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LIMIT THEOREMS FOR PERSISTENCE DIAGRAMS1

BY YASUAKI HIRAOKA∗, TOMOYUKI SHIRAI†,2 AND KHANH DUY TRINH†,3

Tohoku University∗ and Kyushu University†

The persistent homology of a stationary point process on RN is studied
in this paper. As a generalization of continuum percolation theory, we study
higher dimensional topological features of the point process such as loops,
cavities, etc. in a multiscale way. The key ingredient is the persistence dia-
gram, which is an expression of the persistent homology. We prove the strong
law of large numbers for persistence diagrams as the window size tends to in-
finity and give a sufficient condition for the support of the limiting persistence
diagram to coincide with the geometrically realizable region. We also discuss
a central limit theorem for persistent Betti numbers.

1. Introduction.

1.1. Background. The prototype of this work dates back to the random geo-
metric graphs. In those original settings, a set V of points is randomly scattered in
a space according to some probability distribution, and a graph with the vertices
V is constructed by assigning edges whose distances are less than a certain thresh-
old value r ≥ 0. Then some characteristic features in the graph such as connected
components and loops are broadly and thoroughly studied (see, e.g., [30]). Further-
more, the random geometric graphs provide mathematical models for applications
such as mobile wireless networks [25, 27], epidemics [34], and so on.

Recently, the concept of random topology has emerged and rapidly grown as
a higher dimensional generalization of random graphs [3, 23]. One of the simple
models studied in random topology is a simplicial complex, which is given by a
collection of subsets closed under inclusion. Obviously, a graph is regarded as a
one-dimensional simplicial complex consisting of singletons as vertices and dou-
bletons as edges.

In geometric settings, a simplicial complex is built over randomly distributed
points in a space by a certain rule respecting the nearness of multiple points, like
random geometric graphs. Two standard simplicial complex models constructed
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from the points are Čech complexes and Rips complexes, which are also deter-
mined by a threshold value r measuring the nearness of points. Then, in such an
extended geometric object, it is natural to study higher dimensional topological
features such as cavities (2 dim.) and more general q-dimensional holes, beyond
connected components (0 dim.) and loops (1 dim.).

In algebraic topology, q-dimensional holes are usually characterized by using
the so-called homology. Here, the qth homology of a simplicial complex is given
by a vector space and its dimension is called the Betti number which counts the
number of q-dimensional holes. Hence, in the setting of random simplicial com-
plexes, the Betti numbers become random variables through a random point con-
figuration, and studying the asymptotic behaviors of the randomized Betti numbers
is a significant problem for understanding global topological structures embedded
in the random simplicial complexes (e.g., [22, 29, 37–39]).

On the other hand, another type of generalizations has been recently attract-
ing much attention in applied topology. In that setting, we are interested in how
persistent the holes are for changing the threshold parameter r ∈ R. Namely, we
deal with one parameter filtration of simplicial complexes obtained by increas-
ing the parameter r and characterize robust or noisy holes in that filtration. The
persistent homology [10, 40] is a tool invented for this purpose, and especially,
its expression called persistence diagram is now applied to a wide variety of ap-
plied areas (see, e.g., [4, 11, 16, 28, 35]). From this point of view, there have been
some works on a functional of persistence diagram, called lifetime sum or total
persistence, for random complexes (that are not geometric in the sense above)
such as Linial–Meshulam processes and random cubical complexes (e.g., [17–
19]).

Therefore, it is natural to further extend the results on random geometric sim-
plicial complexes to this generality, and the purpose of this paper is to show sev-
eral of these extensions. In particular, we are interested in asymptotic behaviors
of persistence diagrams themselves defined on stationary point processes. These
subjects are mathematically meaningful in their own right, but are also interest-
ing for practical applications. For example, the paper [16] studies topological and
geometric structures of atomic configurations in glass materials by comparing per-
sistence diagrams with those of disordered states. By regarding atomic configu-
rations in disordered states as random point processes, further understanding of
those persistence diagrams will be useful for characterizing geometry and topol-
ogy of glass materials, which is one of the important research topics in current
physics.

1.2. Prior work. Let � be a stationary point process on RN with all finite
moments, that is,

(1.1) E
[
�(A)k

]
< ∞ for all bounded Borel sets A and any k = 1,2, . . . .
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Here, �(A) denotes the number of points in A. For simplicity, we always assume
that � is simple, that is,

P
(
�
({x})≤ 1 for every x ∈ RN )= 1.

We denote by ��L
the restriction of � on �L = [−L

2 , L
2 )N .

Let C(��L
, r) be the Čech complex built over the points ��L

with parameter
r > 0 (see Section 2.1 for the definition). The 0th Betti number β0(C(��L

, r)) for
Poisson point processes, which is closely related to the binomial processes, has
been studied in an extensive literature (cf. [30]) from various points of view such
as the geometric percolation theory and computational geometry. Recently, the
limiting behaviors of higher Betti numbers βq(C(��L

, r)) (q = 1,2, . . . ,N − 1)
over general stationary point processes have also been widely investigated [38,
39]. Among them, we here restate the most related results.

THEOREM 1.1 ([39], Lemma 3.3 and Theorem 3.5). Assume that � is a sta-
tionary point process on RN having all finite moments. Then, for each 0 ≤ q ≤
N − 1, there exists a constant β̂r

q ≥ 0 such that

E[βq(C(��L
, r))]

LN
→ β̂r

q as L → ∞.

In addition, if � is ergodic, then

βq(C(��L
, r))

LN
→ β̂r

q almost surely as L → ∞.

THEOREM 1.2 ([39], Theorem 4.7). Assume that � is a homogeneous Poisson
point process on RN with unit intensity. Then, for each 0 ≤ q ≤ N − 1, there exists
a constant σ 2

r > 0 such that

βq(C(��L
, r)) −E[βq(C(��L

, r))]
LN/2

d→ N
(
0, σ 2

r

)
as L → ∞.

Here, N (μ,σ 2) denotes the normal distribution with mean μ and variance σ 2,

and
d→ denotes the convergence in distribution of random variables.

The purpose of this paper is to extend Theorem 1.1 to the setting on persistence
diagrams and Theorem 1.2 to persistent Betti numbers.

1.3. Main results. In this paper, we study the following simplicial complex
model for the point process � which is a generalization of the Čech complex and
the Rips complex.

Let F (RN) be the collection of all finite (nonempty) subsets in RN . We can
identify F (RN) with the set

⊔∞
k=1(R

N)k/ ∼, where ∼ is the equivalence rela-
tion induced by permutations of coordinates. For a function f on F (RN), there
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exists a permutation invariant function f̃k on (RN)k for each k ≥ 1 such that
f ({x1, . . . , xk}) = f̃k(x1, . . . , xk). We say that f is measurable if so is f̃k on (RN)k

for each k ≥ 1.
Let κ : F (RN) → [0,∞] be a measurable function satisfying:

(K1) 0 ≤ κ(σ ) ≤ κ(τ), if σ is a subset of τ ;
(K2) κ is translation invariant, that is, κ(σ + x) = κ(σ ) for any x ∈ RN , where

σ + x := {y + x : y ∈ σ };
(K3) there is an increasing function ρ : [0,∞] → [0,∞] with ρ(t) < ∞ for

t < ∞ such that

‖x − y‖ ≤ ρ
(
κ
({x, y})),

where ‖x‖ denotes the Euclidean norm in RN .

Without loss of generality, we can assume κ({x}) = 0 because of the translation
invariance.

Given such a function κ , we construct a filtration K(	) = {K(	, t) : 0 ≤ t <

∞} of simplicial complexes from a finite point configuration 	 ∈ F (RN) by

K(	, t) = {
σ ⊂ 	 : κ(σ ) ≤ t

}
,(1.2)

that is, κ(σ ) is the birth time of a simplex σ in the filtration K(	). Although we do
not explicitly show the dependence on κ in the notation K(	) because the function
κ is fixed in the paper, we here call it the κ-filtration over 	.

EXAMPLE 1.3. Two important examples of κ which we have in mind are

κC

({x0, x1, . . . , xq})= inf
w∈RN

max
0≤i≤q

‖xi − w‖,(1.3)

κR

({x0, x1, . . . , xq})= max
0≤i<j≤q

‖xi − xj‖
2

,(1.4)

which define the Čech filtration C(�) = {C(�, t)}t≥0 and the Rips filtration
R(�) = {R(�, t)}t≥0, respectively. Both κ’s satisfy Assumption (K3) with
ρ(t) = 2t . See also Section 2.1 for these filtrations.

For Theorem 1.9 below, we also remark that both κC and κR are 1-Lipshitz
continuous on F (RN) with respect to the Hausdorff distance dH . See Appendix
C for the definition of dH .

For the filtration K(	), we denote its qth persistence diagram by

Dq(	) = {
(bi, di) ∈ 
 : i = 1, . . . , nq

}
,

which is given by a multiset on 
 = {(x, y) ∈ R
2 : 0 ≤ x < y ≤ ∞} determined

from the unique decomposition of the persistent homology (see (2.2) for the def-
inition). The pair (bi, di) indicates the persistence of the ith homology class, that
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is, it appears at bi and disappears at di , and di = ∞ means that the ith homology
class persists forever.

In this paper, we deal with the persistence diagram Dq(	) as the counting mea-
sure

ξq(	) = ∑
(bi ,di )∈Dq(	)

δ(bi ,di ),

rather than as a multiset, where δ(x,y) is the Dirac measure at (x, y) ∈ R
2
.

For each L > 0, we define a random filtration built over the points ��L
and de-

note it by K(��L
) = {K(��L

, t)}t≥0. We write ξq,L for the point process ξq(��L
)

and E[ξq,L] for its mean measure (see Section 3 for the precise definition of mean
measure).

EXAMPLE 1.4. The top three panels in Figure 1 show point processes with
negative (Ginibre), zero (Poisson) and positive (Poisson cluster) correlations, re-
spectively (see [2] for more examples and correlation properties of point processes
including the above). All point processes consist of 1,000,000 points with the den-
sity 1/2π , and only restricted areas of them are visualized. The bottom shows the
corresponding normalized persistence diagrams ξ1,L/L2 of the Čech filtrations ap-
plied to the above, respectively.

FIG. 1. Top: Point processes with negative (Ginibre), zero (Poisson), and positive (Poisson clus-
ter) correlations. In these three point processes, the number of points and the density are set to be
1,000,000 and 1/2π , respectively. Bottom: The normalized persistence diagrams ξ1,L/L2 of the
above.
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One of the main results in this paper is as follows.

THEOREM 1.5. Assume that � is a stationary point process on RN having all
finite moments. Then, for each q ≥ 0, there exists a unique Radon measure νq on

 such that

(1.5)
1

LN
E[ξq,L] v→ νq as L → ∞.

Here,
v→ denotes the vague convergence of measures on 
. In addition, if � is

ergodic, then almost surely,

(1.6)
1

LN
ξq,L

v→ νq as L → ∞.

We call the limiting Radon measure νq the qth persistence diagram of a station-
ary ergodic point process �. In nonergodic case, by using the ergodic decomposi-
tion (cf. [14]), the right-hand side in (1.6) is replaced by the random measure νq,ω

which is measurable with respect to the translation invariant σ -field I defined in
Section 3.

REMARK 1.6. The set 
 is topologically the same as the triangle{
(x, y) ∈ R2 : 0 ≤ x < y ≤ 1

}
with open boundary ∂
 = {(x, x) ∈ R2 : 0 ≤ x ≤ 1}. Although we do not con-
sider the mass on ∂
, intuitively speaking, the (virtual) mass on ∂
 comes from
configurations of special forms such as three vertices of a right triangle. With the
vague convergence, we do not see the mass escaping towards the boundary ∂
 in
the limit L → ∞. In applications, the mass appearing near the boundary is con-
sidered to be fragile under perturbation while the one away from the boundary is
considered to be robust.

The limiting measure νq may be trivial. Indeed, for Čech complexes, νq = 0 for
q ≥ N . This is just because there is no configuration in RN that realizes the qth
homology class for q ≥ N . In order to characterize the support of νq , we introduce
the notion of realizability of a point in a persistence diagram.

DEFINITION 1.7. We say that a point (b, d) ∈ 
 is realizable by 	 ∈ F (RN)

in the qth persistent homology if (b, d) is contained in the qth persistence diagram
of the κ-filtration over 	, that is, ξq(	)({(b, d)}) ≥ 1. If such 	 exists for (b, d),
we call (b, d) a realizable point. We denote by Rq = Rq(κ) the set of all realizable
points in the qth persistent homology of the κ-filtration.
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EXAMPLE 1.8. For α > 0 and σ ∈ F (RN), we define ασ ∈ F (RN) by ασ =
{αx ∈ RN : x ∈ σ }. It is easy to see that if κ is homogeneous in the sense that
κ(ασ) = ακ(σ ) for every α > 0 and σ ∈ F (RN), then Rq(κ) forms a cone in 
.
Since both κC and κR given in Example 1.3 are homogeneous, we can see that
Rq(κC) and Rq(κR) are cones for every q ≥ 0. In particular, for Čech complexes,
we have

Rq(κC) =

⎧⎪⎪⎨⎪⎪⎩
{0} × (0,∞] if q = 0,{
(b, d) : 0 < b < d < ∞}

if q = 1,2, . . . ,N − 1,

∅ if q = N,N + 1, . . . .

(1.7)

The sketch of the proof is given at the end of Section 2.2.

It is clear that suppνq ⊂ Rq(κ). Indeed, if x /∈ Rq(κ), there exists ε > 0 such
that ξq,L(Bε(x)) = 0, where Bε(x) is the open ε-neighborhood of x. It follows
from the vague convergence (1.5) that νq(Bε(x)) = 0. Therefore, x /∈ suppνq . In
Theorem 4.7, we give sufficient conditions for a point in Rq(κ) to be in the support
of νq . The following result, as a consequence of that general theorem, states that
suppνq coincides with Rq(κ) under conditions that κ is Lipschitz continuous and
all local densities of the point process � are almost surely positive with respect to
the Lebesgue measures.

THEOREM 1.9. Let � be a stationary point process on RN and � its prob-
ability distribution. Assume that for every compact set � ⊂ RN , the restriction
�|� on � is absolutely continuous with respect to �|� and the Radon–Nikodym
density d�|�/d�|� is strictly positive �|�-almost surely, where � is the distri-
bution of a homogeneous Poisson point process on RN . In addition, assume that
κ on F (RN) is Lipschitz continuous with respect to the Hausdorff distance. Then
suppνq = Rq(κ) for every q ≥ 0.

EXAMPLE 1.10. All finite configurations are allowed to appear in a point pro-
cess if the positivity assumption in Theorem 1.9 holds. There are many “natural”
stationary point processes satisfying the assumption. Homogeneous Poisson point
processes, a certain class of Gibbs point processes, Ginibre point processes and
the zeros of the Gaussian entire function X(z) =∑∞

n=0(n!)−1/2anz
n with {an}n≥0

being i.i.d. complex standard Gaussian random variables, etc. are such exam-
ples. Thus if κ is Lipschitz continuous with respect to the Hausdorff distance,
then suppνq = Rq(κ) for such point processes. In particular, for Čech filtrations,
suppνq = 
 for q = 1, . . . ,N − 1 and suppν0 = {0} × (0,∞]. On the other hand,
the shifted lattice considered in Example 4.3 does not satisfy the assumption and
suppνq for the Čech filtration turns out to be a singleton in 
.

See Example 4.9 for more explanation about positivity. One can also refer to [7]
and references therein for Gibbs point processes and other concrete examples.
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For the proof of Theorem 1.5, we exploit a general theory of Radon measures
for the vague convergence (cf. [1, 24]). In particular, we show that the convergence
of the values of measures on the class {Ar,s = [0, r] × (s,∞] : 0 ≤ r ≤ s < ∞} is
enough to ensure the vague convergence of random measures in Theorem 1.5. The
value of ξq,L on Ar,s is nothing but the persistent Betti number

βr,s
q

(
K(��L

)
)= ξq,L

([0, r] × (s,∞])= ∣∣{(bi, di) : 0 ≤ bi ≤ r ≤ s < di

}∣∣.
Here, |A| denotes the cardinality of a finite set A. Later, |A| is also used to denote
the Lebesgue measure of a set A ∈ RN . The meaning is clear from the context.
Hence Theorem 1.5 follows from the following strong law of large numbers for
persistent Betti numbers.

THEOREM 1.11. Assume that � is a stationary point process having all finite
moments. Then, for any 0 ≤ r ≤ s < ∞ and q ≥ 0, there exists a constant β̂r,s

q such
that

E[βr,s
q (K(��L

))]
LN

→ β̂r,s
q as L → ∞.

In addition, if � is ergodic, then

βr,s
q (K(��L

))

LN
→ β̂r,s

q almost surely as L → ∞.

Note that, for r = s, the persistent Betti number becomes the usual Betti number,
that is, βr,r

q (K(��L
)) = βq(K(��L

, r)). Hence, this result is a generalization of
Lemma 3.3 and Theorem 3.5 in [39]. The positivity of the limiting persistent Betti
number β̂r,s

q is related to the previous problem of characterizing the support of νq .

In particular, β̂r,s
q ≥ νq([0, r) × (s,∞]) > 0, if suppνq touches [0, r) × (s,∞].

Note also that when q = 0, all the measures ξ0,L are supported on {0} × (0,∞]
and β

r,s
0 (K(��L

)) = β0(K(��L
, s)) just counts the number of connected compo-

nents in the geometric graph G(��L
, s) = (V ,E), where

V = ��L
, E = {

(x, y) ∈ V × V : κ(x, y) ≤ s
}
.

In this case, the limiting measure ν0 is also supported on (0,∞] with the following
explicit formula:

ν0
(
(s,∞])= λE0[hs

(
0,� ∪ {0})],

where λ is the intensity of �, E0 is the reduced Palm measure at 0, and hs(x,�)

is the reciprocal of the size of the connected components containing x in G(�, s).
Refer to Section 13.7 in [30] for more about the law of large numbers as well

as the central limit theorem for β0 of the Čech or Rips complex built over Poisson
point processes and binomial point processes.

For Poisson point processes, we also generalize the central limit theorem in [39]
for Betti numbers to persistent Betti numbers as follows.
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THEOREM 1.12. Let � be a homogeneous Poisson point process on RN with
unit intensity. Then for any 0 ≤ r ≤ s < ∞ and q ≥ 0, there exists a constant
σ 2

r,s = σ 2
r,s(q) such that

βr,s
q (K(��L

)) −E[βr,s
q (K(��L

))]
LN/2

d→ N
(
0, σ 2

r,s

)
as L → ∞.

We remark that the proof of the central limit theorem for (usual) Betti numbers
in [39] uses the Mayer–Vietoris exact sequence to estimate the effect of one point
adding on the Betti number. However, in the setting of persistent homology, al-
though we can obtain the Mayer–Vietoris exact sequence for each parameter r , we
do not have the exactness property with regard to the parameter change. Hence, the
same technique may not be applicable to the case of persistent Betti numbers. In-
stead, we give an alternative (and elementary) proof for the generalization. Remark
also that by establishing the strong stabilization, the central limit theorem for Betti
numbers of Čech complexes built over binomial point processes is also established
in [39]. In this case, the positivity of the limiting variance is also proved under a
certain condition on radius parameter r . The positivity problem for the limiting
variance is left open in case of persistent Betti numbers of general κ-complexes
built over homogeneous Poisson point processes.

The organization of this paper is given as follows. Necessary concepts and prop-
erties of persistent homology and random measures are explained in Section 2 and
Section 3, respectively. Theorem 4.7 which characterizes the support of limiting
persistence diagrams is stated and proved in Section 4.3. The proofs of Theo-
rems 1.5, 1.9, 1.11 and 1.12 are given in Sections 4.2, 4.3, 4.1 and 5 in order.
In Section 6, we summarize the conclusions of the paper and show some future
works.

2. Geometric models and persistent homology. In this section, we assume
fundamental properties about simplicial complexes and their homology. For de-
tails, the reader may refer to Appendix B or [9, 15].

2.1. Geometric models for point processes. Let κ : F (RN) → [0,∞] be a
function satisfying the three conditions explained in Section 1, where F (RN) is
the collection of all finite subsets in RN . For such a function κ , the κ-filtration
K(�) = {K(�, t)}t≥0 can be defined in the same way as in (1.2) for an infinite
point configuration (or a point process) � ⊂ RN as well as for a finite one.

We remark that all vertices (i.e., 0-simplices) exist at t = 0. Also, all simplices
in K(�, t) possessing a point x must lie in the ball B̄ρ(t)(x) since {x, x1, . . . , xq} ∈
K(�, t) with Assumption (K3) implies that ‖x−xi‖ ≤ ρ(κ(x, xi)) ≤ ρ(t) for all i.
Here, B̄r (x) = {y ∈ RN : ‖y − x‖ ≤ r} is the closure of Br(x) which denotes the
open ball of radius r centered at x. Hence, for each parameter t , the presence of
simplices containing x is localized in B̄ρ(t)(x).
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This geometric model includes some of the standard models studied in random
topology. For instance, the Čech complex C(�, t) is a simplicial complex with the
vertex set � and, for each parameter t , it is defined by

σ = {x0, . . . , xq} ∈ C(�, t) ⇐⇒
q⋂

i=0

B̄t (xi) �= ∅

for q-simplices. Similarly, the Rips complex R(�, t) with a parameter t is defined
by

σ = {x0, . . . , xq} ∈ R(�, t) ⇐⇒ B̄t (xi) ∩ B̄t (xj ) �=∅ for 0 ≤ i < j ≤ q.

It is clear that these geometric models are generated by the functions given in
Example 1.3. We note that R(�, t/2) ⊂ C(�, t) ⊂ R(�, t) since κR ≤ κC ≤ 2κR .

2.2. Persistent homology. Let K = {Kr : r ≥ 0} be a (right continuous) fil-
tration of simplicial complexes, that is, Kr ⊂ Ks for r ≤ s and Kr = ⋂

r<s Ks .
In this paper, the homology Hq(K) of a simplicial complex K is defined on
an arbitrary field F. For r ≤ s, we denote the linear map on homologies in-
duced from the inclusion Kr ↪→ Ks by ιsr : Hq(Kr) → Hq(Ks). The qth persis-
tent homology Hq(K) = (Hq(Kr), ι

s
r ) of K is defined by the family of homologies

{Hq(Kr) : r ≥ 0} and the induced linear maps ιsr for all r ≤ s.
A homological critical value of Hq(K) is a number r > 0 such that the linear

map ιr+ε
r−ε : Hq(Kr−ε) → Hq(Kr+ε) is not isomorphic for any sufficiently small

ε > 0. The persistent homology Hq(K) is said to be tame if dimHq(Kr) < ∞ for
any r ≥ 0 and the number of homological critical values is finite. A tame persistent
homology Hq(K) has a nice decomposition property.

THEOREM 2.1 ([40]). Assume that Hq(K) is a tame persistent homology.
Then there uniquely exist indices p ∈ Z≥0 and bi, di ∈ R≥0 = R≥0 � {∞} with
bi < di , i = 1,2, . . . , p, such that the following isomorphism holds:

Hq(K) �
p⊕

i=1

I (bi, di).(2.1)

Here, I (bi, di) = (Ur, f
s
r ) consists of a family of vector spaces

Ur =
{

F, bi ≤ r < di,

0 otherwise,

and the identity map f s
r = idF for bi ≤ r ≤ s < di .

Each summand I (bi, di) in (2.1) is called a generator of the persistent homol-
ogy and (bi, di) is called its birth-death pair. From the unique decomposition in

Theorem 2.1, we define the qth persistence diagram as a multiset in R
2
≥0,

Dq(K) = {
(bi, di) ∈ R

2
≥0 : i = 1, . . . , p

}
.(2.2)
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By denoting the multiplicity of the point (b, d) in (2.2) by mb,d ∈ N0 =
{0,1,2, . . . }, we can also express the decomposition (2.1) as

Hq(K) � ⊕
(b,d)

I (b, d)mb,d .

Later, we identify a persistence diagram Dq(K) as an integer-valued Radon mea-
sure ξ =∑

(b,d) mb,dδ(b,d) rather than as a multiset.
Intuitively speaking, the persistent homology Hq(K) characterizes topological

features (components, rings, cavities, etc.) in K in a multiscale way, and indeed,
the interval decompositions (2.1) provide this viewpoint. Namely, each interval
I (b, d) means that a topological feature appears at the scale r = b, persists for
b ≤ r < d , and disappears at r = d . Then the persistence diagram Dq(K) is widely
used for a compact visualization of this multiscale characterization.

Although our target object K(�) is built over infinite points, all persistent ho-
mologies studied in this paper are defined on the geometric models with finite
points. Hence, the persistent homology becomes tame, and the persistence dia-
grams are well defined.

EXAMPLE 2.2. In Figure 2, two (1-dim)cycles appear at times 1 and 2 and
disappear at times 3 and 4. The representation corresponding to H1(K) is given as

0 → F(c1 + c2) → F(c1) ⊕ F(c2) → F(c1) ⊕ F(c2)/F(c1)

→ F(c1) ⊕ F(c2)/F(c1) ⊕ F(c2) � 0,

where c1 = 〈12〉 + 〈23〉 + 〈31〉 and c2 = 〈13〉 + 〈34〉 + 〈41〉 and each arrow is the
linear map induced by inclusion. As pairs of birth-death times, we have (1,4) and
(2,3) since the decomposition of the representation is given by

H1(K) = (
0 → F(c1 + c2) → F(c1 + c2) → F(c1 + c2) → 0

)
⊕ (

0 → 0 → F(c1) → 0 → 0
)
.

REMARK 2.3. More generally, a persistence module U = (Ua, f
b
a ) on R≥0

is defined by a sequence of general vector spaces Ua,a ≥ 0, and linear maps
f b

a : Ua → Ub for a ≤ b satisfying f c
a = f c

b ◦ f b
a . Under the same definition of

the tameness, we can similarly define its persistence diagrams.

FIG. 2. A filtration of simplicial complexes and the 1st persistence diagram
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REMARK 2.4. There is another definition of persistent homology as graded
modules over a monoid ring for the continuous parameter (resp., a polynomial
ring for the discrete parameter); see, for example, [18].

REMARK 2.5. The persistent homology Hq(K) defined over the whole � is
not tame in general while Hq(KL) defined over a restriction ��L

is tame. Theo-
rem 1.5 informally says that

1

LN
Hq(KL)

�→ Hq(K) =
∫ ⊕



I (x, y)νq(dx dy),

where KL = {K(��L
, t)}t≥0, and

∫⊕

 denotes the direct integral of interval repre-

sentations (cf. [33]).

REMARK 2.6. In our paper, we use the persistence diagram for represent-
ing topological information obtained from filtrations. People sometimes use the
so-called barcode representation in which each persistence interval I (b, d) is rep-
resented as a barcode [b, d] (cf. [38]). We consider the marginal measure of per-
sistence diagram on death times (also on birth times), that is, the induced mea-
sure ξ (death) obtained from a measure ξ on 
 by the projection 
 � (x, y) �→
y ∈ (0,∞]. The marginal measure ξ

(death)
q,L of a persistence diagram ξq,L induces

a (scaled) right-continuous step function fq,L(t) = L−Nξ
(death)
q,L ([0, t]), which cor-

responds to the one obtained by simulation in [38]. The function fq,L(t) is also
expected to converge to a limit fq,∞(t) as L → ∞, however, it does not necessar-

ily coincide with fq(t) := ν
(death)
q ([0, t]) because of the mass escaping to ∂
.

In Example 1.8, we showed the set Rq(κC) of the realizable points in (1.7) for
the Čech filtration. Here, we give a brief sketch of the proof. The cases q = 0 and
q ≥ N are easily derived. For q = 1, . . . ,N − 1, we show that any birth-death
pair (b, d) with 0 < b < d < ∞ is realizable by explicitly constructing the points
	 ∈ F (RN) realizing (b, d) (see Figure 3 for q = 1). Indeed, let S

q
d ⊂ RN be a

q-dimensional sphere with radius d and take a (q − 1)-dimensional sphere S
q−1
b

with radius b so that S
q
d = H+ � S

q−1
b � H−, where H+ (resp., H−) is the upper

(resp., lower) hemisphere with ∂H± = S
q−1
b and H+ is chosen to be the smaller

one. We choose points 	+ on S
q−1
b and 	− on H− such that:

FIG. 3. For (b, d) = (5,10) when q = 1, the set
⋃

x∈	 B̄r (x) is drawn for r = 0,1,2,5,8,10.
A cycle appears at r = 5 and disappears at r = 10.
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(i)
⋃

x∈	− B̄r (x) covers H̄− earlier than r = b;

(ii)
⋃

x∈	+ B̄b(x) covers S
q−1
b and is contractive;

(iii)
⋃

x∈	 B̄r(x) provides the generator of q-dimensional homology homeo-
morphic to S

q
d , where 	 = 	+ � 	−.

Then the birth-death pair of the generator
⋃

x∈	 B̄r(x) is exactly (b, d).

2.3. Persistent Betti numbers. For a filtration K, the (r, s)-persistent Betti
number [10] is defined by

βr,s
q (K) = dim

Zq(Kr)

Zq(Kr) ∩ Bq(Ks)
(r ≤ s),(2.3)

where Zq(Kr) and Bq(Kr) are the qth cycle group and boundary group, respec-
tively. We remark that this is equal to the rank of ιsr : Hq(Kr) → Hq(Ks), because

im ιsr �
Zq(Kr)

Bq(Kr)

Zq(Kr)∩Bq(Ks)

Bq(Kr)

� Zq(Kr)

Zq(Kr) ∩ Bq(Ks)
.

Thus, from the decomposition of the persistent homology, we have

βr,s
q (K) = ∑

b≤r,d>s

mb,d .

This means that the (r, s)-persistent Betti number βr,s
q (K) counts the number of

birth-death pairs in the persistence diagram Dq(K) located in the gray region of
Figure 4.

LEMMA 2.7. Let U = (Ua, f
b
a ) be a persistence module on R≥0 and let V =

(Va, g
b
a) be its truncation on the interval [r, s], meaning that

Va =

⎧⎪⎪⎨⎪⎪⎩
Ur, a ≤ r,

Ua, r ≤ a ≤ s,

Us, a ≥ s,

gb
a =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f b

a , r ≤ a ≤ b ≤ s,

f s
a , r ≤ a ≤ s ≤ b,

f b
r , a ≤ r ≤ b ≤ s,

f s
r , a ≤ r ≤ s ≤ b.

(2.4)

FIG. 4. β
r,s
q (K) counts the number of generators in the gray region.
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For interval decompositions U � ⊕I (b, d)mb,d and V� ⊕I (b, d)nb,d , let

βr,s(U) = ∑
b≤r,d>s

mb,d, β0,∞(V) = n0,∞.

Then βr,s(U) = β0,∞(V).

PROOF. This is because βr,s(U) = rankf s
r = β0,∞(V). �

Here, we recall the following basic facts in linear algebra for later use.

LEMMA 2.8. Let A, B , U , V be subspaces of a vector space satisfying A ⊂ U

and B ⊂ V . Then

dim
U ∩ V

A ∩ B
≤ dim

U

A
+ dim

V

B
.

PROOF. It follows from the formulas dim(U ∩ V ) + dim(U + V ) = dimU +
dimV and dim(U/A) = dimU − dimA. �

LEMMA 2.9. Let D = [AB] be a matrix composed by submatrices A and B .
Let � be the number of columns in B . Then

rankD ≤ rankA + �, dim kerD ≤ dim kerA + �.

PROOF. Let B = [b1 · · ·b�], where bi is the ith column vector of B , and set
D(i) = [Ab1 · · ·bi]. Then, for each i, we have

rankD(i) ≤ rankD(i−1) + 1, dim kerD(i) ≤ dim kerD(i−1) + 1.

Hence, in total, we have the desired inequalities. �

Now, we show a basic estimate on the persistent Betti number for nested filtra-
tions K ⊂ K̃. First, we note the following property.

LEMMA 2.10. Let K be a filtration. For a fixed a > 0, let K̃ = {K̃t : t ≥ 0} be
a filtration given by

K̃t =
{
Kt, t < a,

Kt ∪ σ, t ≥ a,

where σ is a new simplex added on Ka . Then βr,s
q (K̃) = βr,s

q (K) for dimσ �=
q, q + 1. For dimσ = q, q + 1,

∣∣βr,s
q (K̃) − βr,s

q (K)
∣∣≤ {

0, K̃r = Kr and K̃s = Ks,

1 otherwise.



2754 Y. HIRAOKA, T. SHIRAI AND K. D. TRINH

PROOF. We first note that

βr,s
q (K̃) − βr,s

q (K) = dimZq(K̃r) − dimZq(K̃r) ∩ Bq(K̃s)

− (
dimZq(Kr) − dimZq(Kr) ∩ Bq(Ks)

)
= dim

Zq(K̃r)

Zq(Kr)
− dim

Zq(K̃r) ∩ Bq(K̃s)

Zq(Kr) ∩ Bq(Ks)
.

Hence, the statement is trivial for dimσ �= q, q + 1. Furthermore, when K̃r = Kr

and K̃s = Ks , we also have βr,s
q (K̃) = βr,s

q (K).
Let dimσ = q . Then it follows from Lemma 2.9 that

dim
Zq(K̃r)

Zq(Kr)
= dimZq(K̃r) − dimZq(Kr) = 0 or 1,

dim
Bq(K̃s)

Bq(Ks)
= 0.

Also, from Lemma 2.8, we have

0 ≤ dim
Zq(K̃r) ∩ Bq(K̃s)

Zq(Kr) ∩ Bq(Ks)
≤ dim

Zq(K̃r)

Zq(Kr)
+ dim

Bq(K̃s)

Bq(Ks)
≤ dim

Zq(K̃r)

Zq(Kr)
.

Therefore, |βr,s
q (K̃) − βr,s

q (K)| ≤ 1. The statement for dimσ = q + 1 is similarly
proved. �

LEMMA 2.11. Let K = {Kt }t≥0 and K̃ = {K̃t }t≥0 be filtrations with Kt ⊂ K̃t

for t ≥ 0. Then∣∣βr,s
q (K̃) − βr,s

q (K)
∣∣≤ ∑

j=q,q+1

(|K̃s,j \ Ks,j | +
∣∣{σ ∈ Ks,j \ Kr,j : t̃σ ≤ r}∣∣),

where K̃t,j (or Kt,j ) is the set of j -simplices in K̃t (or Kt ), and t̃σ (or tσ ) is the
birth time of σ in the filtration K̃ (or K).

PROOF. We first decompose K̃s \ Kr = Y � Y c by

Y = (K̃s \ Ks) � {σ ∈ Ks \ Kr : t̃σ ≤ r}, Y c = {σ ∈ Ks \ Kr : r < t̃σ ≤ tσ }.
We use the same notation Yj for the set of j -simplices in Y . For the simplices in
K̃s \ Kr = {σi}Li=1, we assign their indices so that the birth times are in increas-
ing order t̃σ1 ≤ · · · ≤ t̃σL

and Kr ∪ {σ1, . . . , σ�} becomes a simplicial complex for
each �. We note that t̃σ ≤ tσ . Furthermore, it suffices to consider the truncations of
K and K̃ on [r, s] from Lemma 2.7.
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Now, we inductively construct a sequence of filtrations K = K
0 ⊂ K

1 ⊂ · · · ⊂
K

L = K̃. The filtration K
i = {Ki

t : t ≥ 0} is given by adding a simplex σi to K
i−1

at t̃σi
, that is,

Ki
t =

{
Ki−1

t , t < t̃σi
,

Ki−1
t ∪ {σi}, t ≥ t̃σi

.

Then it follows from Lemma 2.10 that |βr,s
q (Ki ) − βr,s

q (Ki−1)| ≤ 1 for σi ∈ Y ,
since Ki

r �= Ki−1
r or Ki

s �= Ki−1
s holds. On the other hand, Lemma 2.10 implies

βr,s
q (Ki) = βr,s

q (Ki−1) for σ ∈ Y c. Therefore,

∣∣βr,s
q (K̃) − βr,s

q (K)
∣∣≤ L∑

i=1

∣∣βr,s
q

(
K

i)− βr,s
q

(
K

i−1)∣∣≤ |Yq | + |Yq+1|,

which completes the proof of Lemma 2.11. �

REMARK 2.12. Let �,�̃ ∈ F (RN) with � ⊂ �̃, and tσ and t̃σ be the birth
times of the simplex σ in the κ-filtrations K(�) and K(�̃), respectively. Then
it is obvious that t̃σ = tσ if σ ⊂ � ⊂ �̃. Hence, for the estimate |βr,s

q (K(�̃)) −
βr,s

q (K(�))|, the second term obtained in Lemma 2.11 does not appear under this
setting.

3. General theory of random measures. In this section, we give a brief ac-
count of random measures (cf. [24]) and prove Proposition 3.4 which provides a
sufficient condition for the law of large numbers for random measures to hold. The
notion of convergence-determining class for vague convergence plays an important
role in Proposition 3.4. We discuss it separately in Appendix A.

Let S be a locally compact Hausdorff space with countable basis and S be the
Borel σ -algebra on S. It is well known that S is a Polish space, that is, a complete
separable metrizable space. If needed, we take a metric ρ which makes S complete
and separable. We denote by B(S) the ring of all relatively compact sets in S .
A measure μ on (S,S) is said to be a Radon measure if μ(B) < ∞ for every
B ∈ B(S). Let M(S) be the set of all Radon measures on (S,S) and M(S) be
the σ -algebra generated by the mappings M(S) � μ �→ μ(B) ∈ [0,∞) for every
B ∈ B(S).

We say that a sequence {μn}n≥1 ⊂ M(S) converges to μ ∈ M(S) vaguely (or
in the vague topology) if 〈μn,f 〉 → 〈μ,f 〉 for every continuous function f with
compact support, where 〈μ,f 〉 = ∫

S f (x) dμ(x). In this case, we write μn
v→ μ.

The space M(S) equipped with the vague topology again becomes a Polish space
and its Borel σ -algebra coincides with M(S).

We denote by N(S) the subset in M(S) of all integer-valued Radon measures
on S. Each element in N(S) can be expressed as a sum of delta measures, that is,



2756 Y. HIRAOKA, T. SHIRAI AND K. D. TRINH

μ = ∑
i δxi

∈ N(S). We note that the set N(S) is a closed subset of M(S) in the
vague topology.

An M(S)-valued [resp., N(S)-valued] random variable ξ = ξω on a probabil-
ity space (�,F,P) is called a random measure (resp., point process) on S. If
λ1(A) := E[ξ(A)] < ∞ for all A ∈ B(S), then λ1 defines a Radon measure and
is referred to as the mean measure, or the intensity measure of ξ . Sometimes we
denote it by E[ξ ].

In this paper, two kinds of point processes will appear. One is point processes

on RN as spatial point data and the other is point processes on 
 = {(x, y) ∈ R
2 :

0 ≤ x < y ≤ ∞} as persistence diagrams. The former will be denoted by the upper
case letters like � and the latter by the lower case letters like ξ .

The point process � on RN is called stationary, if the distribution P�−1 is
invariant under translations, that is, P�−1

x = P�−1 for any x ∈ RN , where �x is
the translated point process defined by �x(B) = �(B − x) for B ∈ B(RN). For
A ⊂ M(RN), let Ax = {μx : μ ∈ A} be a set of translated measures defined by
μx(B) = μ(B − x). Given a point process �, let I be the translation invariant
σ -field in N(RN), that is, the class of subsets I ⊂ N(RN) satisfying

P�−1((I \ Ix) ∪ (Ix \ I )
)= 0

for all x ∈ RN . Then � is called ergodic if I is trivial, that is, for every I ∈ I ,
P�−1(I ) ∈ {0,1}.

From now on and until the end of this section, we fix a space S and write B
and M for B(S) and M(S), respectively. For a subset A ⊂ S, we denote by ∂A

and A◦ the boundary and interior of A, respectively. For a measure μ ∈ M, let
Bμ := {B ∈ B : μ(∂B) = 0} be the class of relatively compact continuity sets of
μ.

LEMMA 3.1 ([24], 15.7.2). Let μ,μ1,μ2, . . . ∈ M. Then the following state-
ments are equivalent:

(i) μn
v→ μ;

(ii) μn(B) → μ(B) for all B ∈ Bμ;
(iii) lim supn→∞ μn(F ) ≤ μ(F) and lim infn→∞ μn(G) ≥ μ(G) for all closed

F ∈ B and open G ∈ B.

LEMMA 3.2 ([24], 15.7.5). A subset C in M is relatively compact in the vague
topology iff

sup
μ∈C

μ(B) < ∞ for every B ∈ B.

A class A ⊂ B is called a convergence-determining class (for vague conver-
gence) if for every μ ∈ M and every sequence {μn} ⊂M, the condition

μn(A) → μ(A) for all A ∈ A ∩ Bμ
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implies the vague convergence μn
v→ μ. A class Aμ ⊂ Bμ is called a convergence-

determining class for μ if for any sequence {μn} ⊂M, the condition

μn(A) → μ(A) as n → ∞ for all A ∈ Aμ,

implies that μn
v→ μ. By definition, a class A is a convergence-determining class

if and only if for any μ ∈ M, Aμ = A ∩ Bμ is a convergence-determining class
for μ.

We say that a class C has the finite covering property if any subset B ∈ B can
be covered by a finite union of C -sets.

LEMMA 3.3. Let A be a convergence-determining class with finite covering
property. Let {μn} be a sequence of measures in M. If μn(A) converges to a finite
limit for any A ∈ A , then there exists a measure μ to which the sequence {μn}
converges vaguely.

PROOF. For any relatively compact set B ∈ B, we can find a finite cover
{Ai}mi=1 ⊂ A of B so that

lim sup
n→∞

μn(B) ≤ lim sup
n→∞

μn

(
m⋃

i=1

Ai

)
≤ lim

n→∞
m∑

i=1

μn(Ai) < ∞.

Therefore, the sequence {μn}n≥1 is relatively compact by Lemma 3.2, and hence,
there is a subsequence {μnk

} and μ ∈ M such that μnk

v→ μ, that is, μnk
(A) →

μ(A) for every A ∈ Bμ. This together with the assumption implies that μn(A) →
μ(A) for every A ∈ A ∩ Bμ. Consequently, μn converges to μ vaguely from the
definition of convergence-determining class. The proof is complete. �

PROPOSITION 3.4. Let A be a convergence-determining class with finite cov-
ering property and the property that for every μ ∈ M, it contains a countable
convergence-determining class for μ. Let {ξn} be a sequence of random measures
on S, that is, a sequence of M-valued random variables. Assume that:

(i) E[ξn] ∈ M for all n, and that
(ii) for every A ∈ A , there exists cA ∈ [0,∞) such that E[ξn(A)] → cA as

n → ∞.

Then there exists a unique measure μ ∈ M such that the mean measure E[ξn]
converges vaguely to μ and μ(A) = cA for A ∈ A ∩ Bμ.

Assume further that for every A ∈ A ,

ξn(A) → cA almost surely as n → ∞.

Then {ξn} converges vaguely to μ almost surely.
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PROOF. By Lemma 3.3, there exists a unique measure μ such that E[ξn] con-
verges vaguely to μ as n → ∞, and hence μ(A) = cA for A ∈ A ∩ Bμ.

Now let Aμ ⊂ A be a countable convergence-determining class for μ. Then
almost surely

ξn(A) → μ(A) as n → ∞, for all A ∈ Aμ,

which implies that the sequence {ξn} converges vaguely to μ almost surely. The
proof is complete. �

4. Convergence of persistence diagrams.

4.1. Proof of Theorem 1.11. Let � be a stationary point process on RN having
all finite moments. Let Fq(�A, r) be the number of q-simplices in K(�A, r) and
Fq(�, r;A) be the number of q-simplices in K(�, r) with at least one vertex in
A ⊂ RN . Recall that every q-simplex in K(�, r) containing x must lie in the
closed ball B̄ρ(r)(x). Therefore, similar to [39], Lemma 3.1, there exists a constant
Cq,r such that

E
[
Fq(�A, r)

]≤ E
[
Fq(�, r;A)

]≤ Cq,r |A|
for all bounded Borel sets A, where |A| is the Lebesgue measure of A.

We divide �mM into mN rectangles that are congruent to �M and write as
follows:

�mM =
mN⊔
i=1

(�M + ci),

where ci is the center of the ith rectangle. We compare K(��mM
) with a smaller

filtration K
◦(��mM

) :=⊔mN

i=1 K(��M+ci
).

Let ψ(L) = E[βr,s
q (K(��L

))] for r ≤ s. By Lemma 2.11, we have

(4.1)
∣∣βr,s

q

(
K(��mM

)
)− βr,s

q

(
K

◦(��mM
)
)∣∣≤ q+1∑

j=q

mN∑
i=1

Fj (�(∂�M)(ρ(s))+ci
, s).

Here, for A ⊂ RN , we write A(t) = {x ∈ RN : infy∈A ‖x − y‖ ≤ t}. Since
E[Fj (�(∂�M)(ρ(s))+ci

, s)] = O(|(∂�M)(ρ(s)) + ci |) = O(MN−1) as M → ∞, we
have

(4.2)
ψ(mM)

(mM)N
= ψ(M)

MN
+ O

(
M−1).

Moreover, for L > L′,

∣∣βr,s
q

(
K(��L

)
)− βr,s

q

(
K(��L′ )

)∣∣≤ q+1∑
j=q

Fj (��L
, s;�L \ �L′)
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and

E
[
Fj (��L

, s;�L \ �L′)
]= O

(|�L \ �L′ |)= O
((

L − L′)LN−1).
Then, for fixed M > 0, taking m ∈N such that mM ≤ L < (m + 1)M , we see that

(4.3)
ψ(L)

LN
= ψ(mM)

(mM)N
+ O

(
ML−1).

It follows from (4.2) and (4.3) that {L−Nψ(L)}L≥1 is a Cauchy sequence by taking
sufficient large M first and then L, which completes the first part of the proof.

Let us assume now that � is ergodic. Since the arguments are similar to those
in the proof of Theorem 3.5 in [39], we only sketch main ideas. By the multidi-
mensional ergodic theorem, we see that almost surely as m → ∞,

1

mN
βr,s

q

(
K

◦(��mM
)
)= 1

mN

mN∑
i=1

βr,s
q

(
K(��M+ci

)
)→ E

[
βr,s

q

(
K(��M

)
)]

,

and for j = q, q + 1,

1

mN

mN∑
i=1

Fj (�(∂�M)(ρ(s))+ci
, s) → E

[
Fj (�(∂�M)(ρ(s)) , s)

]= O
(
MN−1).

Remark here that the above equations hold for all except a countable set of M (cf.
[32], Theorem 1). Therefore, it follows from (4.1) that

lim sup
m→∞

±1

(mM)N
βr,s

q

(
K(��mM

)
)≤ ±1

MN
E
[
βr,s

q

(
K(��M

)
)]+ O

(
M−1).

The rest of the proof is similar to the last step in the first part by noting that
the following laws of large numbers for Fj (��L

, s), j = q, q + 1, hold (cf. [39],
Lemma 3.2),

Fj (��L
, s)

Lj
→ F̂j (s) almost surely as L → ∞.

This completes the second part of the proof. �

COROLLARY 4.1. Let � be a stationary point process on RN having all
finite moments, and ξq,L be the point process on 
 corresponding to the qth
persistence diagram for K(��L

). Then, for every rectangle of the form R =
(r1, r2] × (s1, s2], [0, r1] × (s1, s2] ⊂ 
, there exists a constant CR ∈ [0,∞) such
that

1

LN
E
[
ξq,L(R)

]→ CR as L → ∞.

In addition, if � is ergodic, then

1

LN
ξq,L(R) → CR almost surely as L → ∞.
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PROOF. It is a direct consequence of Theorem 1.11 because for R = (r1, r2]×
(s1, s2],

ξq,L(R) = βr2,s1
q

(
K(��L

)
)− βr2,s2

q

(
K(��L

)
)

+ βr1,s2
q

(
K(��L

)
)− βr1,s1

q

(
K(��L

)
)
,

and for R = [0, r1] × (s1, s2],
ξq,L(R) = βr1,s1

q

(
K(��L

)
)− βr1,s2

q

(
K(��L

)
)
. �

4.2. Proof of Theorem 1.5. Let S = 
 = {(x, y) ∈ R
2 : 0 ≤ x < y ≤ ∞}. Set

A = {
(r1, r2] × (s1, s2], [0, r1] × (s1, s2] ⊂ 
 : 0 ≤ r1 < r2 ≤ s1 < s2 ≤ ∞}

.

We will show in Corollary A.3 that A is a convergence-determining class which
satisfies the condition in Proposition 3.4. Theorem 1.5 then follows from Proposi-
tion 3.4 and Corollary 4.1. �

DEFINITION 4.2. We call the limiting Radon measure νq ∈ M(
) in The-
orem 1.5 the qth persistence diagram for a stationary ergodic point process �

on RN .

EXAMPLE 4.3. Let � be a randomly shifted ZN -lattice with intensity 1,
that is, � = ZN + U , where U is a uniform random variable on the unit cube
[0,1]N . Then � is a stationary ergodic point process in RN . We compute the
limiting persistence diagram νq of the Čech filtration C(�) = {C(�, r)}r≥0 for
q = 1,2, . . . ,N − 1.

For this purpose, we introduce a filtration C̄(L) = {C̄(L, r)}r≥0 of cubical com-
plexes by

C̄(L, r) =

⎧⎪⎪⎨⎪⎪⎩
CL(L, q),

√
q

2
≤ r <

√
q + 1

2
,

CL(L,N), r ≥
√

N

2
,

where CL(L,N) is the cubical complex consisting of all the elementary cubes
in [0,L] × · · · × [0,L] ⊂ RN , and CL(L, q) is the q-dimensional skeleton of
CL(L,N). Here, a cube Q = I1 × · · · × IN ⊂ RN consisting of Ik = [a, a] or
Ik = [a, a + 1] for some a ∈ Z is called an elementary cube [21]. From the station-
arity of � and the homotopy equivalence between C̄(L, r) and C(ZN ∩[0,L]N, r),
it suffices to compute the persistence diagram by using the filtration C̄(L). We also
note that (

√
q/2,

√
q + 1/2) is the only birth-death pair for the qth persistence di-

agram. Therefore, all we need to verify is the multiplicity of that pair with respect
to L.
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The Euler–Poincaré formula for X = CL(L, q) is given by

q∑
k=0

(−1)k|Xk| =
q∑

k=0

(−1)kβk(X).(4.4)

The number |Xk| of k-cells in X is given by (see, e.g., [17])

|Xk| =
N∑

p=k

(
p

k

)
Sp(L),

where Sp(x1, . . . , xN) is the elementary symmetric polynomial of degree p and
Sp(L) is an abbreviation for Sp(L, . . . ,L). On the other hand, since X is homotopy
equivalent to a wedge sum of q-spheres, we have β0 = 1 and βk = 0 for k =
1, . . . , q − 1. Then it follows from (4.4) that

βq(X) =
q∑

k=0

(−1)k+q
N∑

p=k

(
p

k

)
Sp(L) + (−1)q+1,

and hence

βq(X)

LN
=

q∑
k=0

(−1)k+q

(
N

k

)
+ O

(
L−1)=

(
N − 1

q

)
+ O

(
L−1).

Therefore, the limiting persistence diagram is given by

νq =
(
N − 1

q

)
δ(

√
q/2,

√
q+1/2).

4.3. The support of νq . In this section, we give some sufficient conditions
both on κ and � to ensure the positivity of the limiting measure νq . We use the
following stability result on persistence diagrams of κ-filtrations (cf. [6, 8]). Here,
the qth persistence diagram of the κ-filtration on 	 ∈ F (RN) is simply denoted
by Dq(	).

LEMMA 4.4. Assume that κ is Lipschitz continuous with respect to the Haus-
dorff distance, that is, there exists a constant cκ such that∣∣κ(σ ) − κ

(
σ ′)∣∣≤ cκdH

(
σ,σ ′)

for σ,σ ′ ∈ F (RN). Then, for 	,	′ ∈ F (RN),

dB

(
Dq(	),Dq

(
	′))≤ cκdH

(
	,	′).

Here, dB and dH denote the bottleneck distance and the Hausdorff distance, re-
spectively.
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See Appendix C for the detail, where we recall definitions of dB and dH and
give a proof of a generalization of this lemma.

Next, we introduce the notion of marker which is a finite point configuration for
finding a specified point in 
.

DEFINITION 4.5. Let � be a bounded Borel set in RN and (b, d) ∈ 
. We say
that 	 ∈ F (RN) is a (b, d)-marker in � for the qth persistent homology (PHq ) if
(i) 	 ⊂ � and (ii) for any � ∈ F (RN)

(4.5) ξq(��c � 	)
({

(b, d)
})≥ ξq(��c)

({
(b, d)

})+ 1.

Here, �c denotes the complement of � in R
N . For a subset A ⊂ 
, we also say

that 	 is an A-marker in � if there exists (b, d) ∈ A such that 	 is a (b, d)-marker
in �.

EXAMPLE 4.6. (i) Assume that a point (b, d) ∈ 
 is realizable by 	 ∈
F (RN). Then there exists M0 > 0 such that 	 is a (b, d)-marker in �M for any
M ≥ M0 because 	 is enough isolated from �c

M for sufficiently large M .
(ii) We note that (1/2,

√
2/2) ∈ 
 is realized in PH1 by{

(0,0), (1,0), (0,1), (1,1)
} ∈ F

(
R2)

in the Čech or Rips filtration. It is easy to see that for each c ∈ �1, 	M =∑
x∈Z2∩�M

δx+c is a (1/2,
√

2/2)-marker in �M for any sufficiently large M , for
example, M = 3.

THEOREM 4.7. Let

Aq,ε,(b,d) :=
∞⋃

M=1

{
��M

is a Bε

(
(b, d)

)
-marker in �M for PHq

}
and

Sq,ε := {
(b, d) ∈ 
 : P(Aq,ε,(b,d)) > 0

}
, Sq := ⋂

ε>0

Sq,ε.

Then, Sq ⊂ suppνq .

Before proving Theorem 4.7, we give a lower bound for νq .

LEMMA 4.8. For a closed set A ⊂ 
,

(4.6) νq(A) ≥ 1

MN
P(��M

is an A-marker in �M for PHq).
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PROOF. Let � be a bounded Borel set in RN and (b, d) ∈ 
. If one could find
disjoint subsets �(1), . . . ,�(k) ⊂ � such that ��(i) is a (b, d)-marker in �(i) for
each i, then

(4.7) ξq(��)
({b, d})≥ k.

Indeed, by using (4.5) successively, we have

ξq(��)
({

(b, d)
})≥ ξq(��\⋃k

j=1 �(j))
({

(b, d)
})+ k ≥ k.

For L > M > 0 and m = �L/M�, we claim that

(4.8) ξq(��L
)(A) ≥

mN∑
i=1

1{��M+ci
is an A-marker in �M + ci for PHq },

where ci ∈ �L, i = 1,2, . . . ,mN are chosen so that �L ⊃ ⊔mN

i=1(�M + ci).
If the right-hand side of (4.8) is equal to k, we have disjoint subsets Ij ⊂
{c1, c2, . . . , cmN }, j = 1,2, . . . , J with

∑J
j=1 |Ij | = k such that for every j =

1,2, . . . , J , ��M+c is a (bj , dj )-marker in �M + c for PHq for any c ∈ Ij . Here,
(bj , dj ) ∈ A,j = 1,2, . . . , J are all distinct. From (4.7), we have

ξq(��L
)(A) ≥

J∑
j=1

ξq(��L
)
({

(bj , dj )
})≥

J∑
j=1

|Ij | = k,

which implies (4.8).
For a closed set A ⊂ 
, from (4.8), we obtain

νq(A) ≥ lim sup
L→∞

1

LN
E
[
ξq(��L

)
]
(A)

≥ lim sup
L→∞

1

LN

mN∑
i=1

P(��M+ci
is an A-marker in �M + ci for PHq)

= 1

MN
P(��M

is an A-marker in �M for PHq).

This completes the proof. �

PROOF OF THEOREM 4.7. If (b, d) ∈ Sq , then for every ε > 0, there exists
M = Mε ∈ N such that

P
(
��M

is a Bε

(
(b, d)

)
-marker in �M for PHq

)
> 0.

From (4.6), we see that νq(B̄ε((b, d))) > 0 for any ε > 0, which implies (b, d) ∈
suppνq . Therefore, Sq ⊂ suppνq . �
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For a bounded set � ⊂ RN , the restriction N(�) of N(RN) on � can be iden-
tified with

⋃∞
k=0 �k/ ∼, where ∼ is the equivalence relation induced by permuta-

tions on coordinates. Let � be the probability distribution of homogeneous Pois-
son point process with unit intensity. It is clear that the local densities, which are
sometimes called Janossy densities, of the restriction of � on � are given by

�|�(dx1 . . . dxn) =
{
e−|�| dx1 dx2 · · ·dxk on �k,

e−|�| on �0 = {∅}.
In other words, for a bounded measurable (local) function f : N(�) → R,

E�[f ] =
∞∑

n=0

1

n!
∫
�n

f (x1, . . . , xn)�|�(dx1 · · ·dxn).

For a probability measure � on N(RN), if �|� is absolutely continuous with
respect to �|� for a bounded set �, then �|� is absolutely continuous with respect
to the Lebesgue measure on each �k for every k; thus the Radon–Nikodym density
d�|�/d�|� is defined a.e. on �k for every k.

PROOF OF THEOREM 1.9. Assume that (b, d) ∈ Rq and it is realizable by
{y1, . . . , ym}. From continuity of persistence diagram in Lemma 4.4, for any
ε > 0 there exists δ > 0 such that ξq({z1, . . . , zm})(Bε({(b, d)})) ≥ 1 for any
(z1, . . . , zm) ∈ Bδ(y1) × · · · × Bδ(ym) and the balls {Bδ(yi)}mi=1 are disjoint. From
Example 4.6(i), there exists M ∈ N such that any {z1, . . . , zm} is a Bε((b, d))-
marker in �M . Hence, we see that

P
(
��M

is a Bε

(
(b, d)

)
-marker in �M for PHq

)
≥ �|�M

(
m⋂

i=1

{
�
(
Bδ(yi) = 1

)}∩
{
�

(
�M

∖ m⋃
i=1

Bδ(yi)

)
= 0

})

= e−|�M |
∫
Bδ(y1)×···×Bδ(ym)

f�M
(z1, . . . , zm) dz1 · · · dzm

> 0,

where f�M
= d�|�M

/d�|�M
. Hence, Rq ⊂ Sq ⊂ suppνq by Theorem 4.7. Since

suppνq ⊂ Rq as mentioned after Example 1.8, we conclude that suppνq = Rq .
�

Point processes are often specified by the local conditional distributions given
a configuration outside, that is, there exists a measurable function q� : N(�) ×
N(�c), called a specification, for each bounded Borel set � ∈ B(RN) such that
for every bounded measurable function f on N(RN)

E�[f |F�c ](ξ) =
∞∑

k=0

1

k!
∫
�k

f (x ∪ ξ�c)q�(x, ξ�c) dx �-a.e.ξ ,
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where F�c is the σ -field generated by the mappings ξ �→ �ξ(A),A ∈ B(�c) and
x ∪ ξ�c denotes δx1 + · · · + δxk

+ ξ�c if x = (x1, x2, . . . , xk). In this case, the local
density of � is given by

(4.9)
d�|�
d�|� (x) = e|�| ·E�

[
q�(x, ξ�c)

]
for x ∈

∞⋃
k=0

�k.

EXAMPLE 4.9. (1) The DLR equations due to Dobrushin–Lanford–Ruelle
provide local conditional distributions of a Gibbs point process. In this formal-
ism, a measurable function U� : N(�) × N(�c) → (−∞,∞] is understood as
the conditional energy of particles given a configuration outside of �, if it satisfies

q�(x, ξ�c) = Z�(ξ)−1e−U�(x,ξ�c ),

where

Z�(ξ) =
∞∑

k=0

1

k!
∫
�k

e−U�(x,ξ�c ) dx.

If there exists B ≥ 0 such that −Bk ≤ U(x, ξ�c) < ∞ for any k ≥ 1, x ∈ �k and
�-a.e. ξ , then it is easy to see that the local density satisfies the positivity condition
in Theorem 1.9. If U is of hard-core type, that is, U(x, ξ�c) = ∞ for all x in some
open set almost surely, then the positivity condition fails.

(2) For the Ginibre point process and the zeros of the Gaussian entire function
given in Example 1.10, Ghosh-Peres [13] showed that both processes exhibit the
so-called “rigidity” meaning that for a bounded Borel set � there exists a nonneg-
ative integer N(ξ�c) ∈ {0,1,2, . . . } which is measurable with respect to F�c such
that q(·, ξ�c) is supported on �N(ξ�c ). Roughly speaking, the number of points
inside � is determined from a given configuration outside of �. Ghosh [12], more-
over, showed that there exist positive constants m(ξ�c) and M(ξ�c) such that al-
most surely

m(ξ�c)
∣∣
(x)

∣∣2 ≤ q�(x, ξ�c) ≤ M(ξ�c)
∣∣
(x)

∣∣2 for a.e. x ∈ �N(ξ�c ),

where 
(x) =∏
1≤i<j≤k(xj − xi) is the Vandermonde determinant. From this in-

equality and (4.9), we have, for any k ≥ 0,
d�|�
d�|� (x) ≥ e|�|

E�

[
m(ξ�c);N(ξ�c) = k

] · ∣∣
(x)
∣∣2 for x ∈ �k.

Since �(ξ(�) = k) > 0 and m(ξ�c) is positive, the left-hand side is positive almost
everywhere on

⋃∞
k=0 �k .

We remark that the Ginibre point process is an important example of determi-
nantal point processes. Determinantal (resp., permanental) point processes pro-
vides an important class of point processes that are negatively (resp., positively)
correlated (cf. [20, 36]). In both cases, the local density can be expressed in terms
of the so-called correlation kernel so that for a given kernel one can basically check
whether the positivity condition is satisfied or not.
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5. Central limit theorem for persistent Betti numbers. In this section, let
� = P be a homogeneous Poisson point process with unit intensity, and we prove
Theorem 1.12. The idea is to apply a result in [31] which shows a central limit
theorem for a certain class of functionals defined on Poisson point processes.

We here summarize necessary properties for functionals to achieve the central
limit theorem. First of all, let us consider a sequence {Wn} of Borel subsets in RN

satisfying the following conditions:

(A1) |Wn| = n for all n ∈ N;
(A2)

⋃
n≥1

⋂
m≥n Wm = RN ;

(A3) limn→∞ |(∂Wn)
(r)|/n = 0 for all r > 0;

(A4) there exists a constant γ > 0 such that diam(Wn) ≤ γ nγ .

Given such a sequence, let W = W({Wn}) be the collection of all subsets A in RN

of the form A = Wn + x for some Wn in the sequence and some point x ∈ RN .
Let H be a real-valued functional defined on F (RN). The functional H is said

to be translation invariant if it satisfies H(X + y) = H(X ) for any X ∈ F (RN)

and y ∈ RN . Let D0 be the add one cost function

D0H(X ) = H
(
X ∪ {0})− H(X ), X ∈ F

(
RN ),

which is the increment in H caused by inserting a point at the origin. The func-
tional H is weakly stabilizing on W if there exists a random variable D(∞) such
that D0H(PAn)

a.s.−→ D(∞) as n → ∞ for any sequence {An ∈ W}n≥1 tending to
RN . The Poisson bounded moment condition on W is given by

sup
0∈A∈W

E
[(

D0H(PA)
)4]

< ∞.

Then we restate Theorem 3.1 in [31] in the following form.

LEMMA 5.1 ([31], Theorem 3.1). Let H be a real-valued functional defined
on F (RN). Assume that H is translation invariant and weakly stabilizing on W ,
and satisfies the Poisson bounded moment condition. Then there exists a constant
σ 2 ∈ [0,∞) such that n−1 Var[H(PWn)] → σ 2 and

H(PWn) −E[H(PWn)]
n1/2

d→ N
(
0, σ 2) as n → ∞.

By using Lemma 5.1, we prove the following theorem.

THEOREM 5.2. Let � = P be a homogeneous Poisson point process with
unit intensity. Assume that the sequence {Wn} satisfies (A1)–(A4). Then for any
0 ≤ r ≤ s < ∞,

βr,s
q (K(PWn)) −E[βr,s

q (K(PWn))]
n1/2

d→ N
(
0, σ 2

r,s

)
as n → ∞.
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In particular, Theorem 1.12 is derived from this theorem by taking Wn = �Ln

with Ln = n1/N .
For the proof of Theorem 5.2, the essential part is to show the weak stabilization

of the persistent Betti number βr,s
q (K(·)) as a functional on F (RN), on which we

focus below.
We remark that, for almost surely, the Poisson point process P consists of infi-

nite points in RN which do not have accumulation points. In view of this property,
we first show a stabilization of persistent Betti numbers in the following determin-
istic setting.

LEMMA 5.3. Let P be a set of points in RN without accumulation points.
Then, for each fixed r ≤ s, there exist constants D∞ and R > 0 such that

D0β
r,s
q

(
K(PB̄a(0))

)= D∞
for all a ≥ R.

PROOF. Let P ′ = P ∪ {0}. Let Kr,a = K(PB̄a(0), r) be the simplicial complex
defined on PB̄a(0) with parameter r , and similarly let K ′

r,a = K(P ′̄
Ba(0)

, r).

From the definition (2.3), D0β
r,s
q (K(PB̄a(0))) can be expressed as

D0β
r,s
q

(
K(PB̄a(0))

)
= dim

Zq(K
′
r,a)

Zq(K ′
r,a) ∩ Bq(K ′

s,a)
− dim

Zq(Kr,a)

Zq(Kr,a) ∩ Bq(Ks,a)

= (
dimZq

(
K ′

r,a

)− dimZq(Kr,a)
)

− (
dimZq

(
K ′

r,a

)∩ Bq

(
K ′

s,a

)− dimZq(Kr,a) ∩ Bq(Ks,a)
)
.

Hence, it suffices to show the stabilization with respect to a for dimZq(Kr,a) and
dim(Zq(Kr,a) ∩ Bq(Ks,a)) separately.

Let us study dimZq(Kr,a). Since the dimension takes nonnegative integer val-
ues, we show the bounded and the nondecreasing properties. First of all, note that
Kr,a ⊂ K ′

r,a , and hence Zq(Kr,a) ⊂ Zq(K
′
r,a). Let us express K ′

r,a as a disjoint
union K ′

r,a = Kr,a � K0
r,a , where K0

r,a is the set of simplices having the point 0,
and let K0

r,a,q = {σ ∈ (K ′
r,a)q : 0 ∈ σ }.

Let ∂q,a and ∂ ′
q,a be the qth boundary maps on Kr,a and K ′

r,a , respectively. Then
we can obtain the following block matrix form

∂ ′
q,a =

[
M1,ρ 0
M2,ρ ∂q,a

]
,(5.1)

where the first columns and rows are arranged by the simplices in K0
r,a,q and

K0
r,a,q−1, and the second columns and rows correspond to the simplices in Kr,a .
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Recall that any simplex σ ∈ K(P, r) containing the point 0 is included in
B̄ρ(r)(0). Hence, the set K0

r,a,q becomes independent of a for a ≥ ρ(r), which
we denote by K0

r,∗,q . From this observation and Lemma 2.9 applied to the matrix
form (5.1), we have

dimZq

(
K ′

r,a

)− dimZq(Kr,a) ≤ ∣∣K0
r,a,q

∣∣= ∣∣K0
r,∗,q

∣∣,
which gives the boundedness.

In order to show the nondecreasing property, let us consider a homomorphism
defined by

f : Zq(K
′
r,a1

)

Zq(Kr,a1)
� [c] �−→ [c] ∈ Zq(K

′
r,a2

)

Zq(Kr,a2)

for a1 ≤ a2. This map is well defined because Zq(Kr,a1) ⊂ Zq(Kr,a2) and
Zq(K

′
r,a1

) ⊂ Zq(K
′
r,a2

) hold. Suppose that f [c] = 0. Then the cycle c ∈ Zq(K
′
r,a1

)

is in Zq(Kr,a2). It means that the q-simplices consisting of c do not contain the
point 0, and hence c ∈ Zq(Kr,a1). This shows that the map f is injective. From
this observation, we have the inequality

dimZq

(
K ′

r,a1

)
/Zq(Kr,a1) ≤ dimZq

(
K ′

r,a2

)
/Zq(Kr,a2),

which leads to the desired nondecreasing property. This completes the proof of the
stabilization of dimZq(Kr,a).

Let us study the stabilization of dim(Zq(Kr,a) ∩ Bq(Ks,a)). The strategy is ba-
sically the same as above. It follows from Lemma 2.8 that

dim
Zq(K

′
r,a) ∩ Bq(K ′

s,a)

Zq(Kr,a) ∩ Bq(Ks,a)
≤ dim

Zq(K
′
r,a)

Zq(Kr,a)
+ dim

Bq(K ′
s,a)

Bq(Ks,a)
.

Then, from the same reasoning used in dimZq(Kr,a), we have the stabilization
|K0

s,a,q+1| = |K0
s,∗,q+1| for large a. Hence, we have the boundedness

dimZq

(
K ′

r,a

)∩ Bq

(
K ′

s,a

)− dimZq(Kr,a) ∩ Bq(Ks,a) ≤ ∣∣K0
r,∗,q

∣∣+ ∣∣K0
s,∗,q+1

∣∣.
Similarly, for sufficiently large a1 ≤ a2, we can show the injectivity of the map

f : Zq(K
′
r,a1

) ∩ Bq(K ′
s,a1

)

Zq(Kr,a1) ∩ Bq(Ks,a1)
−→ Zq(K

′
r,a2

) ∩ Bq(K ′
s,a2

)

Zq(Kr,a2) ∩ Bq(Ks,a2)
, f [c] = [c],

from which the nondecreasing property follows. This completes the proof of the
lemma. �

PROPOSITION 5.4. The functional βr,s
q (K(·)) is weakly stabilizing.

PROOF. Let R > 0 be chosen as in Lemma 5.3 and let {An ∈ W}n≥1 be a
sequence tending to RN . Then there exists n0 ∈ N such that BR(0) ⊂ An for all
n ≥ n0.
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For n ≥ n0, let us set Lr,n = K(PAn, r). Then, since An is bounded, there exists
a > R such that

BR(0) ⊂ An ⊂ Ba(0).

Then, as in the same way used for showing the injectivity in the proof of
Lemma 5.3, we can show

Zq(K
′
r,R)

Zq(Kr,R)
⊂ Zq(L

′
r,n)

Zq(Lr,n)
⊂ Zq(K

′
r,a)

Zq(Kr,a)
,

where Kr,a = K(PB̄a(0), r) as before. Since the dimensions of Zq(K
′
r,R)/Zq(Kr,R)

and Zq(K
′
r,a)/Zq(Kr,a) are equal, for all n ≥ n0

dimZq

(
K ′

r,R

)− dimZq(Kr,R) = dimZq

(
L′

r,n

)− dimZq(Lr,n).

We can also show that dimZq(L
′
r,n) ∩ Bq(L

′
s,n) − dimZq(Lr,n) ∩ Bq(Ls,n) is in-

variant for n ≥ n0 in a similar manner. This completes the proof. �

PROOF OF THEOREM 5.2. For fixed r ≤ s, we regard the persistent Betti num-
ber βr,s

q (K(·)) as a functional on F (RN), and check the three conditions stated in
Lemma 5.1. First, the translation invariance is obvious, because κ is translation
invariant. Next, let us consider the Poisson bounded moment condition on W . We
note the following estimate:∣∣D0β

r,s
q

(
K(PA)

)∣∣= ∣∣βr,s
q

(
K
(
PA ∪ {0}))− βr,s

q

(
K(PA)

)∣∣
≤ ∑

j=q,q+1

∣∣Kj

(
PA ∪ {0}, s) \ Kj(PA, s)

∣∣
≤ ∑

j=q,q+1

Fj (PB̄ρ(s)(0), s).

Here, the second inequality follows from Lemma 2.11. Then the fourth moment
is uniformly bounded because of the finiteness of moments of the Poisson point
process on B̄ρ(s)(0). We showed the weak stabilization in Proposition 5.4. The
proof of Theorem 5.2 is now complete. �

6. Conclusions. In this paper, we studied a convergence of persistence dia-
grams and persistent Betti numbers for stationary point processes, and a central
limit theorem of persistent Betti numbers for homogeneous Poisson point process.
Several important problems are still yet to be solved:

1. We showed the existence of limiting persistence diagram for simplicial
complexes built over stationary ergodic point processes. Such convergence results
can be expected for more general random simplicial/cell complexes studied in [17,
18]. It would also be important to investigate the rate of convergence from the
statistical and computational point of view.
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2. Attractiveness/repulsiveness of point processes are reflected on persistence
diagrams (see Figure 1). For example, the mass of the limiting persistence diagram
νq for negatively correlated point process seems to become more concentrated than
that for positively correlated point process.

3. The moments of the limiting persistence diagram,
∫

 |y − x|nνq(dx dy),

should be studied. Other properties of limiting persistence diagrams such as conti-
nuity, absolute continuity/singularity, comparison, etc. should also be investigated
thoroughly for practical purposes (cf. [16, 26]).

4. The central limit theorem for persistent Betti numbers (even for usual Betti
numbers) is only proved for Poisson point processes. It could be extended to more
general stationary point processes. We also expect that a scaled persistence dia-
gram converges to a Gaussian field on 
.

APPENDIX A: CONVERGENCE-DETERMINING CLASS FOR VAGUE
CONVERGENCE

We provide a sufficient condition for a class of B-sets to be a convergence
determining class for vague convergence. We use the same notation as in Section 3.
Assume that a class A ⊂ B is closed under finite intersections. Let us define

R(A ) =
{⋃

finite

Ai : Ai ∈ A

}
.

Then R(A ) is closed under both finite intersections and finite unions. Further-
more, if μn(A) → μ(A) for all A ∈ A , then so does for all A ∈ R(A ), because

μ

(
m⋃

i=1

Ai

)
=∑

i

μ(Ai) −∑
i �=j

μ(Ai ∩ Aj) + · · · + (−1)m−1μ

(
m⋂

i=1

Ai

)
.

LEMMA A.1. Assume that a class A is closed under finite intersections, and
that:

(i) each open set G ∈ B is a countable union of R(A )-sets, and
(ii) each closed set F ∈ B is a countable intersection of R(A )-sets.

If μn(A) → μ(A) for all A ∈ A , then μn converges vaguely to μ. In particular,
the class A is a convergence-determining class for μ provided that A ⊂ Bμ.

PROOF. Let G ∈ B be an open set. By assumption, there are sets Ai ∈ R(A )

such that

G =
∞⋃
i=1

Ai.
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Given ε > 0, choose an m such that

μ

(
m⋃

i=1

Ai

)
> μ(G) − ε.

Then we have

μ(G) − ε < μ

(
m⋃

i=1

Ai

)
= lim

n→∞μn

(
m⋃

i=1

Ai

)
≤ lim inf

n→∞ μn(G).

Since ε is arbitrary, we get

μ(G) ≤ lim inf
n→∞ μn(G).

Now for a closed set F ∈ B, take Ai ∈ R(A ) such that

F =
∞⋂
i=1

Ai.

Since Ai ∈ B, for given ε > 0, we can choose m large enough such that

μ(F) + ε > μ

(
m⋂

i=1

Ai

)
.

Then it follows from
⋂m

i=1 Ai ∈ R(A ) that

μ(F) + ε > μ

(
m⋂

i=1

Ai

)
= lim

n→∞μn

(
m⋂

i=1

Ai

)
≥ lim sup

n→∞
μn(F ).

Letting ε → 0, we get

μ(F) ≥ lim sup
n→∞

μn(F ).

Therefore, the conclusion follows from Lemma 3.1. �

For given A , let Ax,ε be the class of A -sets satisfying x ∈ A◦ ⊂ A ⊂ Bε(x),
where A◦ is the interior of A. Let ∂Ax,ε be the class of their boundaries, that is,
∂Ax,ε = {∂A : A ∈ Ax,ε}.

The following theorem gives a sufficient condition for a class A to be a
convergence-determining class for vague convergence of Radon measures (see
Theorem 2.4 in [1] for an analogous result on weak convergence of probability
measures).

THEOREM A.2. Suppose that A is closed under finite intersections and, for
each x ∈ S and ε > 0, ∂Ax,ε contains either ∅ or uncountably many disjoint sets.
Then A is a convergence-determining class. Moreover, for any measure μ ∈ M,
A contains a countable convergence-determining class for μ.
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PROOF. Fix an arbitrary μ ∈ M, and let Aμ = A ∩ Bμ be the class of μ-
continuity sets in A . Since

∂(A ∩ B) ⊂ (∂A) ∪ (∂B),

Aμ is again closed under finite intersections.
Let G ∈ B be an open set. For x ∈ G, choose ε > 0 such that Bε(x) ⊂ G. By the

assumption, if ∂Ax,ε does not contain ∅, then it must contain uncountably many
disjoint sets. Hence, in either case, ∂Ax,ε contains a set ∂Ax of μ-measure 0, or
Ax ∈ Aμ. Therefore, G can be written as

G = ⋃
x∈G

A◦
x = ⋃

x∈G

Ax.

Since S is a separable metric space, there is a countable subcollection {A◦
xi

} of
{A◦

x : x ∈ G} which covers G, namely,

G =
∞⋃
i=1

A◦
xi

.

Let {Gi}∞i=1 be a countable basis of S. For each i, we have just shown that there
are countable sets {Ai,j }∞j=1 ⊂ Aμ such that

Gi =
∞⋃

j=1

A◦
i,j =

∞⋃
j=1

Ai,j .

Set

A ′
μ =

{⋂
finite

Ai,j

}
.

Then A ′
μ ⊂ Aμ is countable and closed under finite intersections. The remaining

task is to show that A ′
μ satisfies the two conditions in Lemma A.1. The condition

for open sets is clear from the construction of A ′
μ.

Next, let F ∈ B be a closed (thus compact) set. For each ε > 0, let

F (ε) =
{
x ∈ S : d(x,F ) = inf

y∈F
ρ(x, y) ≤ ε

}
.

Then F = ⋂∞
p=1 F

( 1
p
). We claim that, for each ε > 0, there exist m = m(ε) and a

collection of sets {Ck}mk=1 ⊂ A ′
μ such that

F ⊂
m⋃

k=1

Ck ⊂ F (ε).

Indeed, for each x ∈ F , there is a pair (ix, jx) such that x ∈ A◦
ix ,jx

⊂ Aix,jx ⊂
Gix ⊂ Bε(x). Let Cx = Aix,jx . Then

F ⊂ ⋃
x∈F

C◦
x .
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Since F is compact, there is a finite collection {C◦
xk

}mk=1 such that

F ⊂
m⋃

k=1

C◦
xk

.

Finally, note that C◦
xk

⊂ Cxk
⊂ F (ε), we have

F ⊂
m⋃

k=1

Cxk
⊂ F (ε).

Therefore, the condition for closed sets in Lemma A.1 is satisfied, which completes
the proof of Theorem A.2. �

COROLLARY A.3. The class

A = {
(r1, r2] × (s1, s2], [0, r2] × (s1, s2] ⊂ 
 : 0 ≤ r1 ≤ r2 ≤ s1 ≤ s2 ≤ ∞}

satisfies the conditions of Proposition 3.4, namely, for any measure μ, it contains
a countable convergence determining class for μ.

PROOF. It suffices to check the conditions in Theorem A.2. It is clear that A
is closed under finite intersection and ∂Ax,ε contains uncountably many disjoint
sets for any x ∈ 
 and ε > 0. �

APPENDIX B: SIMPLICIAL COMPLEX AND HOMOLOGY

B.1. Simplicial complex. We first introduce a combinatorial object called
simplicial complex. Let P = {1, . . . , n} be a finite set (not necessary to be points
in a metric space). A simplicial complex with the vertex set P is defined by a
collection K of nonempty subsets in P satisfying the following properties:

(i) {i} ∈ K for i = 1, . . . , n, and
(ii) if σ ∈ K and ∅ �= τ ⊂ σ , then τ ∈ K .

Each subset σ with q + 1 vertices is called a q-simplex. We denote the set of q-
simplices by Kq . A subcollection T ⊂ K which also becomes a simplicial complex
is called a subcomplex of K .

EXAMPLE B.1. Figure 5 shows two polyhedra of simplicial complexes:

K = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}},
T = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}}.
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FIG. 5. The polyhedra of the simplicial complexes K (left) and T (right).

B.2. Homology. The procedure to define homology is summarized as fol-
lows:

1. Given a simplicial complex K , build a chain complex C∗(K). This is an
algebraization of K characterizing the boundary.

2. Define homology by quotienting out certain subspaces in C∗(K) charac-
terized by the boundary.

We begin with the procedure 1 by assigning orientations on simplices. When we
deal with a q-simplex σ = {i0, . . . , iq} as an ordered set, there are (q + 1)! order-
ings on σ . For q > 0, we define an equivalence relation ij0, . . . , ijq ∼ i�0, . . . , i�q

on two orderings of σ such that they are mapped to each other by even permu-
tations. By definition, two equivalence classes exist, and each of them is called
an oriented simplex. An oriented simplex is denoted by 〈ij0, . . . , ijq 〉, and its
opposite orientation is expressed by adding the minus −〈ij0, . . . , ijq 〉. We write
〈σ 〉 = 〈ij0, . . . , ijq 〉 for the equivalence class including ij0 < · · · < ijq . For q = 0,
we suppose that we have only one orientation for each vertex.

Let F be a field. We construct a F-vector space Cq(K) as

Cq(K) = SpanF
{〈σ 〉 | σ ∈ Kq

}
for Kq �= ∅ and Cq(K) = 0 for Kq = ∅. Here, SpanF(A) for a set A is a
vector space over F such that the elements of A formally form a basis of the
vector space. Furthermore, we define a linear map called the boundary map
∂q : Cq(K) → Cq−1(K) by the linear extension of

∂q〈i0, . . . , iq〉 =
q∑

�=0

(−1)�〈i0, . . . , î�, . . . , iq〉,(B.1)

where î� means the removal of the vertex i�. We can regard the linear map ∂q

as algebraically capturing the (q − 1)-dimensional boundary of a q-dimensional
object.

For example, the image of the 2-simplex 〈σ 〉 = 〈1,2,3〉 is given by ∂2〈σ 〉 =
〈2,3〉 − 〈1,3〉 + 〈1,2〉, which is the boundary of σ (see Figure 5).

In practice, by arranging some orderings of the oriented q- and (q − 1)-
simplices, we can represent the boundary map as a matrix

Mq = (Mσ,τ )σ∈Kq−1,τ∈Kq
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with the entry Mσ,τ = 0,±1 given by the coefficient in (B.1). For the simplicial
complex K in Example B.1, the matrix representations M1 and M2 of the boundary
maps are given by

M2 =
⎡⎣ 1

1
−1

⎤⎦ , M1 =
⎡⎣−1 0 −1

1 −1 0
0 1 1

⎤⎦ .(B.2)

Here, the 1-simplices (resp. 0-simplices) are ordered by 〈1,2〉, 〈2,3〉, 〈1,3〉 (resp.,
〈1〉, 〈2〉, 〈3〉).

We call a sequence of the vector spaces and linear maps

· · · �� Cq+1(K)
∂q+1

�� Cq(K)
∂q

�� Cq−1(K) �� · · ·
the chain complex C∗(K) of K . As an easy exercise, we can show ∂q ◦ ∂q+1 = 0
for every q . Hence, the subspaces Zq(K) = ker∂q and Bq(K) = im∂q+1 satisfy
Bq(K) ⊂ Zq(K). Then the qth (simplicial) homology is defined by taking the quo-
tient space

Hq(K) = Zq(K)/Bq(K).

Intuitively, the dimension of Hq(K) counts the number of q-dimensional holes in
K and each generator of the vector space Hq(K) corresponds to these holes. We
remark that the homology as a vector space is independent of the orientations of
simplices.

For a subcomplex T of K , the inclusion map ι : T ↪→ K naturally induces a
linear map in homology ιq : Hq(T ) → Hq(K). Namely, an element [c] ∈ Hq(T )

is mapped to [c] ∈ Hq(K), where the equivalence class [c] is taken in each vector
space.

For example, the simplicial complex K in Example B.1 has

Z1(K) = SpanF[1 1 −1 ]T = B1(K)

from (B.2). Hence, H1(K) = 0, meaning that there are no 1-dimensional hole
(ring) in K . On the other hand, since Z1(T ) = Z1(K) and B1(T ) = 0, we have
H1(T ) � F, meaning that T consists of one ring. Hence, the induced linear map
ι1 : H1(T ) → H1(K) means that the ring in T disappears in K under T ↪→ K .

APPENDIX C: CONTINUITY OF PERSISTENCE DIAGRAMS OF
κ-COMPLEXES

We give a stability result for persistence diagrams of κ-filtrations which extends
the stability result obtained in [6]. The notation used here follows the paper [6].
We first recall the definition of the Hausdorff distance and the bottleneck distance.
The Hausdorff distance dH on F (RN) for σ,σ ′ ∈ F (RN) is given by

dH

(
σ,σ ′)= max

{
max
x∈σ

inf
x′∈σ ′

∥∥x − x′∥∥, max
x′∈σ ′ inf

x∈σ

∥∥x − x′∥∥}.
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We define the �∞-metric on 
 by d∞((b1, d1), (b2, d2)) = max(|b1 − b2|, |d1 −
d2|), where ∞ − ∞ = 0. For (b, d) ∈ 
, we define d∞((b, d), ∂
) = (d − b)/2.
For finite multisets X and Y in 
, a partial matching between X and Y is a sub-
set M ⊂ X × Y such that for every x ∈ X there is at most one y ∈ Y such that
(x, y) ∈ M and for every y ∈ Y there is at most one x ∈ X such that (x, y) ∈ M .
An x ∈ X (resp., y ∈ Y ) is unmatched if there is no y ∈ Y (resp., x ∈ X) such that
(x, y) ∈ M . We say that a partial matching M is δ-matching if d∞(x, y) ≤ δ for
every (x, y) ∈ M , d∞(x, ∂
) ≤ δ if x ∈ X is unmatched, and d∞(y, ∂
) ≤ δ if
y ∈ Y is unmatched.

The bottleneck distance is defined as follows:

dB(X,Y ) := inf{δ > 0 : there exists a δ-matching between X and Y }.
For 	,	′ ∈ F (RN) and κ, κ ′ : F (RN) → [0,∞], we define two complexes

Kκ(	) = {
Kκ(	, t)

}
t≥0, Kκ ′

(
	′)= {

Kκ ′
(
	′, t

)}
t≥0.

Let C be a correspondence between 	 and 	′, that is, C ⊂ 	 × 	′ such that
p1(C) = 	 and p2(C) = 	′, where pi is the projection onto the ith coordinate for
i = 1,2. We define the transpose CT of C, which is also a correspondence, by

CT := {(
x′, x

) ∈ 	′ × 	 : (x, x′) ∈ C
}
.

A correspondence C defines a map from F (	) to F (	′) as

C(σ) = {
x′ ∈ 	′ : (x, x′) ∈ C,x ∈ σ

}
.

The distortion of C is defined as

dis(C) := max
{

sup
σ⊂	

∣∣κ(σ ) − κ ′(C(σ)
)∣∣, sup

σ ′⊂	′

∣∣κ(CT (σ ′))− κ ′(σ ′)∣∣}.
LEMMA C.1. If dis(C) ≤ ε, then Hq(Kκ(	)) and Hq(Kκ ′(	′)) are ε-

interleaving.

PROOF. Assume that σ ∈ Kκ(	, t) and κ(σ ) ≤ t . Then it follows from
|κ(σ ) − κ ′(C(σ))| ≤ ε that

κ ′(σ ′)≤ κ ′(C(σ)
)≤ κ(σ ) + ε ≤ t + ε for any σ ′ ⊂ C(σ),

which implies σ ′ ∈ Kκ ′(	′, t + ε), and hence C is ε-simplicial from Kκ(	) to
Kκ ′(	′). Symmetrically, CT is also ε-simplicial. Therefore, the conclusion follows
from Proposition 4.2 in [6]. �

Let us define

(C.1) S
(
(κ,	),

(
κ ′,	′)) := sup

σ⊂	,σ ′⊂	′
dH (σ,σ ′)≤dH (	,	′)

∣∣κ(σ ) − κ ′(σ ′)∣∣.
We remark that S((κ,	), (κ ′,	′)) = ‖κ − κ ′‖∞ if 	 = 	′.
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LEMMA C.2. Let C denote the correspondence defined by C = {(x, x′) ∈ 	×
	′ : ‖x − x′‖ ≤ dH (	,	′)}. Then

dis(C) ≤ S
(
(κ,	),

(
κ ′,	′)).

PROOF. We easily see that

sup
σ⊂	

dH

(
σ,C(σ)

)≤ dH

(
	,	′) and sup

σ ′⊂	′
dH

(
CT (σ ′), σ ′)≤ dH

(
	,	′),

which implies the assertion. �

For Dq(κ,	) = Dq(Kκ(	)) and Dq(κ ′,	′) = Dq(Kκ ′(	′)), we obtain the fol-
lowing continuity result.

THEOREM C.3.

(C.2) dB

(
Dq(κ,	),Dq

(
κ ′,	′))≤ S

(
(κ,	),

(
κ ′,	′)).

PROOF. It follows from Lemma C.2 and Lemma C.1 that Hq(Kκ(	)) and
Hq(Kκ ′(	′)) are S((κ,	), (κ ′,	′))-interleaving. Therefore, we obtain (C.2) from
[5]. �

COROLLARY C.4. Suppose that κ is Lipschitz continuous with respect to dH ,
that is, there exists a constant γ > 0 such that∣∣κ(σ ) − κ

(
σ ′)∣∣≤ γ dH

(
σ,σ ′) for σ,σ ′ ∈ F

(
RN

)
.

Then

(C.3) dB

(
Dq(κ,	),Dq

(
κ,	′))≤ γ dH

(
	,	′).

PROOF. From the assumption and (C.1), we see that

S
(
(κ,	),

(
κ,	′))≤ γ dH

(
	,	′).

Therefore, (C.3) follows. �
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