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ORDER STATISTICS OF VECTORS WITH DEPENDENT
COORDINATES, AND THE KARHUNEN–LOÈVE BASIS

BY ALEXANDER E. LITVAK AND KONSTANTIN TIKHOMIROV

University of Alberta

Let X be an n-dimensional random centered Gaussian vector with inde-
pendent but not identically distributed coordinates and let T be an orthogonal
transformation of Rn. We show that the random vector Y = T (X) satisfies

E

k∑
j=1

j - min
i≤n

Xi
2 ≤ CE

k∑
j=1

j - min
i≤n

Yi
2

for all k ≤ n, where “j - min” denotes the j th smallest component of the corre-
sponding vector and C > 0 is a universal constant. This resolves (up to a mul-
tiplicative constant) an old question of S. Mallat and O. Zeitouni regarding
optimality of the Karhunen–Loève basis for the nonlinear signal approxima-
tion. As a by-product, we obtain some relations for order statistics of random
vectors (not only Gaussian) which are of independent interest.

1. Introduction. This work was motivated by the following question raised
by S. Mallat and O. Zeitouni in 2000 (it was first posted on Zeitouni’s web page
and later in arxiv [15]; see also [19]): Let n be a positive integer, and given j ≤ n

and a sequence of real numbers a1, a2, . . . , an, let j - mini≤n ai denote its j th small-
est element. Let X be an n-dimensional random Gaussian vector with independent
centered coordinates (with possibly different variances). Further, let T be an or-
thogonal transformation of Rn and set Y := T (X).

Is it true that for every k ≤ n, one has

(1) E

k∑
j=1

j - min
i≤n

Xi
2 ≤ E

k∑
j=1

j - min
i≤n

Yi
2?

This problem has a natural interpretation within the field of signal processing
(see [14], Chapter IX). Assume that a signal Y is modeled as an n-dimensional
random centered Gaussian vector (for n very large). Our goal is to approximate Y

by another vector which allows efficient storage and/or transmission through nar-
row bandwidth channels (let us note that this setting is distinct from the problem of
signal denoising [14], Chapter 11, in which the goal is to produce an estimator for
the mean of a noncentered signal). Let wi (i ≤ n) be a fixed orthonormal basis in
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R
n, so that Y = ∑n

i=1〈wi,Y 〉wi . The standard approach consists in approximating
Y with a sparse vector with respect to that basis. The linear m-term approximation
of Y with respect to the first m basis vectors is given by

∑m
i=1〈wi,Y 〉wi , and the

mean square error of the approximation is

E0(Y,m) = E

n∑
i=m+1

〈wi,Y 〉2.

It is a well-known fact that E0(Y,m) is minimized when the basis wi (i ≤ n) is the
Karhunen–Loève basis for Y , that is, when the random variables 〈wi,Y 〉 (i ≤ n)
are pairwise uncorrelated, and the sequence (E〈wi,Y 〉2)ni=1 is nonincreasing (see,
e.g., [14], Theorem 9.8). Next, the nonlinear m-term approximation is defined as∑

i∈�〈wi,Y 〉wi , where � is the (random) set of indices corresponding to m largest
components of (|〈wi,Y 〉|)i≤n. The nonlinear approximation error is given by

E(Y,m) = E

∑
i /∈�

〈wi,Y 〉2 = E

n−m∑
j=1

j - min
i≤n

〈wi,Y 〉2.

Now, observe that the expression on the left-hand side of (1) is the mean square
error when approximating a signal X with uncorrelated coordinates with respect
to the standard basis e1, e2, . . . , en using its largest n − k components, and that the
basis e1, e2, . . . , en is the Karhunen–Loève basis for X. The right-hand side of (1)
corresponds to approximation of X with its n − k largest components with respect
to a basis T −1(e1), T

−1(e2), . . . , T
−1(en) (for some orthogonal transformation T ).

Thus, (1) is equivalent to saying that the Karhunen–Loève basis is optimal among
all orthonormal bases in R

n regarding the nonlinear approximation of centered
Gaussian vectors. For more information on the signal approximation, we refer to
[14], Chapter IX.

Note that the case k = n is trivial. In [15] the authors solved the problem in the
special case k = n − 1, that is, showed that

E

n−1∑
j=1

j - min
i≤n

Xi
2 ≤ E

n−1∑
j=1

j - min
i≤n

Yi
2.

This corresponds to the situation when the signal is approximated by its largest
one-dimensional projection. In this paper, we verify (1) up to a multiplicative con-
stant for all k < n.

THEOREM 1.1. Let 1 ≤ k < n. Let X be an n-dimensional centered Gaussian
vector with independent coordinates and T be an orthogonal transformation of
R

n. Then, setting Y := T (X), we have

E

k∑
j=1

j - min
i≤n

Xi
2 ≤ CE

k∑
j=1

j - min
i≤n

Yi
2,

where C > 0 is a universal constant.
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The above theorem can be viewed as a relation between sums of order statistics
of random vectors, in which one vector has independent coordinates and the other
admits dependencies. Order statistics of random vectors are well-studied objects,
and numerous results regarding their distribution are available. We refer to monog-
raphy [2] for an account of developments prior to early 2000s. However, in the
classical setting order statistics are defined for vectors with i.i.d. coordinates, with
some generalizations available in the case of independent but not identically dis-
tributed components, as well as special kinds of dependencies (e.g., exchangeable
or equicorrelated coordinates; see [2], Chapter 5). In our situation, we are work-
ing with coordinates which are simultaneously dependent and not equidistributed,
making their analysis more problematic. Among recent works dealing with order
statistics of vectors with dependent components, let us mention [1, 4, 6–8, 10, 11,
15]. In particular, ideas originated in papers [6, 7, 15] play an essential role in this
note.

The proof of Theorem 1.1 can be roughly divided into two (unequal) parts. In the
first part, which constitutes the novel element of this paper, we derive a comparison
inequality for sums of order statistics of two random vectors, one with indepen-
dent coordinates and the other with dependencies, under very general assumptions
on the distribution of their components. In the second part, which essentially ap-
peared already in [15], we utilize a inequality of A.W. Marshall and F. Proschan
[16] (Theorem 2.5 below) to obtain a relation between variances of coordinates
of a Gaussian vector and its orthogonal transformation, which, together with the
first part, gives the statement of Theorem 1.1. The comparison inequality for or-
der statistics is interesting on its own right, and we state it below as a separate
theorem. It holds for a class of distributions satisfying rather mild conditions (see
Theorem 5.4 below), however, to avoid technical complications here, we restrict
ourselves to vectors with Gaussian components.

THEOREM 1.2. Let p > 0, 1 ≤ k ≤ n and 0 < x1 ≤ · · · ≤ xn. Let ξi , ηi , i ≤ n,
be standard Gaussian variables and assume in addition that ξi , i ≤ n, are jointly
independent. Then

(2) E

k∑
j=1

j - min
1≤i≤n

|xiξi |p ≤ 6(Cp)pE

k∑
j=1

j - min
1≤i≤n

|xiηi |p,

where C > 0 is an absolute constant.

Note that the dependencies between variables ηi , i ≤ n, can be arbitrary; in
particular, we do not require vector (η1, . . . , ηn) to have multivariate normal dis-
tribution.

We would like to mention that in the special case k = 1 Theorem 1.2 was previ-
ously established in [6, 7]; namely, it was shown that

(3) E min
1≤i≤n

|xiξi |p ≤ �(2 + p)E min
1≤i≤n

|xiηi |p.
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In turn, the last inequality can be viewed as a natural counterpart to the well-
known inequality of S̆idák (see [3, 18]), asserting that Emax1≤i≤n |xiξi | ≥
Emax1≤i≤n |xiηi |. Recently, R. van Handel has provided an example showing
that one cannot make the constant multiple on the right-hand side of (3) equal to 1
even in the case p = 1, n = 3 [15].

We would also like to note that if j th minima (1 ≤ j ≤ k) in (2) are replaced
by corresponding maxima then the expectation of the sum for independent com-
ponents will be larger (up to a constant multiple), namely

(4) CE

k∑
j=1

j - max
1≤i≤n

|xiξi |p ≥ E

k∑
j=1

j - max
1≤i≤n

|xiηi |p,

where j - max denotes the j th largest element of corresponding sequences and C is
an absolute positive constant. We refer to Theorem 4 in [4] (see also Theorem 2.4
in [5]), where this result was proved in a more general setting involving arbitrary
Orlicz norms [note that the sum

∑k
j=1 j - maxi≤n |zi | is equivalent to an Orlicz

norm of the sequence (zi)i≤n]. In [17], this result was further extended to an even
wider class of norms. We would like to emphasize that although

E

n∑
j=1

j - max
1≤i≤n

|xiηi |p = E

n∑
j=1

j - min
1≤i≤n

|xiηi |p = E

n∑
j=1

|xiηi |p

=
(

n∑
j=1

|xi |p
)
E|η1|p,

the estimates (2) and (4) are incomparable—none of them implies the other one.
One of important ingredients in the proof of Theorem 1.2 is a statement which

provides optimal estimates for sums of the smallest order statistics in case of in-
dependent components (see Theorem 5.1). The proof is based on using special
functionals which were previously employed in papers [6–8].

Another novel element is an argument for working with dependent components
(see Theorem 4.5). Absence of such a tool in preceding works [6, 7] was a major
obstacle to proving the Mallat–Zeitouni conjecture, even up to a multiple depend-
ing on k. The proof of Theorem 4.5 is essentially reduced to considering uniformly
bounded dependent variables.

The paper is organized as follows. In Section 2, we fix notation and provide
auxiliary statements. Additionally, we introduce several special conditions on dis-
tributions which are assumed (in various combinations) in our main statements.
Section 3 contains some known results on individual order statistics, which we
use later in the paper. For the sake of completeness, we provide the proofs, but
we postpone them to Section 8. Section 4 provides new bounds for individual or-
der statistics playing a crucial role in the proof of the main results. The next two
sections are devoted to proving Theorems 1.1 and 1.2. In Section 7, we briefly
discuss efficiency of the nonlinear approximation based on the largest projections,
compared to the linear approximation.
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2. Notation and preliminaries. Given a subset A ⊂ N, we denote its car-
dinality by |A|. Next, for a natural number n and a set E ⊂ {1,2, . . . , n}, we
denote by Ec the complement of E inside {1,2, . . . , n}. Similarly, for an event
A we denote by Ac the complement of the event. Further, we say that a collec-
tion of sets (Aj )j≤k is a partition of {1,2, . . . , n} if each Aj is nonempty, the
sets are pairwise disjoint and their union is {1,2, . . . , n}. The canonical Euclidean
norm and the canonical inner product in R

n will be denoted by | · | and 〈·, ·〉,
respectively. We adopt the conventions 1/0 = ∞ and 1/∞ = 0 throughout the
text. For a given sequence of real numbers a1, a2 . . . , an, we denote its kth small-
est element by k- min1≤i≤n ai . In particular, 1- min1≤i≤n ai = min1≤i≤n ai , and
(k- min1≤i≤n ai)

n
k=1 is the nondecreasing rearrangement of the sequence (ai)

n
i=1.

As usual, we use the abbreviation c.d.f. for the cumulative distribution function
[that is, given a random variable ξ , the c.d.f. of ξ is F(t) = P(ξ ≤ t)].

Next, we group together a few combinatorial results which provide basic tools
for estimating order statistics in next sections. Let us start with the following sim-
ple property of k- min1≤i≤n ai which holds for every real sequence (ai)

n
i=1: For

every partition (Aj )j≤k of {1,2, . . . , n}, one has

(5)
k∑

j=1

j - min
1≤i≤n

ai ≤
k∑

j=1

min
i∈Aj

ai.

The next statement is a classical inequality for symmetric means.

THEOREM 2.1 (C. Maclaurin; see [9], Theorem 52). Let 1 ≤ � ≤ n and let
a1, . . . , an be nonnegative real numbers. Then

∑
A⊂{1,2,...,n}

|A|=�

∏
i∈A

ai ≤
(
n

�

)(
1

n

n∑
i=1

ai

)�

.

In [7], it was shown that the above statement, together with Stirling’s formula,
implies the following.

COROLLARY 2.2. Let 1 ≤ k ≤ n. Let a1, . . . , an be nonnegative real numbers
and assume that

0 < a := e

k

n∑
i=1

ai < 1.

Then
n∑

�=k

∑
A⊂{1,2,...,n}

|A|=�

∏
i∈A

ai <
1√
2πk

ak

1 − a
.
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The following statement was essentially obtained in [7] (cf. Lemma 4 there).
We reproduce the argument in Section 8 for the reader’s convenience.

LEMMA 2.3. Let 1 ≤ k ≤ n and let (ai)
n
i=1 be a nonincreasing sequence of

positive real numbers. For each j ≤ n, set bj := ∑n
i=j ai and let m ≤ k be the

smallest integer such that

am ≤ bm

k + 1 − m
.

Then there exists a partition (Aj )j≤k of {1,2, . . . , n} such that Aj = {j} for j < m

and for every j ≥ m we have ∑
i∈Aj

ai ≥ bm

2(k + 1 − m)
.

REMARK 2.4. In fact, as one can see from the proof below, the sets Aj can
be chosen as intervals, that is, Aj = {i ≤ n : nj−1 < i ≤ nj }, j ≤ k, for some
sequence 0 = n0 < n1 < · · · < nk = n. Moreover, with the partition used in the
proof we also have

min
1≤�≤k

∑
i∈A�

ai ≥ 1

2
min

1≤j≤k

1

k + 1 − j

n∑
i=j

ai .

Next, we introduce several conditions on distributions of random variables. Let
α > 0 and β > 0 be parameters. We say that a random variable ξ satisfies the
α-condition if

(6) P
(|ξ | ≤ t

) ≤ αt for every t ≥ 0

and ξ satisfies the β-condition if

(7) P
(|ξ | > t

) ≤ e−βt for every t ≥ 0.

If both (6) and (7) hold, then we say that ξ satisfies the (α,β)-condition. Note that
in this case we necessarily have αt + e−βt ≥ 1 for all t ≥ 0, which can be true only
for α ≥ β . In [7], it was shown that for any q ≥ 1, a nonnegative random variable
ξ with the density function p(s) = cq exp (−sq) (s ≥ 0), where cq := 1/�(1 +
1/q), satisfies (6) and (7) with parameters α = β = cq . In particular, for q = 2
we get a Gaussian random variable N (0,1/2), and α = β = c2 = 2/

√
π . This

easily implies that the standard Gaussian variable satisfies (6) and (7) with α =
β = √

2/π . Note also that for q = 1 we have an exponentially distributed random
variable satisfying the (α,β)-condition with α = β = 1. Finally, it is not difficult to
check that any centered log-concave random variable satisfies the (α,β)-condition
for some α and β .
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We will employ one more condition on a c.d.f. F of a nonnegative random
variable:

(8) there exist δ ∈ (0,1),A > 1 such that F(t) ≥ 2F(t/A) whenever F(t) ≤ δ.

Note that the multiple “2” on the right-hand side of (8) can be replaced with any
number a > 1, at expense of increasing A and decreasing δ.

Finally, we state the following result of Marshall and Proschan, which will be
used in Section 6.

THEOREM 2.5 ([16]). Let ξ1, . . . , ξn be interchangeable random variables
(i.e., with the joint distribution invariant under permutations of arguments). Let
(ai)i≤n and (bi)i≤n be nonnegative nonincreasing sequences such that for every
� ≤ n:

�∑
i=1

ai ≥
�∑

i=1

bi and
n∑

i=1

ai =
n∑

i=1

bi.

Let ϕ be a continuous convex function symmetric in its n arguments. Then

Eϕ(a1ξ1, . . . , anξn) ≥ Eϕ(b1ξ1, . . . , bnξn).

3. Known bounds for individual order statistics. In this section, we recall
some of results from papers [6, 7] concerning order statistics. For the sake of com-
pleteness, we provide their proofs in Section 8.

LEMMA 3.1. Let α > 0 and p > 0. Let 0 < x1 ≤ x2 ≤ · · · ≤ xn be real num-
bers and let ξ1, . . . , ξn be (possibly dependent) random variables satisfying the
α-condition. Finally, set b := ∑n

i=1 1/xi . Then for every t > 0 we have

P

{
min

1≤i≤n
|xiξi | ≤ t

}
≤ αbt.

In particular,

Med
(

min
1≤i≤n

|xiξi |p
)

≥ 1

2pαpbp
and E min

1≤i≤n
|xiξi |p ≥ 1

(1 + p)αpbp
.

LEMMA 3.2. Let β > 0 and p > 0. Let 0 < x1 ≤ x2 ≤ · · · ≤ xn be real
numbers and let ξ1, . . . , ξn be independent random variables satisfying the β-
condition. Set b := ∑n

i=1 1/xi . Then for every t > 0, we have

P

{
min

1≤i≤n
|xiξi | > t

}
≤ e−βbt .

In particular,

Med
(

min
1≤i≤n

|xiξi |p
)

≤ (ln 2)p

βpbp
and E min

1≤i≤n
|xiξi |p ≤ �(1 + p)

βpbp
.
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An immediate consequence of the above lemmas is the following statement.

COROLLARY 3.3. Let p > 0. Let (xi)
n
i=1 be a sequence of real numbers and

f1, . . . , fn, ξ1, . . . , ξn be random variables satisfying the (α,β)-condition for some
α,β > 0. Assume additionally that the ξi ’s are jointly independent. Then

E min
1≤i≤n

|xiξi |p ≤ �(2 + p)αpβ−p
E min

1≤i≤n
|xifi |p.

In particular, if f1, . . . , fn, ξ1, . . . , ξn are N(0,1) Gaussian random variables,
then

E min
1≤i≤n

|xiξi |p ≤ �(2 + p)E min
1≤i≤n

|xifi |p.

The next lemma deals with order statistics other than the smallest one.

LEMMA 3.4. Let α > 0, p > 0 and 1 ≤ k ≤ n. Further, let 0 < x1 ≤ x2 ≤
· · · ≤ xn be real numbers and let ξ1, . . . , ξn be independent random variables satis-
fying the α-condition. Set b := ∑n

i=1 1/xi , a := αeb/k. Then for every 0 < t < 1/a

we have

P

{
k- min

1≤i≤n
|xiξi | ≤ t

}
≤ 1√

2πk

(at)k

1 − at

and

1

21/p4α
max

1≤j≤k

k + 1 − j∑n
i=j 1/xi

≤
(
Ek- min

1≤i≤n
|xiξi |p

)1/p
.

REMARK 3.5. Using Lemmas 3.2, 2.3 (with Remark 2.4) and ideas similar to
ones used in the proof of Theorem 5.1 below, it was shown in [7] that for variables
satisfying the β-condition we have(

Ek- min
1≤i≤n

|xiξi |p
)1/p ≤ C(p, k)β−1 max

1≤j≤k

k + 1 − j∑n
i=j 1/xi

,

where C(p, k) := C max{p, ln(k + 1)}, and C is an absolute positive constant.
Moreover, in [8] it was shown that the expectation above is equivalent to some
Orlicz norm (up to a factor logarithmic in k).

4. New bounds for individual order statistics. Let ξ be a real-valued ran-
dom variable and let F = Fξ be its c.d.f. Let r ∈ [0,1]. By q(r) = qF (r) = qξ (r),
we denote a quantile of order r , that is, a number satisfying

P
{
ξ < q(r)

} ≤ r and P
{
ξ ≤ q(r)

} ≥ r

[note that in general q(r) is not uniquely defined]. The following claim provides
simple lower bounds on quantiles for a large class of random variables.
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CLAIM 4.1. Let 1 ≤ k ≤ n and 0 < x1 ≤ · · · ≤ xn. For each j ≤ n, set
bj := ∑n

i=j 1/xi . Further, let ξi , i ≤ n, be (possibly dependent) random variables
satisfying the α-condition for some α > 0, and for every i ≤ n let Fi be the c.d.f.
of |xiξi |. Denote

F := 1

n

n∑
i=1

Fi and q := qF

(
k − 1/2

n

)
.

Then

q ≥ 1

2α
max

1≤j≤k

k − j + 1

bj

.

PROOF. By the above definitions, for every j ≤ k we have

k − 1/2 ≤
n∑

i=1

Fi(q) ≤ j − 1 +
n∑

i=j

αq/xi = j − 1 + αqbj ,

which implies the result. �

REMARK 4.2. It is not difficult to check that when all ξi ’s are uniformly dis-
tributed on [0,1], we have

qF

(
k − 1/2

n

)
= max

1≤j≤k

k − j + 1/2

bj

.

The next lemma provides lower estimates for order statistics of possibly depen-
dent random variables via quantiles of their truncations.

LEMMA 4.3. Let δ ∈ (0,1), A > 1 and x1, . . . , xn > 0. Let ξi , i ≤ n, be (possi-
bly dependent) random variables satisfying condition (8) with parameters δ and A.
Further, define

t0 := min
i≤n

sup
{
t > 0 : F|ξi |(t) ≤ δ

}
and ηi := min

(|ξi |, t0)
, i ≤ n.

For every i ≤ n, we let Fi be the c.d.f. of xiηi . Define

F = 1

n

n∑
i=1

Fi.

Then

Med
(
k- min

1≤i≤n
|xiξi |

)
≥ qF (

k−1/2
n

)

A
.

REMARK 4.4. It may seem natural to obtain a bound for the median in terms
of the “averaged” c.d.f. with respect to the original variables ξi and not their trun-
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cations ηi . The following example (cf. Example 12 in [7]) shows that in fact the
truncation is essential. Consider independent standard Gaussian random variables
g1, g2, . . . , gn and let ξi := g1 for i ≤ n. Clearly, these random variables satisfy
condition (8) with some A and δ. Let x1 = · · · = xk = 1 and xk+1 = · · · = xn = n2.
Then a direct computation shows that for G := 1

n

∑n
i=1 F|xigi | we have

qG

(
k − 1/2

n

)
≈ Med

(
k- min

1≤i≤n
|xigi |

)
≈ √

lnk

while

Med
(
k- min

1≤i≤n
|xiξi |

)
≈ const.

PROOF OF LEMMA 4.3. Clearly, Fηi
(t) = F|ξi |(t) ≤ δ for t < t0 and Fηi

(t) =
1 for t ≥ t0, and that Fηi

also satisfies condition (8) with parameters δ and A. Fix
some positive s < qF (

k−1/2
n

)/A and denote

I := {
i ≤ n : Fi(As) = 1

}
.

By the choice of s, we have
∑

i≤n Fi(As) = nF(As) < k − 1/2, whence |I | < k.
Note also that for every i /∈ I we have Fi(As) ≤ δ. Thus, applying condition (8),
we get

E
∣∣{i ∈ I c : xiηi < s

}∣∣ = E

∑
i∈I c

χ{xiηi<s} ≤ ∑
i∈I c

Fi(s)

≤ 1

2

∑
i∈I c

Fi(As) = nF(As) − |I |
2

<
k − |I |

2
.

By Markov’s inequality, this implies

P
(∣∣{i ∈ I c : xiηi < s

}∣∣ ≥ k − |I |) ≤ 1

2
,

whence

P
(∣∣{i ≤ n : xiηi < s}∣∣ ≥ k

) ≤ 1

2
.

Since the event {k- min1≤i≤n xiηi ≥ s} coincides with the event {|{i ≤ n : xiηi <

s}| < k}, we obtain

P

(
k- min

1≤i≤n
xiηi ≥ s

)
≥ 1

2
,

that is,

Med
(
k- min

1≤i≤n
|xiξi |

)
≥ Med

(
k- min

1≤i≤n
|xiηi |

)
≥ s.

Since s was an arbitrary number smaller that qF (
k−1/2

n
)/A, the proof is complete.

�



ORDER STATISTICS, KARHUNEN–LOÈVE BASIS 2093

Now, let us formulate a new theorem on order statistics, which essentially states
that the lower bound for expectation in Lemma 3.4 does not require independence.

THEOREM 4.5. Let α > 0, δ ∈ (0,1), A > 1, 1 ≤ k ≤ n and 0 < x1 ≤ · · · ≤
xn. For each j ≤ n, we set bj := ∑n

i=j 1/xi . Further, let ξi , i ≤ n, be (possibly
dependent) random variables satisfying the α-condition and condition (8) with
parameters δ and A. Then

Med
(
k- min

1≤i≤n
|xiξi |

)
≥ δ

2Aα
max

1≤j≤k

k − j + 1

bj

.

PROOF. Let the number t0 and random variables ηi , i ≤ n be defined as in
Lemma 4.3. Note that the α-condition on ξi ’s implies F|ξi |(t) ≤ δ, i ≤ n, for t ≤
δ/α. Hence, t0 ≥ δ/α. Thus, for every i ≤ n we have Fηi

(t) ≤ αt whenever t <

t0 and Fηi
(t) = 1 ≤ (α/δ)t otherwise. In other words, the random variables ηi’s

satisfy condition (6) with α/δ replacing α. Combining Lemma 4.3 with Claim 4.1,
applied to ηi’s, we obtain the result. �

In view of Remark 3.5, Theorem 4.5 has the following consequence.

COROLLARY 4.6. Under the conditions of Theorem 4.5, assuming that inde-
pendent random variables η1, . . . , ηn satisfy β-condition with some β > 0, one has
for every p > 0,

(
Ek- min

1≤i≤n
|xiηi |p

)1/p ≤ C21/pAα

βδ
max

{
p, ln(k + 1)

}(
Ek- min

1≤i≤n
|xiξi |p

)1/p
,

where C is an absolute positive constant.

REMARK 4.7. The logarithmic factor in Corollary 4.6 cannot be removed as
the following example shows. Let ξ be a positive exponential random variable, that
is a random variable with the density function f (t) = e−t for t ≥ 0 and f (t) = 0
for t < 0. Let ηi , i ≤ n, be independent copies of ξ and ξ1 = · · · = ξn = ξ . Let
x1 = · · · = xk = 1 and xk+1 = · · · = xn = n2. Then

Ek- min
1≤i≤n

|xiηi | ≈ E max
1≤i≤k

|ηi | ≈ ln(k + 1) while Ek- min
1≤i≤n

|xiξi | = E|ξ | = 1.

5. Bounds for sums of order statistics.

THEOREM 5.1. Let p > 0 and let ξi , i ≤ n, be independent random variables
satisfying the (α,β)-condition for some α,β > 0. Let 0 < x1 ≤ · · · ≤ xn. For each



2094 A. E. LITVAK AND K. TIKHOMIROV

j ≤ n, set bj := ∑n
i=j 1/xi . Then for every k ≤ n we have

1

2

(
1

16α

)p k∑
j=1

(k − j + 1)p

bj
p ≤ E

k∑
j=1

j - min
1≤i≤n

|xiξi |p

≤ W(β,p)

k∑
j=1

(k − j + 1)p

bj
p ,

where W(β,p) := β−p�(1 + p)(1 + 2 · 4p).

REMARK 5.2. The upper bound can be replaced with a slightly stronger
equivalent estimate

β−p�(1 + p)

m−1∑
j=1

xj
p + 2pβ−p�(1 + p)

(k − m + 1)1+p

bm
p ,

where m ≤ k is the smallest positive integer such that

1

xm

≤ bm

k + 1 − m

(see the proof below).

We will need the following calculus lemma.

LEMMA 5.3. Let p > 0 and 0 < x1 ≤ · · · ≤ xn. For j ≤ n, set bj :=∑n
i=j 1/xi . Then

4p
k∑

�=1

max
1≤j≤�

(� − j + 1)p

bj
p ≥

k∑
j=1

(k − j + 1)p

bj
p ≥ 2−1−p max

1≤j≤k

(k − j + 1)1+p

bj
p .

PROOF. For some fixed 1 ≤ s ≤ k, let � := �(k + s)/2�. Then

k − s + 1

bs

≤ 2
� − s + 1

bs

≤ 2 max
1≤j≤�

� − j + 1

bj

.

Hence,

k∑
s=1

(k − s + 1)p

bs
p ≤ 4p

k∑
�=�k/2�

max
1≤j≤�

(� − j + 1)p

bj
p ,

which implies the left-hand side inequality.
Now let s ≤ k be such that

max
1≤j≤k

(k − j + 1)1+p

bj
p = (k − s + 1)1+p

bs
p .
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Let t := 
(k + s + 1)/2�. Then
k∑

j=1

(k − j + 1)p

bj
p ≥

t∑
j=s

(k − t + 1)p

bs
p ≥ (t − s + 1)

(k − s + 1)p

(2bs)p

≥ (k − s + 1)1+p

21+pbs
p ,

which completes the proof. �

PROOF OF THEOREM 5.1. For the lower bound, by Lemma 3.4 we have

E

k∑
j=1

j - min
1≤i≤n

|xiξi |p ≥ 1

2(4α)p

k∑
�=1

max
1≤j≤�

(� − j + 1)p

(
∑n

i=j 1/xi)p
,

and it remains to apply Lemma 5.3 (alternatively, under slightly modified assump-
tions on random variables we could use Theorem 4.5). Let us prove the upper
bound. Let Bp := β−p�(1 + p). Let the integer m and the partition (Aj )j≤k be
given by Lemma 2.3 applied to the sequence (ai)i≤n := (1/xi)i≤n. Using (5) and
Lemma 3.2, we get

E

k∑
j=1

j - min
1≤i≤n

∣∣∣∣∣xiξi

∣∣∣∣∣
p

≤ E

k∑
j=1

min
i∈Aj

∣∣∣∣∣xiξi

∣∣∣∣∣
p

≤ Bp

m−1∑
j=1

xj
p + Bp

k∑
j=m

( ∑
i∈Aj

1/xi

)−p

.

Next, note that by the choice of the partition (Aj )j≤k we have
k∑

j=m

( ∑
i∈Aj

1/xi

)−p

≤ 2p (k − m + 1)1+p

bm
p ≤ 2p max

1≤j≤k

(k − j + 1)1+p

bj
p .

Further, applying the definition of m to numbers xj , j < m, we obtain

1

xj

>
bj

k + 1 − j
, j < m,

whence
m−1∑
j=1

xj
p ≤

m−1∑
j=1

(k − j + 1)p

bj
p .

Combining the estimates and applying the rightmost estimate from Lemma 5.3,
we get

E

k∑
j=1

j - min
1≤i≤n

|xiξi |p ≤ Bp

m−1∑
j=1

(k − j + 1)p

bj
p + 2pBp max

1≤j≤k

(k − j + 1)1+p

bj
p

≤ Bp

(
1 + 2 · 4p) k∑

j=1

(k − j + 1)p

bj
p ,

and the proof is complete. �
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Finally, we formulate the comparison theorem for sums of order statistics (the
second part of the theorem below was stated in the Introduction as Theorem 1.2).

THEOREM 5.4. Let p,α,β > 0, δ ∈ (0,1) and A > 1. Let 1 ≤ k ≤ n and
0 < x1 ≤ · · · ≤ xn. Further, let ξi , ηi , i ≤ n, be random variables satisfying the
(α,β)-condition and condition (8) with parameters δ and A. Assume in addition
that ξi , i ≤ n, are jointly independent. Then

E

k∑
j=1

j - min
1≤i≤n

|xiξi |p ≤ 6
(

32Aα

δβ

)p

�(1 + p)E

k∑
j=1

j - min
1≤i≤n

|xiηi |p.

In particular, if ξi , ηi are standard Gaussian variables then

E

k∑
j=1

j - min
1≤i≤n

|xiξi |p ≤ 6(Cp)pE

k∑
j=1

j - min
1≤i≤n

|xiηi |p,

where C > 0 is an absolute constant.

PROOF. In view of Theorem 4.5, we have

E

k∑
j=1

j - min
1≤i≤n

|xiηi |p ≥ 1

2

k∑
j=1

(
Med

(
j - min

1≤i≤n
|xiηi |

))p

≥ 1

2

δp

(2Aα)p

k∑
�=1

max
1≤j≤�

(� − j + 1)p

bj
p .

Hence, by Lemma 5.3 we get

E

k∑
j=1

j - min
1≤i≤n

|xiηi |p ≥ δp

2(8Aα)p

k∑
j=1

(k − j + 1)p

bj
p .

It remains to apply Theorem 5.1. �

6. Proof of Theorem 1.1. In [15], it was shown that Theorem 5.4 implies
Theorem 1.1. For the sake of completeness we outline the proof here.

Note that for every sequence (zi)
n
i=1 and every permutation σ of {1, . . . , n} one

has

(9)
k∑

j=1

j - min
i≤n

zi =
k∑

j=1

j - min
i≤n

zσ(i).

Let T̄ = (t̄ij )ij be an orthogonal transformation of R
n, X = (X1, . . . ,Xn)

be a centered Gaussian vector with independent components and set Y =
(Y1, . . . , Yn) := T X. Fix any k < n. For each i ≤ n, denote the variance of Xi



ORDER STATISTICS, KARHUNEN–LOÈVE BASIS 2097

by āi and the variance of Yi by b̄i . By (ai)i≤n and (bi)i≤n we denote the nonin-
creasing rearrangements of (āi)i≤n and (b̄i)i≤n, and let σ and π be permutations
of {1, . . . , n} such that ai = āσ (i) and bi = b̄π(i) for all i ≤ n. By (9), we have

E

k∑
j=1

j - min
i≤n

X2
i = E

k∑
j=1

j - min
i≤n

X2
σ(i) and E

k∑
j=1

j - min
i≤n

Y 2
i = E

k∑
j=1

j - min
i≤n

Y 2
π(i).

For i, j ≤ n, denote tij = t̄π(i)σ (j) and T = (tij )ij , that is, the matrix T is ob-
tained from T̄ by multiplying it by permutation matrices corresponding to σ and π .
Clearly, T is also orthogonal. Since the coordinates of X are independent, for every
i ≤ n we have

bi =
n∑

j=1

t2
ij aj .

As T is an orthogonal matrix,
∑n

i=1 ai = ∑n
i=1 bi . Now we show that for every

� < n one has
�∑

i=1

ai ≥
�∑

i=1

bi.

First, note that the case � = 1 follows by the orthogonality of T and because
(ai)i≤n is nonincreasing. For � > 1, again using the orthogonality of T and mono-
tonicity of (ai)i , we obtain

�∑
i=1

bi =
�∑

i=1

n∑
j=1

t2
ij aj =

�−1∑
j=1

�∑
i=1

t2
ij aj +

n∑
j=�

�∑
i=1

t2
ij aj

≤
�−1∑
j=1

�∑
i=1

t2
ij aj + a�

n∑
j=�

�∑
i=1

t2
ij

=
�−1∑
j=1

aj +
�−1∑
j=1

aj

(
�∑

i=1

t2
ij − 1

)
+ a�

(
� −

�−1∑
j=1

�∑
i=1

t2
ij

)

=
�∑

j=1

aj +
�−1∑
j=1

(aj − a�)

(
�∑

i=1

t2
ij − 1

)

≤
�∑

i=1

ai.

Note that

∥∥(x1, . . . , xn)
∥∥ =

(
n−k∑
j=1

j - max
i≤n

x2
i

)1/2

=
(

n∑
j=k+1

j - min
i≤n

x2
i

)1/2

,
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defines a norm on R
n (recall that j - max is j th maximum of the corresponding

sequence). Therefore, the function

ϕ(x1, . . . , xn) =
n∑

j=k+1

j - min
i≤n

x2
i

is convex and thus Theorem 2.5 yields

E

k∑
j=1

j - min
i≤n

X2
i ≤ E

k∑
j=1

j - min
i≤n

(
big

2
i

)
,

where g1, . . . , gn are i.i.d. standard Gaussian variables. Theorem 5.4 completes the
proof.

7. Efficiency of the nonlinear approximation. In this section, we briefly dis-
cuss the following question: How efficient is the nonlinear approximation based on
the largest projections, compared to the linear approximation with respect to the
same basis? In what follows, we fix the dimension n. Given a centered random
vector X with a well-defined covariance matrix (i.e., each component of X has
a bounded variance), denote by E(X,m) the mean square error of the nonlinear
approximation based on m largest projections onto the standard basis vectors, that
is,

E(X,m) := E

n−m∑
j=1

j - min
i≤n

Xi
2, m < n.

Further, we define corresponding error for the linear approximation as

E0(X,m) := min|J |=n−m
E

∑
i∈J

Xi
2 =

n−m∑
j=1

j - min
i≤n

(
EXi

2)
,

where the minimum is taken over all subsets of {1,2, . . . , n} of cardinality n − m.
Obviously, we have

(10) E(X,m) ≤ E0(X,m)

for all m < n. Moreover, if for a fixed m we define a random Gaussian vector X̃

with independent components and

EX̃2
i =

{
1 if i ≤ m + 1,

0 if i > m + 1,

for all i ≤ n, then it can be checked that E0(X̃,m) = 1 whereas E(X̃,m) ≈ m−2.
Thus, the nonlinear approximation can in some cases be significantly more effi-
cient than the linear approximation as long as the number of projections is the
same. However, as we show below, some kind of a reverse inequality for (10) is
possible under quite general assumptions on the distribution, if we are allowed to
slightly increase the number of projections for the linear approximation:



ORDER STATISTICS, KARHUNEN–LOÈVE BASIS 2099

PROPOSITION 7.1. Let u > 0, m < n/2 and let X be a centered random vec-
tor in R

n with a well defined covariance matrix such that

(11) uEXi
2 ≤

∫ ∞
0

max
(
P

{
Xi

2 ≥ τ
} − 1

2
,0

)
dτ, i ≤ n.

Then we have

uE0(X,2m) ≤ E(X,m).

Before proving the proposition, we would like to remark that condition (11) is
invariant with respect to scalar multiplication of Xi’s. Note also that it is satis-
fied, in particular, for any centered Gaussian random vector with u = 1/20. More-
over, this condition holds with u = β2/(48α2) for random variables satisfying the
(α,β)-condition. Indeed, for such a variable ξ , denoting by M the median of ξ2,
we have by the β-condition

Eξ2 = 2
∫ ∞

0
tP

{|ξ | > t
}
dt ≤ 2

∫ ∞
0

t exp(−βt) dt = 2

β2

and, by the α-condition, M ≥ 1/(4α2) and∫ M

0
P

{
ξ2 ≥ t

}
dt ≥

∫ 1/(4α2)

0
(1 − α

√
t) dt +

∫ M

1/(4α2)

1

2
dt = 1

24α2 + M

2
,

which implies∫ ∞
0

max
(
P

{
ξ2 ≥ t

} − 1

2
,0

)
dt =

∫ M

0
P

{
ξ2 ≥ t

}
dt − M

2
≥ 1

24α2 ≥ β2

48α2Eξ2.

PROOF OF PROPOSITION 7.1. Let I be a random subset of {1,2, . . . , n} such
that |I| = m and

n−m∑
j=1

j - min
i≤n

Xi
2 = ∑

i∈Ic

Xi
2

everywhere on the probability space. Now, let us distinguish two types of compo-
nents of X: we set

I := {
i ≤ n : P{i ∈ I} ≥ 1/2

}
, so that I c = {

i ≤ n : P{i ∈ I} < 1/2
}
.

Obviously, we have

E(X,m) = E
∑
i∈Ic

Xi
2 =

n∑
i=1

E
(
Xi

2χ{i∈Ic}
) ≥ ∑

i∈I c

E
(
Xi

2χ{i∈Ic}
)
.

Next, observe that for every τ > 0 and every i ∈ I c,

P
{
Xi

2χ{i∈Ic} ≥ τ
} = P

{
Xi

2 ≥ τ
} − P

{
Xi

2 ≥ τ and i ∈ I
} ≥ P

{
Xi

2 ≥ τ
} − 1

2
.
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Hence, in view of condition (11),

E(X,m) ≥ ∑
i∈I c

∫ ∞
0

max
(
P

{
Xi

2 ≥ τ
} − 1

2
,0

)
dτ ≥ u

∑
i∈I c

EXi
2 ≥ uE0

(
X, |I |).

On the other hand,

2m = 2E|I| = 2E
n∑

i=1

χ{i∈I} = 2
n∑

i=1

P{i ∈ I} ≥ |I |,

and the proof is complete. �

REMARK 7.2. In Proposition 7.1, we assumed that m is small compared to
n, which is a natural condition in context of signal approximation. For theoretical
reasons, it may be interesting to consider the range m > n/2. One could ask the
following question: Let m > n/2 and k := n − m. Does there exist an absolute
constant C > 0 (not depending on k, n) such that E0(X,n− k/2) ≤ CE(X,n− k)?
It turns out that this is not true even in the case of the standard Gaussian random
vector. Indeed, a direct computation shows that E0(X,n− k/2) = k/2 (for even k),
while E(X,n − k) ≈ k3/n2. Thus, the above inequality cannot be true with an
absolute constant for 1 ≤ k � n.

REMARK 7.3. Note that we were able to obtain a reverse-type inequality for
(10) when we agreed to increase the number of one-dimensional projections for
the linear approximation, which could be viewed as increasing of the rank (the
dimension) of the corresponding projection. The idea to slightly lose on the opti-
mality of dimension in order to gain on other parameters was effectively employed
in the study of geometry of high-dimensional convex bodies (see, e.g., [12, 13] and
references therein).

8. Proofs of auxiliary results. In this section, we provide the proofs of results
from Sections 2 and 3 for the sake of completeness.

PROOF OF LEMMA 2.3. Case 1: m = 1, so that a1 ≤ b1/k. Let b := b1, n0 :=
0 and, given any 1 ≤ � ≤ k, let n� be the largest integer not greater than n such that

n�∑
i=1

ai ≤ �b

k
.

Since b/k ≥ a1 ≥ a2 ≥ · · · ≥ an, we have 0 = n0 < 1 ≤ n1 < n2 < · · · < nk = n.
Define a partition (A�)�≤k of {1,2, . . . , n} as A� := {i : n�−1 < i ≤ n�}. If ai ≤ b

2k

for all i, then we set t = 0. Otherwise, let t be the largest number in {1,2, . . . , n}
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such that at > b
2k

. Then:

(i) for every 1 ≤ � ≤ k such that n� ≤ t , we have
∑

i∈A�
ai ≥ an�

> b
2k

;
(ii) for every � < k such that n� > t , we have

∑
i∈A�

ai ≥ b
2k

(otherwise, since
an�+1 ≤ b

2k
, we would have

n�+1∑
i=1

ai =
n�−1∑
i=1

ai + ∑
i∈A�

ai + an�+1 <
(� − 1)b

k
+ b

2k
+ b

2k
= �b

k
,

which contradicts the choice of n�);
(iii) for � = k we have

∑
i∈Ak

ai = ∑n
i=1 ai − ∑nk−1

i=1 ai ≥ b
k

.

This completes the proof of the case m = 1.
Case 2: m > 1. For 1 ≤ � < m, choose A� = {�}, and let (A�)

k
�=m be the partition

of {m,m+ 1, . . . , n} into k + 1 −m sets constructed in the same way as in Case 1.
Then, by the above argument, for every � ≥ m we have∑

i∈A�

ai ≥ bm

2(k + 1 − m)
,

and the proof is complete. �

PROOF OF LEMMA 3.1. Denote by Ak(t) the event {|xkξk| > t} = {|ξk| >

t/xk} and let

A(t) :=
{
min
k≤n

|xkξk| > t
}

= ⋂
k≤n

Ak(t), t > 0.

By (6), we have P(Ak(t)
c) ≤ αt/xk . Hence,

P
(
A(t)

) ≥ 1 −
n∑

k=1

P
(
Ak(t)

c) ≥ 1 − αt

n∑
k=1

1/xk = 1 − αbt,

which proves the first estimate and implies the estimate for the median. The esti-
mate for the expectation follows by the distribution formula

E min
1≤i≤n

|xiξi |p =
∫ ∞

0
P

{
min

1≤i≤n
|xiξi | > t1/p

}
dt ≥

∫ (αb)−p

0

(
1 − αbt1/p)

dt

= (αb)−p

1 + p
. �

PROOF OF LEMMA 3.2. As in the last proof, denote Ak(t) := {|xkξk| > t} =
{|ξk| > t/xk} and let A(t) be the intersection of the events. By (7), we have
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P(Ak(t)) ≤ exp(−βt/xk). Therefore,

P
(
A(t)

) =
n∏

k=1

P
(
Ak(t)

) ≤ exp

(
−β

n∑
k=1

t/xk

)
= exp(−βbt),

which proves the first estimate and implies the estimate for the median. Again, the
bound for the expectation follows by the distribution formula:

E min
1≤i≤n

|xiξi |p =
∫ ∞

0
P

{
min

1≤i≤n
|xiξi | > t1/p

}
dt ≥

∫ ∞
0

exp
(−βbt1/p)

dt

= (βb)−pp�(p). �

PROOF OF LEMMA 3.4. Denote B(t) := P{k- min1≤i≤n |xiξi | ≤ t}. Clearly,
we have

B(t) = P

{
∃i1, i2 . . . , ik ≤ n : |ξij | ≤

t

xij

for all j ≤ k

}

= P

(
n⋃

�=k

⋃
A⊂{1,...,n}

|A|=�

{
|ξi | ≤ t

xi

for all i ∈ A and |ξi | > t

xi

for all i /∈ A

})

=
n∑

�=k

∑
A⊂{1,...,n}

|A|=�

∏
i∈A

P

{
|ξi | ≤ t

xi

} ∏
i /∈A

P

{
|ξi | > t

xi

}
.

Hence,

B(t) ≤
n∑

�=k

∑
A⊂{1,...,n}

|A|=�

∏
i∈A

P

{
|ξi | ≤ t

xi

}
≤

n∑
�=k

∑
A⊂{1,...,n}

|A|=�

∏
i∈A

αt

xi

.

Corollary 2.2 implies the first part of the lemma.
Next, we verify the bound for the expectation. The case k = 1 follows by

Lemma 3.1, so we assume that k ≥ 2. Let us start with establishing the bound

(12)
k

21/p4α

(
n∑

i=1

1/xi

)−1

≤
(
Ek- min

1≤i≤n
|xiξi |p

)1/p
, k ≥ 2.

Set γ := e/4. Then

Ek- min
1≤i≤n

|xiξi |p =
∫ ∞

0
P

{
k- min

1≤i≤n
|xiξi | > t1/p

}
dt

≥
∫ (γ /a)p

0

(
1 − 1√

2πk

aktk/p

1 − at1/p

)
dt

≥
(

γ

a

)p

− 1√
2πk

ak

1 − γ

(
γ

a

)k+p
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≥
(

γ

a

)p(
1 − 1

2
√

π

γ 2

1 − γ

)

≥ 1

2

(
γ

a

)p

,

which proves (12). Finally, observe that for every sequence (ai)
n
i=1 and every r < k

one has

k- min(ai)
n
i=1 ≥ (k − r)- min(ai)

n
i=r+1;

in particular, (
Ek- min

1≤i≤n
|xiξi |p

)1/p ≥
(
E(k − r)- min

r+1≤i≤n
|xiξi |p

)1/p

≥ k − r

21/p4α

(
n∑

i=r+1

1/xi

)−1

,

where the last inequality is (12) applied to the appropriate “truncated” sequence.
The result follows. �
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