertices $x \in \mathbb{T}_{M}^{2}$ is $O_{M}\left(\eta^{-2}\right)$. Altogether, the expected number of vertices x satisfying this scenario is

$$
O_{M, \lambda, \lambda_{1}^{\prime}}(1) r^{2} \alpha_{4}(r, 1)^{-1} \alpha_{4}\left(\varepsilon_{1}, 1\right)^{-1}
$$

This is arbitrarily small if r is small, hence the probability that this scenario happens is also small. Summarizing, there exists $r>0$ depending on M, α, λ and ρ,
such that for all small enough $\eta>0$, with probability at least $1-\alpha / 3$, the path in MST_{η} connecting any two λ-clusters of diameter at least ρ does not go through λ-clusters smaller than r.

Now choosing $\varepsilon>0$ small and $\lambda^{\prime}>1$ large, again by Lemma 4.3(ii), the enhanced network $\mathrm{EN}_{\eta}^{\bar{\lambda}, \varepsilon}$ will connect all the λ-clusters of diameter at least r with probability at least $1-\alpha / 3$. Altogether, with probability at least $1-\alpha$, for any two λ-clusters of diameter at least ρ, the unique paths in MST_{η} and $\mathrm{MSF}_{\eta}^{\bar{\lambda}, \varepsilon}$ both go through the same λ-clusters, connected by λ-closed pivotals of importance at least r. The last half sentence of the lemma follows immediately from the way Definition 3.11 is done.

We can now easily prove the main result of this section.
Proposition 4.7. For any $M>0$ and $s, \alpha>0$, if $\lambda<-1$ is very negative, $\varepsilon>0$ is small, and $\lambda^{\prime}>1$ is large enough, then we have

$$
\boldsymbol{P}\left[d_{\Omega_{M}}\left(\operatorname{MST}_{\eta}, \mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}\right)<s\right]>1-\alpha
$$

for all $\eta>0$ small enough.
Proof. As in the proof of Lemma 4.4, take $\lambda<-1$ such that with probability at least $1-\alpha / 2$, all λ-clusters in \mathbb{T}_{M}^{2} have diameter less than s, and every point of \mathbb{T}_{M}^{2} has in its $s / 2$-neighbourhood a ring of λ-clusters of diameter at least r each, for some $0<r<s / 2$, uniformly in η, as provided by Lemma 4.2. Now, if we take $\varepsilon>0$ small and $\lambda^{\prime}>0$ large, then, with probability at least $1-\alpha / 2$, all λ-clusters of diameter at least r are connected in $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$, and, by Lemma 4.6, the paths connecting them are at a uniform distance at most s from the corresponding paths of MST_{η}. We will assume that both events of probability at least $1-\alpha / 2$ hold.

Consider any path γ of MST_{η} connecting some $x, y \in \mathbb{T}_{M}^{2}$. Both x and y have the above mentioned ring of macroscopic λ-clusters around them, and γ must intersect at least one member of each ring; see Figure 13. But then, the part of γ connecting the intersected members closest to x and y, denoted by \mathcal{C}_{x} and \mathcal{C}_{y}, respectively, by the previous paragraph, is uniformly s-close to a path in $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$, denoted by $\gamma^{\bar{\lambda}, \varepsilon}$. And this $\gamma^{\bar{\lambda}, \varepsilon}$ is of course s-close to the entire γ, since the parts of γ going from x to \mathcal{C}_{x} and from y to \mathcal{C}_{y} are contained in the s-neighbourhoods of \mathcal{C}_{x} and \mathcal{C}_{y}.

In the other direction, consider any path $\gamma^{\bar{\lambda}, \varepsilon}$ in $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$, connecting two routers. The clusters of pivotals corresponding to these routers have diameter at most s, but could be rather small. Nevertheless, fixing one point in each cluster, there is a ring of macroscopic λ-clusters around each, which certainly contains a cluster of pivotals that $\gamma^{\bar{\lambda}, \varepsilon}$ goes through. The rest of the proof is just as above.

Now that we have good approximations for paths in the two trees connecting any two vertices, the extension to trees with $\ell>2$ leaves is straightforward.

FIG. 13. Paths in MST_{η} can be approximated by paths through macroscopic λ-clusters.

5. Proof of the main result.

5.1. Putting the pieces together for MST on tori \mathbb{T}_{M}^{2}. In this subsection, we prove convergence in any fixed torus \mathbb{T}_{M}^{2}.

THEOREM 5.1 (Limit of MST_{η} and $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$ in \mathbb{T}_{M}^{2}). In the metric space Ω_{M} of spanning trees in the torus \mathbb{T}_{M}^{2}, as defined in Definition 2.2 , the spanning tree MST_{η} on the lattice $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$ converges in law to a translation invariant MST_{∞}, which is also the distributional limit of the cut-off trees $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$, as $\bar{\lambda} \rightarrow(-\infty, \infty)$ and $\varepsilon \rightarrow 0$.

Proof. Using the results of the previous section, the proof is classical, for example, the exact same strategy was used in [28], Section 9. By Proposition 4.7, for any $k \in \mathbb{N}$ there exists $\bar{\lambda}_{k}=\left(\lambda_{k}, \lambda_{k}^{\prime}\right)$ and $\varepsilon_{k}>0$, such that, for all $0<\eta<\eta_{k}$ sufficiently small,

$$
\begin{equation*}
\mathbf{P}\left[d_{\Omega_{M}}\left(\mathrm{MST}_{\eta}, \mathrm{MST}_{\eta}^{\bar{\lambda}_{k}, \varepsilon_{k}}\right)<2^{-k}\right]>1-2^{-k} \tag{5.1}
\end{equation*}
$$

Now, by Corollary 4.5, there is a coupling between $\left(\omega_{\eta}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ and $\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$, and by the same token, between $\omega_{\eta}^{\left[\lambda, \lambda^{\prime}\right]}$ and $\left(\omega_{\infty}^{\lambda}, \operatorname{PPP} \frac{\varepsilon}{\lambda}\right)$, such that, for all $0<\eta<$ η_{k}^{\prime} sufficiently small,

$$
\begin{equation*}
\mathbf{P}\left[d_{\Omega_{M}}\left(\mathrm{MST}_{\eta}^{\bar{\lambda}_{k}, \varepsilon_{k}}, \mathrm{MST}_{\infty}^{\bar{\lambda}_{k}, \varepsilon_{k}}\right)<2^{-k}\right]>1-2^{-k} . \tag{5.2}
\end{equation*}
$$

Combining (5.1) and (5.2) using the triangle inequality, in the same coupling,

$$
\mathbf{P}\left[d_{\Omega_{M}}\left(\mathrm{MST}_{\eta}, \mathrm{MST}_{\infty}^{\bar{\lambda}_{k}, \varepsilon_{k}}\right)<2^{-k+1}\right]>1-2^{-k+1}
$$

We can now couple all the trees $\mathrm{MST}_{\infty}^{\bar{\lambda}_{k}, \varepsilon_{k}}$ to MST_{η} one-by-one, and given MST_{η}, conditionally independently to each other, such that, again using the triangle inequality,

$$
\begin{equation*}
\mathbf{P}\left[d_{\Omega_{M}}\left(\mathrm{MST}_{\infty}^{\bar{\lambda}_{k}, \varepsilon_{k}}, \mathrm{MST}_{\infty}^{\bar{\lambda}_{\ell}, \varepsilon_{\ell}}\right)<2^{-k+2} \text { for all } \ell \geq k\right]>1-2^{-k+2} \tag{5.3}
\end{equation*}
$$

Using the Borel-Cantelli lemma for the events appearing on the left-hand side of (5.3) shows that the sequence $\mathrm{MST}_{\infty}^{\bar{\lambda}_{k}, \varepsilon_{k}}$ is almost surely a Cauchy sequence in Ω_{M}. The space is complete, hence there is an almost sure limit MST_{∞}. Of course, this limit may a priori depend on the sequences $\left\{\bar{\lambda}_{k}\right\},\left\{\varepsilon_{k}\right\}$ and on the coupling. However, using the triangle inequality again, going through $\mathrm{MST}_{\infty}^{\bar{\lambda}_{k}, \varepsilon_{k}}$, we have that for any $\delta>0$, if $\eta>0$ small enough, then

$$
\mathbf{P}\left[d_{\Omega_{M}}\left(\mathrm{MST}_{\eta}, \mathrm{MST}_{\infty}\right)<\delta\right]>1-\delta
$$

Therefore, in this coupling, MST_{η} converges in probability, and hence in law, to MST_{∞}, in the metric space Ω_{M}. Since MST_{η} and the metric $d_{\Omega_{M}}$ are translation invariant, the limit MST_{∞} is also invariant.

To prove the convergence of $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$, note that the bounds (5.1) and (5.2) hold not just for $\bar{\lambda}_{k}$ and ε_{k}, but for all $\varepsilon<\varepsilon_{k}$ and $\lambda<\lambda_{k}$ and $\lambda^{\prime}>\lambda_{k}^{\prime}$, thus we have that $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$ is close in distribution in the $d_{\Omega_{M}}$-metric to MST_{η}, and hence to MST_{∞}.
5.2. Extension to the full plane; invariance under translations, scalings and rotations. We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. We will use the notation MST_{η}^{M} and $\mathrm{MST}_{\infty}^{M}$ for MST_{η} and its scaling limit on the torus \mathbb{T}_{M}^{2}. We will also use the approximations $\mathrm{MST} \mathrm{T}^{\bar{\lambda}, \varepsilon, M}$.

It was proved in [4], equation (8.1), that MST_{η} is uniformly quasi-local in the sense that for any $\delta>0$ and compact $\Lambda \subset \mathbb{C}$ there exists a $\bar{\Lambda}_{\delta} \subset \mathbb{C}$ such that for any small enough $\eta>0$, with probability at least $1-\delta$, all trees with leaves in Λ are contained in $\bar{\Lambda}_{\delta}$. Since this event is measurable w.r.t. the percolation ensemble inside $\bar{\Lambda}_{\delta}$, by taking $\delta>0$ small and $M>0$ so large that $\bar{\Lambda}_{\delta} \subset[-M, M]^{2}$, we get that the law of MST_{η} restricted to Λ is close in total variation distance to the law of MST_{η}^{M} restricted to Λ. By the $(\bar{\lambda}, \varepsilon)$-approximation result Proposition 4.7, the same holds for $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon, M}$, and by the uniformity in $\eta>0$, also for $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon, M}$. In the proof of Theorem 5.1, we have constructed $\mathrm{MST}_{\infty}^{M}$ as a limit of $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon, M}$, thus we also have that the law of $\mathrm{MST}_{\infty}^{M}$ restricted to $\Lambda \stackrel{\infty}{\text { converges as } M \rightarrow \infty}$, in the metric $d_{\Omega_{M}}$ that is based on the flat Euclidean metric on \mathbb{T}_{M}^{2}.

Now we take $\Lambda=[-L, L]^{2}$, with $L \rightarrow \infty$. As pointed out at the beginning of Section 2.1, the metric defined in (2.1) for $\widehat{\mathbb{C}}$ is equivalent to the Euclidean metric
in bounded domains, while the distance between any two points in $\widehat{\mathbb{C}} \backslash[-L, L]^{2}$ is at most $O(1 / L)$. Thus the uniform distance between any two trees embedded in $\widehat{\mathbb{C}} \backslash[-L, L]^{2}$ is at most $O(1 / L)$, and if two essential spanning forests are δ-close in the metric $d_{\Omega_{M}}$ restricted to $[-L, L]^{2}$, then their distance in d_{Ω} is $O_{L}(\delta)+$ $O(1 / L)$. Therefore, the convergence in $d_{\Omega_{M}}$ for any given $\Lambda \subset \mathbb{C}$, established in the previous paragraph, implies convergence in d_{Ω}.

Translation invariance of the limit measure MST_{∞} follows from a standard trick: for any compact $\Lambda \subset \mathbb{C}$, quasi-locality implies that the limit of $\mathrm{MST}_{\infty}^{[-M, M]^{2}}$ restricted to Λ, as $M \rightarrow \infty$, is the same as the limit of $\mathrm{MST}_{\infty}^{[-M+x, M+x]^{2}}$ restricted to the same Λ, for any $x \in \mathbb{R}$, and hence MST_{∞} restricted to Λ has the same distribution as restricted to $\Lambda-x$.

To prove scale-invariance, consider the scaling $f_{\alpha}(z):=\alpha z$. The conformal covariance of the pivotal measures, proved in [27], Theorem 6.1, says that

$$
\begin{equation*}
\left(f_{\alpha}\right)_{*}\left(\mu^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)\right)=\alpha^{-3 / 4} \mu^{\alpha \varepsilon}\left(f_{\alpha}\left(\omega_{\infty}^{\lambda}\right)\right) \tag{5.4}
\end{equation*}
$$

Also, by the conformal covariance of $\omega_{\infty}^{\lambda}$, proved in [28], Theorem 10.3, we have

$$
\begin{equation*}
f_{\alpha}\left(\omega_{\infty}^{\lambda}\right) \stackrel{d}{=} \omega_{\infty}^{\alpha^{-3 / 4} \lambda} \tag{5.5}
\end{equation*}
$$

Scaling the spatial intensity measure of a Poisson point process by $\alpha^{-3 / 4}$ as in (5.4) is the same as scaling the time duration by the same factor, in the sense that there is a natural coupling in which the spatial coordinates of the arrivals are the same, and there is a simple scaling between the time coordinates. Thus, combining (5.4) and (5.5), and denoting the notion of "same" in the previous sentence by \approx, we have

$$
\begin{equation*}
f_{\alpha}\left(\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)\right) \stackrel{d}{\approx} \operatorname{PPP}_{\alpha^{-3 / 4} \bar{\lambda}}^{\alpha \varepsilon}\left(\omega_{\infty}^{\alpha^{-3 / 4} \lambda}\right) \tag{5.6}
\end{equation*}
$$

Our constructions of $\mathrm{MSF}_{\infty}^{\bar{\lambda}, \varepsilon}$ and $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon}$ in Definition 3.11 and Lemma 4.4 are equivariant under spatial and time scalings, hence the identities (5.5) and (5.6) imply that

$$
f_{\alpha}\left(\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon, M}\right) \stackrel{d}{=} \mathrm{MST}_{\infty}^{\alpha^{-3 / 4} \bar{\lambda}, \alpha \varepsilon, \alpha M}
$$

Since we obtained MST_{∞} as a limit of $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon, M}$ with $\bar{\lambda} \rightarrow(-\infty, \infty), \varepsilon \rightarrow 0$, $M \rightarrow \infty$, the last identity gives that $f_{\alpha}\left(\mathrm{MST}_{\infty}\right) \stackrel{d}{=} \mathrm{MST}_{\infty}$.

Next, let $f_{\theta}: \mathbb{C} \longrightarrow \mathbb{C}$ be the rotation by angle θ. Now [27], Theorem 6.1, and [28], Theorem 10.3, give for full plane configurations that

$$
\begin{equation*}
f_{\theta}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\left(\omega_{\infty}^{\lambda}\right)\right) \stackrel{d}{=}\left(\omega_{\infty}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon, \theta}\left(\omega_{\infty}^{\lambda}\right)\right) \tag{5.7}
\end{equation*}
$$

where $\operatorname{PPP}_{\bar{\lambda}}^{\varepsilon, \theta}$ is constructed using a rotated grid to define ε-importance. (As pointed out in [27], Remark 6.3, this rotational equivariance of the ε-importance
measure, and hence the Poisson point process is not a tautology, since the normalization factor in the definition of the measure is not changed with the rotation.) Now, if we want to consider $\mathrm{MST}^{\bar{\lambda}, \varepsilon}$ on the torus \mathbb{T}_{M}^{2}, the rotated ε - and r-grids cannot be exactly defined; nevertheless, we can consider the squares in the grid fully contained in $f_{\theta}\left([-M, M]^{2}\right)$, and make some arbitrary definition close to the boundary-due to quasi-locality, this will not matter. Hence, from (5.7) we get that for large $M>0$, the distribution of $f_{\theta}\left(\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon, M}\right)$ restricted to some fixed domain Λ, which is close to $f_{\theta}\left(\mathrm{MST}_{\infty}\right)$ restricted to Λ, is close to $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon, M, \theta}$ restricted to Λ. On the other hand, Corollary 4.5 and Proposition 4.7 work fine with the rotated grids, giving that $\mathrm{MST}_{\infty}^{\bar{\lambda}, \varepsilon, M, \theta}$ is close to $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon, M, \theta}$, and the latter is close to MST_{η}. Finally, since MST_{η} is close to MST_{∞}, after taking all the limits we get that $f_{\theta}\left(\mathrm{MST}_{\infty}\right)$ agrees with MST_{∞} in distribution.

6. Geometry of the limit tree MST_{∞}.

6.1. Degree types and pinching. The degree of a point $x \in \widehat{\mathbb{C}}$ in an immersed tree $f: \tau \longrightarrow \widehat{\mathbb{C}}$, where we assume that f is locally injective from each edge of τ, is

$$
\begin{equation*}
\operatorname{deg}_{f}(x):=\sum_{f(v)=x} \operatorname{deg}_{\tau}(v) \tag{6.1}
\end{equation*}
$$

where the sum is over all points v of τ, meaning a vertex in $V(\tau)$ or a point on an edge in $E(\tau)$, and $\operatorname{deg}_{\tau}(v)$ is the combinatorial degree in the first case, while equals 2 in the second case. (Note that for any immersed tree $f: \tau \longrightarrow \widehat{\mathbb{C}}$ there exists a minimal $\tau^{*} \prec \tau$ on which f can be defined, and here f is equivalent to a locally injective immersion $f^{*}: \tau^{*} \longrightarrow \widehat{\mathbb{C}}$. Hence the local injectivity assumption is not a real restriction.) For an essential spanning forest \mathcal{F},

$$
\begin{equation*}
\operatorname{deg}_{\mathcal{F}}(x):=\sup _{\ell \geq 1} \sup _{f \in \mathcal{F}^{(\ell)}} \operatorname{deg}_{f}(x) \tag{6.2}
\end{equation*}
$$

The degree type of a point x in an immersed tree $f: \tau \longrightarrow \widehat{\mathbb{C}}$ is the vector of summands in (6.1), ordered in decreasing order, and the degree type in an essential spanning forest \mathcal{F} is the supremum as in (6.2), now w.r.t. a natural partial order on the vectors of degree types: after padding vectors with zeros at the end, use the lexicographic ordering. The supremum in this partial order exists because of condition (iii) of Definition 2.2. [This supremum vector may start with a few ∞ entries if $\operatorname{deg}_{\mathcal{F}}(x)=\infty$, but this is fine.] See Figure 14 for a few examples (ignoring at this point the dual trees on the pictures).

For instance, saying that $x \in \mathbb{C}$ is a pinching point for \mathcal{F} if $\mathcal{F}^{(2)}$ includes a path which passes through x twice without terminating there can be expressed as saying that x has degree type at least $(2,2)$. If one of the two branches terminates at x, the other does not, that is, degree type at least $(2,1)$, then we talk about a figure of 6 ,

Fig. 14. Degree type (5) and two examples of $(2,1,1,1)$ in a spanning tree of the plane, giving degree types $(1,1,1,1,1),(4,1)$ and $(3,2)$ in a dual spanning tree.
while degree type at least $(1,1)$ is called a point of nonuniqueness, or a loop at x. Points of degree type at least (2) constitute the trunk of \mathcal{F} : the union of curves in $\mathcal{F}^{(2)}$ excluding the endpoints. A branching point is a point with degree type at least (3).

Lemma 6.1 (Dual spanning tree). There is a spanning tree $\mathrm{MST}_{\infty}^{\dagger}$ of \mathbb{C} coupled with MST_{∞} that is dual in the sense that none of its paths cross any of the paths of MST_{∞}, and whose distribution is again that of MST_{∞}.

Note that we are not claiming that $\mathrm{MST}_{\infty}^{\dagger}$ is measurable w.r.t. MST_{∞}, nor that there is a unique such spanning tree. These claims should be possible to prove, but we will not need them. For all subsequential scaling limits of the Uniform Spanning Tree on \mathbb{Z}^{2}, they were proved in [47] via first establishing that the trunk is a topological tree that is everywhere dense in \mathbb{C}, and then defining the dual tree in the complement of the trunk.

Proof of Lemma 6.1. The planar dual of the triangular lattice T is the hexagonal lattice T^{*}, and, as usual, MST_{η}^{M} on $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$ has a dual graph on $\eta T^{*} \cap \mathbb{T}_{M}^{2}$, denoted by $\mathrm{MST}_{\eta}^{M^{\dagger}}$. Because of the torus geometry, this dual has some cycles, but it is easy to check that for any null-homotopic cycle in $\eta T^{*} \cap \mathbb{T}_{M}^{2}$, the edge whose dual in $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$ has the minimal weight must be present in MST_{η}^{M}, hence must be missing from $\mathrm{MST}_{\eta}^{M^{\dagger}}$, and thus we are almost talking about the Maximal Spanning Tree on $\eta T^{*} \cap \mathbb{T}_{M}^{2}$, denoted by $\operatorname{MaxS} T_{\eta}^{M^{*}}$, which is defined from the Unif[0, 1] vertex labels $\{V(x)\}$ on T analogously to MST_{η}^{M} : each edge $e^{*} \in E\left(\eta \mathrm{~T}^{*} \cap \mathbb{T}_{M}^{2}\right)$ is the dual edge to some $e=(x, y) \in E\left(\eta \mathrm{~T} \cap \mathbb{T}_{M}^{2}\right)$, then we let

$$
U\left(e^{*}\right):=(V(x) \vee V(y), V(x) \wedge V(y)),
$$

and get $\mathrm{MST}_{\eta}^{M^{*}}$ (or $\mathrm{MaxST}_{\eta}^{M^{*}}$) by removing the maximal (or minimal) edge from each cycle of $E\left(\eta T^{*} \cap \mathbb{T}_{M}^{2}\right)$ w.r.t. the lexicographic ordering; see Figure 15.

To make the connection between $\mathrm{MST}_{\eta}^{M^{\dagger}}$ and $\mathrm{MaxST}_{\eta}^{M^{*}}$ stronger, note that the two edges in which they differ form a translation invariant random finite subset

Fig. 15. (a) MST_{η}^{M} and its dual almost-tree $\mathrm{MST}_{\eta}^{M^{\dagger}}$. (b) The tree $\operatorname{MaxST}_{\eta}^{M^{*}}$ associated with the same vertex labels, which is just $\mathrm{MST}_{\eta}^{M^{\dagger}}$ minus two edges. (c) The tree $\mathrm{MST}_{\eta}^{M^{*}}$.
in the torus; hence, as $M \rightarrow \infty$, the probability that this set intersects any given finite set of edges in \mathbb{Z}^{2} goes to 0 . Therefore, inside any bounded window, the distributions of $\mathrm{MST}_{\eta}^{M^{\dagger}}$ and $\mathrm{MaxST}_{\eta}^{M^{*}}$ are very close to each other, for large M. On the other hand, $\operatorname{MaxST} T_{\eta}^{M^{*}}$ has the same distribution as $\mathrm{MST}_{\eta}^{M^{*}}$ on $\eta \mathrm{T}^{*} \cap \mathbb{T}_{M}^{2}$; hence, if we can understand the geometry of $\mathrm{MST}_{\eta}^{M^{*}}$, and prove, for instance, uniform quasi-locality, then we can use that, just as in Section 5.2, to understand the geometry of $\mathrm{MST}_{\eta}^{M^{\dagger}}$.

Now, we claim that, in the spirit of the remark after Figure 2, the macroscopic structure of $\mathrm{MST}_{\eta}^{M^{*}}$ on $\eta \mathrm{T}^{*} \cap \mathbb{T}_{M}^{2}$ can be described using the near-critical ensemble on $\eta \mathrm{T}$. Indeed, if x^{*} and y^{*} are vertices in $\eta \mathrm{T}^{*} \cap \mathbb{T}_{M}^{2}$ such that the triangular faces they represent have vertices x and y in the same percolation p-cluster of $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$, then it is immediate to see that the path in $\mathrm{MST}_{\eta}^{M^{*}}$ between x^{*} and y^{*} cannot cross any cycle of $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$ whose vertices all have labels above p. In this sense, the path does not leave the p-cluster. It follows that two distinct p-clusters cannot be connected by two different paths of $\mathrm{MST}_{\eta}^{M^{*}}$ (we would otherwise get a cycle in $\mathrm{MST}_{\eta}^{M^{*}}$), and hence our entire paper applies to this version of the Minimal Spanning Tree. Thus we get that $\mathrm{MST}_{\eta}^{M^{*}}$ and $\mathrm{MST}_{\eta}^{M^{\dagger}}$ have the same unique scaling limit as $\eta \rightarrow 0$ then $M \rightarrow \infty$, denoted by $\mathrm{MST}_{\infty}^{\dagger}$, with the same distribution as MST_{∞}.

The fact that the paths of $\mathrm{MST}_{\infty}^{\dagger}$ do not cross the paths of MST_{∞} is clear from obtaining them as scaling limits of discrete dual graphs.

It was proved in [4] that any subsequential limit of MST_{η} in $\widehat{\mathbb{C}}$ is a spanning tree of $\hat{\mathbb{C}}$, and hence, using Lemma 6.1, it has one end (a single route to infinity). Furthermore, regularity properties of MST paths proved in that paper implied that the degrees in MST_{∞} are almost surely bounded from above by some absolute deterministic constant $k_{0} \in \mathbb{N}$, and that the set of points with loops has Hausdorff
dimension strictly between 1 and 2. It was also shown, using a Burton-Keane-type argument with trifurcation points and the amenability of the graph \mathbb{Z}^{2} (see [16] or [41], Section 7.3) that the set of branching points is at most countable. It was conjectured in [4] that there are no branching points of degree 4 or larger, and that there are no pinching points. We are now able to establish the latter conjecture, and get close to the former.

THEOREM 6.2 (Degree types in MST). Almost surely in MST_{∞} on \mathbb{C} :
(i) there are no points of degree type at least $(2,2)$; in other words, for any two points $x, y \in \mathbb{C}$, none of the paths connecting the two vertices has a pinching point;
(ii) there are no points of degree at least 5 (with any degree type);
(iii) the set of points of degree 4 (with any degree type) is at most countable.

These hold not only for the scaling limit on η T but also for any subsequential limit on $\eta \mathbb{Z}^{2}$.

Proof. (i) We want to show that, in any given unit square in \mathbb{C} and for any $0<\rho<1$, the probability of MST_{∞} having a point of degree type $(2,2)$ with the four strands not being connected within the radius ρ ball of the pinching point is zero. [Note that if there was no positive radius in which the four strands are not connected, then this would in fact be a point of degree type at least 4 , not $(2,2)$. On the other hand, the strands must be connected somewhere in MST_{∞}, hence we can just assume that they are parts of one path connecting two vertices, which explains the second part of the statement.] For this, it is enough to show that for any $M>1$, the probability in $\mathrm{MST}_{\eta}=\mathrm{MST}_{\eta}^{M}$ that there is an r-square $B \in B^{r}\left([0,1]^{2}\right)$ (as in Definition 3.2, with $r<\rho$) such that there is a path γ with two disjoint subpaths, γ_{1} and γ_{2}, that both enter B but are not connected to each other in MST_{η} within the ρ-neighbourhood of B tends to 0 as $r \rightarrow 0$, uniformly in $\eta>0$.

Fix $\alpha>0$ arbitrarily small. As in the proof of Proposition 4.7, we can take $\lambda<-1, \varepsilon>0$, and $\lambda^{\prime}>0$ such that with probability at least $1-\alpha / 2$, all λ clusters in \mathbb{T}_{M}^{2} have diameter less than $\rho / 10$, every point of \mathbb{T}_{M}^{2} has in its $\rho / 20$-neighbourhood a ring of λ-clusters of diameter at least δ each, for some $0<\delta<\rho / 20$ (uniformly in η), and all λ-clusters of diameter at least δ are connected in $\mathrm{MST}_{\eta}^{\bar{\lambda}, \varepsilon}$, with these paths going through the same closed pivotals of $\operatorname{PPP} \overline{\bar{\lambda}}$ as the corresponding paths of MST_{η}. We will assume that this event of probability at least $1-\alpha / 2$ holds, and also that the above r-square B exists, with some $r \ll \rho$ to be determined later.

Any path in MST_{η} that connects two points in the same λ-cluster must stay in that cluster. Thus, the paths γ_{1} and γ_{2} that are connected in MST_{η} but not inside the ρ-neighbourhood of B (denoted by B_{ρ}), must go through disjoint λ-clusters inside B_{ρ}. These λ-clusters all have diameter at most $\rho / 10$, connected by λ-closed

FIG. 16. Pinching would imply a near-critical 6-arm event.
pivotals. Close to each end of each γ_{i}, there is such a λ-closed pivotal, at distance at least $\rho-\rho / 5$ from B. Thus there must exist two λ-closed paths, separating the λ-clusters of γ_{1} from those of γ_{2}, going through B, of radius at least $4 \rho / 5$. See Figure 16.

We would like to bound now the labels from above on the MST_{η} paths. To this end, let x_{i} be the point where γ_{i} leaves the ρ-neighbourhood of B, at the end of γ_{i} that is opposite from γ_{3-i} along γ, for $i=1,2$. Around each x_{i}, there is a ring of macroscopic λ-clusters, the MST_{η} path from x_{1} to x_{2} must intersect at least one λ-cluster from each ring, and the part of the path connecting the two rings must go through λ-clusters connected by pivotals with labels at most λ^{\prime}. Thus, besides the two λ-closed arms between radii r and $4 \rho / 5$ we also have four λ^{\prime}-open arms between the same radii. By the near-critical stability of 6 -arm probabilities, Proposition 1.3, the probability of this happening anywhere in \mathbb{T}_{M}^{2} is smaller than $\alpha / 2$ if r / ρ is chosen small enough. Therefore, the probability of the existence of B is less than α if $r>0$ is chosen small enough, uniformly in the mesh $\eta>0$, and we are done.
(ii) It is proved in [12] that the critical monochromatic 5-arm exponent is strictly larger than the polychromatic one, which is 2 (see [49], Corollary A.8). Therefore, near-critical stability for the monochromatic 5 -arm exponent (again, Proposition 1.3) tells us that no near-critical monochromatic 5 -arm event between radii r and ρ happens anywhere in $[0,1]^{2}$ if r / ρ is small enough. Based on this, as before, we will exclude the existence of an r-square $B \in B^{r}\left([0,1]^{2}\right)$ with degree 5 to distance at least ρ.

FIG. 17. Degree 5 would imply a near-critical monochromatic 5 -arm or a polychromatic 6 -arm event.

We look at the λ-clusters traversed by the five branches, for some small $\lambda<-1$. As in part (i), the branches contributed by components at least 2 in the vector of the degree type traverse macroscopic λ-clusters, and hence the labels of their λ closed pivotals are all at most some uniform λ^{\prime}. That is, a degree component $k \geq 2$ implies $k \lambda^{\prime}$-open arms from r to ρ (e.g., the open arms labelled 1 to 4 on the left-hand side of Figure 17) and if there are more than one such components, we also have λ-closed arms separating them (e.g., the closed arms labelled 6 to 9 on the right-hand side of Figure 17). On the other hand, if we have $\ell \geq 1$ branches contributed by components of size 1 in the vector of the degree type, they are necessarily separated from the other branches by λ-closed paths. Thus, they

- either contribute $\ell+1$ closed arms to the existing 4 open arms,
- or if we have at least two degree components with at least 2 branches, then they raise the number of closed arms by ℓ,
- or if we do not have any degree components with at least 2 branches, then $\ell \geq 5$, the degree type is all 1 's, and we again get ℓ closed arms.

Altogether, we either have at least $5 \lambda^{\prime}$-open arms, or at least 5λ-closed arms, or a ($\lambda, \lambda^{\prime}$) near-critical polychromatic event with at least 6 arms. None of these happens if r / ρ is small enough, and we are done.
(iii) Degree 4 points can have five different degree types: (4), $(3,1),(2,2)$, $(2,1,1),(1,1,1,1)$. The countability of the first two types follows from the countability of branching points proved in [4]. Points of the third type do not exist, by part (i) above. At a point of the fourth type, the dual MST_{∞} tree defined in Lemma 6.1 would either have a branching of degree 3 , for which we already know
countability, or a degree type (2, 2), which does not exist by part (i). (See Figure 14 for examples of dual degree types.) Finally, if a point has degree type (1, 1, 1, 1), then the dual tree has a branching point of degree 4 there, so we have countability again.

Since the well-known 5- and 6-arm bounds and Proposition 1.3 hold also for \mathbb{Z}^{2}, all the above arguments work fine for subsequential limits of MST_{η} on $\eta \mathbb{Z}^{2}$, as well.

It is tempting to try and argue that a figure of 6 should imply 5 arms with labels bounded suitably by λ and λ^{\prime}, and hence by the near-critical stability of the 5 -arm exponent (which is 2), the set of points with degree type $(2,1)$ should be at most countable, but we did not manage to make this argument work.
6.2. A dimension bound for the trunk. Our present techniques reveal very little about the dimension of different subsets of interest in MST_{∞}. It was proved in [4] that all the curves connecting any two points almost surely have Hausdorff dimension at least some unspecified deterministic $d_{\min }>1$ and at most another constant $d_{\max }<2$. Note that, having a countable number of branching points, the trunk is a countable union of such curves; hence we can equivalently talk about the dimension of the trunk. We will now slightly improve the upper bound to $d_{\max }=2-\alpha_{2}^{\prime}<7 / 4$, where α_{2}^{\prime} is the monochromatic two-arm (or backbone) exponent of critical percolation, shown to be strictly larger than the polychromatic two-arm exponent $\alpha_{2}=1 / 4$ in [12]. According to simulations, the true value of the Hausdorff dimension is close to $1.22^{-}[53,58]$, while $2-\alpha_{2}^{\prime}$ is close to $79 / 48=1.646^{-}[11]$.

THEOREM 6.3. The Hausdorff dimension of the trunk of MST_{∞} is almost surely at most $2-\alpha_{2}^{\prime}<7 / 4$, where α_{2}^{\prime} is the monochromatic two-arm exponent of critical percolation.

Proof. For any $\rho>0$, let $\operatorname{Trunk}_{\eta}^{\rho}$ (resp., $\operatorname{Trunk}_{\infty}^{\rho}$) be the set of points in $[0,1]^{2}$ that have a path of MST_{η} (resp., MST_{∞}) passing through them, going to distance at least ρ in both directions. Since the trunk of MST_{∞} is a countable union of sets of the form $\operatorname{Trunk}_{\infty}^{\rho}$, it is enough to prove the dimension bound on each $\operatorname{Trunk}_{\infty}^{\rho}$. Consider our usual grid $B^{r}\left([0,1]^{2}\right)$ of r-squares, with $r \ll \rho$. The subset of those r-squares that are intersected by $\operatorname{Trunk}_{\eta}^{\rho}$ (resp., $\operatorname{Trunk}_{\infty}^{\rho}$) will be denoted by $\operatorname{Trunk}_{\eta}^{\rho, r}$ (resp., $\operatorname{Trunk}_{\infty}^{\rho, r}$), and it is clear that in any coupling where MST_{η} converges to MST_{∞} almost surely, for small enough $\eta>0$ we have $\left|\operatorname{Trunk}_{n}^{\rho, r}\right| / 9 \leq\left|\operatorname{Trunk}_{\infty}^{\rho, r}\right| \leq 9\left|\operatorname{Trunk}_{n}^{\rho, r}\right|$ with probability close to 1 , where the factors of 9 accommodate the possibility of the points of Trunk ${ }^{\rho}$ moving across the boundaries of r-squares. Therefore, it suffices to prove that for any $\beta>0$ there is a sequence $r_{k} \rightarrow 0$ such that

$$
\begin{equation*}
\mathbf{P}\left[\left|\operatorname{Trunk}_{\eta}^{\rho, r_{k}}\right|>r_{k}^{-2+\alpha_{2}^{\prime}-\beta}\right]<2^{-k} \tag{6.3}
\end{equation*}
$$

for all small enough $\eta=\eta_{k}>0$, because then Borel-Cantelli gives that the Hausdorff (even the lower Minkowski) dimension of $\operatorname{Trunk}_{\infty}^{\rho}$ is almost surely at most $2-\alpha_{2}^{\prime}+\beta$.

To prove (6.3), take $\bar{\lambda}_{k}$ and ε_{k} such that with probability at least $1-3^{-k}$ all λ_{k}-clusters have diameter at most $\rho / 10$, all points have a ring of λ_{k}-clusters of diameter at least $\delta>0$ in their $\rho / 20$-neighbourhood, and all λ_{k}-clusters of diameter at least δ are connected in $\mathrm{MST}_{\eta}^{\bar{\lambda}_{k}, \varepsilon_{k}}$. Condition on this event, denoted by \mathcal{G}_{k}. Then, just as in the proof of Theorem 6.2, every element of $\operatorname{Trunk}_{\eta}^{\rho, r}$ has a $\bar{\lambda}_{k}$-near-critical monochromatic 2-arm event from radius r to $\delta / 2$. From near-critical stability, we know that, for any $B \in B^{r}\left([0,1]^{2}\right)$, denoting this 2-arm event by $\mathcal{A}_{2}^{\prime}\left(B, r, \delta / 2, \bar{\lambda}_{k}\right)$, we have

$$
\mathbf{P}\left[\mathcal{A}_{2}^{\prime}\left(B, r, \delta / 2, \bar{\lambda}_{k}\right)\right]<C_{\delta, k} r^{\alpha_{2}^{\prime}}
$$

Since $1 /\left(1-3^{-k}\right)<2$, the previous line gives

$$
\mathbf{P}\left[\mathcal{A}_{2}^{\prime}\left(B, r, \delta / 2, \bar{\lambda}_{k}\right) \mid \mathcal{G}_{k}\right]<2 C_{\delta, k} r^{\alpha_{2}^{\prime}}
$$

and, summing up over B,

$$
\mathbf{E}\left[\left|\operatorname{Trunk}_{\eta}^{\rho, r}\right| \mid \mathcal{G}_{k}\right]<2 C_{\delta, k} r^{-2+\alpha_{2}^{\prime}}
$$

Then, by Markov's inequality, for any $\beta>0$,

$$
\mathbf{P}\left[\left|\operatorname{Trunk}_{\eta}^{\rho, r}\right|>2 C_{\delta, k} r^{-2+\alpha_{2}^{\prime}-\beta / 2} \mid \mathcal{G}_{k}\right]<r^{\beta / 2}
$$

By taking $r_{k}>0$ so small that $2 C_{\delta, k}<r_{k}^{-\beta / 2}$ and $r_{k}^{\beta / 2}<3^{-k}$, we get that

$$
\mathbf{P}\left[\left|\operatorname{Trunk}_{\eta}^{\rho, r_{k}}\right|>r_{k}^{-2+\alpha_{2}^{\prime}-\beta} \mid \mathcal{G}_{k}\right]<3^{-k}
$$

Since we have

$$
\begin{aligned}
\mathbf{P}\left[\left|\operatorname{Trunk}_{\eta}^{\rho, r_{k}}\right|>r_{k}^{-2+\alpha_{2}^{\prime}-\beta}\right] & <\mathbf{P}\left[\left|\operatorname{Trunk}_{\eta}^{\rho, r_{k}}\right|>r_{k}^{-2+\alpha_{2}^{\prime}-\beta} \mid \mathcal{G}_{k}\right]+\mathbf{P}\left[\mathcal{G}_{k}^{c}\right] \\
& <3^{-k}+3^{-k}
\end{aligned}
$$

we have verified (6.3) and completed the proof.
7. Invasion percolation. The Invasion Tree in a finite graph is simply the MST itself; hence, it cannot provide us with a good finite approximation to InvPerc in the infinite plane. Instead, we will consider the following finite versions:

- InvPerc $\eta_{\eta}^{M, \partial}$ will be the tree built by the invasion process started from the origin, stopped at the first time that it reaches $\partial[-M, M]^{2}$.
- For a fixed vertex $x \in V(\eta \mathrm{~T})$ and M large enough so that $x \in[-M, M]^{2}$, we will denote by $\operatorname{InvPerc} \eta_{\eta}^{M, x}$ the invasion process in the torus \mathbb{T}_{M}^{2}, started from the origin, stopped at the first time when it reaches x.

When $M \rightarrow \infty$, the weak limits of the above measures are $\operatorname{InvPerc}_{\eta}=\operatorname{InvPerc}_{\eta}(0)$ and $\operatorname{InvPerc}_{\eta}(0) \cup \operatorname{InvPerc}_{\eta}(x)$, respectively. Of course, the latter coincides with $\operatorname{InvPerc} \eta_{\eta}(0)$ with positive probability, and the symmetric difference $\operatorname{InvPerc}_{\eta}(0) \Delta$ $\operatorname{InvPerc}_{\eta}(x)$ is almost surely finite. These results are classical [6, 7, 20, 42].

Given the enhanced ε-networks $E N_{\eta}^{\bar{\lambda}, \varepsilon}$ and $\mathrm{EN}_{\infty}^{\bar{\lambda}, \varepsilon}$ defined in Proposition 3.9, the cut-off versions of the above invasion trees, both in the discrete case and in the continuum, can be defined quite similar to $\operatorname{MSF}^{\bar{\lambda}, \varepsilon}$ (done in Definition 3.11) and $\mathrm{MST}^{\bar{\lambda}, \varepsilon}$ (in Lemma 4.4).

DEFINITION 7.1 (The cut-off invasion trees $\operatorname{InvPerc}{ }^{\bar{\lambda}, \varepsilon, s}$ in \mathbb{T}_{M}^{2}, with target set ∂ or x). 1. Consider the edge-labelled graph defined in steps $1-3$ of Definition 3.11 on the set of the primal routers of $\mathrm{EN}^{\bar{\lambda}, \varepsilon}$ as vertices.
2. Take the giant component of this graphs, which exists with large probability by Lemma 4.4. On the bad event that this giant cannot be defined, our cut-off invasion trees will be just degenerate one-point trees.
3. Take the router closest to the origin 0 ; in case of a tie, decide in some arbitrary but fixed manner. This will be called the origin router. Furthermore, consider all routers that are at most distance $s>0$ from the target set $\partial[-M, M]^{2}$ or x. By Lemma 4.4, for any $s>0$, if λ is very negative, λ^{\prime} is very positive and ε is small, then with high probability the set of these target routers is not empty. When it is empty, the invasion tree will consist of just the origin router.
4. Take the invasion tree process in the above graph, started from the origin router, stopped when reaching any of the target routers. There may be steps in the invasion process when more than one edge with label λ lead out of the invaded set; in such a case, all these edges get invaded simultaneously.

It was proved already in [4] that the set of points with degree larger than 1 (i.e., points in the trunk or having a loop) in any subsequential scaling limit of $M S T_{\eta}$ is of zero measure. Therefore, almost surely there is a unique path of MST_{∞} that goes to the origin, and hence we did not lose any information in the above definition by taking the router closest to the origin instead of considering all routers that are s-close to it.

Given this definition, we immediately have the following analogues of Corollary 4.5 and Proposition 4.7. Note the double meaning of the parameter s : if we want to reach precision $s>0$ in $d_{\Omega_{M}}$, it is enough to get s-close to the target sets.

LEMmA 7.2. For any $M>0$, target set ∂ or $x \in \mathbb{T}_{M}^{2}$, and any $s, \alpha>0$, if $\lambda<-1$ is very negative, $\varepsilon>0$ is small and $\lambda^{\prime}>1$ is large enough, then, in the coupling of Proposition 3.9 (ii) between $\left(\omega_{\eta}^{\lambda}, \operatorname{PPP}_{\bar{\lambda}}^{\varepsilon}\right)$ and $\left(\omega_{\infty}^{\lambda}, \operatorname{PPP} \frac{\varepsilon}{\lambda}\right)$, for all $\eta>0$ small enough,

$$
\boldsymbol{P}\left[d_{\Omega_{M}}\left(\operatorname{InvPerc} \tilde{\eta}^{\bar{\lambda}, \varepsilon, s}, \operatorname{InvPerc}{ }_{\infty}^{\bar{\lambda}, \varepsilon, s}\right)<s\right]>1-\alpha .
$$

LEMMA 7.3. For any $M>0$, target set ∂ or $x \in \mathbb{T}_{M}^{2}$, and $s, \alpha>0$, if $\lambda<-1$ is very negative, $\varepsilon>0$ is small, and $\lambda^{\prime}>1$ is large enough, then, for all $\eta>0$ small enough,

$$
\boldsymbol{P}\left[d_{\Omega_{M}}\left(\operatorname{InvPerc}_{\eta}, \operatorname{InvPerc}_{\eta}^{\bar{\lambda}, \varepsilon, s}\right)<s\right]>1-\alpha,
$$

where $\operatorname{InvPerc}_{\eta}$ is only a shorthand now for $\operatorname{InvPerc}_{\eta}^{M, \partial}$ or $\operatorname{InvPerc}_{\eta}^{M, x}$.
Using these lemmas, the proof of the following theorem follows exactly the proofs of Theorem 5.1 and Theorem 1.1.

THEOREM 7.4. For any $M>0$, the invasion trees $\operatorname{InvPerc}_{\eta}^{M, \partial}$ and $\operatorname{InvPerc} \eta_{\eta}^{M, x}$ started at the origin of $\eta \mathrm{T} \cap \mathbb{T}_{M}^{2}$ converge in distribution as $\eta \rightarrow 0$, in the metric $d_{\Omega_{M}}$ of Definition 2.2, to the unique scaling limits $\operatorname{InvPerc}{ }_{\infty}^{M, \partial}$ and $\operatorname{InvPerc}{ }_{\infty}^{M, x}$, respectively.

The invasion tree $\operatorname{InvPerc}_{\eta}$ started at the origin of η T converges in distribution to a unique scaling limit $\operatorname{InvPerc}_{\infty}$ that is invariant under scalings and rotations.

As $M \rightarrow \infty$, the weak limit of $\operatorname{InvPerc}_{\infty}^{M, \partial}$ is $\operatorname{InvPerc}_{\infty}$ and the weak limit of $\operatorname{InvPerc}_{\infty}^{M, x}$ is $\operatorname{InvPerc}_{\infty}(0) \cup \operatorname{InvPerc}_{\infty}(x)$.
8. Questions and conjectures. We start with a very natural and interesting open problem.

COnJecture 8.1. (i) Show that MST_{∞} is not conformally invariant. In particular, show that it is different from the scaling limit of the Uniform Spanning Tree, described in [40].
(ii) Show that $\operatorname{InvPerc} \infty$ is not conformally invariant.

This is of course supported by simulation results [59]. Moreover, it was explained in [26] why our description of these scaling limits using the near-critical ensemble gives serious support to this conjecture, and why it is nevertheless not at all an easy issue. The case of $\operatorname{InvPerc}_{\infty}$ might be simpler, using the results of [24].

Probably the simplest open problem in this section is the following one, left open by Lemma 6.1.

CONJECTURE 8.2. Show that there is a unique dual tree $\mathrm{MST}_{\infty}^{\dagger}$, measurable w.r.t. MST_{∞}.

The following questions are left open by Theorem 6.2.
QUESTION 8.3 (Topology of MST_{∞}). (i) Are there nonsimple paths giving figures of 6 , that is, points with degree type $(2,1)$?
(ii) Show that almost surely there are no points of degree 4.

Finally, sharpening the bound of Theorem 6.3 would probably require new techniques.

QUESTION 8.4. Find the Hausdorff dimension of the paths of MST_{∞}.
Acknowledgements. We thank Louigi Addario-Berry, Nicolas Broutin, Laure Dumaz, Grégory Miermont and David Wilson for stimulating discussions, Rob van den Berg for pointing out the connection between Proposition 3.6 and [34], and Alan Hammond and two amazing anonymous referees for very good comments on the manuscript.

Part of this work was done while all authors were at Microsoft Research, Redmond, WA, or G. Pete was visiting C. Garban at ENS Lyon.

REFERENCES

[1] Addario-Berry, L., Broutin, N. and Goldschmidt, C. (2012). The continuum limit of critical random graphs. Probab. Theory Related Fields 152 367-406.
[2] Addario-Berry, L., Broutin, N., Goldschmidt, C. and Miermont, G. (2017). The scaling limit of the minimum spanning tree of the complete graph. Ann. Probab. 45 30753144. MR3706739
[3] Aizenman, M. (1997). On the number of incipient spanning clusters. Nuclear Phys. B 485 551-582.
[4] Aizenman, M., Burchard, A., Newman, C. M. and Wilson, D. B. (1999). Scaling limits for minimal and random spanning trees in two dimensions. Random Structures Algorithms 15 319-365.
[5] Aldous, D. and Steele, J. M. (2004). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1-72. Springer, Berlin.
[6] Alexander, K. S. (1995). Percolation and minimal spanning forests in infinite graphs. Ann. Probab. 23 87-104.
[7] Alexander, K. S. and Molchanov, S. (1994). Percolation of level sets for twodimensional random fields with lattice symmetry. J. Stat. Phys. 77 627-643.
[8] Angel, O., Goodman, J., den Hollander, F. and Slade, G. (2008). Invasion percolation on regular trees. Ann. Probab. 36 420-466. MR2393988
[9] Angel, O., Goodman, J. and Merle, M. (2013). Scaling limit of the invasion percolation cluster on a regular tree. Ann. Probab. 41 229-261. MR3059198
[10] Aumann, S. (2014). Singularity of full scaling limits of planar near-critical percolation. Stochastic Process. Appl. 124 3807-3818.
[11] Beffara, V. and Nolin, P. (2009). Numerical estimates for monochromatic percolation exponents. Available at http://perso.ens-lyon.fr/vincent.beffara/pdfs/Monochromatic-simu. pdf.
[12] Beffara, V. and Nolin, P. (2011). On monochromatic arm exponents for 2D critical percolation. Ann. Probab. 39 1286-1304. MR2857240
[13] Borgs, C., Chayes, J. T., Kesten, H. and Spencer, J. (2001). The birth of the infinite cluster: Finite-size scaling in percolation. Comm. Math. Phys. 224 153-204.
[14] BorŮVka, O. (1926). O jistém problému minimálním. Pr. Morav. Přír. Spol. 3 37-58.
[15] Broadbent, S. R. and Hammersley, J. M. (1957). Percolation processes I. Crystals and mazes. Proc. Camb. Philos. Soc. 53 629-641.
[16] Burton, R. M. and Keane, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501-505.
[17] Camia, F., Fontes, L. R. and Newman, C. M. (2006). Two-dimensional scaling limits via marked non-simple loops. Bull. Braz. Math. Soc. (N.S.) 37 537-559.
[18] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1-38. MR2249794
[19] Chatterjee, S. and Sen, S. (2018). Minimal spanning trees and Stein's method. Ann. Appl. Probab. To appear. Available at arXiv:1307.1661 [math.PR].
[20] Chayes, J. T., Chayes, L. and Newman, C. M. (1985). The stochastic geometry of invasion percolation. Comm. Math. Phys. 101 383-407.
[21] Chayes, J. T., Chayes, L. and Newman, C. M. (1987). Bernoulli percolation above threshold: An invasion percolation analysis. Ann. Probab. 15 1272-1287. MR0905331
[22] Damron, M. Recent work on chemical distance in critical percolation. Preprint. Available at arXiv: 1602.00775 [math.PR].
[23] Damron, M. and Sapozhnikov, A. (2012). Limit theorems for 2D invasion percolation. Ann. Probab. 40 893-920. MR2962082
[24] Damron, M., Sapozhnikov, A. and VÁgvölgyi, B. (2009). Relations between invasion percolation and critical percolation in two dimensions. Ann. Probab. 37 2297-2331. MR2573559
[25] Garban, C., Pete, G. and Schramm, O. (2010). The Fourier spectrum of critical percolation. Acta Math. 205 19-104.
[26] Garban, C., Pete, G. and Schramm, O. (2010). The scaling limit of the minimal spanning tree-A preliminary report. In XVIth International Congress on Mathematical Physics (P. Exner, ed.) 475-480. World Scientific, Hackensack, NJ.
[27] Garban, C., Pete, G. and Schramm, O. (2013). Pivotal, cluster and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 939-1024.
[28] Garban, C., Pete, G. and Schramm, O. (2018). The scaling limits of near-critical and dynamical percolation. J. Eur. Math. Soc. (JEMS) 20 1195-1268.
[29] Garban, C. and Steif, J. E. (2012). Noise sensitivity and percolation. In Probability and Statistical Physics in Two and More Dimensions (D. Ellwood, C. Newman, V. Sidoravicius and W. Werner, des.). Clay Math. Proc. 15 49-154. Amer. Math. Soc., Providence, RI. MR3025390
[30] Graham, R. L. and Hell, P. (1985). On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7 43-57.
[31] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften 321. Springer, Berlin.
[32] Häggström, O., Peres, Y. and Schonmann, R. H. (1999). Percolation on transitive graphs as a coalescent process: Relentless merging followed by simultaneous uniqueness. In Perplexing Problems in Probability, Festschrift in Honor of Harry Kesten (M. Bramson and R. Durrett, eds.) 69-90. Birkhäuser, Boston.
[33] Hammond, A., Pete, G. and Schramm, O. (2015). Local time on the exceptional set of dynamical percolation, and the Incipient Infinite Cluster. Ann. Probab. 43 2949-3005. MR3433575
[34] JÁrai, A. A. (2003). Incipient infinite percolation clusters in 2D. Ann. Probab. 31 444-485. MR1959799
[35] Kesten, H. (1982). Percolation Theory for Mathematicians. Birkhäuser, Boston.
[36] Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22 425-487.
[37] Kesten, H. (1987). Scaling relations for 2D-percolation. Comm. Math. Phys. 109 109-156.
[38] Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc. 7 48-50.
[39] Lawler, G. F., Schramm, O. and Werner, W. (2002). One-arm exponent for critical 2D percolation. Electron. J. Probab. 7 Art. ID 2.
[40] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939-995. MR2044671
[41] Lyons, R. and Peres, Y. (2016). Probability on Trees and Networks. Cambridge Univ. Press, Cambridge.
[42] Lyons, R., Peres, Y. and Schramm, O. (2006). Minimal spanning forests. Ann. Probab. 34 1665-1692. MR2271476
[43] Newman, C., Tassion, V. and Wu, W. (2017). Critical percolation and the minimal spanning tree in slabs. Comm. Pure Appl. Math. 70 2084-2120. MR3707489
[44] Nolin, P. (2008). Near-critical percolation in two dimensions. Electron. J. Probab. 13 15621623. MR2438816
[45] Nolin, P. and Werner, W. (2009). Asymmetry of near-critical percolation interfaces. J. Amer. Math. Soc. 22 797-819.
[46] Penrose, M. D. (1996). The random minimal spanning tree in high dimensions. Ann. Probab. 24 1903-1925.
[47] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221-288. MR1776084
[48] Schramm, O. and Smirnov, S. (2011). On the scaling limits of planar percolation. Ann. Probab. 39 1768-1814. With an appendix by Christophe Garban. Available at arXiv:1101.5820 [math.PR].
[49] Schramm, O. and Steif, J. E. (2010). Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. (2) 171 619-672.
[50] Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 239-244.
[51] Smirnov, S. and Werner, W. (2001). Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 729-744.
[52] Steif, J. E. (2009). A survey of dynamical percolation. In Fractal Geometry and Stochastics IV 145-174. Birkhäuser, Boston, MA.
[53] Sweeney, S. M. and Middleton, A. A. Minimal spanning trees at the percolation threshold: A numerical calculation. Available at arXiv:1307.0043 [cond-mat.dis-nn].
[54] Timár, Á. (2006). Ends in free minimal spanning forests. Ann. Probab. 34 865-869. MR2243871
[55] TimÁr, Á. (2018). Indistinguishability of the components of random spanning forests. Ann. Probab. To appear. Available at arXiv:1506.01370 [math.PR].
[56] van den Berg, J. and Conijn, R. (2013). The gaps between the sizes of large clusters in 2D critical percolation. Electron. Commun. Probab. 18 Art. ID 92.
[57] Wendelin, W. (2009). Lectures on two-dimensional critical percolation. In Statistical Mechanics. IAS/Park City Math. Ser. 16 297-360. Amer. Math. Soc., Providence, RI.
[58] Wieland, B. and Wilson, D. B. (2003). Winding angle variance of Fortuin-Kasteleyn contours. Phys. Rev. E 68056101.
[59] Wilson, D. B. (2004). On the Red-Green-Blue model. Phys. Rev. E 69037105.
[60] Yukich, J. E. (1998). Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes in Math. 1675. Springer, Berlin. MR1632875
C. Garban

Université Lyon
Université Claude Bernard Lyon 1
CNRS UMR 5208
Institut Camille Jordan
69622 Villeurbanne
France
E-MAIL: garban@math.univ-lyon1.fr
URL: http://math.univ-lyon1.fr/~garban
G. Pete

RÉnyi Institute
Hungarian Academy of Sciences
Reáltanoda utca 13-15.
Budapest 1053
Hungary
AND
Institute of Mathematics
Budapest University of Technology and Economics
Egry J. u. 1.
BUDAPEST 1111
Hungary
E-mAIL: robagetep@gmail.com
URL: http://www.math.bme.hu/~gabor
O. Schramm (December 10, 1961-September 1, 2008)

Microsoft Research
URL: http://research.microsoft.com/en-us/um/people/schramm/

