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MAX κ-CUT AND THE INHOMOGENEOUS POTTS SPIN GLASS

BY AUKOSH JAGANNATH∗,1, JUSTIN KO∗,2 AND SUBHABRATA SEN†

University of Toronto∗ and Stanford University†

We study the asymptotic behavior of the Max κ-cut on a family of sparse,
inhomogeneous random graphs. In the large degree limit, the leading term is
a variational problem, involving the ground state of a constrained inhomoge-
neous Potts spin glass. We derive a Parisi-type formula for the free energy
of this model, with possible constraints on the proportions, and derive the
limiting ground state energy by a suitable zero temperature limit.

1. Introduction. Networks arise in various applications in economics, engi-
neering and social sciences. In a typical social science application, the vertices
of the network represent individuals, while their relationships are represented by
the edges. The study of structural properties of these networks, and algorithms
to find these structures are extremely important in this context. Various random
graph models have been introduced to study such real-life networks (see, e.g., [25,
26])—and questions about networks translate directly into questions about random
graphs under this approach. Graph partition problems are natural class of algorith-
mic questions which arise in this context. In these problems, the goal is to find a
partition of the vertex set that maximizes some objective function, typically given
by a function of the edges. Graph partition problems are of interest in applications
as diverse as community detection [16, 46] and VLSI design [28]. In this paper,
we focus on the Max κ-cut, an important example in this class.

For any graph G = (V ,E), the Max κ-cut problem (henceforth denoted as
MaxCutκ ) seeks to divide the vertices, V , into κ (not necessarily equal) parts such
that the number of edges between distinct parts is maximized. For κ = 2, this re-
duces to the well-known MAXCUT problem (see [45] for a survey of the MAXCUT
problem). From the point of view of complexity theory, these questions are usu-
ally NP hard in the worst case. This motivates a study of average case complexity,
often formalized by studying this problem on random graph instances. As a first
attempt, one seeks to determine the typical behavior of these quantities on a ran-
dom graph—this provides a valuable benchmark for comparing the performance
of specific algorithms on random instances.

Such questions have been studied in classical settings, such as the Erdős–Rényi
random graph and random regular graph ensembles. The key insight in this setting
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is a connection between statistical physics and the MaxCutκ problem, enunciated
as follows. Any κ-cut can be represented by an assignment of spins σ ∈ [κ]N to
the vertices of the graph. Further, setting A = (Aij ) to be the adjacency matrix of
the random graph G, we have

MaxCutκ(G)

N
= 1

2N
max

σ∈[κ]N
N∑

i,j=1

Ai,j 1(σi �= σj ).(1.1)

In statistical physics parlance, (1.1) establishes a direct relation between the
MaxCutκ and the ground state of the antiferromagnetic Potts model on the graph.
Connections between graph partition problems and statistical physics are, by now,
classical [22]. For a textbook introduction to the physical perspective on these
questions, we refer the reader to [33, 34].

Physicists predict that the antiferromagnetic nature of the Max κ-cut should
force the quantity to behave as the ground state of a disordered spin glass, and its
behavior in graphs with large degrees should be well approximated by properties
of ground states in mean field spin glasses. For the MAXCUT problem on sparse
Erdős–Rényi and random regular graphs, this idea was partially formalized in [17]
and [48]. The authors of [17] deduced that for G ∼ G(N, c

N
), as N → ∞, we have

MAXCUT(G)

N
= c

4
+ P∗

√
c

4
+ oc(

√
c).(1.2)

Here, P∗ is the limiting ground state energy of the Sherrington–Kirkpatrick model
[40, 50]. Here and henceforth in the paper, we say that a sequence of random vari-
ables, (XN), satisfies XN = oc(

√
c) if and only if there is a deterministic function

g(c) = o(
√

c) such that P[|XN | ≤ g(c)] → 1 as N → ∞. The first term in the
right-hand side comes from the standard observation that a typical partition of the
vertices will contribute Nc/4 edges to the cut in expectation. The second term is
the leading order correction, and specifies the difference in size between a typical
cut and the MAXCUT. An analogous formula for the MaxCutκ on sparse Erdős–
Rényi and random regular graphs was derived in [48].

For practical applications, it is thus of natural interest to determine the typical
value of these quantities on random graph ensembles that capture natural proper-
ties of realistic networks. In practice, networks are typically observed to be sparse
and “inhomogeneous” [1, 3, 18, 31]. The simplest random graph models, such as
Erdős–Rényi and random regular graphs, lead to instances where the degree distri-
butions are relatively concentrated—a feature seldom observed in real networks.
To address this issue, a plethora of models have been introduced, which faithfully
capture some of the observed characteristics of real networks. In this paper, we
seek to establish formulae similar to (1.2) for a general family of graph models
using the framework of [17] and [48]. Our approach leads naturally to the study of
an inhomogeneous Potts spin glass model, which has yet to be studied rigorously
in the mathematical literature.
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Let us first explain the class of random graph models that we study. Our frame-
work will be similar to the one introduced by Söderberg [51] and adopted by Bol-
lobás, Janson and Riordan [8]. Furthermore, this model has natural connections
to the theory of graphons for dense sequences of random graphs [9, 10]. Con-
sider a symmetric kernel K : [0,1]2 → [0,∞). We will assume throughout that
K ∈ L1([0,1]2,dx). Given such a kernel, consider the following model for a se-
quence of inhomogeneous random graphs GN = (VN,EN). For all N ≥ 1, we let
the vertex set be VN = [N ]. The edges will then be added independently with
probability

P
[{i, j} ∈ EN

] = min
{
c
K̃(i, j)

N
,1

}
,(1.3)

where K̃ is the average of K within blocks,

K̃N(i, j) = N2
∫
[ i−1

N
, i
N

]×[ j−1
N

,
j
N

]
K(x,y)dx dy.(1.4)

This specifies the random graph model. The parameter c controls the degree of the
vertices. We note that this model is more restricted compared to that of Bollobás,
Janson and Riordan [8]. In the notation of [8], we restrict ourselves to the case
where the ground space S = [0,1] and the measure μ is the Lebesgue measure.
Further, the model introduced in [8] is governed by the value of the kernel K on a
set of measure zero. Here, we average over small partitions of the kernel, so that
we may avoid technical subtleties on sets of measure zero. For reasonable kernels,
such as continuous ones, this distinction will be negligible.

To state our main result in a concrete setting, let us first work in the case when
K is block constant. That is, we assume that there are numbers

0 = t0 < t1 < t2 < · · · < tM−1 < 1 = tM

such that K is constant on each square of the form [tj−1, tj ] × [tk−1, tk] for
0 ≤ j, k ≤ M . Further, we set ρs = ts − ts−1, s = 1, . . . ,M . For any such block
kernel K , let K denote the M ×M matrix of the values of the kernel on the blocks.
For technical reasons, we will work with block kernels such that the matrix K is
positive definite. Finally, we note that any block constant kernel with finitely many
blocks is almost surely bounded. By a standard application of the Efron–Stein in-
equality [11], it suffices to study the asymptotic behavior of E[MaxCutκ(GN)]/N .

To analyze this quantity, we introduce the following notation. For any finite
set S , let D be the space of proportions, given by

(1.5) D =
{(

ds
1, . . . , d

s
κ

)
s∈S

∣∣∣ds
k ≥ 0,

κ∑
k=1

ds
k = 1 ∀s ∈ S

}
.

In our setting, S = [M]. Any d ∈ D can be expressed as d = (ds)s∈S , where
(ds)s∈S is a collection of probability measures on [κ]. The distribution ds governs
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the proportion of vertices in block s which belong to the partition i, 1 ≤ i ≤ κ . We
will refer to the elements d ∈ D as proportions. The following theorem character-
izes the value of the MaxCutκ problem for inhomogeneous graphs GN with block
constant kernels and large degrees, up to corrections which are o(

√
c).

THEOREM 1.1. We have, as N → ∞,

lim
N→∞E

[
MaxCutκ(GN)

N

]
= sup

d∈D

[
c

2

M∑
s,t=1

K(s, t)ρsρt (1 − 〈
ds, dt 〉) +

√
c

2
P(d)

]

+ o(
√

c).

REMARK. We take this opportunity to comment on the positive definite as-
sumption on the matrix K. One prominent example where K is not positive def-
inite is the random bipartite graph, where the kernel consists of two off-diagonal
blocks. However, note that for κ = 2, the behavior of the MAXCUT on this graph
is trivial, and very different from that established in Theorem 1.1.

Note that the leading term in Theorem 1.1 is a variational problem involving the
empirical distribution of spins within each block. This variational problem has two
terms: the first term governs the expected cut-size, while the second term, of order√

c, governs the extra contribution which is attained by optimization. It remains
to introduce P(d). It turns out that P(d) is the limiting ground state energy of the
inhomogeneous Potts spin glass model, subject to constraints on the composition
of spins within each block. We introduce this model in the rest of the section, and
define the constant P(d) rigorously using a Parisi-type formula for the limiting
free energy.

1.1. The inhomogeneous Potts model. We consider a natural generalization of
the Potts spin glass model that allows for inhomogeneous coupling interactions
between species. The configuration space for this model is �N = [κ]N for some
κ ≥ 2. Let S be the finite set in (1.5), each element of which is called a species.
For each N , we are given a partition of [N ] indexed by the species as

[N ] = ⋃
s∈S

Is.

We say that i belongs to species s if i ∈ Is . Conversely, we denote by s(i) the
species to which i belongs. Let Ns = |Is |. Naturally, this quantity varies in N . To
obtain a reasonable limiting structure, we assume that the proportions converge:

(1.6) ρs
N = Ns

N
→ ρs ∈ (0,1).
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The Hamiltonian for this model, HN , is the centered Gaussian process

(1.7) HN(σ) = 1√
N

N∑
i,j=1

gi,j 1(σi = σj ),

where gi,j are independent, centered Gaussian random variables with covariance

(1.8) Eg2
i,j = �2

s,t , s, t ∈ S , i ∈ Is, j ∈ It .

We assume, following [7, 44], that the matrix � := �2
s,t is symmetric and positive

definite in s and t . Observe that if we define, for σ 1, σ 2 ∈ �N ,

(1.9) Rs
1,2

(
k, k′) = 1

Ns

∑
i∈Is

1
(
σ 1

i = k
)
1
(
σ 2

i = k′)

and define the κ × κ species overlap matrix

(1.10) Rs
1,2 = (

Rs
1,2

(
k, k′))

k,k′≤κ

then HN has covariance

(1.11) Cov
(
σ 1, σ 2) = N

∑
s,t∈S

�2
s,tρ

s
Nρt

N

(
Rs

1,2,R
t
1,2

)
,

where (·, ·) denotes the Frobenius (or Hilbert–Schmidt) inner product.
This model is an inhomogeneous extension of the Potts spin glass model, which

has been studied extensively in the physics literature [13, 20, 21, 36], and analyzed
rigorously in [42, 43]. In particular, we break the symmetry between sites. When
κ = 2, this type of inhomogeneity was introduced in an equivalent form by Barra,
Contucci, Mignone and Tantari in [7] where a Guerra-type [24] upper bound for the
free energy was obtained. The matching lower bound was obtained by Panchenko
in [44].

Our goal is to compute constrained free energies of the type

(1.12) FN(A) = 1

N
E log

∑
σ∈A

eHN(σ)

for a specific choices of A. Recall the space of proportions D defined in (1.5).
Given a d ∈ D , we have the associated constrained state space

(1.13) �ε
N(d) =

{
σ ∈ �N

∣∣∣ ∑
i∈Is

1(σi = k)

Ns

∈ [
ds
k − ε, ds

k + ε
]}

.

We will use the notation �N(d) := �0
N(d) to denote the constrained state space

where the proportions of spins within species are exactly equal to the proportion d .
Let DN ⊂ D be the space of feasible constraints for configuration spaces of N

coordinates

(1.14) DN = {
d ∈ D |�N(d) �= ∅

}
.
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We are particularly interested in computing constrained free energies as in (1.12)
with A = �(d). Note that since the space of feasible configurations is at most poly-
nomial growth, classical concentration arguments show that the free energy of the
whole system, FN(�N), is asymptotically given by the maximum of FN(�N(d))

over D .
As in the Potts spin glass model, among others, the overlap (1.10) will play a

key role. In particular, we will find that the array of overlaps from i.i.d. draws of
configurations from (a perturbation of) the Gibbs measure, will be determined by

a path π : [0,1] → 	
|S |
κ . Here, 	κ is the space of κ × κ positive definite matrices

and π is effectively the family of quantile transform of the limiting law of the
overlap of two independent copies σ 1, σ 2 from the Gibbs measure.

We now turn to the main result. To this end, we denote the space of left-
continuous monotone functions on 	κ as

(1.15) 
 = {
π : [0,1] → 	κ : π is left-continuous, π(x) ≤ π

(
x′) for x ≤ x′},

where π(x) ≤ π(x′) means that π(x′) − π(x) ∈ 	κ . Similarly, we let

(1.16) � = {(
πs)

s∈S : [0,1] → 	|S |
κ |πs ∈ 


}
.

We also have the following metric on �

(1.17) �(π , π̃) =
∫ 1

0
max
s∈S

∥∥πs(x) − π̃ s(x)
∥∥

1 dx.

For d ∈ D and r > 0, we define the following sequences of parameters. Let
(xi)

r
i=1 be a strictly increasing sequence of numbers

(1.18) 0 = x−1 < x0 < · · · < xr = 1.

For each species, let (Qs
i )

r
i=1 be an increasing sequence of κ × κ positive semidef-

inite matrices

(1.19) 0 = Qs
0 ≤ Qs

1 ≤ · · · ≤ Qs
r = diag

(
ds

1, . . . , d
s
κ

) = Ds.

Given these sequences, for each species we can define the Gaussian vector
(zs

p) ∈ Rκ such that

(1.20) Ezs
p

(
zs
q

)T = 2δp,q

(∑
t∈S

�2
s,tρ

tQt
p − ∑

t∈S

�2
s,tρ

tQt
p−1

)
.

The nonrandom value Xs
0 is defined recursively as

Xs
r = log

∑
k≤κ

exp
( ∑

1≤p≤r

zs
p(k) + λs

k

)
,

(1.21)

Xs
k = 1

xk

logEk exp
(
xkX

s
k+1

)
for 0 ≤ k < r,
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where Ek denotes the expectation with respect to only zk+1. Finally, define the
functional

P
(
r, x, d,

(
λs,Qs)

s∈S

)
= ∑

s∈S

ρsXs
0 − ∑

s∈S

∑
k≤κ

ρsλs
kd

s
k(1.22)

− 1

2

r−1∑

=0

x


∑
s,t∈S

�2
stρ

sρt ((Qs

+1,Q

t

+1

) − (
Qs


,Q
t



))
.

The next result characterizes the limiting free energy in these models.

THEOREM 1.2. For any κ ≥ 2, set of species S , and sequences ρs
N → ρs we

have the following:

1. For any d ∈ D and εN → 0 sufficiently slowly, the limit of the constrained
free energy is given by

(1.23) lim
N→∞FN

(
�

εN

N (d)
) = inf

x,r,(λs ,Qs)s∈S

P
(
r, x, d,

(
λs,Qs)

s∈S

)
.

2. The limit of the unconstrained free energy is given by

(1.24) lim
N→∞FN(�N) = sup

d∈D
inf

x,r,(λs ,Qs)s∈S

P
(
r, x, d,

(
λs,Qs)

s∈S

)
.

Before moving forward, we explain the nontrivial obstacles encountered in the
inhomogeneous Potts model. First, the symmetry between sites is broken. As a
result, interactions both within the species and between the species must be con-
sidered. Second, the natural overlap structure are matrices (1.10) and are a priori
not necessarily positive definite in the limit.

Each of these issues has been studied in the past in [44] and [43]. The syn-
chronization property in [44] connected the species overlaps with the average of
the overlaps over the entire system. Similarly, the synchronization property in [43]
proved the overlaps concentrated on the space of Gram matrices in the limit. An-
other consequence of this result implied the overlap matrices could also be recov-
ered from the trace of the matrix. At the heart of both of these synchronization
arguments were generalized Ghirlanda–Guerra-type identities that implied an ul-
trametric underlying structure of the overlaps [39]. The synchronization combines
local and global ultrametric properties forcing a rigid distribution structure.

We prove an analogue of the Ghirlanda–Guerra identities, which combines
those in the inhomogeneous SK and Potts models. This results in a simultane-
ous synchronization mechanism of the overlap matrices both within and between
species. In our setting, we will be able recover the structure of the overlap matrices
Rs


,
′ deterministically from the average of the traces of overlaps∑
s∈S

ρs tr
(
Rs


,
′
)
.
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These techniques will reduce the problem to a familiar setting, allowing us to
derive a formula for the free energy using the Guerra upper bound [24] and the
Aizenman–Sims–Starr scheme [2] using the characterization method introduced
in [4] and formalized further in [38, 41]. The resulting functional order parameter
is a vector of monotone paths of κ × κ matrices.

In applications, we will be interested, not only in the free energy, but also the
maximum of (1.7) subject to the same constraints. To understand the connection
between the two, we recall the classical fact from statistical mechanics that the
ground state energy of a system can be obtained as the “zero temperature limit” of
the free energy of this system—a limit usually referred to as annealing [30]. In this
case, we take the beaten path, and define free energies of the form

(1.25) F
β
N(A) = 1

N
E log

∑
σ∈A

eβHN(σ),

where HN is as in (1.7) for some fixed �. Here, β is the inverse temperature,
and the zero temperature limit corresponds to sending β → ∞. We note that the
free energy (1.25) corresponds to the Hamiltonian HN(σ) defined as in (1.7), with
respect to �β = β2� instead of �. Therefore, a straightforward modification of
Theorem 1.2 implies that for any d ∈ D ,

(1.26) lim
N→∞F

β
N

(
�

εN

N (d)
) = inf

x,r,(λs ,Qs)s∈S

Pβ

(
r, x, d,

(
λs,Qs)

s∈S

)
.

The functional Pβ(r, x, d, (λs,Qs)s∈S ) is identical to (1.22) with �β in place of
�. As a corollary to the theorem above, we obtain an expression for the limiting
constrained ground state energies.

COROLLARY 1.3. For any configuration d ∈ D , we have, as N → ∞, for
some sequence εN → 0 sufficiently slowly,

lim
N→∞

1

N
E

[
max

σ∈�
εN
N (d)

H(σ)
]

= lim
β→∞

1

β
inf

x,r,(λs ,Qs)s∈S

Pβ

(
r, x, d,

(
λs,Qs)

s∈S

)
:= P(d).

Note that P(d) is the relevant constant for the MaxCutκ in Theorem 1.1. Ex-
act variational formulas for ground state energies like P(d) have been obtained
recently in several models [5, 6, 14, 27]. However, in this setting this remains an
interesting question.

1.2. Applications. We return to study of graph partitioning problems in this
section and study some examples. We first note that given a general kernel K ∈ L1,
to determine the MaxCutκ up to o(

√
c) corrections, it is enough to restrict ourselves
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to block-constant kernels. To this end, given a kernel K and M ≥ 1, we construct
the kernel K1 by “coarsening” the kernel K ,

K1(x, y) = M2
M∑

i,j=1

1
(
x ∈

[
i − 1

M
,

i

M

]
, y ∈

[
j − 1

M
,

j

M

])
(1.27)

×
∫
[ i−1

M
, i
M

]×[ j−1
M

,
j
M

]
K(s, t)ds dt.

Let G̃N denote the sequence of graphs formed from the kernel K1 using (1.3).
Then we have the following.

LEMMA 1.4. For any kernel K and c, 0 < δ < 1/2, we can choose M :=
M(c) such that for all N sufficiently large,∣∣∣∣E

[
MaxCutκ(GN)

N

]
−E

[
MaxCutκ(G̃N)

N

]∣∣∣∣ ≤ c1/2−δ.

Any kernel K is naturally associated with the integral operator
TK(f )(x) := ∫

K(x,y)f (y)dy. We assume that for f ∈ L∞([0,1]),∫∫
f (x)f (y)K(x, y)dx dy ≥ 0. We note that in this case, the corresponding dis-

cretized kernel K1, described in Lemma 1.4, inherits the positive definite character.
Therefore, MaxCutκ(G̃N) can be determined by an application of Theorem 1.2. We
now turn to some examples to which our results apply.

EXAMPLE 1 (Finite species block model). The first example concerns the sim-
ple case when the kernel K has an explicit block structure. This model has been
proposed and studied intensely by Söderberg [51] and Bollobás, Janson and Ri-
ordan [8]. These models have also been studied as “stochastic block models” in
statistics, machine learning and theoretical computer science in connection to the
community detection problem [16, 32, 35]. Our results apply directly to this model
in case the kernel is positive semidefinite.

EXAMPLE 2 (Rank 1 model). The next example concerns the Rank 1 model
for random graphs. In this model, we have a function ψ : [0,1] → R+ such that
K(x,y) = ψ(x)ψ(y). ψ(x) governs the “activity” of the vertex and the proba-
bility of a connection is determined by the product of the activities of the two
vertices. This model has been extensively studied; see, for example, [12, 15, 37].
Prominent features of interest include the existence and size of a giant component,
the degree distribution, the typical distances between the vertices, etc. We refer
to [8], Section 16, for an extensive survey of the related family of models and con-
nections to earlier results. The kernel is positive semidefinite in this case. Further,∫

K < ∞ whenever ψ ∈ L1. In this case, the kernel is in our framework and our
result applies.
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We note that for this example, if ψ > 0 is constant on blocks, then we reduce to
the example of block kernels discussed earlier. The approximation scheme for this
example basically approximates the function ψ by a piecewise constant function
on [0,1]. From an algorithmic viewpoint, our result says that for evaluating the
first order correction term, we can coarsen the model to a setup where there are
finitely many species with the same activity.

EXAMPLE 3 (Dubins’s model). Consider the Dubins kernel K(x,y) =
1

max{x,y} . Observe that K ∈ L1, and is symmetric and positive definite as a function
so that our results apply. (The associated integral operator is a bounded opera-
tor from L2([0,1]) to L2([0,1]) as shown in [8].) In this case, P[{i, j} ∈ EN ] =
c/j ∧ 1 for j ≥ i, c. This corresponds to the situation where the graph is formed by
a sequential addition of vertices, and the j th vertex joins to the existing vertices in-
dependently with probability c/j . This model is naturally inhomogeneous, in that
the older vertices usually have higher degrees and play a crucial role in determin-
ing the structure of the graph. An infinite version of this model was introduced by
Dubins in 1984, who wished to determine the critical c such that the graph would
have an infinite path (see [29, 49]). The critical constant c = 1/4 was partially de-
termined by Kalikow and Weiss [29] and finally determined by Shepp [49]. Durett
[19] determined that c = 1/4 is also the critical threshold for the emergence of a
giant component in the finite graph. We refer the reader to [8] for a detailed survey
of the model and related results.

1.3. Outline. Before turning to the body of the paper, let us briefly outline
the structure of the paper and the proof of the main results. Theorem 1.1 follows
using the interpolation idea introduced in [17] and generalized in [48]. Its proof,
included in Section 8, compares the MaxCutκ value on inhomogeneous random
graphs to the ground state of the inhomogeneous Potts spin glass. The proof of
Theorem 1.2 follows the method outlined above. The starting point of the proof is
the characterization of a family of arrays that follow a natural generalization of the
Ghirlanda–Guerra identities [23] for this setting. This combines the synchroniza-
tion mechanisms of [43, 44] and is included in Section 2. In Section 3, we construct
a perturbation of the system that does not affect the limiting free energy but allows
us to use the derived invariance properties. With these results in hand, we prove
the upper bound in Section 4 using a Guerra-type interpolation and the matching
lower bound using an Aizenman–Sims–Starr scheme in Section 6. Before proving
the lower bound, we briefly study the continuity of certain functionals used in the
lower bound in Section 5.

2. Invariant arrays and their characterization. In this section, we study
an invariance property that combines the multispecies and vector spin Ghirlanda–
Guerra type identities [43, 44] for the limit points of doubly infinite array of over-
laps, (1.10), of independent draws from the Gibbs measure. This will allow us to
characterize these limit points.



1546 A. JAGANNATH, J. KO AND S. SEN

Let Rκ be the space of arrays of the form Rs

,
′ such that there is a collection of

vectors (vi(
, s))i,
≥1,s∈S in Rκ such that

(2.1) Rs

,
′ =

∑
i

vi(
, s) ⊗ vi

(

′, s

)
,

and such that

(2.2)
(
Rs


,
′ek, ek

) ∈ [0,1] ∀k ∈ [κ].
We equip Rκ with the induced topology from the product topology on a countable
product of [0,1] with itself so that, in particular, it is compact Polish. Observe that
the overlap array (1.10) is in Rκ for each N .

We now introduce the aforementioned invariance property. For any m,p ≥ 1,
(νs

k)s∈S ,k∈[m] ∈Rκ , and ϕ : (Rm)|S | →R, let

(2.3) Q
,
′ = ϕ
([((

Rs

,
′

)◦p
νs

1, ν
s
1
)
, . . . ,

((
Rs


,
′
)◦p

νs
m, νs

m

)]
s∈S

)
.

The (Rs

,
′)◦p term appearing above is the Hadamard pth power of Rs


,
′ . We say
that a random variable with values in Rκ is weakly exchangeable if

(2.4) Rs
πs(
)πs(
′)

(d)= Rs

,
′

for all collections (πs) of permutations of N of finitely many coordinates. We say
that a random variable in R is IP-invariant if for all n ≥ 2, bounded f , and choice
of Q as above, we have

(2.5) Ef
(
Rn)

Q1,n+1 = 1

n
Ef

(
Rn)

EQ1,2 + 1

n

n∑

=2

Ef
(
Rn)

Q1,
,

where Rn is the array (Rs

,
′)
,
′∈[n],s∈S .

We now turn to the main result of this section. Recall that ρs is a probability
measure on S , which we denote equivalently by dρ. Let

(2.6) R̄
,
′ =
∫

Rs

,
′ dρ.

Our goal is to prove that random arrays in R that satisfy (2.5) synchronize, in the
sense that Rs


,
′ is actually a Lipschitz function of the trace.

THEOREM 2.1. Suppose that R is a Rκ -valued random variable that is IP-
invariant and weakly exchangeable. Then there are deterministic, Lipschitz func-
tions �s , depending on the law of R, such that

(2.7) Rs

,
′ = �s

(
tr(R̄
,
′)

)
almost surely.

The proof of this result is essentially by composition of the synchronization
theorems from [43, 44].
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LEMMA 2.2. Suppose that R in R, is weakly exchangeable and IP-invariant.
Then there exists deterministic, Lipschitz functions, depending on the law of
tr(R̄
,
′), such that

(2.8) tr
(
Rs


,
′
) = Ls

(
tr(R̄
,
′)

)
.

PROOF. We begin by observing that for any element of R, the array of traces
T = (T s


,
′)
,
′≥1 = (tr(Rs

,
′))
,
′≥1 is a Gram matrix for each s. To see this, simply

observe that if we let

V
(s) = ∑
i

vi(
, s) ⊗ ei

then

tr
(
Rs


,
′
) = (

V
(s),V
′(s)
)
HS.

Thus T is a Gram–de Finetti array for each s ∈ S . Applying (2.5) with f and ϕ

being functions of T , we see that T satisfies the multispecies Ghirlanda–Guerra
identities ([44], equation (36)),

Ef
(
T n)

Q1,n+1 = 1

n
Ef

(
T n)

EQ1,2 + 1

n

n∑

=2

Ef
(
T n)

Q1,
,

where T n = (T
,
′)
,
′∈[n]. Recall from [44], Section 4, that for such arrays there
exist Lipschitz functions Ls , that depend on the law of T n, such that

T s

,
′ = Ls

(∫
T s


,
′ dρ

)

almost surely. Applying this result to our setting yields a family of Lipschitz func-
tions depending on the law of tr(R̄
,
′) such that

tr
(
Rs


,
′
) = Ls

(
tr(R̄
,
′)

)
almost surely, as desired. �

LEMMA 2.3. Suppose that R in Rκ , is weakly exchangeable and IP-invariant.
Then there exist deterministic, Lipschitz, monotone functions �s :R+ → 	κ which
depend on the law of R such that

Rs

,
′ = �s(tr(Rs


,
′
))

almost surely.

PROOF. For fixed s ∈ S , we may apply (2.5), with Q of the form

Q
,
′ = ϕ
(((

Rs

,
′

)◦p
νs

1, ν
s
1
)
, . . . ,

((
Rs


,
′
)◦p

νs
m, νs

m

))
.
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As a result, taking f to be a function of this species as well, we see that the array
satisfies

Ef
(
Rn(s)

)
Q1,n+1 = 1

n
Ef

(
Rn(s)

)
EQ1,2 + 1

n

n∑

=2

Ef
(
Rn(s)

)
Q1,
,

where Rn(s) = (Rs

,
′)
,
′∈[n]. It was shown in [43], Theorem 3, that for such ar-

rays, there is a Lipschitz, monotone function �s depending on the law of Rn(s)

such that

Rs

,
′ = �s(tr(Rs


,
′
))

almost surely, as desired. �

PROOF OF THEOREM 2.1. Applying the previous two lemmas, we obtain fam-
ilies (�s)s∈S and (Ls)s∈S . The result then follows by taking

�s = �s ◦ Ls. �

3. Perturbation for invariance. In this section, we show that after a small
perturbation, the limiting overlap array will satisfy a generalized form of the
Ghirlanda–Guerra identities appearing in [44] and [43]. This argument is stan-
dard and can be safely skipped by the expert reader. For completeness, we include
it here. The key observation is that, as with the Potts model, it is crucial that we
restrict ourselves to configurations with fixed proportions of states.

Let hθ(σ ) be a Gaussian process with covariance

(3.1) Cθ

,
′ = Cov

(
hθ

(
σ
)hθ

(
σ
′)) = ∏

s∈S

∏
j≤m

(((
Rs


,
′
)◦p

νs
j , ν

s
j

))ns
j ,

where θ = (m,p,ns
1, . . . , n

s
m, νs

1, . . . , ν
s
m)s∈S are the parameters in the covariance.

The Gaussian process hθ(σ ) can be constructed explicitly using a similar construc-
tion as in [43], Section 5. We will provide a brief nonconstructive existence proof
here.

LEMMA 3.1. The covariance structure Cθ

,
′ is positive semidefinite for all

Rs

,
′ ∈Rκ .

PROOF. Clearly, if Rs

,
′ ∈ Rκ , then (Rs


,
′)◦p ∈ Rκ for all p ≥ 1. By the def-
inition on (2.1), we can find some collection of vectors (vi(
, s))i,
≥1,s∈S such
that (

Rs

,
′

)◦p = ∑
i

vi(
, s) ⊗ vi

(

′, s

) = ∑
i

vi(
, s)v
T
i

(

′, s

)
.
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Given νs
j ∈ Rκ , we have

((
Rs


,
′
)◦p

νs
j , ν

s
j

)

,
′≥1 =

(∑
i

vi(
, s)v
T
i

(

′, s

)
νs
j , ν

s
j

)

,
′≥1

(3.2)
= ∑

i

(
vi

(

′, s

)T
νs
j , vi(
, s)

Tνs
j

)

,
′≥1

is a Gram array, and hence positive semidefinite. Since Hadamard products pre-
serves positivity, ∏

s∈S

∏
j≤m

(((
Rs


,
′
)◦p

νs
j , ν

s
j

))ns
j

is positive semidefinite because it is the Hadamard product of finitely many arrays
of the form (3.2). Hence there exists a Gaussian process indexed with σ
 with
covariance given by (3.1). �

Let νs
j take rational values in [−1,1]κ and define the space of parameters

(3.3) � := {
θ : m,p,ns

1, . . . , n
s
m ∈N, νs

1, . . . , ν
s
m ∈ Q∩ [−1,1] for all s ∈ S

}
.

Since � is countable, we can find a enumeration map j (θ) : � → N. Let (uθ )θ∈�

be a sequence in [1,2] and let (hθ )θ∈� of be pairwise independent copies of hθ .
Finally, define

(3.4) hN(σ) = ∑
θ∈�

1

2j (θ)
uθhθ (σ ).

Let dN ∈ DN be such that dN → d ∈ D , and consider the perturbed Gibbs mea-
sure on �N(dN) given by

(3.5) G
pert
dN

= expH
pert
N (σ)

ZN(dN)
, H

pert
N = HN(σ) + sNhN(σ),

where σ ∈ �N(dN) and sN = Nα for 1/4 < α < 1/2. We then have the following.

THEOREM 3.2. There is a choice of (uθ ) such that the following hold:

• The perturbation is small in the sense that

lim
N→∞

∣∣∣∣ 1

N
E log

∑
σ∈�N(d)

exp
(
HN(σ)

) − 1

N
E log

∑
σ∈�N(d)

exp
(
H

pert
N (σ)

)∣∣∣∣ = 0.

• If RN = (Rs

,
′)s∈S ,
,
′≥1 is the overlap array drawn from E(G

pert
dN

)∞, then any
weak limit point, R∞, satisfies (2.5).
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PROOF. The proof of this fact is almost identical to Chapter 3.2 in [40], so
we omit most details. The only essential difference is the same as that in [43],
namely to point out why restricting the configuration space is important. This is
because the main integration by parts step in the proof of [40], Theorem 3.2, uses
in an essential way that the self overlap, R
,
, and thus the variance of the field
hN , is constant. In our setting, the relevant term, namely Cθ


,
 is plainly constant
on �N(dN) by inspection of (3.1). �

4. Upper bound—Guerra interpolation. We now turn to proving the upper
bound for the restricted free energy in (1.23) by a Guerra interpolation argument
[24]. Recall the definition of �ε

N(d) (1.13) and let the corresponding partition
function be denoted by Zε

N(d) = ∑
σ∈�ε

N(d) exp(HN(σ)). We will prove

(4.1) lim sup
N→∞

1

N
E logZε

N(d) ≤ P
(
r, x, d,

(
λs,Qs)

s∈S

) + O(ε).

Given a sequence of strictly increasing (xi)
r
i=1 as in (1.18), let (vα)α∈Nr be the

weights of the Ruelle probability cascades [47] associated with that sequence. For
α,β ∈ Nr , define

(4.2) |α ∧ β| = min{0 ≤ p ≤ r − 1|α1 = β1, . . . , αp = βp,αp+1 �= βp+1}
and |α∧β| = r if α = β . For each species, let (Zα

s (k))k≤κ be the centered Gaussian
vector with covariance

(4.3) EZα
s Zβ

s = 2
∑
t∈S

�2
stρ

t
NQt|α∧β|.

Similarly, let

(4.4) EYαYβ = ∑
s,t∈S

�2
stρ

s
Nρt

N

(
Qs|α∧β|,Qt|α∧β|

)
.

For each s ∈ S and each i ∈ Is , let Zα
i be an independent copy of Zα

s . The pro-
cesses Zα

i , Yα and HN(σ) are all independent. Finally, define the interpolating
Hamiltonian,

(4.5) Ht(σ,α) = √
tHN(σ) + √

t
√

NYα + √
1 − t

∑
i≤N

Zα
i (σi),

and the corresponding interpolating free energy function

(4.6) ϕε
N(t) = 1

N
E log

∑
α∈Nr

vα

∑
σ∈�ε

N(d)

eHt (σ,α).

We then have the following result.
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LEMMA 4.1. For any ε > 0 and N ≥ 1
ε
,

∂tϕ
ε
N(t) ≤ Cε2,

for some constant C(κ,�, |S |), uniformly in N . Furthermore, if d ∈ DN and
ε = 0, then

∂tϕ
0
N(t) ≤ 0.

PROOF. For any d ∈ D , the set �ε
N(d) is nonempty for N ≥ 1

ε
. Recall that by

Gaussian integration by parts,

∂tϕ
ε
N(t) = 1

N
E

〈
∂Ht(σ,α)

∂t

〉
(4.7)

= 1

N
E

〈
E

∂Ht(σ
1, α1)

∂t
Ht

(
σ 1, α1) −E

∂Ht(σ
1, α1)

∂t
Ht

(
σ 2, α2)〉

,

where 〈·〉 is with respect to the Gibbs measure G(σ,α) ∝ vα exp(Ht (σ,α)) on
�ε

N(d) ×Nr . If we write Zα
i (σi) = ∑

k≤κ Zα
i (k)1(σi = k), then

E
∂Ht(σ

1, α1)

∂t
Ht

(
σ 2, α2)

= 1

2

(
EHN

(
σ 1)

HN

(
σ 2) + NEYα1

Yα2 − ∑
s∈S

∑
i∈Is

EZα1

s

(
σ 1

i

)
Zα2

s

(
σ 2

i

))

= N

2

∑
s,t∈S

ρs
Nρt

N�2
st

[(
Rs

1,2,R
t
1,2

) + (
Qt

|α1∧α2|,Q
s
|α1∧α2|

)
(4.8)

− 2
(
Qt

|α1∧α2|,R
s
1,2

)]
= N

2

∑
s,t∈S

�2
st

(
Rs

1,2 − Qs
|α1∧α2|,R

t
1,2 − Qt

|α1∧α2|
)
ρs

Nρt
N ≥ 0.

The last quantity is nonnegative comes from the fact that if we define the matrix

A1,2,α1,α2 = ((
Rs

1,2 − Qs
|α1∧α2|,R

t
1,2 − Qt

|α1∧α2|
))

s,t

then it is positive definite as it is a Gram-matrix. The Hadamard product of this
matrix with the positive definite matrix � = (�2

s,t )s,t , is still positive definite by
the Schur product theorem. Thus (4.8) can be written as

(4.9)
N

2

(
�2 ◦ (A1,2,α1,α2)ρ,ρ

) ≥ 0,

where ◦ denotes the Hadamard product. For σ ∈ �ε
N(d), the self overlap matrix

Rs
1,1 is a diagonal matrix with entries Rs

1,1(k, k) ∈ [ds
k − ε, ds

k + ε]. Therefore, the
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diagonal terms of Rs
1,1 − Qs

|α1∧α1| satisfy∣∣Rs
1,1(k, k) − Qs

r(k, k)
∣∣ ≤ ε ∀s ∈ S , k ≤ κ.

Since there are κ nonzero terms in the inner product (Rs
1,1 − Qs

|α1∧α1|,R
t
1,1 −

Qt
|α1∧α1|), our upper bound of the diagonals (4.8) imply

E
∂Ht(σ

1, α1)

∂t
Ht

(
σ 2, α2) = N

2

(
�2 ◦ (A1,1,α1α1)ρ,ρ

)
(4.10)

≤ N‖�‖|S |2κ
2

ε2.

Plugging (4.9) and (4.10) in (4.7), implies

∂tϕ
ε
N(t) = E

〈
1

2

(
�2 ◦ (A1,1,α1,α1)ρ,ρ

)〉 −E

〈
1

2

(
�2 ◦ (A1,2,α1,α2)ρ,ρ

)〉

≤ ‖�‖|S |2κ
2

ε2.

In the case d ∈ DN(d), the set �N(d) = �0
N(d) is nonempty. For σ ∈ �N(d), the

overlap array Rs

,
′ = Qs

r for all s ∈ S . In particular, A1,1,α1,α1 = 0, which implies

∂tϕ
0
N(t) = −E

〈
1

2

(
�2 ◦ (A1,2,α1,α2)ρ,ρ

)〉 ≤ 0. �

As a consequence 1
N
E logZε

N(d) is bounded above by

1

N
E log

∑
α∈Nr

vα

∑
σ∈�ε

N(d)

exp
∑
i≤N

Zα
i (σi)

(4.11)

− 1

N
E log

∑
α∈Nr

vα exp
√

NYα + O
(
ε2)

.

We now introduce the Lagrange multipliers (λs
k)k≤κ ∈ Rk , which are dual to the

proportions
∑

i∈Is
1(σi = k). If we add and subtract

∑
i≤N

∑
k≤κ λ

s(i)
k 1(σi = k) in

the exponent of the first term in (4.11), then the first term is bounded by

− ∑
s∈S

∑
k≤κ

ρs
Nds

kλ
s
k

+ 1

N
E log

∑
α∈Nr

vα

∑
σ∈�ε

N(d)

exp
∑
i≤N

(
Zα

i (σi) + ∑
k≤κ

1(σi = k)λ
s(i)
k

)
+ O(ε).

Since �ε
N(d) ⊂ �N , summing over σ ∈ �N in the larger set only increases our

upper bound. We can now factor into species using the basic properties of the
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Ruelle probability cascades (see the discussion after Theorem 2.9 in [40]) to see

1

N
E log

∑
α∈Nr

vα

∑
σ∈�N

exp
∑
i≤N

(
Zα

i (σi) + ∑
k≤κ

1(σi = k)λ
s(i)
k

)

= 1

N
E log

∑
α∈Nr

vα

∏
i≤N

∑
σi≤κ

exp
(
Zα

i (σi) + ∑
k≤κ

1(σi = k)λ
s(i)
k

)
(4.12)

= ∑
s∈S

ρs
NE log

∑
α∈Nr

vα

∑
σ≤κ

exp
(
Zα

s (σ ) + λs
σ

)

= ∑
s∈S

ρs
NXs

0,

where Xs
0 was defined in (1.21). Similarly, we see

1

N
E log

∑
α∈Nr

vα exp
√

NYα

(4.13)

= 1

2

r−1∑

=0

x


∑
s,t∈S

�2
stρ

s
Nρt

N

((
Qs


+1,Q
t

+1

) − (
Qs


,Q
t



))
.

Referring back to (4.11), equations (4.12) and (4.13) imply

(4.14) lim sup
N→∞

1

N
E logZε

N(d) ≤ P
(
r, x, d,

(
λs,Qs)

s∈S

) + O(ε).

In the case dN ∈ DN ,
∑

i∈Is
1(σi = k) = Nsd

s
k for all s ∈ S and k ≤ κ . The

above computation implies

(4.15)
1

N
E logZN(dN) ≤ P

(
r, x, d,

(
λs,Qs)

s∈S

)
.

5. Continuity and decoupling theorems. Before we turn to the proof of the
matching lower bounds, we briefly pause to study the analytical properties of some
of the functionals used in the upper bound, as well as relevant functionals for the
lower bound. These functionals will be in terms of the Gaussian processes (Zα

s )

and (Y α) from (4.3) and (4.4), respectively.
Many of the proofs in this section are essentially identical to arguments either

from [43], Section 3, or are standard arguments and can be seen, for example, in
[40, 52]. Thus to make the presentation concise, we explain only the parts where
these arguments deviate from standard arguments and outline the rest.

5.1. Decoupling size of the constraints. When we compute the lower bound
for the free energy, we will find that the cavity method will naturally impose an
additional constraint on free energy, namely, that the cavity coordinates satisfy
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the additional constraint that they lie in some �(d). As this constraint does not
appear in the upper bound from Section 4, we will need to remove this to obtain
the matching lower bound. To this end, define the functional on DN

(5.1) f s
N(d) := 1

N
E log

∑
α∈Nr

vα

∑
σ∈�N(d)

exp
∑
i≤N

Zα
i (σi),

where Zα
i are i.i.d. copies of Zα

s . Furthermore, we fix the covariance structure of
Zα

i and make the dependence of Xs
0 on the parameter λ explicit

(5.2) Xs
0(λ) = 1

N
E log

∑
α∈Nr

vα

∑
σ∈�N

exp
∑
i≤N

Zα
s (σi) + ∑

k≤κ

λs
k 1(σi = k).

We have the following result.

THEOREM 5.1. If ds
N ∈ DN and limN→∞ ds

N → ds , then

(5.3) lim
N→∞f s

N(dN) = inf
λs

(
− ∑

k≤κ

λs
kd

s
k + Xs

0(λ)

)
.

PROOF. We begin by observing that there is a constant L such that

(5.4) sup
d∈DN

∣∣f s
N,ε(d) − f s

N(d)
∣∣ ≤ L

√
ε,

where f s
N,ε(d) is the same functional as in (5.1) but summed over σ ∈ �ε

N(d).
This is the analogue of [43], Lemma 3, adapted to the covariance structure of the
Gaussian processes Zi defined in (4.3). We also fix the covariance structure of Zi

to remove its dependence on d . Let σ ∈ �ε
N(d) and σ̃ be a vector in �N(d) with

the minimal number of different coordinates from σ . Let

f̃ s
N,ε = 1

N
E log

∑
α∈Nr

vα

∑
σ∈�ε

N(d)

exp
∑
i∈SN

Zα
i (σ̃i).

Finally, let Z̃α
i be independent copies of Zα

i , and consider the “smart path”

Zt(α,σ ) = ∑
i≤N

(√
tZα

i (σi) + √
1 − tZ̃α

i (σ̃i)
)
.

We will then show that

ϕ(t) = 1

N
E log

∑
α∈Nr

vα

∑
σ∈�ε

N(d)

expZt(α,σ ),
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has a derivative that is bounded by Cε. To see this, let

C
((

σ 1, α1)
,
(
σ 2, α2)) = 1

N
E

∂Zt(σ
1, α1)

∂t

Zt

(
σ 2, α2)

= 1

N

∑
i≤N

(∑
t∈S

�2
stρ

t (Qt|α∧β|
(
σ 1

i , σ 2
i

) − Qt|α∧β|
(
σ̃ 1

i , σ̃ 2
i

)))

≤ ‖�‖ · |S | · κ · ε.
In the last line, we use that Qt ≤ Dt and that ‖Dt‖ ≤ 1 along with the observation
that ∑

1(σi �= σ̃i) ≤ �κNε�.
Differentiating and integrating by parts, we obtain∣∣ϕ′(t)

∣∣ = ∣∣E〈
C

((
σ 1, α1)

,
(
σ 1, α1)) − C

((
σ 1, α1)

,
(
σ 2, α2))〉∣∣ ≤ 2Lε,

for some constant L = L(κ,S ,�). Integrating this inequality, we can conclude

(5.5)
∣∣f s

N,ε − f̃ s
N,ε

∣∣ ≤ 2Lε.

For σ ∈ �(d), let us denote by N (σ ) the number of configurations ρ ∈ �ε(d)

such that ρ̃ = σ . Then we can rewrite and bound f̃ s
N,ε(d) as follows:

f̃N,ε(d) = 1

N
E log

∑
α∈Nr

vα

∑
σ∈�(d)

N (σ ) expβ
∑
i≤N

Zα
i (σi)

≤ f s
N(d) + 1

N
max

σ∈�(d)
logN (σ ).

Using a combinatorial argument, the term containing N (σ ) can be made arbi-
trarily small by choosing ε small enough. For any σ ∈ �(d), the number N (σ ) is
bounded by the number of configurations ρ such that

∑
i≤N I (ρi �= σi) ≤ LNε. By

the classical large deviation estimate for Bernoulli random variables, a number of
different ways to choose LNε coordinates is bounded by 2N exp(−NI (1 − Lε)),
where

I (x) = 1

2

(
(1 + x) log(1 + x) + (1 − x) log(1 − x)

)
,

and there are κLNε ways to choose ρi different from σi on these coordinates.
Therefore,

1

N
max

σ∈�(d)
logN (σ ) ≤ Lε logκ + log 2 − I (1 − Lε)

= Lε logκ + log
(

1 + Lε

2 − Lε

)
+ Lε

2
log

2 − Lε

ε
≤ L

√
ε,
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for small enough ε. We showed that fN,ε(d) ≤ fN(d) + L
√

ε. Combining this
with (5.5) yields the estimate ∣∣f s

N − f s
N,ε

∣∣ ≤ 2L
√

ε.

Note that (5.4), implies that the map d �→ f s
N(d) is Hölder 1/2.

The remaining steps to complete the proof are identical to [43], Section 3. An
additivity argument and (5.4) will imply the following.

LEMMA 5.2 ([43], Lemma 4, 5). If dN ∈ DN and limN→∞ dN = d ∈ D , then
the limit

f (d) := lim
N→∞fN(dN) = lim

ε→0
fε(d)

exists and is concave. In addition, for all d1, d2 ∈ D∣∣f (
d1) − f

(
d2)∣∣ ≤ L

∥∥d1 − d2∥∥1/2
∞

for some constant L that depends κ,S ,�.

Next, a direct computation using the recursive property of the Ruelle probability
cascades will imply the following result.

LEMMA 5.3 ([43], Lemma 6). For any λ = (λk)k≤κ ∈ Rκ

(5.6) Xs
0(λ) = max

d∈D

(
f s(d) + ∑

k≤κ

λs
kd

s
k

)
.

Notice f s
N(d) is continuous and bounded on D . Since it is also concave by

Lemma 5.2, we can take the Legendre transform of (5.6) to obtain

lim
N→∞f s

M(d) = inf
λ

(
− ∑

k≤κ

λs
kd

s
k + Xs

0(λ)

)
.

�

5.2. Continuity theorems. Along with the decoupling theorem, we will also
need to prove continuity of the functionals appearing in the Aizenman–Sims–Starr
scheme for this system.

Define the two functionals on a subset S ⊂ [κ]N ,

f Z
N (S, s;π) := 1

Ns

E log
∑

α∈Nr

vα

∑
σ∈S

exp
∑
i≤Ns

Zα
i (σi),(5.7)

f Y
N (π) := 1

N
E log

∑
α∈Nr

vα exp
√

NYα,(5.8)

where (Zα
i )i≤N are i.i.d. copies of Zα

s defined in (4.3). Observe that this functional
depends on π = (πs)s∈S through the covariance structures (4.3) and (4.4).
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LEMMA 5.4. For every S ⊂ [κ]N , the functional f Z
N (S, s;π) is Lipschitz in π

∣∣f Z
N (S, s;π) − f Z

N (S, s; π̃)
∣∣ ≤ L

∫ 1

0
max
s∈S

∥∥πs(x) − π̃ s(x)
∥∥

1 dx.

PROOF. Observe that any two monotone paths π and π̃ , can be associated
with a single sequence

x−1 = 0 ≤ x0 ≤ · · · ≤ xr−1 ≤ xr = 1

and, for every s ∈ S , two sequences

0 < Qs
0 ≤ · · · < Qs

r−1 < Qs
r = diag(d1, . . . , dκ),

0 < Q̃s
0 ≤ · · · < Q̃s

r−1 < Q̃s
r = diag(d1, . . . , dκ).

Consider the Gaussian processes Zα
s and Z̃α

s with the covariance (4.3) with Q

and Q̃, respectively, and consider the smart path between these two processes:

Zα
t,i = √

tZα
i + √

1 − tZ̃α
i .

If we take N copies of this process, and let (vα) be the Ruelle probability cascade
[47] associated to (xk), then if we define

ϕ(t) := 1

Ns

E log
∑

α∈Nr

vα

∑
σ∈S

exp
∑
i≤Ns

Zα
t,i(σi),

we have ϕ(1) = fZ(S, s;π) and ϕ(0) = fZ(S, s; π̃). If HN,t (σ,α) =∑
i≤N Zα

t,i(σi), let 〈·〉t denote the average with respect to the Gibbs measure

(5.9) Gt(σ,α) ∝ vα expHN,t (σ,α).

We can now compute ϕ′(t) using integration by parts. We first note that the covari-
ance

1

Ns

E
∂HN,t (σ

1, α1)

∂t

HN,t

(
σ 2, α2)

= 1

Ns

∑
i≤N

∑
s∈S

�2
s,s(i)ρ

s(Qs
α1∧α2

(
σ 1

i , σ 2
i

) − Q̃s
α1∧α2

(
σ 1

i , σ 2
i

))
.

The term on the right is bounded in absolute value by

‖�‖ · |S |max
s∈S

∥∥Qs
α1∧α2 − Q̃s

α1∧α2

∥∥
1.

Recalling that the marginal of Gt(σ,α) (5.9) on Nr has the same distribution as
the weights of vα ([40], Theorem 4.4), a standard Gaussian integration by parts
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argument will show∣∣ϕ′(t)
∣∣ ≤ E

〈
‖�‖ · |S |max

s∈S

∥∥Qs
α1∧α2 − Q̃s

α1∧α2

∥∥
1

〉
t

≤ ‖�‖|S | ∑
0≤p≤r

max
s∈S

∥∥Qs
α1∧α2 − Q̃s

α1∧α2

∥∥
1E

∑
α1∧α2=p

vα1vα2

= ‖�‖|S |
∫ 1

0
max
s∈S

∥∥πs(x) − π̃ s(x)
∥∥

1 dx.

Integrating this inequality yields the result. �

The following argument is well known and follows by a direct computation
using properties of Ruelle probability cascades; see [40, 43].

LEMMA 5.5. The functional f Y
N (π) is Lipschitz in π ,

∣∣f Y
N (π) − f Y

N (π̃)
∣∣ ≤ L

∫ 1

0
max
s∈S

∥∥πs(x) − π̃ s(x)
∥∥

1 dx.

We finally observe here that discrete paths are dense in π .

LEMMA 5.6. For any path π ∈ � and ε > 0, there exists a finite sequence of
points (xp)rp=1 such that the discrete path

π∗(x) := π(xp) for xp−1 < x ≤ xp

satisfies

�
(
π,π∗)

< ε.

We now state a general continuity theorem regarding functionals of this form.
Such results are completely standard; see, for example, [40, 43]. Let S ⊂ [κ]N ,
(wα)α∈A be the weights (possibly random) of a probability density distribution on
a countable set A , and

RA = (
Rs

α1,α2

)
s∈S ,α1,α2∈A ,

where each Rs
α1,α2 is a κ ×κ matrix. We think of this array as fixed and nonrandom.

It will be the values that some abstract overlap structure can take. Finally, let (Is)

be partition of [N ] into species.
We define the functionals

(5.10) f1,N = 1

N
E log

∑
α∈A

wα

∑
ε∈S

exp
∑
i≤N

Zα
i (εi)
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and

(5.11) f2,N = 1

N
E log

∑
α∈A

wα exp
√

NYα.

Here, Zα
i (σ ) is a centered Gaussian process is such that, if i ∈ Is ⊂ [N ], the co-

variance structure of the Gaussian vector Zα
i = (Zα

i (k))k≤κ is given by

(5.12) Cov
(
Zα1

i ,Zα2

i

) = Cs
Z

((
Rs

α1,α2

)
s∈S

)
,

for some Cs
z , a continuous function of the overlaps Rs

α1,α2 . Similarly, Y is a cen-
tered Gaussian process with covariance given by

(5.13) Cov
(
Yα1

, Y α2) = CY

((
Rs

α1,α2

)
s∈S

)
.

The following result is standard and follows from basic properties of Gaussian
processes, and the fact that log-sums of exponentials have at most linear growth at
infinity. Let (α(
))
≥1 be i.i.d. drawn from A with law wα , and denote

Rn = (
Rs

α(
),α(
′)
)

,
′∈[n],s∈S .

We have the following continuity property.

LEMMA 5.7. For any ε > 0, there are continuous bounded functions gZ
ε and

gY
ε such that

(5.14)
∣∣f1,N −EgZ

ε

(
Rn)∣∣ ≤ ε,

∣∣f2,N −EgY
ε

(
Rn)∣∣ ≤ ε.

These functions depend at most on N,S,Cz,Cy and ε.

6. Lower bound via an Aizenman–Sims–Starr scheme. For fixed d ∈ D
and a sequence of realizable proportions dN ∈ DN (1.14) converging to d , we
prove the matching constrained lower bound:

(6.1) lim inf
N→∞

1

N
E logZN(dN) ≥ inf

x,r,(λs,Qs)s∈S

P
(
r, x, d,

(
λs,Qs)

s∈S

)
.

By part (1) of Theorem 3.2, computing the lower bound of the free energy with
respect to

(6.2) H
pert
N (σ) = HN(σ) + sNhN(σ)

introduced in Section 3 and the corresponding constrained partition function

(6.3) ZN(dN) = ∑
σ∈�N(dN )

exp
(
H

pert
N (σ)

)
,

is equivalent to computing the lower bound in (6.1). We will continue to work with
the perturbed Hamiltonian (6.2) throughout the remainder of this section.
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For M ≥ 1, our starting point is the following inequality:

lim inf
N→∞

1

N
E logZN(dN)

(6.4)

≥ lim inf
N→∞

1

M

(
E logZN+M(dN+M) −E logZN(dN)

)
.

We will write the free energy in terms of the Gibbs measure G
pert
dN

defined in (3.5)
using the cavity method via an Aizenman–Sims–Starr scheme [2]. To this end, let
us denote a configuration ρ̃ ∈ [κ]N+M by ρ̃ = (ε, σ ), where ε = (ε1, . . . , εM) ∈
[κ]M are called the cavity coordinates and σ = (σM+1, . . . , σN+M) ∈ [κ]N are
called the bulk coordinates. We define Ms , Ns to be the subset of the respective
cavity and bulk coordinates that belong to species s. Let Ms , Ns be the cardinality
of Ms and Ns .

We control the rate of convergence of dN so that for some constant Lκ ,

(6.5)
∣∣ds

N,k − ds
k

∣∣ ≤ Lκ

Ns

for all k ≤ κ , s ∈ S and ds
N,k = 0 if ds

k = 0.

A generalized version of [43], Lemma 11, will allow us to split constrained config-
uration space into a product set of the bulk coordinates and the species-wise cavity
coordinates along a subsequence.

We first introduce some more notation. Let A ⊂ [N + M] and As is the subset
of A in species s. If A := |A| is the cardinality of the set A, we define

(6.6) �A(d) :=
{
(σi)i∈A

∣∣∣ ∑
i∈As

1(σi = k) = Asd
s
k ,∀k ≤ κ, s ∈ S

}

to be the configurations of spins in A that satisfy the constraint d . If A = [N +M],
then (6.6) coincides with (1.13). The definition in (6.6) naturally implies

(6.7) �A(d) = ∏
s∈S

�As

(
ds).

If we use the sets N and M in place of A in (6.7), the observations means we can
break the cavity and bulk coordinates into a product set over species. We will now
show that the entire constrained system �N+M(d) contains a product set over the
bulk and cavity coordinates.

LEMMA 6.1. For every M > 0, there exists a constraint δM ∈ DM such that

(6.8)
∣∣δs

M,k − ds
k

∣∣ ≤ 2Lκ

Ms

for all k ≤ κ , s ∈ S ,

and we can find a subsequence of N such that

(6.9) �N+M(dN+M) ⊇ �N(dN) × �M(δM).
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PROOF. We first fix s ∈ S and apply [43], Lemma 11, to the subset of spins
in �N+M belonging to species s. There exists a sequence δs

M ∈ DM such that
|δs

M,k − ds
k | ≤ 2Lκ

Ms
for all k ≤ κ , and

(6.10) Nsd
s
N + Msδ

s
M = (Ns + Ms)d

s
N+M

for infinitely many Ns . Therefore, we can find a subsequence of N such that that
associated Ns satisfies (6.10) and

�Ns+Ms (dN+M) ⊇ �Ns (dN) × �Ms(δM).

Repeating the argument over each species and extracting a further subsequence
each iteration, we can conclude∏

s∈S

�Ns+Ms (dN+M) ⊇ ∏
s∈S

�Ns

(
ds
N

) × ∏
s∈S

�Ms

(
δs
M

)
.

Writing the product sets using the observation in (6.7) completes the proof. �

With this observation, we can restrict the first sum in (6.4) to the product
set (6.9), so that (6.4) is bounded below by

1

M

(
E log

∑
σ∈�N(dN)

∑
ε∈�M(δM)

exp
(
H

pert
N+M(σ, ε)

)
(6.11)

−E log
∑

σ∈�N(dN)

exp
(
H

pert
N (σ)

))
.

We will now separate the unperturbed portion of the Hamiltonians into its cavity
fields,

HN+M(ε,σ ) = H ′
N(σ) + ∑

i≤M

Zσ
N,i(εi) + r(ε),(6.12)

HN(σ) = H ′
N(σ) + √

MYσ
N.(6.13)

These cavity fields are the same as those appearing in [43], equation (107) and
(109), except with different covariance structure because of the inhomogeneity. In
our case, these fields are independent Gaussian processes with covariance

EH ′
N

(
σ
)H ′

N

(
σ
′) = N2

N + M

∑
s,t∈S

�2
s,tρ

s
Nρt

N

(
Rs


,
′,Rt

,
′

)
,(6.14)

EZσ


N,i(ε)Z
σ
′
N,j

(
ε′) = 2δ{i=j}

∑
s∈S

�2
s(i),sρ

s
NRs


,
′
(
ε, ε′) + O

(
N−1)

,(6.15)

EYσ


N Y σ
′
N = ∑

s,t∈S

�2
s,tρ

s
Nρt

N

(
Rs


,
′,Rt

,
′

) + O
(
N−1)

.(6.16)
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Here, ρs
N :=

∑N+M
M+1=1 1(i∈Is)

N
is the proportion of the bulk coordinates that belong to

species s. This distinction is not critical because this proportion converges to the
same ρs defined in (1.6). The r(ε) term is O(N−1) and can be omitted without
affecting (6.1).

By a standard interpolation argument (see, e.g., [40], Theorem 3.6), if
(zσ

N,i(ε))i≤M and yσ
N are centered Gaussian processes with covariances

Ezσ


N,i(ε)z
σ
′
N,j

(
ε′) = 2δ{i=j}

∑
s∈S

�2
s(i),sρ

sRs

,
′

(
ε, ε′),(6.17)

Eyσ


N yσ
′
N = ∑

s,t∈S

�2
s,tρ

sρt (Rs

,
′,Rt


,
′
)
,(6.18)

then (6.11) is bounded below by

(6.19)
1

M
E log

〈 ∑
ε∈�M(δ)

exp
∑
i≤M

zσ
N,i(ε)

〉
G′

N

− 1

M
E log

〈
exp

√
Myσ

N

〉
G′

N
+ o(1).

Here, 〈·〉G′
N

is the average in σ with respect to the perturbed Gibbs measure (3.5).
By Lemma 5.7, the functionals appearing in (6.19) are continuous functionals of
the distribution of the overlap matrix array

(6.20) RN = (
Rs


,
′
)

,
′≥1,s∈S

of i.i.d. draws from the perturbed Gibbs measure G
pert
dN

. We will now relate (6.19)
to the Ruelle probability cascades allowing us to compute its value explicitly.

In the following, we take a subsequence along which the limit inferior of (6.19)
is achieved. Since R is compact, we may take a subsequential weak limit of RN

along our minimizing subsequence, which we denote by R∞. For ease of notation,
we will continue to denote this subsequence with N . By the choice of the perturba-
tion Hamiltonian, Theorem 3.2, we have the limiting array R∞ satisfies equation
(2.5). By the characterization theorem, Theorem 2.1, we see the order parameter
for this system, that is the quantity which determines the law of the system, will
be the law of tr(R̄∞

12).
With this in mind, we make the following approximation. The array,

(tr(R̄∞

,
′))
,
′≥1, by definition of R, is a Gram–de Finetti array. Furthermore, tak-

ing νs
n = √

ρsen, ps = 1, and ϕ := ∑
s∈S

∑
i≤κ(ν

s
i ,R

s,∞

,
′ νs

i ) in (2.5) the array

(tr(R̄∞

,
′))
,
′≥1 also satisfies the classical Ghirlanda–Guerra identities. By [40],

Thereom 2.13, the law of (tr(R̄∞

,
′))
,
′≥1 is uniquely determined by ζ , the law of

tr(R̄∞
1,2). Let ζ n → ζ weakly in Pr[0,1], such that ζ n consists of a finite number

of atoms. This yields sequences

xn−1 = 0 < xn
0 < · · · < xn

r−1 < xn
r = 1,

(6.21)
0 = qn

0 < · · · < qn
r−1 < qn

r = 1,
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such that ζ n([0, qn
p]) = xn

p . By [40], Theorem 2.17, if tr(R̄n
1,2) has distribution

ζ n, then the approximating array of traces (tr(R̄n
1,2))
,
′≥1 converge weakly to

(tr(R̄∞

,
′))
,
′≥1.

Let vα be the weights of the Ruelle probability cascades associated with the
sequence (xn) in (6.21). If (a
)
≥1 are i.i.d. samples from Nr according to vα , then
it is well known [40], Section 3.6, that T n


,
′ = qn

α
∧α
′ will be close in distribution

to (tr(R̄∞

,
′))
,
′≥1. More precisely,

(6.22)
(
T n


,
′
)

,
′≥1

d→ (
tr

(
R̄∞


,
′
))


,
′≥1.

Since the limiting array R∞ is IP-Invariant (2.5), by Theorem 2.1 we can find a
family of Lipschitz functions (�s)s∈S on [0,1] such that

R∞ = (
R

s,∞

,
′

)

,
′≥1,s∈S = (

�s

(
tr

(
R̄∞


,
′
)))


,
′≥1,s∈S .

Since �s is Lipschitz, (6.22) implies the κ × κ matrices Q
s,n

,
′ := �s(T

n

,
′) will

be close in distribution to R
s,∞

,
′ . If we let Qn := (Q

s,n

,
′)
,
′≥1,s∈S denote the ap-

proximating array generated from i.i.d. samples under Ruelle probability cascades
corresponding to order parameter ζ n then (6.22) also implies

(6.23) Qn d→ R∞.

For n sufficiently large, we will bound (6.19) arbitrarily closely with functionals
of the infinite array Qn, which we will now show. Let ((Zα

i,n(k))k≤κ)i≤M and Yα
n

be centered Gaussian processes with covariances

EZα
i,nZ

β
j,n = 2δ{i=j}

∑
t∈S

�2
s(i),tρ

tQ
t,n
|α∧β|,(6.24)

EYα
n Yβ

n = ∑
s,t∈S

�2
s,tρ

sρt (Qs,n
|α∧β|,Q

t,n
|α∧β|

)
.(6.25)

Notice that the covariance structure in (6.24) and (6.25) depend on the overlap
array in exactly the same way as (6.17) and (6.18). A direct application of the
continuity in Lemma 5.7 and the convergence in distribution of Qn in (6.23) will
imply the following result.

LEMMA 6.2. For every ε̃ > 0, there is an n > 0 such that

lim inf
N→∞

1

M
E log

〈 ∑
ε∈�M(δ)

exp
∑
i≤M

zσ
N,i(ε)

〉
G′

N

− 1

M
E log

〈
exp

√
Myσ

N

〉
G′

N

≥ 1

M
E log

∑
α∈Nr

vα

∑
ε∈�M(δ)

exp
∑
i≤M

Zα
i,n(εi)(6.26)

− 1

M
E log

∑
α∈Nr

vα exp
√

MYα
n − ε̃.
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PROOF. The covariance structure of (6.24) and (6.25) are identical to (6.17)
and (6.18). By Lemma 5.7, the functionals appearing in (6.26) can be approx-
imated by the same bounded continuous functions EgZ

ε (R) and EgY
ε (R) of the

overlap arrays. Since the distribution of the arrays RN and Qn both converge
weakly to R∞, by first taking a subsequence N along which RN converges to
R∞ and then approximating with Qn we have for any ε̃ > 0,∣∣EgZ

ε

(
R∞) −EgY

ε

(
R∞) −EgZ

ε

(
Qn) +EgY

ε

(
Qn)∣∣ ≤ ε̃,

by choosing n sufficiently large. Applying the triangle inequality will complete the
proof. �

Since �M(δM) = ∏
s∈S �Ms(δMs ), we express the first term in (6.26) as a

weighted average. By the properties of the Ruelle probability cascades (see [40],
Theorem 2.9),

1

M
E log

∑
α∈Nr

vα

∑
ε∈�M(δ)

exp
∑
i≤M

Zα
i,n(εi)

= 1

M
E log

∑
α∈Nr

vα

∏
s∈S

∑
ε∈�Ms (δMs )

exp
∑
i∈Ms

Zα
i,n(εi)

= ∑
s∈S

ρs
M

1

Ms

E log
∑

α∈Nr

vα

∑
ε∈�Ms (δMs )

exp
∑
i∈Ms

Zα
i,n(εi).

Every sequence (xn
p)rp=0 and (Qn,s

p )rp=0 defines a discrete path (πs
n(x))s∈S ∈ 
.

Using the notation of the functionals f Z
Ms

(�Ms (δMs ), s;πn) and f Y
M(πn) defined

on (5.7) and (5.8), we have shown that

lim inf
N→∞

1

N
E logZN(dN) ≥

( ∑
s∈S

ρs
Mf Z

Ms

(
�Ms(δMs ), s;πn

) − f Y
M(πn)

)
− ε.

Lemma 5.4 and Lemma 5.5 imply the functionals f Z
Ms

(�Ms (δMs ), s;πn) and

f Y
M(πn) are Lipschitz. Sending ε → 0 and noticing that the paths πn → π∞ in �,

we have shown

lim inf
N→∞

1

N
E logZN(dN)

(6.27)

≥
( ∑

s∈S

ρs
Mf Z

Ms

(
�Ms(δMs ), s;π∞

) − f Y
M(π∞)

)
for any M > 0.

All that remains is to remove the dependence on �M(δM). This will be a direct
application of the decoupling proved in Lemma 5.6.
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LEMMA 6.3. There exists a path π∗ ∈ 
 such that

lim
M→∞

( ∑
s∈S

ρs
Mf Z

Ms

(
s,π∗) − f Y

M

(
π∗)) ≥ P

(
r, x, d,

(
λs,Qs)

s∈S

) − ε.

PROOF. We now make the paths πM∞ dependence on M explicit. Since
(πM∞)M≥1 is a countable collection of bounded monotone paths of κ × κ matrices,
there exists a subsequence in M such that πM∞ → π∗. Given ε > 0, by Lemma 5.6
we can find a discrete path πε such that �(πε,π

∗) < Cε, where C is the maxi-
mum Lipschitz constant over all f Z

Ms
(s). Since πε is discrete, applying Section 5.1

to the summation appearing in (6.27) shows

lim
M→∞

∑
s∈S

ρs
Mf Z

Ms

(
s,π∗) ≥ lim

M→∞
∑
s∈S

ρs
Mf Z

M(πε) − Cε

≥ inf
λ

∑
s∈S

ρs

(
− ∑

k≤κ

λs
kd

s
k + Xs

0
(
πε

)) − Cε

since ρs
M → ρs , δs

M,k → ds
k and f z

M is Lipschitz.
The term f Y

M(π∞) is actually independent of M , and a similar computation
using the properties of Ruelle probability cascades like in (4.13) shows

lim
M→∞f Y

M

(
π∗) = 1

2

r−1∑

=0

x


∑
s,t∈S

�2
stρ

sρt ((Qs

+1,Q

t

+1

) − (
Qs


,Q
t



))
.

Combining the computations of the two terms above, we now take ε → 0 and
get

(6.28) lim inf
N→∞

1

N
E logZN(dN) ≥ P

(
d,λ,π∗)

since πε → π∗ as ε → 0. �

Since the path π∗ can be described as the limit of the discrete approximating
sequences (1.18) and (1.19), we have shown

lim inf
N→∞

1

N
E logZN(dN) ≥ inf

x,r,(λs ,Qs)s∈S

P
(
r, x, d,

(
λs,Qs)

s∈S

)
.

7. Proof of Theorem 1.2.

PROOF OF THEOREM 1.2. We begin by proving part (1) of the theorem.
We start with the lower bound of FN(�

εN

N (d)). For any d ∈ D , let us choose
εN = Lκ

N
. We choose a sequence of dN ∈ DN such that ‖dN − d‖∞ = εN to satisfy
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the condition in (6.5). Since �ε
N(d) ⊇ �N(dN), the lower bound (6.1) computed

in Section 6 implies

lim inf
N→∞

1

N
E logZ

εN

N (d) ≥ lim inf
N→∞

1

N
E logZN(dN)

(7.1)
≥ inf

x,r,(λs ,Qs)s∈S

P
(
r, x, d,

(
λs,Qs)

s∈S

)
.

We now obtain the matching upper bound of FN(�
εN

N (d)). Since εN → 0, the
O(ε) term in the upper bound (4.14) computed in Section 4 vanishes yielding

(7.2) lim sup
N→∞

1

N
E logZ

εN

N (d) ≤ inf
x,r,(λs ,Qs)s∈S

P
(
r, x, d,

(
λs,Qs)

s∈S

)
.

Combining the inequalities in (7.1) and (7.2), we arrive at the formula for the
constrained free energy

(7.3) lim
N→∞

1

N
E logZN(d) = inf

x,r,(λs ,Qs)s∈S

P
(
r, x, d,

(
λs,Qs)

s∈S

)
.

Part (2) of the Theorem is a direct consequence of part (1). By classical Gaussian
concentration inequalities, observe that the limit of the free energy FN(�N) is
asymptotically given by the supremum of FN(�N(d)) over d ∈ D . By taking the
supremum over d ∈ D in (7.3), we arrive at the formula for the free energy

(7.4) lim
N→∞

1

N
E logZN = sup

d∈D
inf

x,r,(λs ,Qs)s∈S

P
(
r, x, d,

(
λs,Qs)

s∈S

)
. �

PROOF OF COROLLARY 1.3. We include a proof of the corollary for the sake

of completeness. By Hölder’s inequality,
F

β
N(�

εN
N (d))

β
is increasing in β and, there-

fore,

lim
β→∞

1

β
inf

x,r,(λs,Qs)s∈S

Pβ

(
r, x, d,

(
λs,Qs)

s∈S

)
(7.5)

exists. Moreover, we have

1

N
E

[
max

�
εN
N (d)

HN(σ)
]
≤ F

β
N(�

εN

N (d))

β
≤ logq

β
+ 1

N
E

[
max

�
εN
N (d)

HN(σ)
]
.

Taking the limit as N → ∞ and then as β → ∞ completes the proof. �

8. Proofs regarding cuts problems. In this section, we prove Theorem 1.1.
We start with a proof of Lemma 1.4.

PROOF OF LEMMA 1.4. The proof of this lemma proceeds by a direct cou-
pling argument. We will denote the adjacency matrix corresponding to G̃N as
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Ã = (Ãi,j ). We will realize the two graphs on the same probability space and
couple the adjacency matrices such that

P[Ai,j �= Ãi,j ]
= ∣∣P[Ai,j = 1] − P[Ãi,j = 1]∣∣
≤ cN

∣∣∣∣
∫
[ i−1

N
, i
N

]×[ j−1
N

,
j
N

]
K(x,y)dx dy −

∫
[ i−1

N
, i
N

]×[ j−1
N

,
j
N

]
K1(x, y)dx dy

∣∣∣∣.
We note that for any two graphs GN and G̃N , we have∣∣∣∣MaxCutκ(GN)

N
− MaxCutκ(G̃N)

N

∣∣∣∣ ≤ 1

2N

N∑
i,j=1

|Ai,j − Ãi,j |.

This implies that∣∣∣∣E
[

MaxCutκ(GN)

N

]
−E

[
MaxCutκ(G̃N)

N

]∣∣∣∣
≤ c

2

N∑
i,j=1

∣∣∣∣
∫
[ i−1

N
, i
N

]×[ j−1
N

,
j
N

]
K(x,y)dx dy −

∫
[ i−1

N
, i
N

]×[ j−1
N

,
j
N

]
K1(x, y)dx dy

∣∣∣∣
= c

2

(‖K − K1‖1 + o(1)
)
.

Thus the proof is complete once we choose M sufficiently large such that ‖K −
K1‖1 ≤ 1/c1/2+δ . �

To complete the proof of Theorem 1.1, we first introduce the following Gaussian
optimization problem. Set J = (Ji,j ) a symmetric matrix such that {Ji,j : i ≤ j}
are independent N(0, K̃N(i, j)) random variables. We define

Z̃N = 1

2N
max

σ∈[κ]N

[
c

N

N∑
i,j=1

K̃N(i, j)1(σi �= σj )

(8.1)

+ √
c

N∑
i,j=1

Ji,j√
N

1(σi �= σj )

]
.

The following lemma establishes that in the “large degree” limit, we can study the
asymptotic behavior of the MaxCutκ problem via that of the Gaussian optimization
problem Z̃N .

LEMMA 8.1. As N → ∞, we have

E

[
MaxCutκ(GN)

N

]
= E[Z̃N ] + o(

√
c).
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PROOF. The lemma follows from a direct application of [48], Theorem 1.1.
Specifically, we note that

MaxCutκ(GN)

N
= 1

2N
max

σ∈[κ]N
N∑

i,j=1

Ai,j 1(σi �= σj ).

The proof follows directly upon an application of the result in [48]. �

Thus finally, it comes down to the study of E[Z̃n] as N → ∞. Fix a probability
distribution on [κ], ds = (ds

1, . . . , d
s
κ), s = 1, . . . ,M . Consider the Hamiltonian

H(σ) =
N∑

i,j=1

Ji,j√
N

1(σi = σj ),(8.2)

where J = (Ji,j ) is as described above. For d = (d1, . . . , dM), probability mea-
sures on [κ], and a sequence εN decaying to zero sufficiently slowly, recall the
restricted configuration space (1.13)

(8.3) �
εN

N (d) =
{
σ ∈ [κ]N

∣∣∣ ∑
i∈Is

1(σi = k)

Ns

∈ [
ds
k − εN, ds

k + εN

]
, s ∈ [M]

}
.

Recall the restricted ground state energy P(d), introduced in Corollary 1.3. This
will allow us to deduce the following lemma.

LEMMA 8.2.

lim
N→∞E[Z̃N ] = sup

d

[
c

2

M∑
s,t=1

K(s, t)ρsρt (1 − 〈
ds, dt 〉) +

√
c

2
P(d)

]
+ o(

√
c).

PROOF. We start with the lower bound. We define

Z̃N(d) = 1

2N
max

σ∈�
εN
N (d)

[
c

N

N∑
i,j=1

K̃N(i, j)1(σi �= σj ) + √
c

N∑
i,j=1

Ji,j√
N

1(σi �= σj )

]

= c

2

M∑
s,t=1

K(s, t)ρsρt (1 − 〈
ds, dt 〉) +

√
c

2N
max

σ∈�
εN
N (d)

N∑
i,j=1

Ji,j√
N

1(σi �= σj )

+ o(1).

For fixed probability vectors d1, . . . , dM , we have

lim inf
N→∞ E[Z̃N ] ≥ lim inf

N→∞ E
[
Z̃N(d)

]

= c

2

M∑
s,t=1

K(s, t)ρsρt (1 − 〈
ds, dt 〉) +

√
c

2
P(d).
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We take the supremum over all possible probability vectors d1, . . . , dM to get
the requisite lower bound. To establish the upper bound, we define

M̃ = sup
d

[
c

2

M∑
s,t=1

K(s, t)ρsρt (1 − 〈
ds, dt 〉) +

√
c

2
P(d)

]
.(8.4)

Therefore, we have

E
[
Z̃N(d)

] ≤ c

2

M∑
s,t=1

K(s, t)ρsρt (1 − 〈
ds, dt 〉) +

√
c

2
P(d) + o(1)

≤ M̃ + o(1),

uniformly over all choices of d1, . . . , dM . We note that empirical distributions
within each block may assume only finitely many values and hence, summing
over these values, we have

P[Z̃N > M̃ + t] = ∑
d1,...,dM

P
[
Z̃N(d) > M̃ + t

]
.

Now,

P
[
Z̃N(d) > M̃ + t

] ≤ P
[
Z̃N(d) −E

[
Z̃N(d)

]
> t

] ≤ exp
[−CNt2]

,

where the last inequality follows by Gaussian concentration. Finally, plugging this
tail bound, we have

P[Z̃N > M̃ + t] ≤ ANκM̃ exp
[−CNt2]

.

We note that

E[Z̃N ] ≤
∫ ∞

0
P[Z̃N > x]dx ≤ M̃ + δN +

∫ ∞
δN

P[Z̃N > M̃ + t]dt

≤ M̃ + δN + ANκM̃ exp[−CNδ2
N ]√

NδN

.

Finally, we choose δN = C0

√
logN

N
for some constant C0 sufficiently large. This

establishes that

E[Z̃N ] ≤ M̃ + o(1),

completing the proof of the upper bound. �

PROOF OF THEOREM 1.1. The theorem follows directly upon combining
Lemma 8.1 and Lemma 8.2. �
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