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HOW GAUSSIAN MIXTURE MODELS MIGHT MISS DETECTING
FACTORS THAT IMPACT GROWTH PATTERNS1

BY BRIANNA C. HEGGESETH AND NICHOLAS P. JEWELL

Williams College and University of California, Berkeley

Longitudinal studies play a prominent role in biological, social, and be-
havioral sciences. Repeated measurements over time facilitate the study of an
outcome level, how individuals change over time, and the factors that may
impact either or both. A standard approach to modeling childhood growth
over time is to use multilevel or mixed effects models to study factors that
might play a role in the level and growth over time. However, there has been
increased interest in using mixture models, which have inherent grouping
structure to more flexibly explain heterogeneity in the longitudinal outcomes,
to study growth patterns. While several possible model specifications can be
used, these methods generally fail to explicitly group individuals by the shape
of their growth pattern separate from level, and thus fail to shed light on the
relationships between growth pattern and potential explanatory factors. We
illustrate the weaknesses of these methods as they are currently being used.
We also propose a pre-processing step that removes the outcome level to fo-
cus explicitly on shape, discuss its impact on estimation, and demonstrate its
usefulness though a simulation study and with real longitudinal data.

1. Introduction. A key advantage of a longitudinal study is the ability to ob-
serve the evolution of an outcome measured repeatedly over time. The path which
these measurements take can be viewed as a longitudinal trajectory and has many
interesting features that include the overall level and the growth pattern. Most lon-
gitudinal methods attempt to model the outcome level across time based on base-
line and time-varying variables but fewer explicitly focus on the second of these
features, the growth pattern. We attempt to isolate these two features so they can
be studied separately, as factors that impact the starting level may differ from those
acting on how the outcome grows or changes. For example, birth weight may be
determined by a set of factors separate from those that are associated with the
subsequent physical growth pattern of a child.

The motivating data example for this article is from the Center for the Health
Assessment of Mothers and Children of Salinas (CHAMACOS) study. A cohort
of pregnant women were enrolled in 1999–2000 and the mother-child pairs have
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been interviewed about every other year for physical, neurodevelopment, and envi-
ronmental assessments. One of the study aims is to examine the impact of in-utero
exposure to chemicals on childhood physical growth. Most attempts to study this
type of relationship have only used physical measurements at a single time point,
such as at ages 14 months [Mendez et al. (2011)], 14–22 months [Cupul-Uicab
et al. (2010)], 6.5 years [Valvi et al. (2012)], 7 years [Cupul-Uicab et al. (2013),
Warner et al. (2013)], and 9 years [Warner et al. (2014)]. Others have collected
and analyzed longitudinal data using mixed effects or multilevel linear models but
variability in growth patterns cannot be easily explained with a linear model of
measured covariates. Therefore, many researchers have turned to Gaussian mix-
ture models to account for heterogeneity in growth patterns in body mass index
(BMI) over time [Carter et al. (2012), Garden et al. (2012), Pryor et al. (2011)].
While these methods are more flexible, they may not be able to accurately ad-
dress the aims of the CHAMACOS study, which are to study whether early life
exposure impact growth and development over time. In some instances, the Gaus-
sian mixture model may miss detecting, or may incorrectly estimate, significant
relationships with development. We describe our concerns about the standard lon-
gitudinal methods and illustrate the weaknesses of the widely used mixture model
specifications. To allow for utilization of existing software, we propose a data pre-
processing step to improve estimation of relationships with growth patterns using
mixture models.

Standard longitudinal analysis approaches, based on generalized linear models
and multilevel models [Diggle et al. (2002), Singer and Willett (2003)], can be used
to estimate the mean outcome over time while accounting for within-individual
correlation. Typically, variation in the growth pattern is explicitly modeled through
linear models of slope coefficients which leads to interaction terms in the single
composite model [Heo et al. (2003)]. However, the process of modeling nonlinear
growth patterns and nonlinear relationships between baseline factors and growth
with this type of structure is not trivial and model assumptions are often hard to
verify. Additionally, interpretations are not straightforward when growth is not
linear.

Due to the limitations of the standard methods, there has been increased interest
and usage of a more flexible mixture model approach [Erosheva, Matsueda and
Telesca (2014), Nagin and Odgers (2010a, 2010b), Pickles and Croudace (2010)].
This data-driven approach attempts to approximate the distribution of growth pat-
terns with latent discrete variables that separate the population into homogeneous
trajectory groups. The group membership probabilities may be modeled based on
baseline factors. Unlike most other clustering methods, these models can accom-
modate unbalanced observation times and missing data, common with longitudinal
studies. The most-widely used methods are based on a finite mixture model, some
of which date back to Quetelet in 1846 or more famously, the work of Karl Pearson
in 1894 [Pearson (1894)]. A more thorough history and introduction can be found
in standard textbooks [Everitt and Hand (1981), McLachlan and Basford (1988),
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Titterington, Smith and Makov (1985)]. The recent increase in use of these mod-
els can be partly attributed to availability of software to estimate two finite mixture
model specifications known as growth mixture models (GMM) [Muthén and Shed-
den (1999), Proust-Lima et al. (2014)] and a special type of GMM referred to as
group-based trajectory modeling, or latent class growth analysis (LCGA) [Jones,
Nagin and Roeder (2001), Nagin (1999)]. One main difference between these spec-
ifications is how dependence between repeated measures is handled. The GMM
uses random effects to account for longitudinal dependence while LCGA assumes
the measurements are independent conditional on group membership. Both models
use a regression structure to model group means across time and use the general-
ized logit function to allow baseline factors to impact group membership proba-
bilities. These two frameworks have been well studied [Muthén and Asparouhov
(2009), Muthén et al. (2002)]. Further details of the model specification are given
in Section 2.

While our present focus is the Gaussian mixture model for continuous out-
comes, recent work allows nonnormal group densities such as skewed-t distri-
butions [Asparouhov and Muthén (2016), Huang, Chen and Yin (2017), Lu and
Huang (2014)]. While these models are more robust to skewed error or random
effect distributions, they do not focus directly on the growth pattern over time.
As mentioned by Asparouhov and Muthén (2016), the skew-t mixture model can
lead to a more parsimonious model with larger groups potentially at the expense
of differentiating subtle but interesting differences, thus making it harder to detect
possible relationships with baseline factors.

The grouping structure in finite mixture models is defined by the component
distributions, whether Gaussian or skewed-t. Therefore, the densities are estimated
to explain the most variability in the data, no matter whether the variability is due
to between-subject differences in the level or in the growth pattern shape. Thus,
we cannot be sure whether resulting groups are based on level, shape, or a com-
bination of both. Related, researchers have noted the importance and difficulty
of disentangling these types of effects through statistical modeling. For example,
Morin and Marsh (2015) explored ways to separate the level and shape effects (in
this case, shape was defined as the pattern of factors, not in terms of growth pat-
tern) using variations of a latent profile analysis model. Closer to our goal, some
researchers have proposed dissimilarity measures that remove the level of longitu-
dinal trajectories by defining groups based on the estimated first derivative of the
growth trajectory [D’Urso (2000), Möller-Levet et al. (2003)]. While studying “the
heterogeneity in the level, shape, and stability of the developmental trajectories”
[Morin et al. (2013)] is a commonly stated goal, there has little discussion about
explicitly separating these effects in a mixture model for longitudinal data.

In this paper, we introduce the finite Gaussian mixture model as well as the
LCGA and GMM specifications in Section 2, and then we illustrate the potential
issue of missing the relationship of factors with growth using LCGA or GMM in
Section 3. In Section 4, we propose processing continuous outcome data prior to
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fitting a mixture model so as to directly group based on shape and discuss our
proposal in the context of other data processing and standardizations. Modeling
challenges due to the pre-processing step and implementation details are discussed
in Sections 5 and 6. A simulation study, demonstrating the merits of the proposed
method in comparison to the standard longitudinal clustering methods, LCGA and
GMM, is described in Section 7. Then the method is applied to the motivating data
example as well as another data set in Section 8.

2. Finite mixture model. In a finite mixture model, the probability density
function of a random vector y ∈ Rm takes the form

f (y) = π1f1(y) + · · · + πKfK(y),

where πk > 0 for k = 1, . . . ,K and
∑K

k πk = 1. The parameters π1, . . . , πK are
prior group probabilities and the functions f1, . . . , fK are group probability densi-
ties. Given our motivating data example, we focus on continuous outcome vectors.
In this case, the group densities are assumed multivariate Gaussian. This model
can be extended by including a regression structure for the mean and for the prior
probability of belonging to a group [Wedel (2002)]. That is, the mixture density
for y conditional on a m × p explanatory matrix, X, and a q-dimensional vector
of static or baseline variables, w, is defined by

(1) f (y|X,w, θ) =
K∑

k=1

πk(w,γ )fk(y|X, θk),

where fk(y|X, θk) denotes the m-variate Gaussian probability density function
with mean Xβk and covariance matrix �k , and the vector θk includes mean and
covariance parameters for the kth group with θ = (θT

1 , . . . , θT
K,γ T )T . With longi-

tudinal data, the matrix X is typically based on a functional basis for time appro-
priate for the growth pattern (e.g., quadratic, cubic, or spline). With group-specific
parameters, each group has their own level, growth pattern, and relationship with
other covariates. The prior group probabilities can be parameterized using the gen-

eralized logit function πk(w,γ ) = exp(wT γk)∑K
j=1 exp(wT γj )

for k = 1, . . . ,K where γk ∈ Rq ,

γ = (γ1
T , . . . ,γK−1

T )T , and γK = 0 for identifiability.
LCGA and GMM are based both on this general finite mixture model, but

they differ in how they accommodate dependence between repeated measures.
The LCGA assumes homoscedastic, independent errors conditional on group
membership such that �k = σ 2I , while the Gaussian GMM accounts for de-
pendence between repeated measures through random effects such that yi =
Xiβk + Ziαik + εik where αik ∼ N(0,�k) and εik ∼ N(0, σ 2

k I ), resulting in
�ik = Zi�kZ

T
i +σ 2

k I . Longitudinal outcome measures have inherent dependence
and misspecifying the covariance structure in a Gaussian mixture model can result
in incorrect estimation of the number of groups, misclassification of individuals,
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and bias in the parameter estimates, depending on group separation and how well
the modeling correlation structure approximates the truth [Davies, Glonek and
Giles (2015), Diallo, Morin and Lu (2016), Gray (1994), Heggeseth and Jewell
(2013)].

Let yi = (yi1, . . . , yimi
) denote an outcome vector of mi repeated observations

for the ith individual (i = 1, . . . , n). The vector of corresponding observation times
is denoted as ti = (ti1, . . . , timi

). We assume that each individual is a member of
one group and the probability of being in the kth group depends on baseline factors
in wi ∈ Rq collected at, or before, time ti1. Then, for an individual in the kth group,
their outcome at time tij is

(2) yij = λi + xT
ijβk + εij ,

where λi is an individual-specific intercept, xT
ij is the j th row in the Xi matrix

and εij ∼ N(0,�k). In this article, we want to consider growth separate from
level; therefore, we restrict the matrix Xi to include only time-varying covariates
to model growth and let λi encompasses the level. While the level is not our focus
in this article, one could model the variability in λi with a combination of linear
models of nontime-varying covariates, random effects, or a grouping structure.

3. Limitations of Gaussian mixture model. The finite Gaussian mixture
model and the specifications popularized through the availability of software are
not inherently poor models. They are useful in many situations; however, they
were not developed to address questions about relationships between growth pat-
terns and time-invariant factors. The Gaussian mixture model implicitly defines
dissimilarity between individuals using the Mahalanobis distance which measures
the normalized point-wise distance between outcome measurements. In model es-
timation using maximum likelihood, group densities are determined to minimize
dissimilarity within groups. If the level of the outcome measurements dominate
the observed variability, then the groups will be determined by level and will not
necessarily be homogeneous in terms of growth pattern.

To illustrate how level can drive group estimation, we show a simple example
with three different development patterns: increasing linearly, decreasing linearly,
and constant over time. We let the starting level be weakly related to the slope
of the trajectory; in this case, we deliberately let the intercepts follow a nonnor-
mal distribution. The resulting groups from fitting a three-group Gaussian mixture
model with a linear mean function assuming independence (LCGA) or a random
slope (GMM) do not correspond with the three underlying development patterns
used to generate the data (Figure 1). Rather, the groups are determined only by
level and the horizontal group mean trajectories do not accurately reflect the major-
ity of individual growth patterns. The LCGA model is not robust to high variability
in the intercepts within groups. A three-group GMM with a random intercept and
slope model explains some variation in the intercepts but these mixture models are
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FIG. 1. Three generating growth patterns (left) and 500 simulated general outcome trajectories
shaded according to the estimated classification into three groups with overlaid group mean trajec-
tories estimated with two Gaussian mixture model specifications: LCGA (center) and GMM (right).

not robust to multimodal intercept distributions, which can occur when individuals
with drastically different starting levels have the same development pattern.

This issue can also be seen with data that emulates childhood growth patterns.
We simulated BMI trajectories based on three growth patterns resembling those
observed in our motivating data set (more details in Section 8): a shallow U-shape,
a slanted J-shape pattern with a higher rate of change in later childhood, and a
linear growth pattern. To mimic real data, we simulated the starting BMI level
of each individual dependent on the pre-pregnancy maternal obesity status with a
child of an obese mother having a BMI about 3 kg/m2 higher than a child with a
nonobese mother, on average. Then we allowed the growth pattern to be nonlin-
early related to a simulated early-life exposure such that the probability of having
J-shape growth was the highest amongst those exposed followed by linear and
then U-shape. Of those who were not exposed, the probability of having the U-
shape was highest followed by linear and then J-shape. Note that maternal obesity
only impacts the level and not the shape in this example. Based on 500 simu-
lated growth trajectories generated in the manner explained, we see how the level
can drive the group membership, and thus the estimated baseline factor parame-
ters (Figure 2). For the two common specifications, the Gaussian mixture models
resulted in estimated groups that were not homogenous in growth pattern. With
the LCGA, exposure was not significantly associated with the resulting groups.
With the incorporation of random intercepts and slopes into the model, the GMM
estimated that both exposure and obesity were significantly associated. We con-
tend that this model does not explicitly separate the effects of level and shape so
it is hard to make clear interpretations. These two simple examples illustrate how
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FIG. 2. Group membership probabilities used to generate three development pattern groups based
on the exposure for both normal and obese women (left) and estimated group membership prob-
abilities based on two baseline factors (maternal obesity and exposure) from 500 simulated BMI
developmental trajectories with three growth patterns (1. J-Shape, 2. Linear, 3. U-shape) based on
three-group Gaussian mixture model specifications: LCGA (center) and GMM (right).

easy it is to incorrectly estimate the relationship between a baseline factor such as
early-life exposure and the growth patterns.

Many may argue that while these models are not necessarily detecting develop-
ment pattern groups, they provide meaningful groups as the level is an important
aspect of a longitudinal trajectory. That may be true, especially in the context of
physical childhood growth as there are many clinical reasons to distinguish be-
tween an underweight and obese child and determine which factors lead to these
levels and subsequent health conditions. Many statistical methods are designed to
address those questions. We argue that if the effort has been made to collecting data
over time, growth pattern is a key characteristic to study on its own. As we have
just briefly illustrated, many methods, including the standard Gaussian mixture
models, do not explicitly study that change over time. In this article, we propose
a pre-processing step that aims to allow the use of widely-used mixture model
software while focusing on growth patterns and their relationships with baseline
factors.

4. Pre-processing. To explicitly model growth patterns using a Gaussian
mixture model, we need to deal with the variability in the level. One could use
measured covariates and random effects, but in practice, unexplained variability
may be hard to model with small to moderate sample sizes. Therefore, we propose
a pre-processing step to treat the level as a nuisance and remove it.

The idea of standardizing data prior to analysis is common in many scientific
fields and for many statistical methods. In lab experiments, measurements often
are normalized within observational units to compensate for known sources of
variability between samples such as with microarray data [Park et al. (2003)]. In
multivariate data analysis, variables with varying units and magnitudes often are
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standardized when clustering so as to equalize variable contributions [Everitt et al.
(2011)]. In classical time series, models are decomposed into deterministic and
stochastic components, so removal of the mean trend is almost always advised
[Brillinger (1975), Shumway and Stoffer (2010)].

With longitudinal data, the variables are repeated outcome measurements with
the same units. Unlike typical multivariate data, standardization of variables is not
needed or appropriate. Unlike classical time series, we have many trajectories of
repeated measures and we want to explicitly model the trend pattern over time. But
normalizing measurements within observational units, like microarray data, treats
the magnitude of the level as a nuisance and highlights change over time.

One possible adjustment involves subtracting the first observed outcome from
each subsequent observation to model the change over time akin to estimating the
longitudinal rather than cross-sectional effect [Diggle et al. (2002)]. This process
directly removes the intercept, but it is sensitive to measurement error in the first
outcome and works only when the first observation time is consistent across in-
dividuals. To remedy these issues, our proposed pre-processing step removes the
level by subtracting the within-individual mean outcome from each measurement.
This adjustment accommodates different baseline observation times and is less
sensitive to individual measurement errors. Subtracting a mean is not novel, but we
believe that its untapped application within the context of mixture models provides
an appreciable improvement in estimating relationships with growth patterns.

In notation, let ȳi = m−1
i

∑mi

j=1 yij be the mean of the vector of outcome mea-
surements for individual i. This measure of the overall outcome level of the indi-
vidual can be removed by applying the centering matrix, Ai = Imi −m−1

i 1mi 1mi
T ,

to the vector of observations. Based on the model in equation (2), the centered vec-
tor for individual i is denoted as y∗

i = Aiyi = μi − μ̄i +εi − ε̄i where μi = Xiβk ,
μ̄i , and ε̄i are the mean of their respective vectors. Standardizing the data in this
manner directly removes the individual intercept, λi , and thus there is no need to
model the between-individual variability in the level.

5. Challenges. Finite mixture models involve some well-known challenges
such as identifiability which requires minor constraints for estimation [McLachlan
and Peel (2000)]. Here, we discuss important modeling and estimation chal-
lenges that result from the proposed pre-processing. To illustrate these issues,
let Y = (Y1, . . . , Ym) be a random vector observed at times t = (t1, . . . , tm) such
that Y = λ1m + μ + ε where for simplicity, λ ∼ G, μ = (μ(t1), . . . ,μ(tm)),
μ(t) is a smooth deterministic function of observation time, and ε ∼ N(0,�).
Let � = V 1/2R(ρ, t)V 1/2 where R(ρ, t) is an m × m correlation matrix based
on a parameter ρ and observation times t , and V is a m × m matrix with vari-
ances along the diagonal. Then Y ∗ = AY is the centered random vector where
A = Im − m−11m1T

m.
One important characteristic of the proposed pre-processing step is that it is

noninvertible, the effects of the centering matrix cannot be reversed by multiplying
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another matrix. While the centering does not impact modeling the trend over time,
it has important consequences on the dependence structure within the data. The
covariance of the errors after centering equals

Cov
(
Y ∗ − μ

) = Cov
(
(A − Im)μ + Aε

)
.

If the observation times are fixed, then the mean vector μ is constant. If the obser-
vation times are random, then μ is a random vector that contributes to the variabil-
ity in the errors. From this point on, Im will be written as I and 1m as 1 for ease
of use.

If the observation times t are fixed, then the covariance matrix is singular with
the form Cov(Y ∗ − μ) = A�AT where � = Cov(ε). If the original data have
equal variance across time, V = σ 2I , then the resulting covariance after centering
is a linear combination of the original correlation, column and row means, and the
overall mean correlation,

A�AT = σ 2(
R(ρ, t) − m−111T R(ρ, t) − m−1R(ρ, t)11T

+ m−211T R(ρ, t)11T )
.

When the errors are independent, R(ρ, t) = I , the resulting covariance matrix
is Cov(Y ∗ − μ) = σ 2(m−1

m
)(a11T + (1 − a)I ) where a = −1

m−1 . If the corre-
lation structure of ε is exchangeable with correlation ρ, then Cov(Y ∗ − μ) =
(1−ρ)σ 2(m−1

m
)(a11T +(1−a)I ). So in either circumstance, subtracting the mean

induces a negative exchangeable correlation of −1
m−1 between vector elements. On

the other hand, if the correlation of the errors is exponential, then the covariance
matrix has negative values when the mean correlation within columns and rows is
positive and large.

The true matrix structures, while they can be written down in closed-form, can-
not be used for modeling the covariance as the singularity will disrupt estimation.
Therefore, an approximation for the covariance matrix is needed. If there is short
range dependence in the errors, independence or a decaying autocorrelation struc-
ture may be adequate.

In practice, individuals in a longitudinal study are not typically observed at fixed
times, but rather there is variation in the observation times. This irregular spacing
adds variability to the centered random vector. If Cov(ε) does not depend on ob-
servation times, then μ and ε are independent and the covariance is approximately

Cov
(
Y ∗ − μ

) ≈ m−2

(
m∑

j=1

Var(tj )
[
μ′(E(tj )

)]2

)
11T + A�AT

by the delta method assuming the times t1, . . . , tm are pair-wise independent. In
this case, the covariance depends on the variability of observation times as well
as the derivative of the mean function. If the data are sampled with random varia-
tion, there is limited evidence to suggest that common correlation structures may
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provide an adequate approximation. However, more research is needed to develop
structures to better approximate the resulting correlations.

So far, we have assumed all subjects have the same number of observations.
However, the number of observations per subject plays a role in the covariance
of the centered vector. If subjects have unequal numbers of observations, the as-
sumption of a common covariance structure within groups does not hold. Limited
simulations with unequal observations due to missing data suggest little impact on
the resulting groups if the number of observations per subject is moderately large
and adequately cover the observation time period.

6. Implementation.

6.1. Mean and covariance. Due to the possible irregularity of observation
times, we impose structure on the mean and covariance within the groups, with
or without pre-processing the data. As noted in Section 5, pre-processing by re-
moving the individual level does not change how we model the mean growth pat-
tern, but it does change the dependence so we must be mindful when choosing a
correlation structure.

A polynomial basis provides structure but may be too restricting for complex
growth patterns. Alternatively, the growth pattern can be modeled by a more flex-
ible functional basis such as a B-spline basis [Curry and Schoenberg (1966),
De Boor (1976, 1978)]. This basis accommodates more complex shapes by di-
viding the codomain with internal knots and fitting piecewise polynomials. Knots
can be placed at local extrema and inflection points of the overall trends [Eubank
(1999)] or at sample quantiles based on all observation times [Ruppert (2002)].
Care must be taken when selecting the number of knots and polynomial order so
as to moderate the number of parameters. Basis function values at observation
times for individual i are used in the matrix, Xi , to model the growth patterns.

The irregular nature of observation times in longitudinal studies often places
modeling limitations on the covariance matrix [Jennrich and Schluchter (1986)]
but adequate approximations are needed to avoid bias [Heggeseth and Jewell
(2013)]. The LCGA specification assumes conditional independence and equal
variance (�k = σ 2Imi

), and GMM utilizes random effects to restrict the co-
variance structures. One common random effect model is a simple random in-
tercept model which is equivalent to a model with an exchangeable covariance
structure where all repeated measures are equally correlated with correlation ρk

[�k = σ 2
k (ρk1mi 1

T
mi

+ (1 − ρk)Imi
) where − 1

mi
< ρk ≤ 1]. The covariance struc-

ture for a random slope model depends on covariate values as well as distributional
assumptions about the random effects. Beyond LCGA and GMM, other specifica-
tions allow the covariance to decay as the time between observations increases.
With a stationary exponential or autoregressive model, the covariance between the
j th and lth observation equals σ 2

k exp(−|tij − til|/rk) where rk > 0 captures the
range of the dependence. If the range rk is small, the correlation decays quickly,
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but large rk will induce long-range dependence among measurements within an
individual. The covariance structure can be selected from a set of options through
a model selection procedure. If any choices result in nonconvergence on pre-
processed data, it may be due to the singularity of the covariance matrix and we
recommend trying another structure.

6.2. Estimation and inference. Under the assumption that y∗
1 , . . . ,y∗

n are in-
dependent realizations from a mixture distribution, f (y∗|X,w, θ), defined in (1),
the log likelihood function for the parameter vector, θ , is given by logL(θ) =∑n

i=1 logf (y∗
i |Xi,wi, θ). The maximum likelihood estimate of θ is obtained

by finding an appropriate root of the score equation, ∂ logL(θ)/∂θ = 0. So-
lutions of this equation corresponding to local maxima can be found itera-
tively through the expectation-maximization (EM) algorithm [Dempster, Laird
and Rubin (1977)]. The EM algorithm guarantees convergence to a local max-
imum; global convergence may be attained by running the algorithm multiple
times with initial random group assignments or parameter estimates and us-
ing estimates associated with the highest log likelihood. The algorithm also re-
turns posterior probability estimates of group membership, written as αik =
πk(wi,γ )fk(y

∗
i |Xi, θk)/

∑K
j=1 πj (wi,γ )fj (y

∗
i |Xi, θj ) for i = 1, . . . , n and k =

1, . . . ,K , which are used to partition individuals into groups by selecting the group
with the highest posterior probability for each individual.

Estimation requires the number of groups with unique growth patterns, K , to be
known. In practice, K is chosen by setting a maximum value such that Kmax < n,
fitting the model under all values of K = 2, . . . ,Kmax, and choosing the value that
optimizes a chosen criteria [Celeux and Soromenho (1996), Fraley and Raftery
(1998)]. In this article, we select K using the Bayesian Information Criterion (BIC)
[Schwarz (1978)] defined as BIC = −2 logL(θ̂) − d log(n) where d is the dimen-
sion of θ . Additionally, the BIC can be used to choose a covariance structure during
the model selection process.

In the context of mixture models, statistical inference often comes in the form
of hypothesis tests to choose K and confidence intervals for parameter estimates.
Standard asymptotic likelihood theory fails to produce an adequate null distribu-
tion for the likelihood ratio statistic as the test sits on the boundary of the parame-
ter space [Aitkin, Anderson and Hinde (1981)]. Bootstrapping approaches [Efron
(1979, 1982)], both parametric [Feng and McCulloch (1996), McLachlan and Bas-
ford (1988)] and nonparametric [Schlattmann and Böhning (1997)], have been of-
fered as alternatives to provide an approximate null distribution. For confidence
intervals, most software provide standard errors from likelihood theory which can
be used to calculate Wald-type confidence intervals for parameters estimates of the
growth patterns. Alternatively, bootstrapping may be used to calculate standard er-
rors or bootstrap confidence intervals.

Currently, many software packages can estimate a Gaussian mixture model with
regression mean structure and a choice of covariance structures. Proc Traj in
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SAS and Stata fits LGCA models that assume independence and equal variance
[Nagin (1999), Jones, Nagin and Roeder (2001)] and Mplus fits GMM that use
random effects to provide covariance structure [Muthén and Muthén (1998–2010),
Muthén and Shedden (1999)]. The hlme function in the lcmm R package [Proust-
Lima et al. (2014)] allows random effects as well as an an autoregressive process
for residual autocorrelation but restricts residual variance to be equal across groups
and the flexmix R package [Grün and Leisch (2008), Leisch (2004)] assumes
independence but allows variances to differ across groups. The authors used the
lcmm R package for most examples in this paper.

7. Simulation study. To study the performance of the standard mixture meth-
ods, with and without proposed pre-processing, in detecting groups with homoge-
neous growth patterns, we completed a simulation with three trajectory shapes
and three outcome levels in the population similar to the first simple example of
Figure 1 in this paper. Data were generated with three distinct mean growth pat-
terns, μ1(t) = −1 − t, μ2(t) = 0, μ3(t) = −11 + t . We note that if the model
is unable to distinguish among these three very distinct but simple growth pat-
terns, then likely it will fail with more subtle differences observed in practice. We
let c(i) ∈ {1,2,3} indicate the growth pattern for individual i. The probability of
following a growth pattern at a particular starting level depended on two binary
factors. The first factor, w1i ∈ {0,1}, determined the growth pattern whereas the
second, w2i ∈ {0,1}, impacted the starting level. Individual values for these fac-
tors were randomly assigned independently by simulated tosses of a fair coin.

We let the random intercept equal λi = λ1i + λ2i where λ1i ∈ {0,12} and λ2i ∼
N(0, σ 2

λ ). The probability of λ1i = 0 was about 0.05 when w2i = 1 and 0.95 when
w2i = 0 if c(i) = 1 or 3 and 1 if c(i) = 2. This effectively resulted in a bimodal
Gaussian mixture distribution for λi within mean pattern group 1 and 3 and a
Gaussian distribution in group 2.

The probability of individual i following the kth pattern was P(c(i) = k|w1i ) =
exp(γ0k+γ1kw1i )∑3
l=1 exp(γ0l+γ1lw1i )

for k = 1,2,3 where γ01 = 2, γ11 = −4, γ02 = 1.5, γ12 =
−2, γ03 = γ13 = 0 and w1i ∈ {0,1}. It can be shown that each growth pattern had
about an equal chance, marginally.

For individual i, the outcome at the j th observation time was a realization of
yij = λ1i + λ2i + μc(i)(tj ) + εij at times t = 1,3.25,5.5,7.75,10 where εij ∼
N(0, σ 2

ε ), λ2i ∼ N(0, σ 2
λ ), σε was the standard deviation of the measurement error,

and σλ was the standard deviation of the level perturbation.
To test the impact of overlap between groups, we adjusted the variability of

the level and let σλ = 2 or 3. For the signal to noise ratio, we let σε = 0.5 or 2
to adjust the magnitude of measurement error. The four possible combinations of
these parameter values represents the conditions of the data-generating process in
this simple simulation study.
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For each condition, we generated a data set of n = 500 individuals using the
process described above and fit five different Gaussian mixture models: indepen-
dent mixture (similar to LCGA), random intercept GMM, random intercept and
slope GMM, independent mixture on pre-processed data, and mixture with expo-
nential correlation on pre-processed data. The variance parameters were allowed
to differ between groups in all but the random intercept and slope model due to
model complexity. The two correlation structures for the processed mixture were
chosen based on an empirical variogram [Diggle et al. (2002)] from one simulated
data set. Note that a random intercept model cannot be estimated for this generated
pre-processed data due to the singularity of the estimated covariance matrix.

Even though we generated the data with linear growth patterns, we used a
quadratic polynomial basis to create the matrix Xi so as to avoid imposing a priori
knowledge while limiting the number of parameters. For each model, we estimated
the model parameters for K = 2,3,4, and 5, chose the optimal K using the BIC.
We calculated the adjusted Rand Index [Hubert and Arabie (1985), Rand (1971)]
to measure the agreement among estimated groups based on optimal K and the
three generating growth pattern groups and the misclassification rate when K = 3
as the percentage of individuals not correctly classified using the true generating
pattern groups as a reference. Since a mixture is identifiable up to a permutation
of group labels, we mapped the classifications from the model to the true labels
such that the misclassification rate was minimized. This process was repeated 500
times under each condition.

7.1. Results. Table 1 summarizes the simulation results in terms of frequency
of number of groups chosen as optimal, the mean BIC and the mean adjusted Rand
Index when the optimal number of groups is chosen, and the mean misclassifica-
tion rate when K = 3 over the 500 replications. With the raw data, the average
BIC suggests that a GMM is preferable over the independent Gaussian (LCGA).
However, neither standard model specifications consistently detected the three de-
velopment patterns in the simulated data sets. The independent mixture frequently
selected five groups while the number of groups under the random effect mixtures
(GMM) varied among three, four, and five groups. One might argue that discov-
ering five groups in this simulation is ideal because we have five combinations of
patterns and levels due to the multimodal intercept distribution, but for all condi-
tions, the mean adjusted Rand Index for the independent Gaussian was less than
0.5, whereas a value of 1 indicates agreement among groupings. Our goal is to have
a method that explicitly detects the growth pattern similarity in groups to improve
the estimation of the growth pattern and the relationships with baseline factors.

When constrained to form three groups, the standard model specifications cor-
rectly classified about 50–85% of the data on average into the true shape groups.
Amongst these three models, the random intercept mixture is the closest to the true
data generating distribution, and thus performs the best in terms of misclassifica-
tion when measurement error is small.
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TABLE 1
Frequency table of the number of groups chosen, mean BIC, mean adjusted Rand Index (ARI), and

mean misclassification rate (MR) (K = 3) for 500 replications from a variety of finite mixture model
specifications applied to data generated under different values for σε and σλ

σε σλ K = 2 K = 3 K = 4 K = 5 BIC ARI MR

Independent Gaussian Mixture
0.50 2.00 0 0 10 490 12,008 0.46 0.41
2.00 2.00 0 0 8 492 12,766 0.48 0.39
0.50 3.00 0 0 4 496 13,186 0.31 0.45
2.00 3.00 0 0 4 496 13,611 0.32 0.45

Random Intercept Gaussian Mixture
0.50 2.00 0 1 178 321 8642 0.79 0.16
2.00 2.00 1 2 131 366 11,694 0.68 0.38
0.50 3.00 0 3 222 275 9007 0.81 0.15
2.00 3.00 0 0 104 396 11,798 0.74 0.39

Random Slope Gaussian Mixture
0.50 2.00 0 4 116 380 8778 0.64 0.44
2.00 2.00 0 1 116 383 11,383 0.63 0.47
0.50 3.00 0 1 11 488 8821 0.67 0.49
2.00 3.00 0 1 38 461 11,590 0.63 0.49

Pre-Processed Independent Mixture
0.50 2.00 0 499 0 1 5777 0.99 0
2.00 2.00 0 499 1 0 9222 0.98 0.01
0.50 3.00 0 499 0 1 5776 0.99 0
2.00 3.00 0 499 1 0 9221 0.98 0.01

Pre-Processed Exponential Mixture
0.50 2.00 0 500 0 0 5795 1 0
2.00 2.00 0 500 0 0 9240 0.98 0.01
0.50 3.00 0 500 0 0 5795 1 0
2.00 3.00 0 500 0 0 9240 0.98 0.01

If the data are processed prior to fitting the mixture model with either corre-
lation structure, three groups are detected as the optimal number of groups about
99% of the time. Additionally, after centering the data, a mixture model discovered
the common shape patterns with little to no misclassification when fixing K = 3.
When comparing the two correlation assumptions, the independence structure is
preferred over the exponential structure because the additional correlation param-
eters did not drastically improve the fit as measured by the BIC.

It is important to note how group membership impacts the estimated relation-
ship with baseline factors. Figure 3 shows the group probabilities based on mean
parameter estimates of γ for one condition (σε = 2, σλ = 3, and K = 3). We note
that both the random intercept GMM and the pre-processed mixture correctly in-
dicates that the groups are related to w1 and not the second baseline factor w2,
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FIG. 3. Estimated group probabilities for baseline factor values of w1 and w2 based on mean
parameter estimates of γ for 4 out of the 5 models from the simulation study.

which was used to determine starting levels. On the other hand, the independent
Gaussian (LCGA) indicates no relationship between group probabilities and the
first baseline factor w1, which was used to determine growth patterns. The random
slope mixture is a compromise and groups are determined by both baseline factors.
These results are not surprising based on the mean misclassification rates and the
illustration in Figure 1.

This simulation was designed to emulate a situation in which the level and shape
were weakly related such that the starting value is not necessarily predictive of the
subsequent trend. In these situations, centering the data prior to modeling provides
the most benefit for detecting growth patterns and the factors that impact them.
We used linear patterns in this simulation for the sake of simplicity, but in general,
for any mixture model, including all of those discussed in this paper, it will be
more difficult to discriminate between nonlinear growth patterns that are similar
especially when the signal to noise ratio is small. For additional comparison, we
ran a simulation study with growth patterns similar to the childhood growth data
example, described in the next section, and found that the misclassification rates
increase slightly, but the pre-processed model still outperformed mixture models
without the pre-processing when attempting to detect a known number of distinct
nonlinear development patterns. See the supplemental article [Heggeseth (2018a)]
for more details.

8. Data examples.

8.1. CHAMACOS. The Center for the Health Assessment of Mothers and
Children of Salinas (CHAMACOS) Study is a longitudinal birth cohort study de-
signed to assess the health effects of pesticides and other environmental exposures
on the growth and development of low-income children living in the agricultural
Salinas Valley, CA [Eskenazi et al. (2004, 2005)]. Of 601 pregnant women en-
rolled in the study in 1999–2000, a total of 527 mostly Latino mother-child sin-
gleton pairs were followed through a live-birth delivery and 327 pairs continued to
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be followed through the 9-year interview. Baseline maternal characteristics were
measured at the start of the study and maternal urine and blood samples were
taken twice during pregnancy and then again shortly after delivery to measure lev-
els of pesticide and chemical exposure. Child height and weight were measured by
trained staff at interviews that occurred at birth and when the child was approxi-
mately 1, 2, 31

2 , 5, 7, and 9 years of age. The BMI was calculated as weight (kg)
divided by height squared (m2) for interviews starting at age 2. The exact age of
the child also was recorded. For this article, we limit our analysis to 247 children
who have four or five recorded BMI values during the observational time period
as well as complete maternal exposure data. Details of the study are published
elsewhere [Eskenazi et al. (2003)].

In addition to detecting common growth patterns for boys and girls in this
cohort, we hope to estimate any relationships between early-life environmental
factors and the growth patterns. To illustrate the differing results when using a
mixture model with and without pre-processing, we fit a variety of Gaussian mix-
ture models to the data. We used a Gaussian mixture with independent correlation
(Model 1), a random intercept model (Model 2), and a random intercept and slope
model (Model 3) on the BMI data and then a Gaussian mixture model after ap-
plying our proposed pre-processing to the data using independent and exponential
correlation structures (Model 4 and 5) to model the BMI development patterns
over time between 2 and 9 years of age, separately for boys and girls. To allow
for nonlinear growth patterns, the mean structure was based on a B-spline basis
of degree 2 with a knot at the median age. The number of groups for each mix-
ture model without any baseline covariates was chosen amongst K = 2, . . . ,7 to
minimize the BIC.

After determining the number of groups to explain the variability in the BMI
trajectories, we refit the model allowing baseline factors to impact group mem-
bership probabilities though a generalized logit function. To illustrate the behavior
of the methodology, we focused on two factors, maternal pre-pregnancy BMI and
maternal o,p’-DDT (dichlorodiphenyltrichloroethane) exposure during pregnancy,
and estimated the model with them separately. Maternal pre-pregnancy BMI has
been well studied as a factor that is strongly associated with child weight at de-
livery and at later ages. On the other hand, in-utero exposure to a chemical such
as DDT has been hypothesized as being associated with the metabolic system that
controls weight and BMI, and thus potentially related to the growth pattern over
time.

Figure 4 shows the estimated mean growth patterns and classified individual
trajectories based on mixture models fit to BMI data of boys in the CHAMACOS
study. The chosen number of groups without considering baseline factors using
BIC is K = 4 for Model 1 (BIC = 2152.33), K = 4 for Model 2 (BIC = 1994.86),
K = 3 for Model 3 (BIC = 2304.69), K = 4 for Model 4 (BIC = 1555.69), and
K = 4 for Model 5 (BIC = 1572.53). The model that utilizes random effects for
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FIG. 4. Clustered CHAMACOS BMI trajectories for boys separated according to the group as-
signment made by maximizing the posterior probability and group mean functions for five mixture
models (Model 1: independence, Model 2: random intercept, Model 3: random slope and intercept,
Model 4: pre-processed with independence, Model 5: pre-processed with exponential) without any
baseline factors.

both the slope and intercept (Model 3) results in the smallest number of groups
because it seeks to model variability in growth pattern within clusters with the
random effects. Based on BIC, Model 2 is the best model for the raw data and
Model 4 has the lowest BIC for pre-processed data.

At first glance, it may seem as though all five models provide essentially the
same results, but a a closer look reveals differences in group assignments for in-
dividuals. In this data example, the group means are fairly robust to the model
specification but differences in group membership noticeably impact the estimated
relationship between the growth pattern and baseline factors in terms of point esti-
mates and inference.

Figure 5 presents the estimated group probabilities for maternal pre-pregnancy
BMI and log2 maternal o,p’-DDT exposure for Models 1, 2, and 4. The group
probability estimates for pre-pregnancy BMI are similar across the three models
and indicate that higher maternal pre-pregnancy BMI is associated with the group
that has the highest rate of growth and the highest average starting BMI at age two
(Group 1). Thus both level and growth are associated with pre-pregnancy BMI.
The relationship with level is confirmed by regressing the removed mean level on
pre-pregnancy BMI and the relationship with growth is estimated based on the data
with the level removed.



MISSING GROWTH PATTERNS 239

FIG. 5. Estimated group probabilities by pre-pregnancy maternal BMI and log-10 o,p’-DDT (ODT)
maternal exposure for three mixture models (Model 1: independent mixture, Model 2: random inter-
cept mixture, Model 4: pre-processed independent mixture) fit to BMI trajectory data of CHAMACOS
boys.

However, we notice more discord between the resulting models for maternal
o,p’-DDT exposure. Models 1 and 2 suggest that the probability of having the
highest rate of growth (Group 1) increases with increased exposure while Model
4 suggests children with higher DDT exposure in-utero have a smaller chance of
having the highest rate linear growth pattern. The probability of Group 2 also dif-
fers amongst the three models. These differences also can be highlighted through
estimated relative risk estimates with corresponding confidence intervals, provided
in the supplemental article [Heggeseth (2018b)]. The magnitude of the differences
is small, but, in the field of environmental exposure and obesity where signal to
noise ratios often are weak, it indicates a need for further research into DDT expo-
sure and growth.

8.2. CD4 counts. Another data example that illustrates the limitations of the
standard mixture models comes from an AIDS study at University of California
San Francisco [Deeks et al. (1999)]. CD4 cells are a type of white blood cell that
play an important role in our immune system and are the target for the HIV virus.
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FIG. 6. Clustered CD4 trajectories separated according to the group assignment made by maxi-
mizing the posterior probability and group mean functions for pre-processed independent mixture
model (Model 4) fit to the AIDS data.

HIV viral load is another important clinical measure as it is used to diagnose AIDS,
and it is generally thought that viral load directly impacts CD4 cell count, irrespec-
tive of the count level. We can test this theory by applying the same methodological
approach to CD4 counts of HIV positive patients starting at the initiation of anti-
retroviral therapy to investigate the relationship between average baseline viral
load in the first sixty days and CD4 development over time.

We fit the same five models as we did with the CHAMACOS data with a
quadratic B-spline basis with a knot at the median time and used the BIC to select
the number of groups. The random intercept model (Model 2) with K = 4 is pre-
ferred for raw data and the independent mixture (Model 4) with K = 4 is the best
for pre-processed data based on BIC. Figure 6 shows the individual CD4 trajec-
tories clustered by group with overlaid mean trajectories based on a independent
Gaussian mixture model fit to the pre-processed data (Model 4).

The four group mean growth patterns can be described as a steep increase over
time, a gradual increase over time, flat, and a temporary increase which then sta-
bilizes. In this context, the ideal group would be the one with a steep increase
in CD4 counts over time as that would indicate improvement in health. Like the
CHAMACOS data example, the group means are generally more robust to model
specification as compared to the estimated group probabilities and the relationships
with baseline factors. The estimated group probabilities for baseline viral loads dif-
fer substantially across these models (Figure 7). They generally agree that a steep
increase of CD4 cells over time is less likely than other development patterns.
However, the mixture based on pre-processed data (Model 4) is the only model
that suggests a significant, complex relationship between groups and baseline vi-
ral load. A more moderate baseline viral load at the beginning of therapy increases
your likelihood of the treatment not being as effective in terms of long-term growth
of CD4 (flat or temporary increase only) with reference to low baseline viral load.
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FIG. 7. Estimated group membership probabilities by baseline viral load for three mixture models
(Model 1: independence, Model 2: random intercept, Model 4: pre-processed independent) fit to the
AIDS data. Group labels and line type correspond to the CD4 group means in Figure 6.

9. Discussion. By using simulated data sets as well as real longitudinal data,
we have illustrated some of the limitations of popular Gaussian mixture model
specifications to study growth patterns. Longitudinal studies are expensive and
time-consuming; hence, the set of available statistical methods for longitudinal
data should include some approaches that are able to focus on the main feature of
the trajectory, the growth over time. Standard multilevel linear models, which can
model variability in the growth pattern with a hierarchy of linear models, pose chal-
lenges for nonlinear relationships. In contrast, Gaussian mixture models, which
are used to flexibly model extra variability in the outcome, have the potential for
allowing nonlinear relationships between baseline factors and the outcomes by in-
troducing a group structure. However, if the raw outcome measurements are used
as the response variable in a finite mixture model, the estimation procedure will
not necessarily lead to groups defined by the growth pattern. The standard mixture
specifications such as LCGA and GMM applied to the raw data do not directly
group trajectories based on shape or change over time but rather on the feature that
explains the most variability, typically the level. Unfortunately, many researchers
who use this model blindly believe that the resulting groups are homogeneous in
terms of growth patterns and describe groups according to the mean pattern and
discuss relationships with baseline factors in terms of those patterns. The lack of
knowledge about the behavior of these models may continue to result in not detect-
ing or incorrectly estimating the relationship between a baseline factor and growth
patterns.

To remedy the situation while utilizing existing software, we propose a pre-
processing step to focus on the growth pattern. The proposed processing only shifts
the data by removing the level and does not impact the relative magnitude within
each trajectory. Since it treats the level as a nuisance, the proposed method does
not require accurately modeling the intercept distribution, which can be hard in
practice. One limitation with the proposed pre-processing is the consequence on
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the covariance structure. Future research is required to investigate the extent of
the improvement in performance with more accurate modeling of the underlying
dependence.

We have shown that a pre-processing step that shifts the data prior to fitting
a mixture model allows researchers to use available methods and technology to
better focus on growth pattern of the longitudinal trajectory. The comparison of
models with and without the processing highlights the fact that level and growth
pattern may have different forces acting upon them. In many applications, both
growth and level variability are important aspects to study and model in tandem.
There are a myriad of approaches to explore level differences in longitudinal data,
and more work is needed to increase the possible methodological approaches fo-
cusing on growth to complement the study of level and investigate the intertwined
relationships between them.
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SUPPLEMENTARY MATERIAL

Supplement A: Growth simulation (DOI: 10.1214/17-AOAS1066SUPPA;
.pdf). The supplement includes a description and the results an additional simu-
lation study that mimics real childhood growth data.

Supplement B: Additional CHAMACOS results (DOI: 10.1214/17-
AOAS1066SUPPB; .pdf). The supplement includes the relative risk ratio estimates
from the CHAMACOS data example.
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