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A QUANTITATIVE CENTRAL LIMIT THEOREM FOR THE
EULER–POINCARÉ CHARACTERISTIC OF RANDOM

SPHERICAL EIGENFUNCTIONS1

BY VALENTINA CAMMAROTA AND DOMENICO MARINUCCI

Sapienza University of Rome and University of Rome Tor Vergata

We establish here a quantitative central limit theorem (in Wasserstein
distance) for the Euler–Poincaré characteristic of excursion sets of random
spherical eigenfunctions in dimension 2. Our proof is based upon a decompo-
sition of the Euler–Poincaré characteristic into different Wiener-chaos com-
ponents: we prove that its asymptotic behaviour is dominated by a single
term, corresponding to the chaotic component of order two. As a conse-
quence, we show how the asymptotic dependence on the threshold level u

is fully degenerate, that is, the Euler–Poincaré characteristic converges to a
single random variable times a deterministic function of the threshold. This
deterministic function has a zero at the origin, where the variance is thus
asymptotically of smaller order. We discuss also a possible unifying frame-
work for the Lipschitz–Killing curvatures of the excursion sets for Gaussian
spherical harmonics.

1. Introduction. The Euler–Poincaré characteristic is perhaps the single most
important tool for the analysis of excursion sets for Gaussian random fields; classi-
cal textbooks on its behaviour are [1, 2], while some very recent contributions can
be found for instance in [10, 11, 14, 21, 31]. As is well known, the Euler–Poincaré
characteristic, which we shall denote by χ(·), is the unique integer-valued func-
tional, defined on the ring C of closed convex sets in R

N , such that χ(A) = 0 if
A = ∅, χ(A) = 1 if A is homotopic to the unit ball, and which satisfies the addi-
tivity property

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B) for all A,B ∈ C.

The investigation of its behaviour for the excursion sets of Gaussian random fields
has now a rather long history: seminal contributions were given by Robert Adler
and his coauthors in the 1970s; the area was then very much revived by the discov-
ery of the beautiful Gaussian kinematic formula [1, 30].
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More precisely, let us denote by f a real valued random field defined on some
manifold M; as usual the excursion sets are defined by, for u ∈ R,

Au(f ;M) = {
x ∈ M : f (x) ≥ u

}
.

We write Lf
j , j = 0, . . . ,dim(M), for the Lipschitz–Killing curvatures (also known

as intrinsic volumes) of the manifold M under the Riemannian metric gf induced
by the covariance of f ; in other words, for Ux , Vx that belong to TxM, the tangent
space to M at x, we have

(1) gf
x (Ux,Vx) := E

[
(Uxf ) · (Vxf )

]
(see [1, 30] for further details); in particular L0 is the Euler–Poincaré character-
istic. To introduce the Gaussian kinematic formula, we need to consider also the
functions ρj , which are labelled Gaussian Minkowski functionals and defined by

ρj (u) = (2π)−(j+1)/2Hj−1(u)e−u2/2;
here, Hq(·) are the Hermite polynomial of order q , which satisfy (see, e.g., [25])

H−1(u)e−u2/2 := 1 − �(u),

Hj (u) = (−1)j
(
φ(u)

)−1 dj

duj
φ(u), j = 0,1, . . . .

φ(·), �(·) denoting the standard Gaussian density and distribution functions, re-
spectively. For instance, the first few Hermite polynomials are given by

H0(u) = 1, H1(u) = u, H2(u) = u2 −1, H3(u) = u3 −3u, . . . .

For a smooth, centred, unit variance, Gaussian random field f :M →R the Gaus-
sian kinematic formula then implies that the expected Euler–Poincaré characteris-
tic of the excursion sets is given by

(2) E
[
χ
(
Au(f ;M)

)]= dim(M)∑
j=0

Lf
j (M)ρj (u).

More recently, a formula which can be viewed as an higher order extension
of the Gaussian kinematic formula for the covariance of the Euler–Poincaré char-
acteristic of excursion sets at different thresholds, was established by [6], who
focussed on an important class of fields: Gaussian spherical harmonics. Indeed,
consider the Helmholtz equation

�S2f� + λ�f� = 0, f� : S2 →R,

where �S2 is the Laplace–Beltrami operator on the unit sphere S
2 and λ� = �(� +

1), � = 0,1,2, . . . . For a given eigenvalue −λ�, the corresponding eigenspace is
the (2�+ 1)-dimensional space of spherical harmonics of degree �; we can choose
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an arbitrary L2-orthonormal basis {Y�m(·)}m=−�,...,�, and consider random eigen-
functions of the form

(3) f�(x) =
√

4π

2� + 1

�∑
m=−�

a�mY�m(x),

where the coefficients {a�m} are complex-valued Gaussian variables, such that for
m �= 0, Re(a�m), Im(a�m) are zero-mean, independent Gaussian variables with
variance 1

2 , while a�0 follows a standard Gaussian distribution with zero mean
and unit variance; the law of the process {f�(·)} is invariant with respect to the
choice of a L2-orthonormal basis {Y�m}. Note that in this paper we choose the
basis of complex valued spherical harmonics instead of the real ones that were
adopted in [5, 7]. Random spherical harmonics arise naturally from Fourier analy-
sis of isotropic spherical random fields and in the investigation of quantum chaos,
and they have hence drawn quite a lot of interest in the last few years (see, for
instance, [8, 19, 22, 24, 29, 32, 33]); as discussed below, we believe the results
presented in this case can be extended to Gaussian eigenfunctions on more general
compact manifolds, but we leave this issue for future research.

The random fields {f�(x), x ∈ S
2} are centred, Gaussian and isotropic, meaning

that the probability laws of f�(·) and f�(g·) are the same for any rotation g ∈
SO(3). From the addition theorem for spherical harmonics ([17], equation (3.42)),
the covariance function is given by

E
[
f�(x)f�(y)

]= P�

(
cosd(x, y)

)
,

where P� are the Legendre polynomials and d(x, y) is the spherical geodesic dis-
tance between x and y, that is,

d(x, y) = arccos
(〈x, y〉).

An application of the Gaussian kinematic formula (2) gives in these circumstances:

(4) E
[
χ
(
Au

(
f�;S2))]= √

2√
π

exp
{−u2/2

}
u
�(� + 1)

2
+ 2

[
1 − �(u)

]
,

for a proof of formula (4); see, for example, [21], Corollary 5 or [10], Lemma 3.5.
In [6], the results on the expected value were extended to an (asymptotic) evalua-
tion of the variance; in particular, it was shown that, as � → ∞

(5) Var
[
χ
(
Au

(
f�;S2))]= �3

8π

(
u3 − u

)2
e−u2 + O

(
�2 log2 �

)
,

an expression that can be rewritten as

�
λ�

4

{
H1(u)H2(u)φ(u)

}2 + O
(
�2 log2 �

)
or equivalently

(6) �
λ�

4

{(
H ′

2(u) + H3(u)
)
φ(u)

}2 + O
(
�2 log2 �

)
,
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where φ(u) = 1√
2π

e−u2/2 denotes as before the standard Gaussian density func-
tion. This expression was derived by an analytic computation, in turn a conse-
quence of a rather hard analysis on the asymptotic variance of critical points which
was given in [5, 7]. Asymptotic expressions for the variances of the two other
Lipschitz–Killing curvatures for excursion sets in two dimensions, that is, the area
and (half) the boundary length, were also given in [19, 22, 23] and [27, 33]; in [6]
all these expressions were collected in a unitary framework and it was conjectured
that they could point out to a more general formula for random eigenfunctions.
A further contribution in this direction is indeed given by our results in this paper,
which we present below.

1.1. Main results. The main purpose of this paper is to show that the high fre-
quency behaviour is dominated (in the L2 sense) by a single term with a very sim-
ple analytic expression, whose variance is indeed given by (6). In order to achieve
this goal, we shall first establish the L2 expansion of χ(Au(f�;S2)) into Wiener
chaoses [see (22) below], which we will write as

χ
(
Au

(
f�;S2))−E

[
χ
(
Au

(
f�;S2))]= ∞∑

q=2

Proj
[
χ
(
Au

(
f�;S2))|q].

In the Euclidean case, a similar expansion was exploited in the recent paper [14];
in our setting, however, the asymptotic behaviour of the projection components
turns out to be even neater; in particular, we shall show that the projection onto the
second-order chaos has the following, very simple expression.

THEOREM 1. For all � such that Condition 3 in Section 2.2 holds, we have

Proj
[
χ
(
Au

(
f�;S2))|2]

= λ�

2

{
H1(u)H2(u)φ(u)

} 1

2� + 1

�∑
m=−�

{|a�m|2 − 1
}+ R(�)

= λ�

2

{
H1(u)H2(u)φ(u)

} 1

4π

∫
S2

H2
(
f�(x)

)
dx + R(�),

where the remainder term R(�) is such that E|R(�)|2 = O(�2 log�), uniformly
over u.

Note that the variance of the first term on the right-hand side is equal to

Var

[
λ�

2

{
H1(u)H2(u)φ(u)

} 1

2� + 1

�∑
m=−�

{|a�m|2 − 1
}]

= �2(� + 1)2

4
φ2(u)

(
u3 − u

)2 2

2� + 1
= �3

8π

(
u3 − u

)2
e−u2 + O

(
�2),
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which is asymptotically equivalent to the variance of the Euler–Poincaré character-
istic reported in (5), so that the contribution from all the remaining Wiener chaos
terms is indeed of smaller order for every u �= 0. In view of this result, the inves-
tigation of the asymptotic distribution becomes indeed much less difficult, and we
can prove the second main result of this paper, that is, we have the following.

THEOREM 2. There exists a constant K > 0 such that, for all � fulfilling Con-
dition 3 in Section 2.2 and uniformly over u �= 0, we have

E

{
χ(Au(f�;S2)) −E[χ(Au(f�;S2))] − Proj[χ(Au(f�;S2))|2]√

Var[χ(Au(f�;S2))]

}2
≤ K

log�

�
,

and

dW

(
χ(Au(f�;S2)) −E[χ(Au(f�;S2))]√

Var[χ(Au(f�;S2))]
,Z

)
≤ K

√
log�

�
,

dW (·, ·) denoting as usual the Wasserstein distance and Z ∼ N(0,1) a standard
Gaussian variable.

We remark that the possibility to obtain simple, analytic formulae for the
second-order chaos component and its variance, together with sharp bounds on the
convergence in Wasserstein distance, are both peculiar features which do not have
analogous counterparts for the Euclidean domain results (see, e.g., [14]). Also,
note that the asymptotic dependence on the threshold level u is fully degenerate,
that is, the Euler–Poincaré characteristic converges in mean square to a single ran-
dom variable times a deterministic function of the threshold, in the high-frequency
limit � → ∞. All these features follow by the fact that a single chaotic projection
(the component of order 2) is dominating the asymptotic behaviour of the Euler–
Poincaré characteristic; this is in some sense similar to the reduction theorems
that were established by M.Taqqu and coauthors for nonlinear functionals of long
range dependent processes in a number of papers in the late 1970s and 1980s. For
instance, in [13] it was proved that the asymptotic behaviour of the empirical pro-
cess for long range dependent sequences is dominated by the second-order chaos
components and, therefore, the limiting process boils down to a single random
variable times a deterministic function of the parameter space. The analogy be-
tween the empirical process of long range dependent sequences and the excursion
area for random eigenfunctions was first noted in [22]; here, we show that a similar
behaviour holds for the Euler–Poincaré characteristic, and indeed in the next sub-
section we discuss this issue in the more general framework of Lipschitz–Killing
curvatures for excursion sets of Gaussian eigenfunctions.
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1.2. Discussion.

1.2.1. Some recent results on Lipschitz–Killing curvatures for Gaussian eigen-
functions. The fact that the asymptotic behaviour of the Lipschitz–Killing curva-
tures in the high frequency – high energy limit is dominated by the second-order
chaotic component, which disappears at level u = 0, seems to be of a general
nature when dealing with excursion sets of random eigenfunctions. The simplest
example of a Lipschitz–Killing curvature is given of course by the excursion area;
in this case, it was shown in [22] that

Proj
[
L2
(
Au

(
f�;S2))|2]= 1

2
uφ(u)

∫
S2

H2
(
f�(x)

)
dx

= 1

2
uφ(u)

4π

2� + 1

�∑
m=−�

{|a�m|2 − 1
}

and moreover, as � → ∞,

Var[Proj[L2(Au(f�;S2))|2]]
Var[L2(Au(f�;S2))] = O

(
1

�

)
,

lim
�→∞E

{L2(Au(f�;S2)) −E[L2(Au(f�;S2))] − Proj[L2(Au(f�;S2))|2]√
Var[L2(Au(f�;S2))]

}2
= 0.

This results were further investigated and extended to spheres of arbitrary di-
mensions in [19]; again, easy consequences are:

1. A quantitative central limit theorem in Wasserstein distance;
2. Asymptotic degeneracy of the multivariate distribution for different thresh-

olds (u1, . . . , up), that is, perfect correlation of the excursion area at different
thresholds;

3. The fact that the variance at level u = 0 is lower-order (related to the so-
called “Berry’s cancellation phenomenon”, see below).

Another step in this literature was the analysis of the boundary length for u = 0
for random eigenfunctions on the torus, led by [18]; that is, the so-called nodal
lines for arithmetic random waves, whose variance was first established in [15]. It
should be noted that the nodal lines for arithmetic random waves are indeed (twice)
their Lipschitz–Killing curvature of order 1 for u = 0, that is, L1(A0(ek;T2)),
where we use T

2 to denote the two-dimensional torus and ek to denote its eigen-
functions, and k is an integer such that k2 = k2

1 + k2
2 , for some k1, k2 ∈ N. The

findings in [18] are indeed perfectly complementary to our investigation here: it
is shown that the behaviour of nodal lines is dominated by a single term that cor-
responds to the fourth-order chaos component, consistent with the vanishing of
the second-order term when u = 0. Furthermore, in the (so far unpublished) Ph.D.
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thesis [27] it is shown that for the first Lipschitz–Killing curvature, that is, half the
length of level curves of excursion sets of spherical eigenfunctions, one has also
(Proposition 7.3.1, page 116)

Proj
[
L1
(
Au

(
f�;S2))|2]= 1

2

√
�(� + 1)

2

√
π

8
u2φ(u)

∫
S2

H2
(
f�(x)

)
dx

= 1

2

√
�(� + 1)

2

√
π

8
u2φ(u)

4π

2� + 1

�∑
m=−�

{|a�m|2 − 1
}
,

and thus again, as � → ∞,

Var[Proj[L1(Au(f�;S2))|2]]
Var[L1(Au(f�;S2))] = O

(
1

�

)
,

lim
�→∞E

{L1(Au(f�;S2)) −E[L1(Au(f�;S2))] − Proj[L1(Au(f�;S2))|2]√
Var[L1(Au(f�;S2))]

}2
= 0.

1.2.2. A possible unifying framework for spherical harmonics. The expres-
sions we reported so far can be summarized into a single analytic form as follows,
for k = 0,1,2,

Proj
[
Lk

(
Au

(
f�;S2))|2]= 1

2

[
2
k

]{
λ�

2

}(2−k)/2
H1(u)H2−k(u)φ(u)

× 1

(2π)(2−k)/2

∫
S2

H2
(
f�(x)

)
dx + ak(�),

(7)

here, again we adopted the usual convention H−1(u)φ(u) := 1 − �(u); as in [1]
we have introduced the flag coefficients:[

2
0

]
=
[
2
2

]
= 1,

[
2
1

]
= π

2
,

and

ak(�) =
{
Op(�) for k = 0,

0 for k = 1,2.

It is important to notice that λ�

2 = P ′
�(1) represents the derivative of the covariance

function of random spherical harmonics at the origin, so that the term

λ�

2

∫
S2

H2
(
f�(x)

)
dx

can be viewed as a (random) measure of the sphere induced by the Riemannian
metric (1); recall indeed that for eigenfunctions f� on the sphere S

2 the term
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Lf�

2 (S2) which appears in (2) is exactly given by the area of the sphere with ra-
dius {λ�

2 }1/2, that is,

Lf�

2

(
S

2)= λ�

2
× 4π = λ�

2

∫
S2

H0
(
f�(x)

)
dx.

At this stage, it seems very natural to notice that the expected value of Lipschitz–
Killing curvatures can always be written as their projection on the Wiener chaos
of order zero, that is, in our case

E
[
Lk

(
Au

(
f�;S2))]= Proj

[
Lk

(
Au

(
f�;S2))|0],

so that we can rewrite the Gaussian kinematic formula with an expression which
is remarkably similar to (7):

Proj
[
Lk

(
Au

(
f�;S2))|0]= [

2
k

]{
λ�

2

}(2−k)/2
H1−k(u)φ(u)

× 1

(2π)(2−k)/2

∫
S2

H0
(
f�(x)

)
dx + bk(�),

(8)

where

bk(�) =
{

2
(
1 − �(u)

)= O(1) for k = 0,

0 for k = 1,2.

The analogy between (7) and (8) is self-evident; more explicitly, combining
the Gaussian kinematic formula with the results from [19, 22, 27] and those
presented in this paper we have the following expressions for the projections
Proj[Lk(Au(f�;S2))|a], k = 0,1,2, a = 0,2:

(a) Excursion area (k = 2)

Proj
[
L2
(
Au

(
f�;S2))|0]= {

λ�

2

}0[
H−1(u)φ(u)

] ∫
S2

H0
(
f�(x)

)
dx,(9)

Proj
[
L2
(
Au

(
f�;S2))|2]= 1

2

{
λ�

2

}0[
H0(u)H1(u)φ(u)

] ∫
S2

H2
(
f�(x)

)
dx;(10)

(b) (Half) Boundary length (k = 1)

Proj
[
L1
(
Au

(
f�;S2))|0]= {

λ�

2

}1/2√π

8

[
H0(u)φ(u)

] ∫
S2

H0
(
f�(x)

)
dx,(11)

Proj
[
L1
(
Au

(
f�;S2))|2]= 1

2

{
λ�

2

}1/2√π

8

[
H 2

1 (u)φ(u)
] ∫

S2
H2
(
f�(x)

)
dx;(12)
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(c) Euler–Poincaré characteristic (k = 0)

Proj
[
L0
(
Au

(
f�;S2))|0]= {

λ�

2

}[
H1(u)φ(u)

] 1

2π

∫
S2

H0
(
f�(x)

)
dx

(13)
+ 2

{
1 − �(u)

}
,

Proj
[
L0
(
Au

(
f�;S2))|2]= 1

2

{
λ�

2

}[
H2(u)H1(u)φ(u)

] 1

2π

∫
S2

H2
(
f�(x)

)
dx

(14)
+ Op(1).

1.3. Some comments and conjectures. We believe that the results we presented
in this paper can shed some further light on a number of geometric features which
have been noted in the literature on random spherical eigenfunctions. In particu-
lar, as noted earlier the asymptotic distribution for each of these Lipschitz–Killing
curvatures is fully degenerate, as it is given by a single (standard Gaussian) ran-
dom variable times a deterministic function of the threshold level u. Degeneracy
of the limiting distribution provides an easy explanation for the full asymptotic
correlation at different levels u which was earlier noted for the Euler–Poincaré
characteristic by [6]; for the length of level curves this phenomenon was observed
in [33] and addressed in [27] (see also [18] for toral eigenfunctions), while for the
excursion area asymptotic degeneracy was established by [22] and [19].

On the other hand, as noted already for the case of nodal lines by [18], the dom-
inance of the second-order Wiener chaos and its disappearance for u = 0 seems to
provide a general explanation for the so-called Berry’s cancellation phenomenon
(see, e.g., [4, 32]), that is, the fact that the variance of these geometric functionals
is of lower order in the (“nodal”) case u = 0 than for any other level u �= 0. Indeed,
the different asymptotic behaviour of these variances is due to the disappearance
of the second-order Wiener chaos term; for the case of nodal length of arithmetic
(toroidal) eigenfunctions, it was shown in [18] that the fourth-order chaos then
dominates (see also [12, 26] for the complex-valued case and [20] for spherical
nodal lines), while for the excursion area the case u = 0 amounts to the so-called
Defect, where all the odd-order chaotic components contribute in the limit (see
[23]). Note that the second-order chaos components are proportional to the (ran-
dom) fluctuations of the L2(S2) norm of the eigenfunctions, that is,∫

S2
H2
(
f�(x)

)
dx =

∫
S2

{
f 2

� (x) − 1
}
dx =

∫
S2

f 2
� (x) dx − 4π

= ‖f�‖2
L2(S2)

−E‖f�‖2
L2(S2)

;
the fact that second-order chaos components (10,12,14) vanish in the nodal case
u = 0 is thus in some sense rather natural, because the excursion regions at the
zero level are clearly unaffected by (multiplicative) scaling factors, and hence in-
dependent from the L2(S2) norm.
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Dealing with eigenfunctions does entail some special relationships between the
field and its second-order derivatives, hence we do not expect the same results to
hold for general classes of isotropic Gaussian fields. On the one hand, we do expect
these phenomena to hold in greater generality than discussed here; in particular, we
conjecture that for random eigenfunctions on compact manifolds with increasing
spectral multiplicities the asymptotic behaviour of Lipschitz–Killing curvatures of
excursion sets at any level u �= 0 is dominated, in the high-energy limit, by the pro-
jection on the second-order Wiener chaos; we also expect this leading component
to vanish in the nodal case u = 0, hence yielding a phase transition to lower order
variance behaviour. Among the compact manifolds with eigenfunctions which ex-
hibit spectral degeneracies (i.e., eigenspaces of dimensions larger than one) there
are, of course the sphere Sd and the torus T

d in arbitrary dimensions d ≥ 2; a
future challenge for research is the derivation of general expressions akin to (7)
for the behaviour of Lipschitz–Killing curvatures in these more general settings.
How to cover these significantly wider classes of covariances and/or manifolds is
however still unclear at this moment.

1.4. Plan of the paper. The plan of this paper is as follows: in Section 2 we
review some background material and our notation; Section 3 discusses the projec-
tion of the Euler–Poincaré characteristic into second-order chaos, while Section 4
collects the exact computation of the variance and the proof of the quantitative
central limit theorem. A number of technical and auxiliary results are collected in
Section 5.

2. Background and notation.

2.1. Morse theory. As it is customary in this branch of literature, we shall
exploit a general representation for the Euler–Poincaré characteristic in terms of
critical points by means of so-called Morse theory (see [1], Section 9.3). Indeed,
assuming that M is a C2 manifold without boundary in R

N and that h ∈ C2(M) is
a Morse function on M (i.e., its Hessian is nondegenerate at the critical points), it
is well known that the Euler–Poincaré characteristic can be expressed as an alter-
nating sum:

(15) χ(M) =
dim(M)∑

j=0

(−1)jμj (M, h),

where μj(M, h) is the number of critical points of h with Morse index j , that is,
the Hessian of h has j negative eigenvalues; for a proof of (15), see [1], Corol-
lary 9.3.3. To establish our results, we will make use of (15) in the case of excur-
sion sets of spherical eigenfunctions; to this aim, we recall some basic differential
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geometry on S
2, along the same lines as we did in [6]. More precisely, let us recall

that the metric tensor on the tangent plane T (S2) is given by

g(θ,ϕ) =
[

1 0
0 sin2 θ

]
.

For x = (θ, ϕ) ∈ S
2 \ {N,S} (N , S are the north and south poles, that is, θ = 0 and

θ = π , resp.), the vectors

ex
1 = �eθ = ∂

∂θ
, ex

2 = �eϕ = 1

sin θ

∂

∂ϕ
,

constitute an orthonormal basis for Tx(S
2); in these system of coordinates the gra-

dient is given by ∇ = ( ∂
∂θ

, 1
sin θ

∂
∂ϕ

). As usual, the Hessian of a function f ∈ C2(S2)

is defined as the bilinear symmetric map from C1(T (S2)) × C1(T (S2)) to C0(S2)

given by

∇2
Ef (X,Y ) = XYf − ∇XYf, X,Y ∈ T

(
S

2),
where ∇X denotes Levi–Civita connection (see, e.g., [1], Chapter 7 for more dis-
cussion and details). For our computations to follow, we shall need the matrix-
valued process ∇2

Ef�(x) with elements given by{∇2
Ef�(x)

}
a,b=θ,ϕ = {(∇2f�(x)

)
(�ea, �eb)

}
a,b=θ,ϕ,

where E = {�eθ , �eϕ}. With the standard system of spherical coordinates, the analytic
expression for this matrix is given by

∇2
Ef�(x)

=

⎡⎢⎢⎢⎣
∂2

∂θ2 − 
θ
θθ

∂

∂θ
− 


ϕ
θθ

∂

∂ϕ

1

sin θ

[
∂2

∂θ∂ϕ
− 


ϕ
ϕθ

∂

∂ϕ
− 
θ

θϕ

∂

∂θ

]
1

sin θ

[
∂2

∂θ∂ϕ
− 


ϕ
ϕθ

∂

∂ϕ
− 
θ

θϕ

∂

∂θ

]
1

sin2 θ

[
∂2

∂ϕ2 − 
ϕ
ϕϕ

∂

∂ϕ
− 
θ

ϕϕ

∂

∂θ

]
⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
∂2

∂θ2

1

sin θ

[
∂2

∂θ∂ϕ
− cos θ

sin θ

∂

∂ϕ

]
1

sin θ

[
∂2

∂θ∂ϕ
− cos θ

sin θ

∂

∂ϕ

]
1

sin2 θ

[
∂2

∂ϕ2 + sin θ cos θ
∂

∂θ

]
⎤⎥⎥⎥⎦ ,

where 
c
ab are the usual Christoffel symbols (see, e.g., [9] Section I.1), from which

we can compute the Levi–Civita connection:

∇�ea
�eb = 
θ

ab�eθ + 

ϕ
ab�eϕ, a, b = θ,ϕ.

More explicitly, Christoffel symbols for S2 are given by


θ
θϕ = 
θ

θθ = 
ϕ
ϕϕ = 


ϕ
θθ = 0, 
θ

ϕϕ = − sin θ cos θ, 

ϕ
ϕθ = cot θ.
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For every x ∈ S
2, let ∇f�(x) and ∇2f�(x) be the vector-valued processes with

elements
∇f�(x) = (

ex
1f�(x), ex

2f�(x)
)
,

∇2f�(x) = (
ex

1ex
1f�(x), ex

1ex
2f�(x), ex

2ex
2f�(x)

)
.

Since the f� are eigenfunctions of the spherical Laplacian, the value of f� at every
fixed point x ∈ S

2 is a linear combination of its first- and second-order derivatives
at x. If the point x ∈ S

2 is also a critical point for f�, it follows that the value of
the spherical harmonic at x is a linear combination of its second-order derivatives,
that is,

(16) ex
1ex

1f�(x) + ex
2ex

2f�(x) = −λ�f�(x).

Let us take M and h in formula (15) to be Au(f�;S2) and f�|Au(f�;S2), respectively;
by the Morse representation, we obtain

(17) χ
(
Au

(
f�;S2))= 2∑

j=0

(−1)jμj ,

where

μj = #
{
x ∈ S

2 : f�(x) ≥ u,∇f�(x) = 0, Ind
(−∇2f�(x)

)= j
}

= #
{
x ∈ S

2 : ex
1ex

1f�(x) + ex
2ex

2f�(x) ≤ −λ�u,

∇f�(x) = 0, Ind
(−∇2f�(x)

)= j
}

Ind(M) denoting the number of negative eigenvalues of a square matrix M . More
specifically, μ0 is the number of maxima, μ1 the number of saddles, and μ2 the
number of minima in the excursion region Au(f�;S2). In the next subsection, we
show how to justify this representation into a L2 space, by means of an approxi-
mating sequence of delta functions.

2.2. The delta function approximation. Let us now denote by ��(x, y) the
covariance matrix for the 10-dimensional Gaussian random vector(∇f�(x),∇f�(y),∇2f�(x),∇2f�(y)

)
,

which combines the gradient and the elements of the Hessian evaluated at x, y; we
shall write

��(x, y) =
(
A�(x, y) B�(x, y)

Bt
�(x, y) C�(x, y)

)
,

where the A� and C� components collect the variances of the gradient and Hessian
terms, respectively, while the matrix B� collects the covariances between first- and
second-order derivatives. The explicit computation of ��(x, y) requires iterative
derivations of Legendre polynomials and are given in [5], Appendix 1. For the
L2 expansion of the Euler–Poincaré characteristic to hold, we need to assume the
following, standard nondegeneracy condition.
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CONDITION 3. For every (x, y) ∈ S
2, the Gaussian vector (∇f�(x),∇f�(y))

has a nondegenerate density function, that is, the covariance matrix A�(x, y) is
invertible.

We can now build an approximating sequence of delta functions, and establish
their convergence both in the a.s. and in the L2 sense. More precisely, let δε :R2 →
R be such that

δε(z) = (2ε)−2
I[−ε,ε]2(z),

and define the approximating sequence

χε

(
Au

(
f�;S2))= 2∑

j=0

μj(ε),

where

μj(ε) =
∫
S2

∣∣det
(∇2f�(x)

)∣∣I{f̃�(x)≥u}I{Ind(−∇2f�(x))=j}δε

(∇f�(x)
)
dx,

and we wrote for brevity

f̃�(x) := −ex
1ex

1f�(x) + ex
2ex

2f�(x)

λ�

;

note that f̃�(x) = f�(x) when x is a critical point, that is, as ε → 0. Now recall the
standard identity (see, e.g., [2], Lemma 4.2.2)

(18)
2∑

j=0

(−1)j
∣∣det

(∇2f�(x)
)∣∣I{Ind(−∇2f�(x))=j} = det

(−∇2f�(x)
)

so that we can rewrite χε(Au(f�;S2)) as

χε

(
Au

(
f�;S2))= ∫

S2
det
(∇2f�(x)

)
I{f̃�(x)≥u}δε

(∇f�(x)
)
dx.

We are now able to prove the almost sure and L2(�) convergence of χε(Au(f�;
S

2)) to χ(Au(f�;S2)), as ε → 0; this result has been already shown to hold for a
very general class of Gaussian fields in Euclidean spaces; see, for example, [14].

LEMMA 4. For every � such that Condition 3 holds, we have

(19) χ
(
Au

(
f�;S2))= lim

ε→0
χε

(
Au

(
f�;S2)),

where the convergence holds both ω-a.s. and in L2(�).
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PROOF. To prove almost sure convergence, we first apply [1], Theorem 11.2.3,
where we take f = ∇f� : S2 → R

2, g = (f�,−∇2f�) : S2 → R
4, u = 0 and B =

Bj = [u,∞) × {Ind = j}, so that, for j = 0,1,2, we have

(20) μj = lim
ε→0

μj(ε), ω-a.s.

We note that the conditions in [1], Theorem 11.2.3, are all fulfilled since random
spherical harmonics are Morse functions with probability one, under Condition 3;
then the almost sure convergence (19) immediately follows from (17), (20) and
(18). We prove now that (19) also holds in L2(�); it is a classical result that
L2-convergence follows from convergence a.s. and convergence of the L2 norm,
whence the proof will be completed if we show that

(21) lim
ε→0

E
[
χε

(
Au

(
f�;S2))]2 = E

[
χ
(
Au

(
f�;S2))]2.

Indeed, note that

E
[
χε

(
Au

(
f�;S2))]2 =

2∑
j,k=0

(−1)j+k
E
[
μj(ε)μk(ε)

]
.

Under Condition 3, we can apply Kac–Rice formula to compute E[μj(ε)μk(ε)]
(see [3], Theorem 6.3 or [1], Theorem 11.2.1) and, proceeding as in the proof of
[6], Proposition 1, we obtain

2∑
j,k=0

(−1)j+k
E
[
μj(ε)μk(ε)

]= ∫
S2

∫
S2

∫ ∞
u

∫ ∞
u

J2,�,ε(x, y, t1, t2) dt1 dt2 dx dy,

where

J2,�,ε(x, y, t1, t2)

= 1

(2ε)4

∫∫
[−ε,ε]2×[−ε,ε]2

dη1 dη2
{
ϕ

(f̃�(x),f̃�(y),∇f�(x),∇f�(y))
(t1, t2, η1, η2)

×E
[
det
(−∇2f�(x)

)
det
(−∇2f�(y)

)|∇f�(x) = η1,∇f�(y) = η2,

f̃�(x) = t1, f̃�(y) = t2
]}

,

and ϕ
(f̃�(x),f̃�(y),∇f�(x),∇f�(y))

is the density of the 6-dimensional vector(
f̃�(x), f̃�(y),∇f�(x),∇f�(y)

)
.

We note also that, under Condition 3, the covariance matrix A�(x, y) and the con-
ditional covariance matrix of the Gaussian vector(∇2f�(x),∇2f�(y)|∇f�(x),∇f�(y), f̃�(x), f̃�(y)

)
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are invertible for x, y ∈ S
2; hence the conditional Gaussian density function is

continuous, and thus, as ε → 0, the integral J2,�,ε(x, y, t1, t2) converges to

J2,�(x, y, t1, t2)

= ϕ(f�(x),f�(y),∇f�(x),∇f�(y))(t1, t2,0,0)

×E
[
det
(−∇2f�(x)

)
det
(−∇2f�(y)

)|f�(x) = t1, f�(y) = t2,

∇f�(x) = 0,∇f�(y) = 0
]
.

The statement follows by observing that under Condition 3, and in view of [6],
Proposition 1, we also have

E
[
χ
(
Au

(
f�;S2))]2 =

∫
S2

∫
S2

∫ ∞
u

∫ ∞
u

J2,�(x, y, t1, t2) dt1 dt2 dx dy. �

2.3. Wiener chaos. In this section, we recall very briefly some basic facts on
Wiener–Itô chaotic expansion for nonlinear functionals of Gaussian fields. We fol-
low closely the summary which was given in [18], while we refer to [25] for an
exhaustive discussion.

Recall first that each random eigenfunction f� in (3) is a by-product of the
family of complex-valued, independent, Gaussian random variables {a�m}, m =
−�, . . . , �, defined on some probability space (�,F,P) and satisfying the follow-
ing properties: (i) for m �= 0 every a�m has the form

Re(a�m) + i Im(a�m),

where Re(a�m) and Im(a�m) are two zero-mean, independent Gaussian variables
with variance 1/2; (ii) a�0 follows a standard Gaussian distribution; (iii) a�,m and
a�,m′ are stochastically independent whenever m′ �= −m; (iv) (−1)ma�,−m = ā�m.
We define the space A to be the closure in L2(P) of all real finite linear combina-
tions of random variables of the forms

z(−1)ma�,−m + z̄a�m and a�0,

z ∈ C; the space A is a real, centred, Gaussian Hilbert subspace of L2(P). For each
q ≥ 0, the qth Wiener chaos Hq associated with A is the closed linear subspace of
L2(P) generated by all real, finite, linear combinations of random variables of the
form

Hq1(x1) · Hq2(x2) · · ·Hqk
(xk)

for k ≥ 1, where the integers q1, q2, . . . , qk ≥ 0 satisfy q1 + q2 + · · · + qk = q ,
and (x1, x2, . . . , xk) is a standard, real, Gaussian vector extracted form A; note
that in particular H0 = R. As well-known Wiener chaoses {Hq, q = 0,1,2, . . .}
are orthogonal, that is, Hq⊥Hp for p �= q; moreover, the following Wiener–Itô



A CLT FOR THE EPC OF SPHERICAL EIGENFUNCTIONS 3203

decomposition of L2(P) holds: every random variable F ∈ L2(P) admits a unique
expansion of the type

(22) F = E[F ] +
∞∑

q=1

Proj[F |q]

where the projections Proj[F |q] ∈ Hq for every q = 1,2, . . . and the series con-
verges in L2(P). Again we refer [25], Theorem 2.2.4, for an extremely rich discus-
sion and a vast gallery of examples and applications.

2.4. Overview of the proof. The main technical tools for our argument are col-
lected in Proposition 5 and Proposition 6; the proof of each of these results takes a
separate subsection in Section 5. In particular, in Proposition 5 we derive explicit
analytic expression for the projection coefficients on the components of second-
order Wiener chaos; in Proposition 6, we manage to write down the integrals over
the sphere of these components in terms of weighted sums of the random spheri-
cal harmonic coefficients {a�m}: the latter results requires a very careful analytic
investigation on derivatives of associated Legendre function, which is given in
Section 5. Combining together Proposition 5 and Proposition 6, one obtains an ex-
plicit formula for the second-order Wiener chaos, which can be further simplified
by some algebraic manipulations to achieve the statement of Theorem 1. Because
the spherical harmonic coefficients are independent and identically distributed (ex-
cluding the term at m = 0), the conclusions of Theorem 2 are then rather straight-
forward to obtain.

3. The projection into the second Wiener chaos. In this section, we prove
Theorem 1, that is, we derive an analytic expression for the projection of the Euler–
Poincaré characteristic on the second-order Wiener chaos. Our strategy for this
proof can be summarized as follows: from standard results in Morse theory de-
tailed in the previous section, we can express the Euler–Poincaré characteristic
as a function of a six-dimensional vector, involving the eigenfunctions f�, the
two-dimensional gradient vector and the three-dimensional vector including the
independent components of the Hessian. Actually, as in [5] these components may
immediately be reduced to five, as the eigenfunctions can be written as linear com-
binations of first- and second-order derivatives. It is then convenient to implement
a linear transform on this vector, to make its components independent when eval-
uated on the same point x ∈ S

2; this idea is analogous to the approach which was
pursue by [14] in their recent work on the Euler–Poincaré characteristic for Gaus-
sian field on an Euclidean (growing) domain. We are then able to write down ex-
plicitly the projection coefficients on the second-order Wiener chaos; the result
then follows from a very careful cancellation of the different projection compo-
nents.
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3.1. Cholesky decomposition. In view of (16), it follows that we can rewrite
χε(Au(f�;S2)) as

χε

(
Au

(
f�;S2))

=
∫
S2

[
ex

1ex
1f�(x)ex

2ex
2f�(x) − (ex

1ex
2f�(x)

)2]
I{ex

1ex
1f�(x)+ex

2ex
2f�(x)≤−λ�u}

× δε

(
ex

1f�(x), ex
2f�(x)

)
dx.

It should be noted that the integrand[
ex

1ex
1f�(x)ex

2ex
2f�(x) − (ex

1ex
2f�(x)

)2]
× I{ex

1ex
1f�(x)+ex

2ex
2f�(x)≤−λ�u}δε

(
ex

1f�(x), ex
2f�(x)

)
is isotropic, so focussing on the great circle θx = π

2 is simply a convenient simpli-
fication. Let us now write σ�(x) for the 5 × 5 covariance matrix of the Gaussian
random vector(

ex
1f�(x), ex

2f�(x), ex
1ex

1f�(x), ex
1ex

2f�(x), ex
2ex

2f�(x)
)
,

that is, the 5 × 1 vector that includes the gradient and the Hessian components
of interest. We evaluate the covariance matrix σ�(x) on the great circle such that
θx = π

2 , and we write it in the partitioned form

σ�(x)5×5 =
(
a�(x) b�(x)

bt
�(x) c�(x)

)
,

where the superscript t denotes transposition, and (see [5], Section 2.2)

a�

(
π

2
, ϕ

)
=
⎛⎜⎝

λ�

2
0

0
λ�

2

⎞⎟⎠ , b�

(
π

2
, ϕ

)
=
(

0 0 0
0 0 0

)
,

c�

(
π

2
, ϕ

)
= λ2

�

8

⎛⎜⎜⎜⎜⎜⎜⎝
3 − 2

λ�

0 1 + 2

λ�

0 1 − 2

λ�

0

1 + 2

λ�

0 3 − 2

λ�

⎞⎟⎟⎟⎟⎟⎟⎠ .

Let us first recall that the Cholesky decomposition of a Hermitian positive-definite
matrix A takes the form A = ��t , where � is a lower triangular matrix with
real and positive diagonal entries, and �t denotes the conjugate transpose of �.
It is well known that every Hermitian positive-definite matrix (and thus also every
real-valued symmetric positive-definite matrix) admits a unique Cholesky decom-
position.
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By an explicit computation, it is then possible to show that the Cholesky de-
composition of σ� takes the form σ� = ���

t
�, where

�� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
λ�√
2

0 0 0 0

0

√
λ�√
2

0 0 0

0 0

√
λ�

√
3λ� − 2

2
√

2
0 0

0 0 0

√
λ�

√
λ� − 2

2
√

2
0

0 0

√
λ�(λ� + 2)

2
√

2
√

3λ� − 2
0

λ�

√
λ� − 2√

3λ� − 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=:

⎛⎜⎜⎜⎜⎜⎝
λ1 0 0 0 0
0 λ1 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 λ2 0 λ5

⎞⎟⎟⎟⎟⎟⎠ ;

in the last expression, for notational simplicity we have omitted the dependence
of the λis on �. The matrix is block diagonal, because under isotropy the gradient
components are independent from the Hessian when evaluated at the same point
(see, e.g., [1], Section 5.5). We can hence define a 5-dimensional standard Gaus-
sian vector

Y(x) = (
Y1(x), Y2(x), Y3(x), Y4(x), Y5(x)

)
with independent components such that(

ex
1f�(x), ex

2f�(x), ex
1ex

1f�(x), ex
1ex

2f�(x), ex
2ex

2f�(x)
)

= ��Y(x)

= (
λ1Y1(x), λ1Y2(x), λ3Y3(x), λ4Y4(x), λ5Y5(x) + λ2Y3(x)

)
.

The expression that we need to expand can then be written as[
ex

1ex
1f�(x)ex

2ex
2f�(x) − (ex

1ex
2f�(x)

)2]
× I{ex

1ex
1f�(x)+ex

2ex
2f�(x)≤−λ�u}δε

(
ex

1f�(x), ex
2f�(x)

)
= [

λ3Y3(x)
{
λ5Y5(x) + λ2Y3(x)

}− {λ4Y4(x)
}2]

× I{ λ3
λ

Y3(x)+ λ5
λ

Y5(x)+ λ2
λ

Y3(x)≤−u}δε

(
λ1Y1(x), λ1Y2(x)

)
.
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3.2. Second-order chaotic component. We need now to start computing the
projection coefficients on second-order Wiener chaoses. Our notation is as fol-
lows; we write hij , i, j = 1, . . . ,5, i �= j , for the projections on terms of the form
H1(Yi)H1(Yj ) = YiYj , that is, we define

hij (u;�) = lim
ε→0

E
[[

λ3Y3{λ5Y5 + λ2Y3} − (λ4Y4)
2]

× 1{ λ2+λ3
λ

Y3+ λ5
λ

Y5≤−u}δε(λ1Y1, λ1Y2)YiYj

];
on the other hand, we write ki , i = 1, . . . ,5, for the projection on terms of the form
H2(Yi), that is, we define

ki(u;�) = lim
ε→0

E
[[

λ3Y3{λ5Y5 + λ2Y3} − (λ4Y4)
2]

× 1{ λ2+λ3
λ

Y3+ λ5
λ

Y5≤−u}δε(λ1Y1, λ1Y2)H2(Yi)
]
.

The second-order chaotic component of the Euler–Poincaré characteristic is then
given by

Proj
[
χ
(
Au

(
f�;S2))|2]

=
5∑

i=1

i∑
j=1

hij (u;�)
∫
S2

Yi(x)Yj (x) dx + 1

2

5∑
i=1

ki(u;�)
∫
S2

H2
(
Yi(x)

)
dx.

The following proposition provides analytic expressions for the coefficients hij

and ki .

PROPOSITION 5. (a) All coefficients hij (u;�) are identically zero, unless
(i, j) = (3,5), that is,

hij (u;�) =√
λ�

√
λ� − 2

�(−u)(3λ� − 2) + uφ(u)[2 + λ�(u
2 + 1)]

2
√

2π(3λ� − 2)
δ3
i δ

5
j .

(b) For the ki coefficients, we have

k1(u;�) = k2(u;�) = −2�(−u) + λ�uφ(u)

4π
,

k3(u;�) = �(−u)
λ� + 2

4π
+ λ�

2 + λ�(u
2 + 1)

2π(3λ� − 2)
uφ(u),

k4(u;�) = −�(−u)
λ� − 2

4π
, k5(u;�) = (λ� − 2)

λ�(u
2 + 1) + 2

4π(3λ� − 2)
uφ(u).

The proof of Proposition 5 is postponed to Section 5. From Proposition 5, it is
then immediate to obtain the following expression:

Proj
[
χ
(
Au

(
f�;S2))|2]= h35(u;�)A35(�) + 1

2

5∑
i=1

ki(u;�)Bi(�),
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where

Aij (�) =
∫
S2

Yi(x)Yj (x) dx, Bi(�) =
∫
S2

H2
(
Yi(x)

)
dx.

Our next step is then to investigate the behaviour of these integrals of stochastic
processes; this task is accomplished in the following lemma.

PROPOSITION 6. We have that

A35(�) = 4π

√
2

3

�∑
m=−�

{|a�m|2 − 1
}[−1

�
+ 3m

�2 − 2m3

�4

]
+ r0(�),

and moreover,

B1(�) = 4π

�∑
m=−�

{|a�m|2 − 1
}[1

�
− m

�2

]
+ r1(�),

B2(�) = 4π

�∑
m=−�

{|a�m|2 − 1
}m
�2 + r2(�),

B3(�) = 4π

�∑
m=−�

{|a�m|2 − 1
}[ 4

3�
− 2m

�2 + 2m3

3�4

]
+ r3(�),

B4(�) = 4π × 2
�∑

m=−�

{|a�m|2 − 1
}[m

�2 − m3

�4

]
+ r4(�),

B5(�) = 4π × 1

6

�∑
m=−�

{|a�m|2 − 1
}[1

�
+ 8m3

�4

]
+ r5(�),

where
√
E[ri(�)]2 = O(�−1), for all i = 0, . . . ,5.

The proof of Proposition 6 is also postponed to Section 5. We are now in the
position to conclude the main proof of this section.

PROOF OF THEOREM 1. A simple rewriting of the results from Proposition 5
yields

h35(u;�) = �2
{
�(−u)

2
√

2π
+ uφ(u)

u2 + 1

6
√

2π

}
+ O(�),

and also

k1(u;�) = k2(u;�) = −�2 uφ(u)

4π
+ O(�),
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k3(u;�) = �2
{
�(−u)

4π
+ uφ(u)

u2 + 1

6π

}
+ O(�),

k4(u;�) = −�2 �(−u)

4π
+ O(�), k5(u;�) = �2uφ(u)

u2 + 1

12π
+ O(�),

where the terms O(�) are all uniform over u. Now replacing the expressions which
were derived in Proposition 6, we can hence write down the projection on the
second-order Wiener chaos as follows:

Proj
[
χ
(
Au

(
f�;S2))|2]

= �2
{
�(−u)

2
√

2π
+ uφ(u)

u2 + 1

6
√

2π

}

×
{

4π

√
2

3

�∑
m=−�

{|a�m|2 − 1
}[−1

�
+ 3m

�2 − 2m3

�4

]}

− 1

2
�2 uφ(u)

4π

{
4π

�∑
m=−�

{|a�m|2 − 1
}[1

�
− m

�2

]}

− 1

2
�2 uφ(u)

4π

{
4π

�∑
m=−�

{|a�m|2 − 1
}m
�2

}

+ 1

2
�2
{
�(−u)

4π
+ uφ(u)

u2 + 1

6π

}

×
{

4π

�∑
m=−�

{|a�m|2 − 1
}[ 4

3�
− 2m

�2 + 2m3

3�4

]}

− 1

2
�2 �(−u)

4π

{
4π × 2

�∑
m=−�

{|a�m|2 − 1
}[m

�2 − m3

�4

]}

+ 1

2
�2uφ(u)

u2 + 1

12π

{
4π

1

6

�∑
m=−�

{|a�m|2 − 1
}[1

�
+ 8m3

�4

]}
+ R1(�),

where the remainder term R1(�) is such that
√
E[R1(�)]2 = O(�), again uniformly

over u. We now show that all terms which include the Gaussian cumulative distri-
bution function cancel; more precisely, performing some simple manipulations it
is immediate to note that

�2 �(−u)

2
√

2π
A35(�) + 1

2
�2 �(−u)

4π
B3(�) − 1

2
�2 �(−u)

4π
B4(�)

= 2�2 �(−u)

3

{
�∑

m=−�

{|a�m|2 − 1
}[−1

�
+ 3m

�2 − 2m3

�4

]}
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+ 1

2
�2�(−u)

{
�∑

m=−�

{|a�m|2 − 1
}[ 4

3�
− 2m

�2 + 2m3

3�4

]}

− �2�(−u)

{
�∑

m=−�

{|a�m|2 − 1
}[m

�2 − m3

�4

]}
+ R2(�) = R2(�),

where again the remainder term is uniformly bounded by O(�) in the mean-square
norm. Rearranging the remaining terms, we thus obtain

Proj
[
χ
(
Au

(
f�;S2))|2]

= �2uφ(u)
u2 + 1

6
√

2π
A35(�) − 1

2
�2uφ(u)

1

4π

{
B1(�) + B2(�)

}+ R(�)

= �2uφ(u)
u2 + 1

6
√

2π

{
4π

√
2

3

�∑
m=−�

{|a�m|2 − 1
}[−1

�
+ 3m

�2 − 2m3

�4

]}

− 1

2
�2uφ(u)

1

4π

{
4π

�∑
m=−�

{|a�m|2 − 1
}[1

�
− m

�2

]}

− 1

2
�2uφ(u)

1

4π

{
4π

�∑
m=−�

{|a�m|2 − 1
}m
�2

}

+ 1

2
�2
{
uφ(u)

u2 + 1

6π

}{
4π

�∑
m=−�

{|a�m|2 − 1
}[ 4

3�
− 2m

�2 + 2m3

3�4

]}

+ 1

2
�2uφ(u)

u2 + 1

12π

{
4π

1

6

�∑
m=−�

{|a�m|2 − 1
}[1

�
+ 8m3

�4

]}
+ R(�)

= �2uφ(u)
(
u2 + 1

)2
9

{
−1

�

�∑
m=−�

{|a�m|2 − 1
}}

− 1

2
�2uφ(u)

{
�∑

m=−�

{|a�m|2 − 1
}1

�

}

+ 1

2
�2
{
uφ(u)

(
u2 + 1

)2
3

}{
4

3�

�∑
m=−�

{|a�m|2 − 1
}}

+ 1

2
�2uφ(u)

u2 + 1

18

{
1

�

�∑
m=−�

{|a�m|2 − 1
}}+ R(�)
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= �uφ(u)
u2 − 1

4

�∑
m=−�

{|a�m|2 − 1
}+ R(�),

where
√
ER2(�) = O(�), as claimed. �

4. Variance and quantitative central limit theorem. In this section, we
prove Theorem 2. Our first result is the following.

LEMMA 7. As � → ∞, for all u �= 0 we have that

Var[Proj[χ(Au(f�;S2))|2]]
Var[χ(Au(f�;S2))] = 1 + O

(
log�

�

)
.

PROOF. In [5, 7], it is shown that, for all u �= 0

Var
[
χ
(
Au

(
f�;S2))]= 1

4
�3{uφ(u)

(
u2 − 1

)}2 + O
(
�2 log�

)
,

the error term being uniform over u. In view of the form of Proj[χ(Au(f�;
S

2))|2], we need only consider the asymptotic variance of
∑�

m=−�{|a�m|2 − 1};
the details are trivial, but we report them for completeness. Recall first that

|a�m|2 = {
Re(a�m)

}2 + {Im(a�m)
}2 = |a�,−m|2,

where Re(a�m), Im(a�m) are zero-mean, independent Gaussian variables with vari-
ance 1

2 ; on the other hand, a�0 follows a standard N(0,1) Gaussian distribution.
We can thus write

�∑
m=−�

{|a�m|2 − 1
}= {|a�0|2 − 1

}+ 2
�∑

m=1

{|a�m|2 − 1
}

= {|a�0|2 − 1
}+

�∑
m=1

{
Re |√2a�m|2 − 1

}

+
�∑

m=1

{
Im |√2a�m|2 − 1

}
.

Now note that |a�0|2, Re |√2a�m|2, Im |√2a�m|2, m = 1, . . . , � are a set of 2� + 1
independent variables distributed according to a χ2

1 with one degree of freedom; it
follows immediately that

Var

[
�∑

m=−�

{|a�m|2 − 1
}]= 2(2� + 1).
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Thus

lim
�→∞

Var[Proj[χ(Au(f�;S2))|2]]
1
4�3{uφ(u)(u2 − 1)}2

= lim
�→∞

Var[1
4�uφ(u)(u2 − 1)

∑�
m=−�{|a�m|2 − 1}]

1
4�3{uφ(u)(u2 − 1)}2

= 1

4
lim

�→∞
Var[∑�

m=−�{|a�m|2 − 1}]
�

= 1,

and the result we claimed follows immediately. �

PROOF OF THEOREM 2. We recall that the Wasserstein distance between ran-
dom variables X, Y is defined by

dW(X,Y ) := sup
h∈Lip(1)

∣∣Eh(X) −Eh(Y )
∣∣;

also, dW(X,Y ) ≤
√
E|X − Y |2, that is, Wasserstein distance is always bounded by

the L2-metric; see [25] for further characterizations and details. By the triangle
inequality, we have

dW

(
χ(Au(f�;S2)) −E[χ(Au(f�;S2))]√

Var[χ(Au(f�;S2))]
,Z

)

≤ dW

(
χ(Au(f�;S2)) −E[χ(Au(f�;S2))]√

Var[χ(Au(f�;S2))]
,
Proj[χ(Au(f�;S2))|2]√

Var[χ(Au(f�;S2))]

)

+ dW

(
Proj[χ(Au(f�;S2))|2]√

Var[χ(Au(f�;S2))]
,Z

)

= dW

(
Proj[χ(Au(f�;S2))|2]√

Var[χ(Au(f�;S2))]
,Z

)
+ O

(√
log�

�

)
,

because

E

{
χ(Au(f�;S2)) −E[χ(Au(f�;S2))] − Proj[χ(Au(f�;S2))|2]√

Var[χ(Au(f�;S2))]

}2

= O

(
log�

�

)
,

uniformly over u. By a similar argument,

dW

(
Proj[χ(Au(f�;S2))|2]√

Var[χ(Au(f�;S2))]
,Z

)
= dW

(
F�(u);Z)+ O

(√
1

�

)
,
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where we wrote for notational simplicity

F�(u) :=
λ�

2 {H1(u)H2(u)φ(u)} 1
2�+1

∑�
m=−�{|a�m|2 − 1}√

Var[χ(Au(f�;S2))]
;

from Corollary 5.2.10 in [25] we have

dW

(
F�(u),Z

) ≤
√√√√2(EF 4

� (u) − 3[EF 2
� (u)]2)

3π [EF 2
� (u)]2

+

√√√√√
√

2
π
(EF 2

� (u) − 1)

EF 2
� (u) ∨ 1

=
√√√√2(EF 4

� (u) − 3[EF 2
� (u)]2)

3π [EF 2
� (u)]2

+ O

(√
log�

�

)
,

in view of Lemma 7. To complete the proof, it suffices to notice that for every
fixed u, EF 4

� (u) − 3[EF 2
� (u)]2 is the fourth-order cumulant of the sample average

of 2�+1 independent random variables with finite moments of all order; it is then a
standard exercise to show that this quantity is O(�−1), which completes the proof.

�

REMARK 8. The theorem can be generalized to joint convergence for every
fixed set of threshold levels (u1, . . . , up), p ∈ N; details are trivial, and hence omit-
ted. A more interesting possibility would be to investigate a functional central limit
theorem over u; this extension seems possible, but we do not consider it here for
brevity’s sake.

5. Proofs of technical results.

5.1. Proof of Proposition 5. Let Y be a standard random variable; for the pro-
jection coefficients of the Dirac’s delta function (which are given for instance in
[25], Chapter 1; see also [18]), we introduce the following notation:

ϕa(�) = lim
ε→0

E
[
Ha(Y )δε(λ1Y)

]
, a = 0,1,2.

We also use θab to denote projection coefficients involving two random variables
Ya , Yb and ψabcd(u) to denote those coefficients that involve four, that is, we set

(23) θab(u) = E[YaYb1{ λ2+λ3
λ

Y3+ λ5
λ

Y5≤−u}], a, b = 3,4,5,

and

(24) ψabcd(u) = E[YaYbYcYd1{ λ2+λ3
λ

Y3+ λ5
λ

Y5≤−u}], a, b, c, d = 3,4,5.

The exact behaviour of these coefficients as a function of the level u is given in
the three lemmas to follow; the proofs are elementary, albeit long and tedious,
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exercises in the computation of Gaussian moments and convolutions, and hence
they are omitted (more details can be found in the arXiv preprint version of this
paper). We recall once again that we use φ(·) and �(·) to denote as usual the
density and distribution function of a standard Gaussian random variable.

LEMMA 9. We have

ϕa(�) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
2πλ1

, a = 0,

0, a = 1,

− 1√
2πλ1

, a = 2.

LEMMA 10. We have that

θ33(u) = �(−u) + 2λ�

3λ� − 2
uφ(u), θ35(u) = √

2

√
λ�

√
λ� − 2

3λ� − 2
uφ(u),

θ44(u) = �(−u).

The computation of expected values involving four moments is clearly more
challenging and is detailed in the lemma below.

LEMMA 11. (a) The expression for the coefficients involving only Y3 or Y4 is
equal to

ψ3333(u) = 3�(−u) + 4λ�

λ�(u
2 + 6) − 6

(3λ� − 2)2 uφ(u), ψ4444(u) = 3�(−u).

(b) The expression for coefficients involving cross products of Y3 and Y5 are
equal to

ψ3355(u) = �(−u) + 4 + 2u2λ�(λ� − 2) + 3λ2
�

(3λ� − 2)2 uφ(u),

ψ3555(u) = √
2
(
λ�u

2 − 2u2 + 6λ�

)√λ�

√
λ� − 2

(3λ� − 2)2 uφ(u),

ψ3335(u) = √
2
(
2λ�u

2 + 3λ� − 6
)√λ�

√
λ� − 2

(3λ� − 2)2 uφ(u).

(c) The expression for coefficients involving cross-products with Y4 are as fol-
lows:

ψ3344(u) = �(−u) + 2λ�

3λ� − 2
uφ(u), ψ4455(u) = �(−u) + λ� − 2

3λ� − 2
uφ(u),

ψ3445(u) = √
2

√
λ�

√
λ� − 2

3λ� − 2
uφ(u).
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(d) The following remaining terms are identically zero:

ψ3334(u) = ψ3345(u) = ψ3444(u) = ψ3455(u) = ψ4445(u) = 0.

End of the proof of Proposition 5. We are now in the position to complete the
proof of the proposition. First note that, in view of Lemma 9, we immediately
have h1j (u;�) = 0 for all j > 1 and h2j (u;�) = 0 for all j > 2 since ϕ1(�) = 0.
Moreover, some standard algebraic computations yield

h34(u;�) = [
λ3λ5ψ3345(u) + λ2λ3ψ3334(u) − λ2

4ψ3444(u)
]
ϕ2

0(�) = 0

PROOF.

h35(u;�) = [
λ3λ5ψ3355(u) + λ2λ3ψ3335(u) − λ2

4ψ3445(u)
]
ϕ2

0(�)

=√
λ�

√
λ� − 2

�(−u)(3λ� − 2) + uφ(u)[2 + λ�(u
2 + 1)]

2
√

2π(3λ� − 2)
,

h45(u;�) = [
λ3λ5ψ3455(u) + λ2λ3ψ3345(u) − λ2

4ψ4445(u)
]
ϕ2

0(�) = 0.

The first part of the proposition is hence proved. For the second part, we can argue
similarly and obtain

k1(u;�) = k2(u;�) = [
λ3λ5θ35(u) + λ2λ3θ33(u) − λ2

4θ44(u)
]
ϕ(0)ϕ(2)

= −2�(−u) + λ�uφ(u)

4π
,

k3(u;�) = {[
λ3λ5ψ3335(u) + λ2λ3ψ3333(u) − λ2

4ψ3344(u)
]

− [λ3λ5θ35(u) + λ2λ3θ33(u) − λ2
4θ44(u)

]}
ϕ2(0)

= �(−u)(λ� + 4)(3λ� − 2) + 8λ�(λ�(u
2 + 1) + 2)uφ(u)

4π(3λ� − 2)

= �(−u)
λ� + 4

4π
+ λ�

λ�(2u2 + 5) + 2

4π(3λ� − 2)
uφ(u),

k4(u;�) = {[
λ3λ5ψ3445(u) + λ2λ3ψ3344(u) − λ2

4ψ4444(u)
]

− [λ3λ5θ35(u) + λ2λ3θ33(u) − λ2
4θ44(u)

]}
ϕ2(0)

= −�(−u)
λ� − 2

4π
,

and finally

k5(u;�) = {[
λ3λ5ψ3555(u) + λ2λ3ψ3355(u) − λ2

4ψ4455(u)
]

− [λ3λ5θ35(u) + λ2λ3θ33(u) − λ2
4θ44(u)

]}
ϕ2(0)

= (λ� − 2)
λ�(u

2 + 1) + 2

4π(3λ� − 2)
uφ(u). �
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5.2. Proof of Proposition 6. We need first to introduce some more notation
concerning the integrals of products of random eigenfunction and/or their deriva-
tives. As before, we denote by ex

a , a = 1,2, the covariant derivative at x ∈ S
2 with

respect to the first or second variable θ , ϕ. We have to deal with the following
integrals of squares:

(25)
I00(�) =

∫
S2

f 2
� (x) dx, I11(�) =

∫
S2

{
ex

1f�(x)
}2

dx,

I22(�) =
∫
S2

{
ex

2f�(x)
}2

dx;
we shall also study the cross-product integral

I0,22(�) =
∫
S2

f�(x)ex
2ex

2f�(x) dx,

and finally we shall consider

I12,12(�) =
∫
S2

{
ex

1ex
2f�(x)

}2
dx, I22,22(�) =

∫
S2

{
ex

2ex
2f�(x)

}2
dx.

Let us now show how the analysis of these 6 integrals will suffice for our needs.
First note that, since

Y5(x) = 1

λ5

{
ex

2ex
2f�(x) − λ2

λ3
ex

1ex
1f�(x)

}
and

ex
1ex

1f�(x) = −λ�f�(x) − ex
2ex

2f�(x);
we have

A35 = 1

λ3λ5

∫
S2

ex
1ex

1f�(x)

{
ex

2ex
2f�(x) − λ2

λ3
ex

1ex
1f�(x)

}
dx

= − λ�

λ3λ5

{
1 + 2

λ2

λ3

}
I0,22(�) − λ2

�λ2

λ2
3λ5

I00(�) − 1

λ3λ5

{
1 + λ2

λ3

}
I22,22(�).

Likewise

B1 =
∫
S2

H2

(
ex

1f�(x)

λ1

)
dx = 1

λ2
1

I11(�) − 4π,

B2 =
∫
S2

H2

(
ex

2f�(x)

λ1

)
dx = 1

λ2
1

I22(�) − 4π,

so that these terms only require the investigation of integrals in (25). Finally, for
the remaining terms it suffices to note that

B3 =
∫
S2

H2

(
ex

1ex
1f�(x)

λ3

)
dx = λ2

�

λ2
3

I00(�) + 1

λ2
3

I22,22(�) + 2λ�

λ2
3

I0,22(�) − 4π,

B4 =
∫
S2

H2

(
ex

1ex
2f�(x)

λ4

)
dx = 1

λ2
4

I12,12(�) − 4π
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and

B5 =
∫
S2

H2

(
1

λ5
ex

2ex
2f�(x) − λ2

λ3λ5
ex

1ex
1f�(x)

)
dx

= 1

λ2
5

(
1 + λ2

λ3

)2
I22,22(�) + λ2

�λ
2
2

λ2
3λ

2
5

I00(�) + 2
λ�λ2

λ3λ
2
5

(
1 + λ2

λ3

)
I0,22(�) − 4π.

To conclude the proof of the proposition, it is enough to write these integrals ex-
plicitly in terms of the spherical harmonic coefficients {a�m}. This task is accom-
plished in the following lemma.

LEMMA 12. (a) For the integrals of square terms, we have that

I00(�) = 4π

2� + 1
a2
�0 + 2 · 4π

2� + 1

∑
m>0

|a�m|2 = 4π

2� + 1

�∑
m=−�

|a�m|2;

I11(�) = 4πa2
�0

λ�

2� + 1
+ 4π

∑
m>0

|a�m|2
{

2
λ�

2� + 1
− m

}

= 4π

�∑
m=−�

|a�m|2
{

λ�

2� + 1
− m

2

}
,

and

I22(�) = 4π

2

�∑
m=−�

|a�m|2m.

(b) For the cross-product integral, we have that

I0,22(�) = −4πa2
�0

�

2� + 1
+ 4π

∑
m>0

|a�m|2
(

1

2� + 1
− m

)
.

(c) Finally, for the remaining terms

I12,12(�) = 4π
∑
m>0

|a�m|2m
{
λ − 1 − m2

2

}

= 4π

�∑
m=−�

|a�m|2m
{
λ − 1 − m2

4

}
,

and

I22,22(�) = 4π
a2
�0

2

(
�2 − �

2� + 1

)
+ 4π

2

∑
m>0

|a�m|2
{
− 4λ

2� + 1
+ m + λm + m3

}
.
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PROOF. We introduce here the standard basis for spherical harmonics (see,
e.g., [17], Section 13.2), which is given by

Y�m(θ,ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
eimϕ

√
2� + 1

4π

(� − m)!
(� + m)!P

m
� (cos θ), m ≥ 0,

(−1)meimϕ

√
2� + 1

4π

(� + m)!
(� − m)!P

−m
� (cos θ), m < 0,

where we introduced also the associated Legendre functions, which are defined by

P m
� (x) =

⎧⎪⎪⎨⎪⎪⎩
(−1)m

(
1 − x2)m/2 dm

dxm
P�(x), m ≥ 0,

(−1)m
(� + m)!
(� − m)!P

−m
� (x), m < 0.

Let us recall also the trivial orthogonality relationships∫ 2π

0
eimϕeinϕ dϕ =

{
2π, n = −m,

0, n �= −m,

which yield

1

2� + 1

∫ 2π

0
Y�m(θ,ϕ)Y�n(θ, ϕ) dϕ

=
⎧⎪⎨⎪⎩

1

2

(� − m)!
(� + m)!(−1)m

{
P m

� (cos θ)
}2

, n = −m,

0, n �= −m.

Our next tool are the analytic expression for derivatives of spherical harmonics,
which we recall to be given by

ex
1Y�m(x) = ∂

∂θ
Y�m(θ,ϕ), ex

2Y�m(x) = 1

sin θ

∂

∂ϕ
Y�m(θ,ϕ) = im

sin θ
Y�m(θ,ϕ),

and moreover,

ex
1ex

2Y�m(x) = 1

sin θ

∂

∂ϕ

∂

∂θ
Y�m(θ,ϕ) − cos θ

sin2 θ

∂

∂ϕ
Y�m(θ,ϕ)

= im

sin θ

∂

∂θ
Y�m(θ,ϕ) − im

cos θ

sin2 θ
Y�m(θ,ϕ),

ex
2ex

2Y�m(x) = 1

sin2 θ

∂2

∂ϕ2 Y�m(θ,ϕ) + cos θ

sin θ

∂

∂θ
Y�m(θ,ϕ)

= − m2

sin2 θ
Y�m(θ,ϕ) + cos θ

sin θ

∂

∂θ
Y�m(θ,ϕ).
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Finally, we recall that the spherical harmonic coefficients satisfy the identities
(−1)ma�,−m = ā�m ([17], formula (6.6)). The first part of (a) is then a trivial con-
sequence of the Parseval’s identity, or the orthonormality of spherical harmonics:

I00(�) =
∫
S2

f 2
� (x) dx = 4π

2� + 1

�∑
m=−�

|a�m|2.

For the other two integrals in (a), the first step is to rewrite them as functions of
derivatives of associated Legendre functions, as follows:

I11(�) =
∫
S2

{
ex

1f�(x)
}2

dx

= 4π
a2
�0

2

∫ π

0

{
d

dθ
P 0

� (cos θ)

}2
sin θ dθ

+ 4π
∑
m>0

|a�m|2 (� − m)!
(� + m)!

∫ π

0

{
d

dθ
P m

� (cos θ)

}2
sin θ dθ,

I22(�) =
∫
S2

{
ex

2f�(x)
}2

dx

= 4π
∑
m>0

|a�m|2m2 (� − m)!
(� + m)!

∫ π

0

1

sin2 θ

{
P m

� (cos θ)
}2 sin θ dθ.

The same approach is needed to rewrite the integral in (b):

I0,22(�) =
∫
S2

f�(x)ex
2ex

2f�(x) dx

= −4π
∑
m>0

|a�m|2 (� − m)!
(� + m)!m

2
∫ π

0

1

sin2 θ

{
P m

� (cos θ)
}2 sin θ dθ

+ 4π
a2
�0

2

∫ π

0

cos θ

sin θ
P 0

� (cos θ)
d

dθ
P 0

� (cos θ) sin θ dθ

+ 4π
∑
m>0

|a�m|2 (� − m)!
(� + m)!

∫ π

0

cos θ

sin θ
P m

� (cos θ)
d

dθ
P m

� (cos θ) sin θ dθ,

and similarly for (c):

I12,12(�) =
∫
S2

{
ex

1ex
2f�(x)

}2
dx

= 4π
∑
m>0

|a�m|2 (� − m)!
(� + m)!m

2
{∫ π

0

1

sin2 θ

{
d

dθ
P m

� (cos θ)

}2
sin θ dθ

+
∫ π

0

cos2 θ

sin4 θ

{
P m

� (cos θ)
}2 sin θ dθ

}
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− 2 · 4π
∑
m>0

|a�m|2 (� − m)!
(� + m)!m

2

×
∫ π

0

cos θ

sin3 θ

{
d

dθ
P m

� (cos θ)

}
P m

� (cos θ) sin θ dθ,

I22,22(�) =
∫
S2

{
ex

2ex
2f�(x)

}2
dx

= 4π
∑
m>0

|a�m|2 (� − m)!
(� + m)!m

4
∫ π

0

1

sin4 θ

{
P m

� (cos θ)
}2 sin θ dθ

+ 4π
a2
�0

2

∫ π

0

cos2 θ

sin2 θ

{
d

dθ
P 0

� (cos θ)

}2
sin θ dθ

− 2 · 4π
∑
m>0

|a�m|2 (� − m)!
(� + m)!m

2

×
∫ π

0

cos θ

sin3 θ
P m

� (cos θ)

{
d

dθ
P m

� (cos θ)

}
sin θ dθ

+ 4π
∑
m>0

|a�m|2 (� − m)!
(� + m)!

∫ π

0

cos2 θ

sin2 θ

{
d

dθ
P m

� (cos θ)

}2
sin θ dθ.

It is now convenient to introduce the following, more compact notation for inte-
grals of associated Legendre functions and their derivatives; more precisely, we
shall write

J1(�,m) := (� − m)!
(� + m)!

∫ π

0

{
d

dθ
P m

� (cos θ)

}2
sin θ dθ,

J2(�,m) := (� − m)!
(� + m)!

∫ π

0

1

sin2 θ

{
P m

� (cos θ)
}2 sin θ dθ,

J3(�,m) := (� − m)!
(� + m)!

∫ π

0

cos θ

sin θ
P m

� (cos θ)
d

dθ
P m

� (cos θ) sin θ dθ,

J4(�,m) := (� − m)!
(� + m)!

∫ π

0

1

sin2 θ

{
d

dθ
P m

� (cos θ)

}2
sin θ dθ,

J5(�,m) := (� − m)!
(� + m)!

∫ π

0

cos θ

sin3 θ

{
d

dθ
P m

� (cos θ)

}
P m

� (cos θ) sin θ dθ,

J6(�,m) := (� − m)!
(� + m)!

∫ π

0

cos2 θ

sin4 θ

{
P m

� (cos θ)
}2 sin θ dθ,

J7(�,m) := (� − m)!
(� + m)!

∫ π

0

1

sin4 θ

{
P m

� (cos θ)
}2 sin θ dθ,



3220 V. CAMMAROTA AND D. MARINUCCI

and

J8(�,m) = (� − m)!
(� + m)!

∫ π

0

cos2 θ

sin2 θ

{
d

dθ
P m

� (cos θ

}2
sin θ dθ.

It is then readily verified that

I11(�) = 4π
a2
�0

2
J1(�,0) + 4π

∑
m>0

|a�m|2J1(�,m),

I22(�) = 4π
∑
m>0

|a�m|2m2J2(�,m);

I0,22(�) = 4π
a2
�0

2
J3(�,0) + 4π

∑
m>0

|a�m|2{J3(�,m) − m2J2(�,m)
}
,

I12,12(�) = 4π
∑
m>0

|a�m|2m2{J4(�,m) − 2J5(�,m) + J6(�,m)
}
,

and

I22,22(�) = 4π
a2
�0

2
J8(�,0)

+ 4π
∑
m>0

|a�m|2{m4J7(�,m) − 2m2J5(�,m) + J8(�,m)
}
.

The proof can then be completed by an explicit computation for the integrals
Ja(�,m), a = 1, . . . ,7, which is given in Lemma 13. �

LEMMA 13. The following explicit evaluations hold for all m = −�, . . . , �:

J1(�,m) = 2
�(� + 1)

2� + 1
− m;

for m �= 0 we have

J2(�,m) = 1

m
, J3(�,m) = 1

2� + 1
,

and, for m �= 0,±1, we also have

J4(�,m) = m

2

�2 + � + 1 − m2

m2 − 1
,

J8(�,m) = 1

2

{
m + �(� + 1)(4 + m + 2�m − 4m2)

(2� + 1)(m2 − 1)

}
,

J5(�,m) = �(� + 1)

2m(m2 − 1)
, J6(�,m) = �2 + � + 1 − m2

2m(m2 − 1)
,

J7(�,m) = �2 + � − 1 + m2

2m(m2 − 1)
.



A CLT FOR THE EPC OF SPHERICAL EIGENFUNCTIONS 3221

In particular, we note that, for all m �= 0, the following identities hold:

J3(�,m) − m2J2(�,m) = 1

2� + 1
− m,

J4(�,m) − 2J5(�,m) + J6(�,m) = �(� + 1) − m2 − 1

2m
,

m4J7(�,m) − 2m2J5(�,m) + J8(�,m)

= 1

2

{
−4

�(� + 1)

2� + 1
+ m + �(� + 1)m + m3

}
,

and that, for m = 0, we have

J1(�,0) = 2
�(� + 1)

2� + 1
, J3(�,0) = − 2�

2� + 1
, J8(�,0) = �2 − �

2� + 1
.

PROOF. The proofs are all easy consequences of some simple change of vari-
ables formulae and the analytic results on integrals of associated Legendre func-
tions which we collected in Section 5.3. More precisely, exploiting Lemma 14, one
obtains

J2(�,m) = (� − m)!
(� + m)!

∫ 1

−1

1

1 − z2

{
P m

� (z)
}2

dz = 1

m
,

in view of (28) and (29), moreover, by applying (29), we have

J6(�,m) = (� − m)!
(� + m)!

∫ 1

−1

z2

(1 − z2)2

{
P m

� (z)
}2

dz = �2 + � + 1 − m2

2m(m2 − 1)
,

and from (28)

J7(�,m) = (� − m)!
(� + m)!

∫ 1

−1

1

(1 − z2)2

{
P m

� (z)
}2

dz = �2 + � − 1 + m2

2m(m2 − 1)
.

Similarly, from (27) we have

J3(�,m) = −(� − m)!
(� + m)!

∫ 1

−1
zP m

� (z)
d

dz
P m

� (z) dz = 1

2� + 1
,

and, in view of Lemma 15,

J5(�,m) = −(� − m)!
(� + m)!

∫ 1

−1

z

1 − z2 P m
� (z)

{
d

dz
P m

� (z)

}
dz = �(� + 1)

2m(m2 − 1)
.

Finally, using Lemma 16, from (31) we have

J4(�,m) = (� − m)!
(� + m)!

∫ 1

−1

{
d

dz
P m

� (z)

}2
dz = m

2

�2 + � + 1 − m2

m2 − 1
;
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from (32) we have

J1(�,m) = (� − m)!
(� + m)!

∫ 1

−1

(
1 − z2){ d

dz
P m

� (z)

}2
dz = 2

�(� + 1)

2� + 1
− m,

and, in view of (33),

J8(�,m) = (� − m)!
(� + m)!

∫ 1

−1
z2
{

d

dz
P m

� (z)

}2
dz

= 1

2

{
m + �(� + 1)(4 + m + 2�m − 4m2)

(2� + 1)(m2 − 1)

}
. �

5.3. Some integrals of associated Legendre functions. In this final subsection,
we need to report some explicit computations on integrals involving cross products
of associated Legendre functions and their derivatives. For some of these results,
we managed to find references, others may be known already but we failed to
locate any suitable reference and, therefore, we report their proofs entirely; we
believe they may have some independent interest for related works on the geometry
of random spherical harmonics. In particular, the following two results are given
in [28], equation (25) and equation (37), respectively,∫ 1

−1

1

1 − z2

{
P m

� (z)
}2

dz = (� + m)!
m(� − m)! ,(26)

∫ 1

−1
zP m

� (z)

{
d

dz
P m

� (z)

}
dz = δ0,m − (� + m)!

(2� + 1)(� − m)! .(27)

The other integrals we shall need are given in the following three lemmas; the first
deals with squares of associated Legendre functions, the second with cross-product
of Legendre functions and their derivatives, the third with squared derivatives.

LEMMA 14. The following analytic expressions hold for all values of � =
1,2,3, . . . :∫ 1

−1

1

(1 − z2)2

{
P m

� (z)
}2

dz

(28)

= 1

4m2

{
(� + m)(� + m − 1)(� + m)!

(m − 1)(� − m)! + (� + m)!
(m + 1)(� − m − 2)!

}
,

∫ 1

−1

z2

(1 − z2)2

{
P m

� (z)
}2

dz

= 1

4m2

{
(� + m)(� + m − 1)(� + m)!

(m − 1)(� − m)! + (� + m)!
(m + 1)(� − m − 2)!

}
(29)

− (� + m)!
m(� − m)! .
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PROOF. Formula (29) follows from (28) and (26):∫ 1

−1

z2

(1 − z2)2

(
P m

� (z)
)2

dz

=
∫ 1

−1

1

(1 − z2)2

(
P m

� (z)
)2

dz −
∫ 1

−1

1

1 − z2

(
P m

� (z)
)2

dz.

To prove (28), we exploit the following identity (see, e.g., [16], Section 7.12):
1√

1 − z2
P m

� (z) = − 1

2m

[
(� + m − 1)(� + m)P m−1

�−1 (z) + P m+1
�−1 (z)

]
whence∫ 1

−1

1

(1 − z2)2

{
P m

� (z)
}2

dz

=
∫ 1

−1

1

1 − z2

{
P m

� (z)√
1 − z2

}2
dz

= 1

4m2

∫ 1

−1

1

1 − z2

{
(� + m − 1)(� + m)P m−1

�−1 (z) + P m+1
�−1 (z)

}2
dz

= (� + m − 1)2(� + m)2

4m2

∫ 1

−1

1

1 − z2

{
P m−1

�−1 (z)
}2

dz

+ (� + m − 1)(� + m)

2m2

∫ 1

−1

1

1 − z2 P m−1
�−1 (z)P m+1

�−1 (z) dz

+ 1

4m2

∫ 1

−1

1

1 − z2

{
P m+1

�−1 (z)
}2

dz;
the statement immediately follows by applying twice equation (26):∫ 1

−1

1

1 − z2

{
P m−1

�−1 (z)
}2

dz = (� + m − 2)!
(m − 1)(� − m)! ,∫ 1

−1

1

1 − z2

{
P m+1

�−1 (z)
}2

dz = (� + m)!
(m + 1)(� − m − 2)! ,

and by observing that ∫ 1

−1

1

1 − z2 P m−1
�−1 (z)P m+1

�−1 (z) dz = 0. �

LEMMA 15. The following analytic expressions hold for all values of � =
1,2,3, . . . :∫ 1

−1

z

1 − z2 P m
� (z)

{
d

dz
P m

� (z)

}
dz

= 1

4m

{
(� + m + 1)!

(m + 1)(� − m − 1)! − (� + m)(� − m + 1)(� + m)!
(m − 1)(� − m)!

}
.

(30)
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PROOF. We first note that

zP m
� (z) = −

√
1 − z2

2m

[
(� + m)(� − m + 1)P m−1

� (z) + P m+1
� (z)

]
,

√
1 − z2 d

dz
P m

� (z) = 1

2

[
(� + m)(� − m + 1)P m−1

� (z) − P m+1
� (z)

]
,

so that∫ 1

−1

z

1 − z2 P m
� (z)

{
d

dz
P m

� (z)

}
dz

= − 1

4m

∫ 1

−1

1

1 − z2

[
(� + m)2(� − m + 1)2{P m−1

� (z)
}2 − {P m+1

� (z)
}2]

dz

= −(� + m)2(� − m + 1)2

4m

∫ 1

−1

1

1 − z2

{
P m−1

� (z)
}2

dz

+ 1

4m

∫ 1

−1

1

1 − z2

{
P m+1

� (z)
}2

dz

and, by applying (26), we immediately have the statement. �

LEMMA 16. The following analytic expressions hold for all values of � =
1,2,3, . . . :∫ 1

−1

{
d

dz
P m

� (z)

}2
dz

(31)

= 1

4

{
(� + m)(� − m + 1)(� + m)!

(m − 1)(� − m)! + (� + m + 1)!
(m + 1)(� − m − 1)!

}
,

∫ 1

−1

(
1 − z2){ d

dz
P m

� (z)

}2
dz

= 1

(2� + 1)2

{
(� + 1)2(� + m)(� + m)!

m(� − m − 1)!(32)

− 2
�(� + 1)(� − m + 1)(� + m)!

m(� − m − 1)! + �2(� − m + 1)2(� + m + 1)!
m(� − m + 1)!

}
,

∫ 1

−1
z2
{

d

dz
P m

� (z)

}2
dz

= − 1

(2� + 1)2

{
(� + 1)2(� + m)(� + m)!

m(� − m − 1)!(33)
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− 2
�(� + 1)(� − m + 1)(� + m)!

m(� − m − 1)! + �2(� − m + 1)2(� + m + 1)!
m(� − m + 1)!

}

+ 1

4

{
(� + m)(� − m + 1)(� + m)!

(m − 1)(� − m)! + (� + m + 1)!
(m + 1)(� − m − 1)!

}
.

PROOF. To prove (31), we use

d

dz
P m

� (z) = 1

2
√

1 − z2

{
(� + m)(� − m + 1)P m−1

� (z) − P m+1
� (z)

}
so that we may write∫ 1

−1

{
d

dz
P m

� (z)

}2
dz

= 1

4

∫ 1

−1

1

1 − z2

{
(� + m)(� − m + 1)P m−1

� (z) − P m+1
� (z)

}2
dz

= (� + m)2(� − m + 1)2

4

∫ 1

−1

1

1 − z2

{
P m−1

� (z)
}2

dz

+ 1

4

∫ 1

−1

1

1 − z2

{
P m+1

� (z)
}2

dz

− (� + m)(� − m + 1)

2

∫ 1

−1

1

1 − z2 P m−1
� (z)P m+1

� (z) dz.

Formula (31) then follows by observing that, from (26), we have

(� + m)2(� − m + 1)2

4

∫ 1

−1

1

1 − z2

{
P m−1

� (z)
}2

dz

= (� + m)2(� − m + 1)2

4

(� + m − 1)!
(m − 1)(� − m + 1)! ,

and

1

4

∫ 1

−1

1

1 − z2

{
P m+1

� (z)
}2

dz = 1

4

(� + m + 1)!
(m + 1)(� − m − 1)! ;

and moreover, ∫ 1

−1

1

1 − z2 P m−1
� (z)P m+1

� (z) dz = 0.

To prove (32), we apply the following identity (see [16], Section 7.12):

(
1 − z2) d

dz
P m

� (z) = 1

2� + 1

{
(� + 1)(� + m)P m

�−1(z) − �(� − m + 1)P m
�+1(z)

}
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from which we obtain∫ 1

−1

(
1 − z2){ d

dz
P m

� (z)

}2
dz

= 1

(2� + 1)2

∫ 1

−1

1

1 − z2

× {(� + 1)(� + m)P m
�−1(z) − �(� − m + 1)P m

�+1(z)
}2

dz

= (� + 1)2(� + m)2

(2� + 1)2

∫ 1

−1

1

1 − z2

{
P m

�−1(z)
}2

dz

+ �2(� − m + 1)2

(2� + 1)2

∫ 1

−1

1

1 − z2

{
P m

�+1(z)
}2

dz

− 2
(� + 1)(� + m)�(� − m + 1)

(2� + 1)2

∫ 1

−1

1

1 − z2 P m
�−1(z)P

m
�+1(z) dz.

Formula (32) follows by applying again (26), which gives∫ 1

−1

1

1 − z2

{
P m

�−1(z)
}2

dz = (� + m − 1)!
m(� − m − 1)! ,

∫ 1

−1

1

1 − z2

{
P m

�+1(z)
}2

= (� + m + 1)!
m(� − m + 1)! ,

and [28], formula (24i), which gives∫ 1

−1

1

1 − z2 P m
�−1(z)P

m
�+1(z) dz = (� + m − 1)!

m(� − m − 1)! .
Finally, to prove (33) it is sufficient to note that∫ 1

−1
z2
{

d

dz
P m

� (z)

}2
dz

= −
∫ 1

−1

(
1 − z2){ d

dz
P m

� (z)

}2
dz +

∫ 1

−1

{
d

dz
P m

� (z)

}2
dz

= − 1

(2� + 1)2

{
(� + 1)2(� + m)(� + m)!

m(� − m − 1)! − 2
�(� + 1)(� − m + 1)(� + m)!

m(� − m − 1)!

+ �2(� − m + 1)2(� + m + 1)!
m(� − m + 1)!

}

+ 1

4

{
(� + m)(� − m + 1)(� + m)!

(m − 1)(� − m)! + (� + m + 1)!
(m + 1)(� − m − 1)!

}
. �
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