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Coastal hazards raise many concerns, as their assessment involves ex-
tremely high economic and ecological stakes. In particular, studies on rarely
observed but damaging events are quite numerous. In order to anticipate up-
coming events of this kind, specialists need to extrapolate the results of their
studies to events that have not yet occurred. Such events might be more ex-
treme than those already observed and could therefore severely impact the
coast. It is therefore paramount to propose methodologies to simulate such
extreme conditions. Parametric and nonparametric statistical methods have
already been used to assess environmental extreme quantities, from univari-
ate framework to spatial context; however, they do not generally focus on the
simulation of extreme environmental scenarios. This study introduces a semi-
parametric approach based on the Extreme Value Theory (EVT), dedicated
to the simulation of extreme space–time processes. In the proposed applica-
tion context, these processes describe near-shore hydraulic conditions. They
nourish coastal impact models to assess hazards along the coast. The benefit
of this approach is to be able to characterise coastal hazards on an event scale,
meaning we can characterise the impact both in space and through time for a
given extreme event. The usefulness of this space–time extreme modelling is
illustrated by a risk analysis related to the long-shore impact of extreme wave
events in the Gulf of Lions.

1. Introduction. Coastal hazards raise many concerns, as highly valuable
economic and ecological assets are exposed along the world’s coasts. Several
studies demonstrate the significant benefits of understanding both littoral hydro-
dynamic and morphodynamic patterns in order to preserve them [e.g., Brunel et
al. (2014), Gutierrez et al. (2015), Michaud et al. (2013)]. Some experts focus on
extreme and devastating conditions, such as Campmas et al. (2014), who observes
sediment transport patterns during the season of typhoons in Taiwan. Such a study
helps preserve the littoral by enabling efficient beach nourishment.

An alternative to direct observations is the chaining of numerical models, which
represent the physics from offshore to coastal areas. Typically, output data from
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atmospheric and ocean circulation models force a wave model, which in turn feeds
a littoral model [Bouchette et al. (2012), Michaud (2011)]. Refined output data of
the latter are used to assess the hazard question.

In the case of observable extreme events, the reliability of physical models still
holds. As soon as we consider very extreme events, their numerical simulation
from physical models is generally unachievable. This is due to a lack of knowl-
edge of boundary conditions and also of their physical reliability for such extreme
quantities. As an alternative we propose to use statistical approaches, the main
challenge being to extrapolate information from observations to simulate (very)
extreme quantities.

From univariate to spatial approaches, analyses dealing with the understanding
of extremes generally rely on the widely accepted Extreme Value Theory (EVT)
[Beirlant et al. (2004), Coles (2001), Davison, Padoan and Ribatet (2012), Davison
and Huser (2015)].

Various approaches have been presented to construct extreme scenarios of near-
shore conditions like in Gouldby et al. (2014), but are generally not spatial. In
the spatial context, Chailan et al. (2014) present an application of max-stable pro-
cesses to analyse the spatial behaviour of extreme waves. The outputs of this study
would be typical requirements to force physical hazard models in a coastal area. In-
deed, max-stable processes are appealing in a spatial extreme context because they
are the only possible nondegenerate limits for rescaled pointwise maxima of ran-
dom processes [de Haan (1984)]. Inference of such max-stable processes is widely
based on likelihood techniques, either in a frequentist approach [Engelke et al.
(2015), Huser and Davison (2013), Padoan, Ribatet and Sisson (2010), Wadsworth
and Tawn (2014)] or in a Bayesian one [Ribatet, Cooley and Davison (2012),
Shaby (2014)]. Shaby and Reich (2012) present a Bayesian spatial extreme value
analysis but interpreting the parameters in their hierarchical modelling is unfor-
tunately not easy [for a possible interpretation as well as recent investigations on
inference for spatial extremes, see Castruccio, Huser and Genton (2016)]. From
a practical point of view, simulations of max-stable processes are of primary in-
terest. They can be divided in two categories: unconditional and conditional sim-
ulations. For instance, Dieker and Mikosch (2015) propose exact simulations of
the Brown–Resnick max-stable process at a finite number of locations. Their ap-
proach has been generalised by Dombry, Engelke and Oesting (2016) who also
propose a more efficient algorithm. Wang and Stoev (2011) introduce a solution
to construct a conditional process for max-linear processes. This work was ex-
tended by Bechler, Bel and Vrac (2015), Dombry and Eyi-Minko (2013), Dombry,
Éyi-Minko and Ribatet (2013) in a less restrictive case. Nevertheless, the num-
ber of conditioning points remains limited and Lantuéjoul and Bel (2014) have
recently remedied this weakness by introducing a new algorithm. However, since
max-stable processes appear as natural for modelling block maxima (e.g., annual
maxima), using simulations of such a process is more relevant in long-term ques-
tioning than in event-scale questioning due to the limited physical interpretation
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of the simulated processes. This is clearly a limiting factor when questioning is
more event-scale related (e.g., a submersion phenomenon along a coastline is an
event-scale phenomenon and must be distinguished from a long-term problematic
like the study of the decennial coastline dynamic). In the former case, not only the
spatial information of an extreme process is needed, but also information charac-
terising the time evolution of the analysed extreme event itself. For instance, this
is essential in coastal engineering applications to compute dimensioning charac-
teristics, such as the fatigue of seawalls through time when they are impacted by
storm-waves.

In the following, we focus on space–time processes. Max-stable processes have
also been developed and exemplified in a space–time context [Davis, Klüppelberg
and Steinkohl (2013a, 2013b), Huser and Davison (2014), Embrechts, Koch and
Robert (2016)] but are rarely alluded to in the literature. Their capacity to model
complex dependence structures can still be questioned and the physical interpre-
tation in any event-scale context of the simulated space–time processes issued by
these models can be questioned as well.

Since these fully parametric methods do not directly answer the presented event-
scale problematic and since it is unfeasible to model statistically the physical char-
acteristics of storm events, we propose a methodology based on an empirical uplift-
ing of real storms. This has the benefit of preserving the underlying physics of the
considered processes. The idea is to exploit a peaks-over-threshold based approach
and to propose a simulation scheme for extreme realisations. This does not assume
any parametric model for the dependence structure. In the proposed methodology,
we are focused on a semiparametric approach stemming from parts of the orig-
inal work of Caires, de Haan and Smith (2011), de Haan and de Ronde (1998),
Ferreira and de Haan (2014), Groeneweg, Caires and Roscoe (2012), summed up
as follows.

Let {Z(s, t), s ∈ S, t ∈ T0} be a space–time process, with S ⊂ R
2 the area of in-

terest and T0 ⊂R
+ the time dimension. In the sequel, such a process will represent

an extreme event and will be named ‘storm’ for the sake of simplicity. The first step
consists in selecting such a storm. To do so, the complete process is standardised
in a preprocessing step. A combination between a preprocessing step and an ex-
treme modelling has been proposed by Eastoe and Tawn (2009) but in a context
of nonstationarity due to the presence of covariates. Here, a more extreme process
is obtained by uplifting with a coefficient denoted ζ > 1 the space–time process,
which is initially transformed on a standard scale as T (Z) where T is a marginal
transformation detailed in Section 3.1. The process T ←(ζT (Z)) becomes more
extreme at the original scale.

Assuming that Z belongs to a max-stable domain of attraction, this approach
is mathematically justified (see the Appendix). In practice, the space–time de-
pendence structure of Z will be taken as constant in the extreme, leading to an
asymptotic dependence context. Caires, de Haan and Smith (2011), Groeneweg,
Caires and Roscoe (2012) use this methodology to simulate space–time extreme
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processes. We leverage this approach to perform a bivariate simulation of such
processes, with a view to better represent sea-states conditions at extreme levels.
This leads us to develop a distinct strategy for the selection of storms and to use
marginal distributions for the standardisation of the data as those used in Thibaud
and Opitz (2015).

The behaviour of the produced storms is discussed around a case-study: the
quantification of the long-shore mass flux of energy in a coastal area during ex-
treme storms.

Since the presented methodology is applied to a large multidimensional volume
of data, specific distributed algorithms are developed to process the data, which
raises an additional technical dimension.

Section 2 introduces both the dataset used for this application and a preliminary
study about the storms contained in it. Section 3 then presents in detail the statisti-
cal methodology and its justifications. The results are presented in Section 4.1 and
then used for a risk analysis in Section 4.2. The final section provides a discussion
about the introduced notions and their applications.

2. Data. Our region of interest is a semi-closed French coast area located in
the northwestern Mediterranean sea, namely the Gulf of Lions (GOL) as presented
in Figure 1. This study aims to simulate extreme space–time wave processes in
order to use them as inputs for a littoral hazard model. For instance, a model of
coastal submersion due to storm-waves, which is a physical process depending on
near-shore hydrodynamic conditions. Such a model is forced by inputs describing

FIG. 1. The left panel is the full extension of the domain considered for the hindcast. The right
panel is the studied area: the Gulf of Lions (GOL). The crosses indicate the locations of surface
buoys measuring waves features. The colour scale indicates the bathymetry, that is, underwater to-
pography, of the northwestern Mediterranean sea. The computational mesh used for the hindcast is
also overlaid. It is composed of 47,086 nodes with a spatial resolution ranging from 1 km to 12 km.
The right panel is a zoom of the grid on the GOL. Computational nodes situated in the GOL form
the set M.
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the sea-states conditions at an instant t . Generally, these inputs are the mean wave
direction ψ(t), the significant wave height Hs(t) and the peak wave period Tp(t).

Three sources are principally considered in obtaining such data. The first is
surface-buoys that monitor these three variables. In the GOL, there are four
surface-buoys as illustrated in Figure 1. These observations are accurate but
sparsely provided in our region of interest, in both space and time dimensions.
Spatial scarcity would degrade the spatial modelling of the process whereas short
time series would degrade the quality of the extrapolation to more extreme values.

An alternative is to use satellite-altimeter datasets. The major issue is that only
Hs(t) can be observed from an altimeter. Satellites embedding Synthetic Aperture
Radar (SAR) must be considered if wave direction and wave period are required,
but the time series are shorter (first launch in the 1990s). Moreover, since satellites
tracks are nonregular through time and space around the globe, any extreme statis-
tical analysis considering such datasets [see, e.g., Raillard, Ailliot and Yao (2014)]
becomes hard to handle, especially when the modelling concerns events in a fixed
and relatively confined area.

The final way to observe wave data variables is the use of the numerical sim-
ulation. Chailan et al. (2014) proposed a 52-year hindcast of wave features over
the north-western Mediterranean sea, extending from the Strait of Gibraltar to the
south of Italy. This hindcast is obtained by the use of a widely recognised wave nu-
merical model in ocean community. In the sequel, this hindcast—validated against
in situ observations—is used since it provides the longest and refined wave time se-
ries for this area to the best of our knowledge [Chailan (2015), Chapter 3]. Details
are given in the next subsection.

2.1. A 52-year wave hindcast. The 52-year hindcast is produced with the
WAVEWATCHIII® v4.18 (WW3) wave model [Tolman (2014)]. Two regional re-
analyses have been used as forcing conditions—meaning used as inputs of the
numerical model: Herrmann and Somot (2008) for atmospheric conditions and
Herrmann et al. (2010) for ocean conditions. The bathymetry used has a spatial
resolution of 0.0083 degree. The physical time range of the simulations ranges
from January 1961 to December 2012 at an hourly scale. Finally, the unstructured
computational grid illustrated in Figure 1 is composed of 47,086 nodes—3,944 for
the GOL only—with a spatial resolution ranging from 1 km to 12 km.

The former quantities of interests [i.e., ψ(t), Hs(t) and Tp(t)] derive from the
computed wave spectral density at each node of the mesh. For the GOL only, these
three variables are stored in a binary file of 19 GB.

The dataset produced is validated against the records of the four surface buoys,
at a yearly scale in terms of the time series available. As it is often the case, the
wave model shows a good performance but tends to slightly underestimate the
extreme occurrences. One way to understand the performance of the hindcast is to
look at both marginal and joint measures of validation.
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FIG. 2. Quantile–quantile plots of the observed significant wave heights (Hs) against the modelled
ones for 2012. Locations are the four littoral surface buoys of the GOL.

For instance, the median over all buoys of the yearly correlation factors reaches
0.903 while the median of the root mean square errors is 0.272. Figure 2 illustrates
quantiles of the observed significant wave heights (Hs) against the modelled ones
for the year 2012. For this year, the former measures approximate their medians
for each location, respectively. It makes 2012 a representative candidate to diag-
nose the overall hindcast quality [see Chailan (2015), Chapter 3, for additional
measures].

The observed bias might not come from the wave model only [Rascle and Ard-
huin (2013)]. Indeed the forcing re-analyses, especially the wind fields, are some-
times underestimated for instantaneous and abrupt wind gusts. Consequently, the
generated wind-waves are underestimated as well. Despite these slight underesti-
mations, the produced data are relatively satisfactory.

Insofar as it is a key feature of our study, the performance of the numerical
model in regards to the spatial dependence structure must be presented as well. An
analysis of joint survival probability is performed to this end. The purpose is to
compare from each source—either buoys or numerical models—the joint proba-
bility of exceedance from various sets of sites corresponding to the locations of the
buoys. In the empirical computations and for each sub-set of locations, the records
taken into account are those that are simultaneously available at each site of the
set. The thresholds quantiles are calculated, respectively, for each source of data.
This limits misinterpretation due to bias from marginal intensities.

For the sake of clarity, only three out of the ten combinations available (four
buoys) are presented in Figure 3, but similar results are observed regarding the
other sets.

Those plots reveal a good match between survival joint probabilities from buoys
compared to the ones from the numerical model, whatever the distance between the
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FIG. 3. Joint survival probabilities of exceedance of significant wave heights (Hs). The empirical
probabilities are computed from each data source (buoys or numerical model). Each sub-panel rep-
resents joint probabilities over various sets of sites corresponding to the buoys’ locations. Selected
sites are localised by the crosses on the map for each sub-panel.

sites or their numbers. The adequacy is especially valid for joint probabilities of
exceedance over high quantiles but with higher bias on smaller quantiles. It means
that small waves are more spatially structured when observed from the numerical
wave model but the spatial dependence structure is properly modelled for high
waves. This remark reinforces the relevance of considering those produced data as
observations in the sequel.

2.2. Preliminary analysis. A preliminary analysis is realised to develop our
expertise on the wave data previously presented. As the reader may know, wind
is the major factor of wave construction. The GOL is exposed to three dominant
wind regimes. The first two are called Tramontane and Mistral. They come from
the northwest and north, respectively. The last is called Marin and comes from
the southeast. When the region is exposed to a Tramontane or Mistral episode or
both, waves tend to propagate towards the southeast but are formed far from the
coastline. This is due to a too short fetch zone—the zone where the wind stresses
the sea-surface causing the growth of the waves. On the contrary, as soon as the
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FIG. 4. Spatial specification. Littoral area S∗ ⊂ S is the union of squared areas. From expert
advice, if Hs is high in S∗ the coastline is likely to be impacted. Wave data are available at the set
of locations of the mesh nodes in this area, which is denoted M∗ ⊆ S∗. Cross points form a subset
χ of 140 sites from the locations of the computational mesh nodes. χ is constructed in manner of
spatially representing all observation locations.

area is exposed to a Marin episode, waves are formed offshore and are propagated
to the coasts. In such cases, the waves impact the coastline. Winds hitting the GOL
are sometimes more complex and the resulting hydrodynamic is fairly modified:
occasionally a southwest wave-flux is dominant in the GOL. Experts advise that
the relevant storms to study the impact on the coastline are those in which the Hs
variable reaches high values inside a very littoral area denoted S∗. For the GOL,
we decided to choose the union of the determined areas (Figure 4).

Beside these physical characteristics, some statistical information can provide
valuable information about the general behaviour of a wave-storm in the GOL. In
particular, the extremal coefficient θ [Smith (1990), Schlather and Tawn (2003)]
is a quantity that enables us to quantify the dependence in the context of extreme
values.

This measure stems from the following reasoning. Without loss of generality,
let us consider identically distributed random variables Y (1), . . . , Y (M) with unit
Fréchet distribution, that is, P(Y (i) ≤ y) = e−1/y, i = 1, . . . ,M,0 < y < ∞. If
the joint distribution of (Y (1), . . . , Y (M)) is a multivariate extreme value distribu-
tion, it is well known that the joint probability P(Y (1) ≤ y, . . . , Y (M) ≤ y) can
be expressed as e−θ/y . The so-called extremal coefficient θ = θ(Y (1), . . . , Y (M)),
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1 ≤ θ ≤ M summarises the extremal dependence. The limiting case θ = 1 repre-
sents the full dependence whereas θ = M represents the total independence.

In the context of threshold-based extreme value methods, realisations above
a high threshold are considered as extreme. Assuming predetermined thresholds
vectors (u

(1)
j , . . . , u

(M)
j ) and random vectors (Y

(1)
j , . . . , Y

(M)
j ), 1 ≤ j ≤ N , the Y

(k)
j

are observed only if Y
(k)
j > u

(k)
j ; otherwise, Y

(k)
j is censored at u

(k)
j .

In this context, Smith in Caires, de Haan and Smith (2011) defines a natural
estimator of the extremal coefficient function θ as

(2.1) θ̂ = m
/ N∑

j=1

1

max(Yj , uj )
,

where Yj and uj are defined as max(Y
(1)
j , . . . , Y

(M)
j ) and max(u

(1)
j , . . . , u

(M)
j ),

respectively; m is the number of excesses Yj > uj .
The pairwise extremal coefficient is commonly considered in statistical applica-

tions, meaning Yj = max(Y
(1)
j , Y

(2)
j ) with M = 2 in (2.1). In the sequel, three ex-

tremal coefficients are introduced and estimated for the sea-states hindcast dataset.
The first two are related to the dependence of the variable Hs through time and
spatial distance, respectively. The time extremal coefficient θ tim(k) measures the
dependence between pairs of observations of Hs separated by a time lag k, at a
given location. The spatial extremal coefficient θ spa(h) measures the dependence
between pairs of Hs observations separated by a spatial distance h, at a given time.

Figure 5 presents the extremal coefficients estimated for the full period (1961–
2012) of the hindcast on a yearly block of data in order to monitor their fluc-
tuations. Here, uj in (2.1) is set as a 0.95-quantile to avoid issues stemming
from a lack of data. Figure 5(a) presents the estimations θ̂ spa(h) for two loca-
tions separated by a distance h. In this case, (Y

(1)
j , Y

(2)
j ) in (2.1) corresponds to

(Y (tj , s), Y (tj , s + h)). To compute θ̂ spa(h), only a subset χ of 140 sites (Fig-
ure 4) from the computational mesh is considered. It limits the combinations of
pairs available in the dataset. The selection of sites is optimised to fairly cover the
entire area as described in Chailan et al. (2014). Estimations θ̂ spa(h) are binned to
1,500 distinct distances h.

We observe that θ̂ spa(h) is always strictly inferior to 2. More precisely, it is ap-
proximately 1.75 at the longest distance, exemplifying that dependence within a
storm on the GOL, which is a relatively confined area, seems to be relatively per-
sistent even at the longest distances. Beside the presented omnidirectional graphic,
directions of pairs were considered and regrouped to compute the directional esti-
mation of the dependence structure. This did not demonstrate a clear anisotropic
pattern and, therefore, graphics are not presented here.

Figure 5(b) presents the estimations of θ tim(k) for pairs separated by a
time lag k. In this case (Y

(1)
j , Y

(2)
j ) in (2.1) represents (maxs∈M∗(Y (tj , s)),

maxs∈M∗(Y (tj + k, s))), with M∗ the observation locations situated in S∗ the
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(a) (b)

(c)

FIG. 5. Estimations of the three extremal coefficients (see text for details). For each pair, the co-
efficients are estimated for the full period (1961–2012) of the hindcast on yearly block of data. (a)
The extremal coefficients θspa(h) estimated on χ from pairs of Hs values separated by a distance h

given in kilometers. Estimations are binned to 1,500 distinct distances h. (b) Extremal coefficients
θ tim(k) are estimated from pairs of Hs values separated by a lag k in hour. (c) Extremal coefficients
θ(Hs,Tp) estimated from the significant wave height Hs and the peak wave period Tp at locations
s ∈ χ are ordered by their corresponding bathymetry. The dots are the median values from estimated
pairwise coefficients. In each sub-panel, the straight line and its shadow envelope are respectively a
fitted polynomial regression model and its 95% prediction interval.

very littoral zone presented above. The arbitrary choice of S∗ is still related to the
final goal of the document: quantifying coastal hazards. With such littoral areas,
only storms impacting the shoreline area are considered in the measure. We can
observe from Figure 5(b) that θ̂ tim(k) narrows 1.9 and becomes almost steady at
k = 50. Hence, we can state that the dependence within a storm impacting the
littoral will be considered as persistent only up to 50 hours.

The proposed uplifting procedure relies on a crucial hypothesis which is max-
stable context. Indeed, we assume that the space–time dependence structures are
constant in the extreme. Figures 5(a) and 5(b) show that this hypothesis is reason-
able with our data, when considering a time lag smaller than 50 hours, correspond-
ing to an extremal coefficient strictly inferior to 2.



BIVARIATE SPACE–TIME EXTREMES SIMULATION 1413

Finally, to assess the dependencies between the two wave variables Hs and
Tp observed at the same time and at the same location, we consider a third ex-
tremal coefficient θ(Hs,Tp). Let Hs(tj , s) and Tp(tj , s) denote the significant
wave height and the peak wave period at time tj and location s, respectively. In this

case, (Y
(1)
j , Y

(2)
j ) in (2.1) represents (Hs(tj , s),Tp(tj , s)). Estimation θ̂ (Hs,Tp) is

computed using the data from the subset χ . Figure 5(c) illustrates such estima-
tion. By ordering the estimated bivariate extremal coefficients by the depth of the
observation sites, we show that the deeper the sites, the more Hs and Tp remain
dependent within their extreme realisations. In general, we can deduce that those
two variables are fairly dependent, with an extremal coefficient inferior to 2, even
if the waves mechanic may behave differently in very shallow waters.

3. Semiparametric storm uplifter.

3.1. Extreme space–time processes. In the sequel, {X(s, t), s ∈ S, t ∈ T } de-
notes a random space–time process with S a compact subset of Rd and T a com-
pact subset of R+. Such a random process represents a random variables collection
indexed by both space and time which is in the space of continuous real functions
on S × T denoted C(S × T ). We suppose that {X(s, t), s ∈ S, t ∈ T } is in the do-
main of attraction of a max-stable process [de Haan and Lin (2001), de Haan and
Ferreira (2006)]. In other words, we suppose that there exist continuous functions
an(s, t) positive and bn(s, t) such that the process{

max
1≤i≤n

Xi(s, t) − bn(s, t)

an(s, t)

}
(s,t)∈S×T

with X1, . . . ,Xn independent copies of X, converges in distribution to a max-
stable process η in C(S × T ). Since convergence of marginals and convergence of
dependence structure can be split up, we consider, in the sequel, the standardised
process 1/(1 − GX(s,t)(X(s, t))) where GX(s,t) corresponds to the distribution of
X(s, t). Such a process has marginal standard Pareto distributions and belongs to
the domain of attraction of the unit Fréchet distribution. Following Thibaud and
Opitz (2015), it is convenient to fix a high threshold function u(s, t) and to assume
that the marginal distributions of this process satisfy

(3.1) P
(
X(s, t) > x

) = [
1 + ξ(s, t)

(
x − μ(s, t)

)
/σ(s, t)

]−1/ξ(s,t)
+ ,

for x > u(s, t), with real parameters μ(s, t) < u(s, t), σ(s, t) > 0 and ξ(s, t), such
that the right-hand side of (3.1) is less than unity.

As a consequence, to result in a process with standard Pareto margins, we can
define the standardised process X∗ as follows:

(3.2) X∗(s, t) = T
(
X(s, t)

) = [
1 + ξ(s, t)

(
X(s, t) − μ(s, t)

)
/σ(s, t)

]1/ξ(s,t)
.
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3.2. Method. As presented in the Introduction, the outline of the methodology
consists of four steps. First, data are marginally transformed. This enables us to
manipulate the data on a standard scale. Here, we use a transformation to reach
the standard Pareto scale. Then we need to extract storms from the dataset. Once
storms are extracted, the data are uplifted to higher values, with a control on the
marginal amplification coefficient. Finally, the data are transformed back to their
original scale by inverting the transformation. Details of these four steps of the
presented methodology are given in this subsection.

The first step consists in standardising X(s, t) to a standard Pareto scale accord-
ing to (3.2). In practice, the parameters are unknown and need to be estimated. In
this first approach, we suppose the threshold and the parameters to be constant over
time, depending only on space. One can alternatively use more sophisticated ex-
pressions of those quantities to deal with a potential nonstationarity of the process,
for example, seasonality and directional effects might be better explained doing so
[e.g., Jonathan, Ewans and Randell (2013)].

In each site, parameter estimations μ̂(s), σ̂ (s), ξ̂ (s) are obtained by the maxi-
mum likelihood method using data above a high threshold u(s) which can be cho-
sen as a high quantile for a fixed s (here the 0.99-quantile). Since marginal data
may have some short-term dependences, they are de-clustered before being used to
estimate the parameters [Coles (2001), Section 5.3.2]. In this paper, the de-cluster
procedure has been configured with an interval of 5 consecutive values below us to
consider an exceedance as a new cluster, that is, 6 hours after the last exceedance.
This step allows us to reach the independence condition assumed in the estimation
procedure. Using such estimators in (3.2), let {X̃∗(s, t), s ∈ S, t ∈ T } denote the
obtained standardised process. Note that this preprocessing step relies on differ-
ent techniques from those used in Caires, de Haan and Smith (2011), Groeneweg,
Caires and Roscoe (2012).

The second step consists in extracting storms on a standardised scale from the
data. To extract the biggest storm, the maximum value of X̃∗(s, t) is searched over
the subset of sites M∗, which might be a single reference location, locations of the
entire space S or locations of some area in between. This point leads to a distinct
strategy of selection of storms from Caires, de Haan and Smith (2011), Groeneweg,
Caires and Roscoe (2012). Let us assume this maximum occurs at time t1. We
fix the total storm duration as 2δ. Consequently, such a storm is a subset in the
time dimension of {X̃∗(s, t), s ∈ S, t ∈ T }, therefore, defined as Z̃∗ = {X̃∗(s, t),
s ∈ S, t ∈ T0 ⊂ T }. For this first storm, T0 = [t1 − δ, t1 + δ].

The period T0 is hidden from the selection of the second biggest storm. Fur-
thermore, we introduce a time value which is a “precaution time-lag” ε to insure
the independence of the storms. The selection of the second biggest storm will
consist in identifying the maximum value of X̃∗(s, t) over the subset of sites M∗
with t ∈ T \[t1 − δ − ε, t1 + δ + ε]. The two values δ and ε are generally defined
according to expert advice or from preliminary analyses or both. In this study, the
specific values of these parameters are given and explained in Section 4.1.
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Algorithm 1: Storm selection

Input : {X̃∗(s, t), s ∈ S, t ∈ T }, space–time observations on a standard
scale.
p′ the maximum number of storms to select.

Output: {Z̃∗
i , i ∈ {1, . . . , p}} with p ≤ p′, a sorted collection of i.i.d. storms

1 begin
2 i = 1, δ ← Cst, ε ← Cst, T ← T , T ′ ← T ;
3 while (i ≤ p′) and (maxs∈M∗,t∈T ′ X̃∗(s, t) > 1) do
4 ti ← arg maxt {X̃∗(s, t)} ; // s ∈M∗ ⊆ S and t ∈ T ′.
5 Z̃∗

i ← X̃∗(· , t) with t ∈ T ∩ [ti − δ, ti + δ];
6 T ′ ← T ′ \ [ti − δ − ε, ti + δ + ε];
7 i = i + 1;

8 return {Z̃∗
1 , Z̃∗

2, . . . , Z̃∗
p} ;

The general iterative scheme to select storms is presented in Algorithm 1. It is
noticeable that the stop condition of the algorithm implies that there is at least one
exceedance of the site marginal threshold in each selected storm. The algorithm
would select storms until the required and arbitrary number of storms p′ is reached
or until the exceedance condition is no longer satisfied.

Finally, let {Z̃∗
i (s, t), i ∈ {1, . . . , p}} denote a collection of such space–time pro-

cesses and represent the p highest storms available in the transformed dataset.
It is relevant to compare them with each other in term of their extremeness.

In the sequel, the definition of extremeness of a so-called storm {Z∗(s, t), s ∈
S, t ∈ T0 ⊂ T } relies on the level corresponding to the within-storm maxima
zmax = maxs,t {Z∗(s, t), s ∈ M∗ ⊂ S, t ∈ T0 ⊂ T }. Consequently, a storm {Z∗

1}
is considered more extreme than {Z∗

2} if z1,max > z2,max.
In extreme value theory, a return period m is associated with a return level rm.

The return level rm is reached once over the return period m in mean. By defini-
tion, this is no more than the (1 − 1

m
)-quantile of the block maximum distribu-

tion. We define the return period of a storm {Z∗(s, t)} as equal to the marginal
return period associated with the within-storm maxima zmax observed at location
smax. The location smax is either fixed as a reference site or defined as equal to
argmaxs∈M∗{Z̃∗(s, t)}.

The third step consists of an uplifting technique. To obtain more severe storms
(with a longer return period), processes Z̃∗

i , i ∈ {1, . . . , p} are multiplied by a co-
efficient factor superior to unity and denoted ζi . The coefficient ζi is applied to
the entire duration of the storm i. Hence, ζiZ̃

∗
i (s, t), ζi > 1, i ∈ {1, . . . , p}, is the

collection of the uplifted storms at the standardised scale.
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For the final step, each uplifted storm is transformed back to its original scale
by

(3.3) Z̃i(s, t) = T ←(
ζiZ̃

∗
i (s, t)

)
, i ∈ {1, . . . , p},

where T ←(Y (s, t)) = μ̂(s) + σ̂ (s) [Y (s,t)]ξ̂ (s)−1
ξ̂ (s)

.

We obtain here a collection of heavier extreme storms from a set of observed
extreme storms.

It is important to highlight that an observed extreme storm Z∗
i (s, t) is defined if

and only if

max
s∈M∗ Z∗

i (s, t) > 1,(3.4)

meaning that there is at least one exceedance of the site marginal threshold. This
uplifting proposition relies on a mathematical justification given in the Appendix.
In this detailed proof, it has been shown that there is actually no limitation in
uplifting bivariate processes {Z∗

1,i ,Z
∗
2,i} conditioned to (3.4) is satisfied for one of

the margin.
What is further remarkable is that such a uplift method of a space–time process

appears as naturally linked to the GPD process framework. This framework was
initially introduced by Ferreira and de Haan (2014). Dombry and Ribatet (2015)
generalise this result by considering conditional events characterised through a
continuous and homogeneous risk function �(·). The case from Ferreira and de
Haan (2014) corresponds to �(f ) = sups∈S f (s) and the � function we are con-
sidering here corresponds to �(f ) = maxj f (sj , t). As a consequence, the limit of
the conditional distribution we consider corresponds to the distribution of a GPD
process.

Other remarks can be made with regard to the construction of the processes.
First, note that in (3.3), the coefficient ζi relative to the uplifted storm i can be
chosen in several ways as long as it is superior to 1.

We can consider, and this is in fact the choice we made, the special case
ζi = T (zm)

T (zmax)
, where zmax is still the within-storm maxima and zm is the return

level corresponding to the m-year return period at location smax. Implemented in
Groeneweg, Caires and Roscoe (2012), Smith in Caires, de Haan and Smith (2011)
interprets such a transformation as an uplift from a storm with a given return pe-
riod to a storm with a return period equal to m. In that case, ζi is obviously storm-
dependent and this choice enables us to uplift different storms to a comparable
level. However, other choices for ζi could be proposed, for example, in Caires, de
Haan and Smith (2011), de Haan proposes another approach which can be inter-
preted as an uplifting of the threshold of the peaks-over-threshold process Zi . As
another example, ζi , i = 1, . . . , p could be obtained as independent realisations of
a standard Pareto distribution. In that case, our approach should be very similar to
the constructive representation of the Pareto process proposed by Dombry and Ri-
batet (2015). To the best of our knowledge, there are few results about simulations
of GPD processes and consequently our results may also be of interest.
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4. Results.

4.1. Uplifted storms. The presented method is applied to the 52-year sea-
states condition dataset. To cope with the computational demand of dealing with
nearly 4000 locations, algorithms are implemented in a dedicated R code and par-
allelised via the Message Passing Interface (MPI) protocol. All computations are
performed on a cluster composed of 96 cores, which reduces the overall computa-
tion duration to nearly 5 hours.

From this point on and for the sake of simplicity, the definition of storm em-
braces the multivariate space–time processes composed of Hs, Tp and direc-
tions ψ .

We worked on the 10 highest storms observed to uplift both Hs and Tp variables,
resting on the proposed bivariate approach. In our case study, Hs is the variable that
conditions the bivariate space–time processes selection. It avoids selecting events
with high Tp but low Hs, a phenomenon that can be observed in nature. Conse-
quently, only highly energetic wave processes are considered because at least one
component in M∗ exceeds its threshold. In this application, marginal thresholds
correspond to marginal 0.99-quantiles.

We are concerned with modelling storms that impact the coastline only. Hence,
we chose to set S∗ equal to the coastline-band area illustrated in Figure 4. This
restriction in the storm detection area prevents the selection of offshore storms
that do not propagate to the coast in the execution of Algorithm 1.

From the preliminary analysis in Section 2.2, we determine that storms last
about 50 hours: the duration for which the extremal coefficient appears to be
steady, revealing a persistence of the dependence structure within a storm up to
that time. Thus, the selected value of δ is equal to 24 (hours). To select only i.i.d.
storms, the value of ε is also equal to 24 (hours). This parameter is set to avoid
the selection of overlapping storms. In this application, it would have been set to 0
without any consequence since no overlaps had been detected in this configuration.

Both ζi,Hs and ζi,T s are chosen to uplift original storms to m-year return period
storms following the implementation of Groeneweg, Caires and Roscoe (2012). It
is remarkable that any uplifted storms in the same return period might be com-
pared to realisations of the distribution of the storms at this return period. Hence,
having the control on the return period of storms is the easiest way to interpret and
compare the impacts of storms from a coastal engineering point of view. In this
application, smax—the within storm maxima—is chosen among the entire set M∗
of locations available in the littoral area. The location smax might be different for
the two variables. Figure 6 illustrates one of the uplifted storms.

Note that mean wave directions are conserved during the uplift procedure.
Among the set of 10 scenarios, the variability of the fields observed are quite

large, but are unsurprisingly dominated by fluxes from the south, southeast or east.
This is a direct consequence of choosing M∗ as a very littoral area.



1418 R. CHAILAN, G. TOULEMONDE AND J.-N. BACRO

(a) Significant wave height. (b) Uplifted significant wave height.

(c) Peak wave period. (d) Uplifted peak wave period.

FIG. 6. Comparison of a storm uplifted to its 100-year return period, at its peak. The left panels
illustrate the original storm; the right panels illustrate the uplifted storm. The arrows indicate the
mean wave directions.

4.2. Uplifted storms at work: A risk analysis. Coastal hazards such as sub-
mersion, erosion or beach contamination are usually quantified from formulae that
require the computation of mass flux of energy towards the shoreline, given off the
shoaling zone where waves do not interact significantly with the sea bottom. We
usually distinguish between cross-shore and long-shore contributions, depending
upon the goal of the application. For instance, the calculation of the alongshore-
sand transport [Bagnold (1966), CERC (1984)] requires the long shore mass flux
of energy. In the following, we strictly consider the long- shore impact φ of the
deep water mass flux of energy Q to the shoreline, which is a relevant expres-
sion to tackle any analysis of shoreline dynamics. We model evolution of such a
quantity during extreme wave storms.
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For a given storm event S, we compute the impact φ
(S)
i,t at a location ci ∈ C and

at a time t of the mass flux of energy Qi,t coming from waves at a location li ∈ L
(see Figure 7). The long-shore impact is calculated by

(4.1) φ
(S)
i,t =Qi,t sin(ωi,t ) cos(ωi,t ),

where ωi,t represents the angle of the wave propagation at li at a time t and is
function of the wave direction ψi,t .

Practically, Q is derived from the variables Hs, Tp characterising the sea-state
conditions at various points along an iso-bathymetric baseline. Such a mass flux of

(a) (b)

(c) (d)

FIG. 7. (a) A schematic representation of the baseline and the creation of the n profiles. (b) Illus-
tration of angles used to compute the impact of the wave energy flux at point li to its coupled coast
point ci . ωit denotes the angle of interest: the angle between the observed direction of the waves �k
at location li—at a time t—and the cross-shore direction at location ci denoted �ni . (c) The actual
profile construction over the GOL. Sea-states conditions are picked-up from a set L= {l1, . . . , ln} of
n points lying on an iso-bathymetric baseline. From those locations, n profiles normal to the baseline
are created. The intersections of those profiles with the coastline derived form a set C = {c1, . . . , cn}
denoting the reference locations where mass flux energy are derived to. The number n is chosen to fit
the resolution required along the shore. (d) The selected five locations analysed in the risk analysis.
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energy is classically given by

(4.2) Qi,t = 1

8
ρgHs2

i,tTpi,t ,

where ρ denotes the water volumetric mass density and g the gravity constant.
This procedure can be performed both with the storms extracted from the hind-

cast dataset to monitor the impact of the past events, or with the uplifted storms to
assess the impact on the coast of more severe storms.

We compute the long-shore impact at any location ci for some of the simulated
(very) extreme storms. A set of 5 locations from the available ci [see Figure 7(d)]
has been picked as a reference to discuss the assessment of the long-shore impact at
the coastline of the GOL under extreme conditions. These locations are manually
selected to provide a good covering of the coastline with only few locations for the
sake of clarity.

Regarding the angles presented in Figure 7, a positive value of ψ is interpreted
as a long-shore contribution in the direction of �u—the tangent at the coast. A nega-
tive value is interpreted as a long-shore contribution in the opposite direction, that
is, −�u.

Figure 8 gives an overview of the various possibilities offered by the simulation
of storms in the assessment of long-shore impact.

First, Figure 8(a) shows the response of the impact model at the 5 reference
locations to an uplifted storm at a 100-year return period. Regarding this figure, it
is very clear that in this configuration c2, c3 and c4 are impacted towards the west
and southwest directions, revealing the presence of an eastern wave forcing. By
contrast and since ψ > 0 at c1, this site is impacted towards �u, that is, to the north
or northwest at c1. From such a figure, the time evolution of the long-shore impact
regarding the simulated extreme process can be explored.

We may also look at the variability of the long-shore impact when storms vary
in extremeness, as defined above. Figure 8(b) represents what could be expected
in terms of long-shore impact, at one location and for a given storm uplifted to
various return periods.

Another interesting information in the assessment of long-shore impact is to
look at the response ψ for several storms uplifted to the 100-year return period.
This is illustrated in Figure 8(c) for the point c5, which is situated at the very east
of the GOL. From this figure, we can state that the long-shore impact is likely to be
towards the west, catching a consequent amount of energy from the storm coming
from the open sea boundary of the GOL (i.e., from the east/southeast). This remark
is in accordance with a physical observation that is identified when looking at the
shoreline: the formation of sandy spits.

However, and still in Figure 8(c), some of the selected storms have a positive
impact during their realisation. This is not really surprising, because as it is located
at the edge of the GOL, this shoreline location is also subject to be hit by south



BIVARIATE SPACE–TIME EXTREMES SIMULATION 1421

(a) (b)

(c) (d)

FIG. 8. Evaluation of the long-shore impact φ; (a) at the 5 locations ci for an observed storm
uplifted to the 100-year return period; (b) at the location c4 for an uplifted storm to the 25, 50, 75,
100, 125 and 150-year return periods. The impact computed from values of the observed storm are
given as well for reference; (c) at the location c5 for a sample of observed storms, uplifted to the
100-year return period; (d) at the 5 locations ci for an observed storm uplifted to the 25, 50, 75, 100,
125 and 150-year return periods. The impact computed from values of the observed storm are also
given for reference.

and southwest storms, which are less frequent but even more damaging than the
eastern ones.

Finally, Figure 8(d) is a mix of the possible combinations. It provides a simul-
taneous preview for various return periods of the storm and at the 5 locations of
interest. Spatial patterns of long-shore impact regarding the intensity of a storm
might be determined from such a figure.

5. Discussion. We introduced a semiparametric approach to simulate bivari-
ate extreme space–time wave processes. Our motivation was to simulate more ex-
treme storms than those already observed in order to assess event-scale coastal
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hazards in such situations. In practice, these storms would feed physical littoral
models, which depend strongly on the time evolution of the forcing extreme event.

We applied the methodology presented on a reanalysis dataset covering the
GOL area in the northwestern Mediterranean sea.

To demonstrate the benefits of such a method, some simulated storms were used
in a risk analysis. Thanks to the simulated processes based on which a control of
the extremeness is provided, we showed that the variability of the littoral long-
shore impact can be assessed, both spatially and through the time evolution. Such
results are of the utmost interest in coastal engineering applications, such as the
construction of seawalls along the coastline.

This method is especially suitable for its relatively low-cost computational re-
quirement. Indeed, the highest demand concerns the marginal fits, which is an eas-
ily parallelisable code. Simulating a set of extreme storms with a physical model
would take days where our proposed method will take hours. The proposed method
can therefore be applied on massive space–time dataset, as described in this appli-
cation. Mathematically justified, this method reaches its goal to seamlessly sim-
ulate reliable space–time extreme events at a more extreme scale than the ones
observed.

However, some limits of the method itself and its implementation should be
highlighted. As often when dealing with EVT approaches, we suppose that the un-
derlying dependence structure through time and space is preserved from extreme
but observable events to more extreme events. However, it is difficult to physi-
cally validate this assumption. As emphasized by Bortot, Coles and Tawn (2000),
asymptotic dependence is a limiting property which cannot be verified with cer-
tainty from data alone. Usually, the check of the extremal dependence structure re-
lies on modelling properties, arguing from reasonable agreements between empir-
ical and model-based estimates of particular extremal probabilities. Unfortunately,
such checking procedures are not possible under our approach, since no particular
form of extremal dependence is assumed. As a consequence, if our assumption
of a constant space–time extremal dependence for small lags is not satisfied, our
approach would lead to an overestimation of the extremal dependence.

Because we are dealing with bivariate space–time processes only, we assume
that the third variable defining sea-states conditions [namely the direction ψ(t)]
remains unchanged in distribution for highest storms. There are good physical
reasons to make this hypothesis, such as the GOL orientation, which will never
change. Indeed, the open boundary of the GOL, which is southeast oriented, will
naturally prohibit the observation of high waves being southeast oriented near the
coastline [see Chailan et al. (2014) for further details on the GOL orientation and
the implied fetch constraint]. Hence, it seems appropriate to conserve the wave
directions from observed storms for heavier storms to keep them physically valid.
Consequently, this restriction on the wave directions of the simulated storms to
those that have already been observed can be seen both as a strength and a limita-
tion.
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From a more practical point of view, it could be argued that the storm size in the
Algorithm 1 is fixed and symmetric around the peak value of the storm. This may
not reflect the reality for all storms. Therefore, replacing the current fixed size by
an adaptive one might be of interest to better represent those storms.

Note that there is no limitation in the methodology to select smaller or longer
storms, conditionally to the fact that at least one component excesses its marginal
threshold. Regarding coastal risk assessment analysis, selecting smaller storms
would result in an underestimation of the length of a storm, and consequently
of the overall quantity of interest (e.g., wave energy). By taking storms lasting too
long, the opposite may occur. In such cases, selecting the rightful duration of a
storm is a true challenge. The use of the extremal coefficient expressing the tem-
poral dependence within storms is by definition a good indicator to determine the
storm duration.

In the Algorithm 1, ε is set to avoid the selection of dependent storms and there-
fore respect statistical assumptions. To avoid dependent storms, it is convenient to
always set ε = δ.

Other parameters of the algorithm can be debated, such as the littoral area S∗.
Because its definition is paramount to assess littoral hazards, it could be interesting
to evaluate the sensitivity of the storm detection regarding this area.

In this first approach and even if seasonality is found in the data, fixed marginal
thresholds are used for the margins transformation. It would be valuable to use
more sophisticated expressions of the thresholds to handle the nonstationarity of
the data. The use of directional covariates in the thresholds rather than omni-
directional ones might also significantly improve the marginal fits.

In this paper, we have not addressed the estimation uncertainties on marginal
fits and their propagation. Block bootstrapping is usually used for assessing such
uncertainties. Nevertheless, one practical difficulty is the choice of the blocks to
consider, especially in a space–time context. In a similar vein, the validation of
the uplifted storms is hard to afford, if not impossible. We recommend using tech-
niques inspired by cross-validation, but practical limitations arise. Uplifted storms
are multivariate space–time processes and the first constraint is to find a measure
to compare them. Assuming a reduced-dimension measure, the second limit is any
uplifted storm that has to be seen as a realisation from the multivariate space–time
distribution of storms. Unfortunately, this distribution might only be estimated em-
pirically and many realisations must be used to estimate it correctly. Yet we do not
possess enough extreme realisations, by definition. One way to avoid the lack of
realisations is to lower the threshold to detect storms in our dataset. Unfortunately,
doing so would violate the hypothesis of the method: the need for an exceedance
over a “high” threshold, to approximate the asymptotic results.

Beyond those limitations, this method appears promising and opens many per-
spectives. It would be interesting to extend this approach to the multivariate con-
text because that would allow us to integrate additional variables describing the
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environmental phenomenon at a very extreme scale. However, the underlying de-
pendence structures of the considered variables must be thoroughly investigated
before being able to justify this extension with the presented assumptions.

Another perspective of work is to apply the method on larger regions. For such
an application, the choice of letting smax be located respectively to each variable
should be reviewed. With a wider area, various and independent physical processes
might be caught at the peak of storm. Consequently, ζi,Hs and ζi,Tp can be deter-
mined from two different processes. On this basis, the uplifted storms might be
physically unrealistic.

Other datasets and applications could also be considered. Most notably, we are
interested in applying this method in the context of rain-storms. Such an applica-
tion would allow us to explore the space–time variability of extreme rain-storms
scenarios with a plenty set of derived applications. For instance, a simulated sce-
nario can then feed a rainfall-runoff model to study their consequences in terms of
floods.

A future work would be the comparison between simulated storms issued by
the presented semiparametric approach and those issued by other parametric ap-
proaches, and in particular the generalized Pareto processes. Such a comparison
would be valuable since both approaches present similarities.

At the same time and after having performed a small risk analysis using some
of the simulated extreme space–time waves events, one challenge is to use those
storms to feed heavy computational physical models assessing other coastal haz-
ards, such as a flood overland model. In our opinion, this challenge may represent
the foundation of the next generation of coastal flood early warning systems such
as Delaware’s Coastal Flood Monitoring System (CFMS).2

APPENDIX SECTION

A mathematical justification of the storm uplift can be obtained through the
following asymptotic equivalence for conditional distributions.

Indeed, following Caires, de Haan and Smith (2011),

P

(
T ←(ζiZ

∗
i (s, t)) − bnζi

anζi

∈ A
∣∣∣ max
s∈M∗ Z∗

i (s, t) > 1
)

has the same limit (as n → ∞) as

P

(
Zi(s, t) − bn

an

∈ A
∣∣∣ max
s∈M∗ Z∗

i (s, t) > 1
)
,

where Z∗
i (s, t) = [1 + ξ(s, t)(Zi(s, t) − bn(s, t))/an(s, t)]1/ξ(s,t) and T ←(y) =

bn + an
yξ−1

ξ
.

2http://coastal-flood.udel.edu/

http://coastal-flood.udel.edu/
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Let us drop both i and (s, t) indexes for the sake of simplicity in the left part of
the conditional probability. The former limit equivalence is valid since following
Ferreira and de Haan (2014)-Section 4.2,

P

(
T ←(ζZ∗) − bnζ

anζ

∈ A
∣∣∣ max
s∈M∗ Z∗

i (s, t) > 1
)

= P

(
an

anζ

[ζ ξ (1 + ξ Z−bn

an
)] − 1

ξ
− bnζ − bn

anζ

∈ A
∣∣∣ max
s∈M∗ Z∗

i (s, t) > 1
)

= P

(
anζ

ξ

anζ

1 + ξ Z−bn

an
− ζ−ξ

ξ
− bnζ − bn

anζ

∈ A
∣∣∣ max
s∈M∗ Z∗

i (s, t) > 1
)

= P

(
anζ

ξ

anζ

(
Z − bn

an

− ζ−ξ

[
bnζ − bn

an

− ζ ξ − 1

ξ

])
∈ A

∣∣∣ max
s∈M∗ Z∗

i (s, t) > 1
)

= P

(
Z − bn

an

∈ anζ ζ
−ξ

an

A + ζ−ξ

(
bnζ − bn

an

− ζ ξ − 1

ξ

)∣∣∣ max
s∈M∗ Z∗

i (s, t) > 1
)
.

From de Haan and Ferreira (2006), it can be deduced that:

1. limn→∞ anζ

an
= ζ ξ (see proof of Lemma 1.2.9, p. 24);

2. limn→∞ bnζ −bn

an
= ζ ξ−1

ξ
[consider U(n) as in Theorem 1.1.2 for decomposing

bnζ −bn

an
as U(n)−bn

an
− Unζ −bnζ

anζ

anζ

an
+ U(nζ )−U(n)

an
and use 1.1.20, p. 10].

Then

anζ ζ
−ξ

an

→ 1 and ζ−ξ

(
bnζ − bn

an

− ζ ξ − 1

ξ

)
→ 0

uniformly for (s, t) ∈ S × T as n → ∞ and the result follows using the conver-
gence to types theorem [see Embrechts, Klüppelberg and Mikosch (1997), Theo-
rem A1.5].

There is no limitation to extend this reasoning to a bivariate context. In ac-
cordance with our chosen approach, only one of the two considered processes is
concerned with the conditional event. Indeed, the conditional event has no impact
on the aforementioned probability developments. Hence, we can similarly show
that

P

(
T ←

1 (ζ1,iZ
∗
1,i(s, t)) − b1,nζi

a1,nζi

∈ A1,

T ←
2 (ζ2,iZ

∗
2,i(s, t)) − b2,nζi

a2,nζi

∈ A2

∣∣∣ max
s∈M∗ Z∗

1,i(s, t) > 1
)
,
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where T ←
1 (y) = b1,n + a1,n

yξ1−1
ξ1

and T ←
2 (y) = b2,n + a2,n

yξ2−1
ξ2

, has the same
limit (as n → ∞) as

P

(
Z1,i(s, t) − b1,n

a1,n

∈ A1,
Z2,i(s, t) − b2,n

a2,n

∈ A2

∣∣∣ max
s∈M∗ Z∗

1,i(s, t) > 1
)
.
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