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A LARGE SCALE ANALYSIS OF UNRELIABLE STOCHASTIC
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University of California, San Diego∗ and INRIA Paris†

The problem of reliability of a large distributed system is analyzed via
a new mathematical model. A typical framework is a system where a set of
files are duplicated on several data servers. When one of these servers breaks
down, all copies of files stored on it are lost. In this way, repeated failures
may lead to losses of files. The efficiency of such a network is directly related
to the performances of the mechanism used to duplicate files on servers. In
this paper, we study the evolution of the network using a natural duplication
policy giving priority to the files with the least number of copies.

We investigate the asymptotic behavior of the network when the number
N of servers is large. The analysis is complicated by the large dimension
of the state space of the empirical distribution of the state of the network.
A stochastic model of the evolution of the network which has values in state
space whose dimension does not depend on N is introduced. Despite this
description does not have the Markov property, it turns out that it is converg-
ing in distribution, when the number of nodes goes to infinity, to a nonlinear
Markov process. The rate of decay of the network, which is the key character-
istic of interest of these systems, can be expressed in terms of this asymptotic
process. The corresponding mean-field convergence results are established.
A lower bound on the exponential decay, with respect to time, of the fraction
of the number of initial files with at least one copy is obtained.

1. Introduction. The problem of reliability of a large distributed system is
analyzed in the present paper via a new mathematical model. A typical framework
is a system where files are duplicated on several data servers. When a server breaks
down, all copies of files stored on this server are lost but they can be retrieved if
copies of the same files are stored on other servers. In the case when no other copy
of a given file is present in the network, it is definitively lost. Failures of disks occur
naturally in this context; these events are quite rare, but given the large number of
nodes of these large systems, this is not a negligible phenomenon at all at network
scale. See the measurements at Google in Pinheiro et al. [24] for an example.

In order to maintain copies on distant servers, a fraction of the bandwidth of
each server has to be devoted to the duplication mechanism of its files to other
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servers. If, for a short period of time, several of the servers break down, it may
happen that files will be lost for good just because all available copies were on
these servers and that the recovery procedure was not completed before the last
copy disappeared. The natural critical parameters of such a distributed system with
N servers are the failure rate μ of servers, the bandwidth λ allocated to duplication
of a given server, and the total number of initial files FN . The quantity λ represents
the amount of capacity that a server allocates to make duplication to enhance the
durability of the network. If there are initially too many files in the system, the
duplication capacity at each node may not be able to cope with the losses due to
successive failures of servers and, therefore, a significant fraction of files will be
lost very quickly. An efficient storage system should be able to maximize both the
average number of files β = FN/N per server and the durability, that is, the first
instant T N(δ) when a fraction δ ∈ (0,1) of files which are definitely lost.

1.1. Models with independent losses of copies and global duplication capacity.
A large body of the work in computer science in this domain has been devoted to
the design and the implementation of duplication algorithms. These systems are
known as distributed hash tables (DHT) which refer to the data structures used to
manage these systems. They play an important role in the development of some
large scale distributed systems right now in cloud computing; for example, see
Rhea et al. [26] and Rowstron and Druschel [28]. Except extensive simulations,
little has been done to evaluate the performances of these algorithms concerning
the durability of the system.

Several approaches have been used to investigate the corresponding mathe-
matical models. Simplified models using finite birth and death processes have
been often used; see Chun et al. [9], Picconi et al. [23] and Ramabhadran and
Pasquale [25]. In Feuillet and Robert [13] and Sun et al. [29], the authors studied
how the durability T (δ) scales with the number of servers N and the maximum
number of copies d of each file, under simplifying assumptions on file losses and
the duplication mechanism. For this later work, each copy of a file is assumed to be
lost at a certain fixed rate, independently of the other copies of files. Second, they
assumed that the duplication capacity can be used globally. This means that, if each
of N servers has an available bandwidth λ to duplicate files, the total capacity for
duplication, λN , can be used to create a copy of any file in the system to another
server. With these assumptions, the mathematical representation of the network is
significantly simplified because it is not necessary to know the locations of copies
of files to derive the dynamics of the system. In particular, in [29], a Markovian
model with a fixed state space of dimension d + 1 has been investigated: if for
0 ≤ i ≤ d and t ≥ 0, XN

i (t) is the number of files with i copies, then the vec-
tor XN(t) = (XN

0 (t),XN
1 (t), . . . ,XN

d (t)) is a Markov process on N
d+1 under the

hypothesis that the global capacity λN is devoted to a file with the least number
of copies. They have shown that the durability T N(δ) is of the order Nd−1 for a
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large N under certain conditions. Limit theorems were established for the rescaled
process (XN(Nd−1t)) using various technical estimations. In Sun et al. [30], the
impact of placement policies, that is, policies determining the location of the node
to make a copy of a given file, is investigated.

1.2. Stochastic models with local duplication features. In this paper, we con-
sider a more realistic stochastic model for these systems, dropping the two main
simplifying assumptions of previous works on copy losses and duplication capac-
ity:

(i) Simultaneous losses due to server failures. Each server can fail with a con-
stant rate μ, and independently of the other servers. When a server fails, all copies
on that server are lost simultaneously and, therefore, the copy losses are not inde-
pendent anymore. This dependency and bursty losses of file copies has a crucial
effect on system performance. It is assumed that a new, empty server replaces a
failed server so that the total number of nodes is constant.

(ii) Local duplication capacity. The duplication capacity is assumed to be lo-
cal, that is, each server has a capacity λ to duplicate the copies of files present on
that server. In particular, this capacity cannot be used to copy files of other servers,
as it is case for models with a global duplication capacity.

(iii) Duplication Policy: Priority to files with smallest number of copies. The
capacity of a server is allocated to duplicating one of its own files which has the
smallest number of copies alive in the network. See Section 3 of Sun et al. [30] for
a quick description of how this kind of mechanism can be implemented in practice.
It is copied, uniformly at random, onto one of the servers which does not have such
a copy.

Without a duplication mechanism, it is not difficult to see that the probability that
a given file with d initial copies has still at least one copy at time t is of the order
of d exp(−μt) for a large t , when μ is the failure rate of servers. If, initially, there
are �βN� files, all with d copies scattered randomly in the network, the average
fraction of files with at least a copy at time t is thus of the order of βd exp(−μt).
The central question is how much a duplication mechanism can improve these
(poor) performances.

One cannot expect, intuitively, that the average lifetime of a file will grow sig-
nificantly with N as in the case of a global duplication capacity (see Sun et al. [29])
where the decay occurs only on the “fast” time scale t �→ Nd−1t . In contrast, as
it will be seen, the decay of our system occurs in fact on the “normal” time scale
t �→ t . The main aim of this paper is of investigating the exponential decay rate of
the fraction of the number of files alive at time t with bounds of the form

Ce−μκt .

Of course, duplication is of interest only if κ < 1 and in fact is as close to 0 as
possible. The goal of this paper is to investigate the decay of the system described
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above via a mean-field approach. This is the key problem of these systems in our
view.

With these assumptions, our mathematical model turns out to have stark differ-
ences compared to previous stochastic models. For a system of fixed size N , the
exact dynamics of the system under above duplication mechanism is quite intri-
cate, and hence, obtaining mathematical quantitative results to estimate the coeffi-
cient κ is quite challenging. A natural approach is of studying the performance of
the system when the number of servers N goes to infinity.

To illustrate in a simpler setting the difficulties of these models, we first con-
sider the case where there are at most two copies of each file stored on the system
(d = 2). In this case, a Markovian representation of the state of the system can be
given by

(1)
(
XN(t)

)= (XN
i,j (t), i, j = 0,1, . . . ,N

)
,

where for 1 ≤ i 
= j ≤ N , XN
i,j (t) is the number of files which have copies on server

i and j at time t and XN
i,0(t) = XN

0,i(t) is the number of files having only one copy
located on server i. The state space of the state of a given node is therefore of
dimension of the order of N which does not seem to be not amenable to analysis
since the dimension of the basic state space is growing with N .

To overcome this difficulty, we introduce a reduced state representation in which
each node i is described by only two variables: the number of files whose unique
copy is on server i and the number of files with two copies and one of the copies
is on i. The state of a node is then a two-dimensional state space. The empirical
distribution associated with such a representation has values in a state space of
probability distributions on N

2. This dimension reduction comes nevertheless at a
price, the loss of the Markov property. We prove that this non-Markovian descrip-
tion of the network is in fact converging in distribution, as N goes to infinity, to a
nonlinear Markov process, (R(t)) = (R1(t),R2(t)) ∈ N

2 satisfying the following
Fokker–Planck equations:

d

dt
E
(
f
(
R1(t),R2(t)

))
= λE

((
f
(
R(t) + e2 − e1

)− f
(
R(t)

))
1{R1(t)>0}

)
(2)

+ λP
(
R1(t) > 0

)
E
(
f
(
R(t) + e2

)− f
(
R(t)

))
+ μE

(
f (0,0) − f

(
R(t)

))+ μE
((

f
(
R(t) + e1 − e2

)− f
(
R(t)

))
R2(t)

)
,

with e1 = (1,0) and e2 = (0,1), and f is a function with finite support on N
2. In

this setting, the asymptotic fraction of the number of files alive at time t is given
by E(R1(t)) +E(R2(t))/2.

The asymptotic process (R(t) = (R1(t),R2(t)) is a jump process with a type
of jump, x �→ x + e2 having time-dependent and distribution-dependent rate given
by λP(R1(t) > 0) which is the nonlinear term of this evolution equation.
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1.3. Rate of convergence to equilibrium. It will be shown that the nontime-
homogeneous Markov process defined by Relation (2) is converging to the unique
distribution π = δ(0,0), the Dirac measure at (0,0), corresponding to a system with
all files lost. The decay of the network is thus closely related to the convergence
rate to equilibrium of this Markov process.

As we have seen before, the problem is of finding a constant κ > 0 for which
the asymptotic fraction of the number of files alive at time t has an exponential
decay with parameter μκ , that is,

(3) E
(
R1(t)

)+ 1

2
E
(
R2(t)

)≤ (R1(0) + 1

2
R2(0)

)
e−μκt ∀t ≥ 0.

The convergence rate can be defined in terms of the Wasserstein distance between
the distribution Pt of the distribution at time t and the equilibrium distribution π ,

W1(Pt ,π)
def.= inf

{
E
(
d(X,Y )

) : X dist.= Pt , Y
dist.= π

}
,

where d(·, ·) is some distance on the state space. One has to find the best possible
constant α such that the relation

(4) W1(Pt ,π) ≤W1(P0, π)e−αt

holds for all t ≥ 0.
For time-homogeneous, that is, “standard” Markov processes, this is already a

difficult problem. For finite state spaces, tight estimates are known for some classi-
cal random walks; see Aldous and Diaconis [1] for example. When the state space
is countable, results are more scarce. Lyapunov functions techniques to prove the
existence of finite exponential moments of hitting times of finite sets can give a
lower bound on the exponential decay α. This is, in general, a quite rough estimate
for α; furthermore, it does not give an estimate of the form (4). See Section 6.5 of
Nummelin [21] and also see Chapter 15 of Meyn and Tweedie [20].

In the continuous case, that is, with Brownian motions instead of Poisson pro-
cesses, some functional inequalities have been successfully used to obtain relations
of the form (4); see Markowich and Villani [19] and Desvillettes and Villani [11]
for surveys on this topic. An extension of this approach for the case of the discrete
state space turns out to be more difficult to do. Some generalizations have been
proposed by Caputo et al. [6] and Joulin [16] and Ollivier [22] for some jump pro-
cesses. They have been used with some success; see Alfonsi et al. [2] and Thai [32]
for example. For classical birth and death processes on N, it leads to some quite
specific (and strong) conditions on the birth and death rates in order to have a
positive exponential decay α.

For nonlinear Markov processes, which is our case, the situation is, of course,
much more complicated. Recall that, in this context, there may be several invariant
distributions, so that convergence to equilibrium is a more delicate notion. Note
that this is not our case however. Ideas using the functional inequalities mentioned
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before have been also used but for specific stochastic models. See Carrillo et al. [7]
and Cattiaux et al. [8] for a class of diffusions and Thai [32] for a class of birth
and death processes. They do not seem of any help for the class of models we
consider. To the best of our knowledge, the results of optimality concerning the
exponential decay α are quite scarce. Only lower bounds are provided in general.
For the nonlinear Markov processes associated to the mean-field results of this
paper, our approach will mainly use some monotonicity properties to derive lower
bounds on the exponential decay.

In a first step, the present paper develops a mathematical framework to get a
convenient asymptotic description of our network, equations (2), and second, to
obtain explicit lower bounds on its exponential decay. This program is completed
in the case d = 2. In particular, it is shown in Proposition 4 of Section 5 that equa-
tion (3) holds some a constant κ = κ+

2 . Note that, however, as it can be expected in
such a complicated context, we are not able to show that the constant κ+

2 is opti-
mal. As it will be seen, the case d > 2 is more awkward in terms of an asymptotic
picture, but results on the exponential decay of the network can be nevertheless
obtained by studying a nonlinear Markov process dominating, in some sense, the
original Markov process.

Outline of the paper. Section 2 introduces the main evolution equations of the
state of the network. Section 3 investigates the existence and uniqueness properties
of a nonlinear Markov process, the main result is Theorem 1. This process turns
out to be the limit of a reduced description of the network. Section 4 shows the
mean-field convergence of the reduced description of the network to this asymp-
totic process, this is Theorem 2. Section 5 studies the asymptotic behavior of the
nonlinear Markov process. A lower bound on the exponential decay, with respect
to time, of the fraction of the number of initial files still alive at time t is derived.
These results are obtained in the case when the maximal number of copies for a
given file is 2. Section 6 investigates the case of a general d . By using a simpler
stochastic model, for which a mean-field limit result also holds, a multidimen-
sional analogue of the set of equations (2) is introduced and analyzed. It gives a
lower bound on the exponential decay of the number of files present in the net-
work. It is expressed as the maximal eigenvalue of a d×d matrix. The proofs of
the main results rely essentially on several ingredients: careful stochastic calculus
with marked Poisson processes, several technical estimates, Lemmas 1 and 2 and
mean-field techniques.

2. The stochastic model. In this section, we describe the dynamics of our
system. Recall that the system has N servers, and until Section 6, it is assumed that
each file has at most two copies in the system. Recall the Markovian representation
(XN(t)) defined in (1), that is,

XN(t) = (XN
i,j (t),1 ≤ i, j ≤ N

)
,
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where, for 1 ≤ i ≤ N , XN
i,0(t) is the number of files whose unique copy is located

in server i at time t , and XN
i,j (t) is the number of files with a copy on server i

and on server j , 1 ≤ j ≤ N , j 
= i. Note the symmetry XN
i,j (t) = XN

j,i(t), and by

convention, XN
i,i(·) ≡ 0. We assume that all files have initially two copies and are

randomly scattered on the network, as described below.

ASSUMPTION 1 (Initial state). For 1 ≤ i ≤ N , there are Ai files on server i

and each file � = 1, . . . ,Ai has another copy on server Vi,�, where

− Ai , i = 1, . . . ,N , are i.i.d. square integrable random variables on N,
− For each i, V N

i,�, � ≥ 1, are i.i.d. random variables with uniform distribution over
{1, . . . ,N}\{i}.

Hence, XN
i,0(0) = 0 and

XN
i,j (0) =

Ai∑
�=1

1{V N
i,�=j} +

Aj∑
�=1

1{V N
j,�=i}.

The total number of initial files is therefore FN
def.= A1 +A2 + · · ·+AN , and the

initial average load of the system is

β
def.= lim

N→+∞
FN

N
= E(A1).

The initial mean number of copies of files per server is therefore 2β .
The initial state described in Assumption 1 have two main properties. First, it

is exchangeable, in the sense that the distribution of XN(0) is invariant under per-
mutations of server indices, and second, the two copies of each file are uniformly
distributed over all servers. Alternatively, one can also assume that the total num-
ber of files FN is a fixed number, without changing the results of the paper.

Transitions of the state representation. The transitions of the Markov process
(XN(t)) is governed by server failures and file duplications, as described below.
Throughout this paper, f (t−) denotes the left limit of a function f at time t .

− Server failure. Each server i breaks down after an exponential time with pa-
rameter μ. At each breakdown, all copies on server i are lost, and the server
restarts immediately but empty. It is in fact replaced by a new one. If a break-
down happens at time t ,⎧⎪⎪⎨

⎪⎪⎩
XN

i,j (t) = 0 for all j = 1, . . . ,N,

XN
i,0(t) = 0,

XN
j,0(t) = XN

j,0(t−) + XN
i,j (t−) for all j 
= i.
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− Duplication. If there are files on server i with only one copy [i.e., XN
i,0(t) > 0],

one of such files is copied at a rate λ onto another server j ∈ {1, . . . ,N}\{i}
chosen uniformly at random. If the duplication is completed at time t ,{

XN
i,0(t) = XN

i,0(t−) − 1,

XN
i,j (t) = XN

i,j (t−) + 1.

Note that (XN(t)) is a transient Markov process converging to the state with all
coordinates being 0 (all copies are lost).

Stochastic evolution equations. We can describe the dynamics of (XN(t)) us-
ing stochastic integrals with respect to Poisson processes. Throughout the paper,
we use the following notation for Poisson processes:

− Nξ is a Poisson point process on R+ with parameter ξ > 0 and (Nξ,i) is an
i.i.d. sequence of such processes.

− N ξ is a Poisson point process on R
2+ with intensity ξ dt dh and (N ξ,i) is an

i.i.d. sequence of such processes.
− For 1 ≤ j ≤ N , the random variable NU,N

λ,j = (t
j
n ,U

j
n ) is a marked Poisson

process, (t
j
n ) is a Poisson process on R+ with rate λ and (U

j
n ) is an i.i.d. ran-

dom variable with uniform distribution over {1, . . . ,N}\{j}. In particular, for
1 ≤ i ≤ N , (NU,N

λ,j (·, {i})) is an i.i.d. sequence of Poisson processes with rate
λ/(N − 1).

With a slight abuse of notation, we denote Nλ,j
def.= NU,N

λ,j (·,N), which is a Poisson
process with rate λ. See Kingman [18] and [4] for an introduction on ordinary and
marked Poisson processes. All Poisson processes used are assumed to be indepen-
dent.

For every j = 1, . . . ,N , failure times of server j are given by the epoch times
of a Poisson process Nμ,j . A marked Poisson process NU,N

λ,j captures duplications

of files from server j as follows: for n ≥ 1, at the nth event time t
j
n of NU,N

λ,j , if

XN
j,0(t

j
n−) > 0, a file on server j is copied onto the server whose index is given by

the mark U
j
n .

The process (XN(t)) can then be characterized as the solution of the following
system of stochastic differential equations (SDEs): for 1 ≤ i, j ≤ N , j 
= i and
t ≥ 0,

dXN
i,j (t) = −XN

i,j (t−)
[
Nμ,i(dt) +Nμ,j (dt)

]
+ 1{XN

j,0(t−)>0}N
U,N
λ,j

(
dt, {i})(5)

+ 1{XN
i,0(t−)>0}N

U,N
λ,i

(
dt, {j})
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and

dXN
i,0(t) = −XN

i,0(t−)Nμ,i(dt) − 1{XN
i,0(t−)>0}Nλ,i(dt)

(6)

+
N∑

j=1

XN
i,j (t−)Nμ,j (dt).

Classical results on Poisson processes show that the process(∫ t

0
1{XN

i,0(s−)>0}N
U,N
λ,i

(
ds, {j})− λ

N − 1

∫ t

0
1{XN

i,0(s)>0} ds

)

is a martingale whose previsible increasing process is(
λ

N − 1

∫ t

0
1{XN

i,0(s)>0} ds

)
.

See, for example, Section 4 of Chapter IV of Rogers and Williams [27]. Therefore,
for 1 ≤ i 
= j ≤ N ,

XN
i,j (t) = XN

i,j (0) − 2μ

∫ t

0
XN

i,j (s)ds

(7)

+ λ

N − 1

∫ t

0
(1{XN

i,0(s)>0} + 1{XN
j,0(s)>0})ds +MN

i,j (t)

and

XN
i,0(t) = XN

i,0(0) − μ

∫ t

0
XN

i,0(s)ds − λ

∫ t

0
1{XN

i,0(s)>0} ds

(8)

+ μ

N∑
j=1

∫ t

0
XN

i,j (s)ds +MN
i,0(t),

where (MN
i,0(t)), 1 ≤ i ≤ N , and (MN

i,j (t)), 1 ≤ i < j ≤ N , are local martingales
with the respective previsible increasing processes

〈
MN

i,j

〉
(t) = 2μ

∫ t

0

(
XN

i,j (s)
)2 ds

+ λ

N − 1

∫ t

0
1{XN

i,0(s)>0} ds + λ

N − 1

∫ t

0
1{XN

j,0(s)>0} ds

and

〈
MN

i,0
〉
(t) = μ

∫ t

0

(
XN

i,0(s)
)2 ds

+ λ

N − 1

∫ t

0
1{XN

i,0(s)>0} ds + μ

∫ t

0

N∑
j=1

(
XN

i,j (s)
)2 ds.
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3. An asymptotic process. As mentioned in the Introduction, for 1 ≤ i ≤ N ,
the state of each server i at time t can alternatively be described by the pair

(9) RN
i (t) = (RN

i,1(t),R
N
i,2(t)

)
,

where RN
i,1(t) [resp., RN

i,2(t)] is the number of files with one copy (resp., two
copies) at node i. This reduced representation can be obtained from the full Marko-
vian representation (XN(t)) via

RN
i,1(t) = XN

i,0(t) and RN
i,2(t) =

N∑
j=1

XN
i,j (t).

Therefore, the evolution equations of (RN
i (t)) can be deduced from the SDEs (5)

and (6):

dRN
i,1(t) = −RN

i,1(t−)Nμ,i(dt)
(10)

− 1{RN
i,1(t−)>0}Nλ,i(dt) +∑

j 
=i

XN
i,j (t−)Nμ,j (dt),

dRN
i,2(t) = −RN

i,2(t−)Nμ,i(dt) + 1{RN
i,1(t−)>0}Nλ,i(dt)

(11)
−∑

j 
=i

XN
i,j (t−)Nμ,j (dt) +∑

j 
=i

1{RN
j,1(t−)>0}N

U,N
λ,j

(
dt, {i}).

The process (RN(t)) = (RN
i (t),1 ≤ i ≤ N) lives on a state space of dimension 2N

instead of N2. The process (RN(t)) still captures the information on the decay of
the system since, for example, the total number of files which are still available in
the network at time t can be expressed as

N∑
i=1

RN
i,1(t) + 1

2
RN

i,2(t).

This dimension reduction comes at the price of the loss of the Markov property.
The evolution equations of (RN

i (t)) are not autonomous, they depend on the pro-
cess (XN(t)), and consequently the process (RN(t)) does not have the Markov
property. However, as it will be seen, the limit in distribution of (RN

i,1(t),R
N
i,2(t))

turns out to be a nonlinear Markov process, or a so-called McKean–Vlasov pro-
cess; see, for example, Sznitman [31]. In this section we characterize this limiting
process, while the proof of convergence as N goes to infinity is given in the next
section.

An intuitive introduction of the asymptotic process. The purpose of this sec-
tion is only of motivating the asymptotic process; rigorous arguments to estab-
lish the convergence results are given later. Fix some 1 ≤ i ≤ N and assume
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for the moment that (RN
i,1(t),R

N
i,2(t)) is converging in distribution to a process

(R1(t),R2(t)). Define the positive random measure

PN
i

([0, t]) def.=
∫ t

0

∑
j 
=i

XN
i,j (s−)Nμ,j (ds).

It will be shown later in Lemma 1 that for a fixed 1 ≤ i ≤ N , with high probability
when N is large, all the variables (XN

i,j (t),1 ≤ j ≤ N ) are either 0 or 1 on a fixed

time interval. In particular, PN
i is asymptotically a counting process, that is, an

increasing process with jumps of size 1, with compensator given by

μ

∫ t

0

∑
j 
=i

XN
i,j (s)ds = μ

∫ t

0
RN

i,2(s)ds.

See Jacod [15] or Kasahara and Watanabe [17] for example. The convergence in
distribution of the process (RN

i,2(s)) to (R2(s)) and standard results on convergence

of point processes give that PN
i converges to P∞, an inhomogeneous Poisson

process with intensity (R2(t)) which can be represented as

P∞(dt) =
∫
R+

1{0≤h≤R2(t−)}Nμ(dt,dh).

See, for example, Kasahara and Watanabe [17] and Brown [5]. Recall that Nμ is a
Poisson process on R

2+ with intensity μdt dh (see Section 2). By formally taking
the limit on both sides of equation (10) as N gets large, this yields that the process
(R1(t),R2(t)) satisfies the relation

dR1(t) = −R1(t−)Nμ(dt) − 1{R1(t−)>0}Nλ(dt)
(12)

+
∫
R+

1{0≤h≤R2(t−)}Nμ(dt,dh).

Similar work can be done with equation (11). Consider the counting measure

QN
i

([0, t]) def.=
∫ t

0

∑
j 
=i

1{RN
j,1(s−)>0}N

U,N
λ,j

(
ds, {i}),

which has the compensator (see Jacod [15])

λ

∫ t

0

1

N − 1

∑
j 
=i

1{RN
j,1(s)>0} ds.

Again formally, it follows from the asymptotic independence of different servers
and the law of large numbers limit for the processes (RN

j,1(t)) that

lim
N→+∞

(
1

N − 1

∑
j 
=i

1{RN
j,1(t)>0}

)
= (P(R1(t) > 0

))
,
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and, therefore, QN
i converges in distribution to an inhomogeneous Poisson process

with intensity (P(R1(s) > 0)). Therefore, taking limit from both sides of equa-
tion (11) as N gets large. One obtains that the process (R2(t)) satisfies

dR2(t) = −R2(t−)Nμ(dt) + 1{R1(t−)>0}Nλ(dt)

−
∫
R+

1{0≤h≤R2(t−)}Nμ(dt,dh)(13)

+
∫
R+

1{0≤h≤P(R1(t)>0)}N λ(dt,dh).

The first result establishes the existence and uniqueness of a stochastic process

satisfying the SDEs (12) and (13). For T > 0, let DT
def.= D([0, T ],N2) be the set

of càdlàg functions from [0, T ] to N
2 and dT (·, ·) denotes a distance associated

with the Skorohod topology on DT ; see Chapter 3 of Billingsley [3].

THEOREM 1 (McKean–Vlasov process). For every (x, y) ∈ N
2, the equations

(14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1(t) = x −
∫ t

0
R1(s−)Nμ(ds)

−
∫ t

0
1{R1(s−)>0}Nλ(ds)

+
∫∫

[0,t]×R+
1{0≤h≤R2(s−)}Nμ(ds,dh),

R2(t) = y −
∫ t

0
R2(s−)Nμ(ds)

−
∫∫

[0,t]×R+
1{0≤h≤R2(s−)}Nμ(ds,dh)

+
∫ t

0
1{R1(s−)>0}Nλ(ds)

+
∫∫

[0,t]×R+
1{0≤h≤P(R1(s)>0)}N λ(ds,dh)

have a unique solution (R1(t),R2(t)) in DT .

The set of probability distributions on DT is denoted as P(DT ). Theorem 1

states that there exists a unique π
dist.= (R1(t),R2(t)) in P(DT ) which satisfies

equation (14). See Rogers and Williams [27] for definitions of existence and
uniqueness of a solution. Note that the solution to equation (14) solves the Fokker–
Planck equation (2) of the Introduction.

PROOF. Define the uniform norm ‖ · ‖∞,T on DT , if f = (f1, f2) ∈ DT ,

‖f ‖∞,T = sup
{∥∥f (t)

∥∥ : 0 ≤ t ≤ T
}= sup

{∣∣f1(t)
∣∣+ ∣∣f2(t)

∣∣ : 0 ≤ t ≤ T
}
.
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One can introduce the Wasserstein metrics on P(DT ) as follows, for π1, π2 ∈
P(DT ),

WT (π1, π2) = inf
π∈CT (π1,π2)

∫
ω=(ω1,ω2)∈D2

T

[
dT (ω1,ω2) ∧ 1

]
dπ(ω),(15)

ρT (π1, π2) = inf
π∈CT (π1,π2)

∫
ω=(ω1,ω2)∈D2

T

[‖ω1 − ω2‖∞,T ∧ 1
]
dπ(ω),(16)

where a ∧ b = min{a, b} for a, b ∈ R and CT (π1, π2) is the subset of couplings of
π1 and π2, that is, the subset of P(DT ×DT ) whose first (resp., second) marginal is
π1 (resp., π2). Since (DT , dT ) is separable and complete, the space (P(DT ),WT )

is complete, which gives the topology of convergence in distribution on P(DT ).
Clearly, for any π1, π2 ∈P(DT ), one has the relation WT (π1, π2) ≤ ρT (π1, π2).

Let � : (P(DT ),WT ) → (P(DT ),WT ) be the mapping that takes π to the dis-
tribution �(π) of Rπ , where (Rπ(t)) = (Rπ,1(t),Rπ,2(t)) is the unique solution
to the SDEs

Rπ,1(t) = x −
∫ t

0
Rπ,1(s−)Nμ(ds) −

∫ t

0
1{Rπ,1(s−)>0}Nλ(ds)

+
∫∫

[0,t]×R+
1{0≤h≤Rπ,2(s−)}Nμ(ds,dh),

Rπ,2(t) = y −
∫ t

0
Rπ,2(s−)Nμ(ds) −

∫∫
[0,t]×R+

1{0≤h≤Rπ,2(s−)}Nμ(ds,dh)

+
∫ t

0
1{Rπ,1(s−)>0}Nλ(ds) +

∫∫
[0,t]×R+

1{0≤h≤π(r1(s)>0)}N λ(ds,dh),

with initial condition (Rπ,1(0),Rπ,2(0)) = (x, y). Note that

π
(
r1(t) > 0

)= ∫
ω=(r1,r2)∈DT

1{r1(t)>0} dπ(ω).

The existence and uniqueness of a solution to equations (14) is equivalent to the
existence and uniqueness of a fixed point π = �(π).

For any πa,πb ∈ P(DT ), then let Rπa and Rπb
both be solutions to the equations

of the display above driven by same Poisson processes. Therefore, the distribution
of the pair (Rπa (t),Rπb

(t)) is a coupling of �(πa) and �(πb), and hence,

(17) ρt

(
�(πa),�(πb)

)≤ E
(‖Rπa − Rπb

‖∞,t

)
.

For t ≤ T , using the definition of Rπa and Rπb
,

‖Rπa − Rπb
‖∞,t

= sup
s≤t

(∣∣Rπa,1(s) − Rπb,1(s)
∣∣+ ∣∣Rπa,2(s) − Rπb,2(s)

∣∣)

≤
∫ t

0

(∣∣Rπa,1(s−) − Rπb,1(s−)
∣∣+ ∣∣Rπa,2(s−) − Rπb,2(s−)

∣∣)Nμ(ds)(18)
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+ 2
∫ t

0
|1{Rπa,1(s−)>0} − 1{Rπb,1(s−)>0}|Nλ(ds)

+ 2
∫ t

0

∫ ∞
0

1{Rπa,2(s−)∧Rπb,2(s−)≤h≤Rπa,2(s−)∨Rπb,2(s−)}Nμ(ds,dh)

+
∫ t

0

∫ ∞
0

1{πa(r1(s)>0)∧πb(r1(s)>0)≤h≤πa(r1(s)>0)∨πb(r1(s)>0)}N λ(ds,dh).

We bound the expected value of each of the terms of the right-hand side above.
First, for � = 1, 2,

(a) E

(∫ t

0

∣∣Rπa,�(s−) − Rπb,�(s−)
∣∣Nμ(ds)

)

= μE

(∫ t

0

∣∣Rπa,�(s) − Rπb,�(s)
∣∣ds

)

≤ μ

∫ t

0
E
(‖Rπa − Rπb

‖∞,s

)
ds.

For the second term on the right-hand side of (18), since Rπa,1(s) and Rπb,1(s) are
integer valued,

|1{Rπa,1(s)>0} − 1{Rπb,1(s)>0}| ≤
∣∣Rπa,1(s) − Rπb,1(s)

∣∣,
and hence, using (a), we have the bound

(b) E

(∫ t

0
|1{Rπa,1(s−)>0} − 1{Rπb,1(s−)>0}|Nλ(ds)

)

≤ μ

∫ t

0
E
(‖Rπa − Rπb

‖∞,s

)
ds.

Similarly, for the third term on the right-hand side of (18), we have

(c) E

(∫ t

0

∫ ∞
0

1{Rπa,2(s−)∧Rπb,2(s−)≤h≤Rπa,2(s−)∨Rπb,2(s−)}Nμ(ds,dh)

)

= μ

∫ t

0
E
(∣∣Rπa,2(s) − Rπb,2(s)

∣∣)ds

≤ μ

∫ t

0
E
(‖Rπa − Rπb

‖∞,s

)
ds.

Finally, for the last term on the right-hand side of (18),

(d) E

(∫ t

0

∫ ∞
0

1{πa(r1(s)>0)∧πb(r1(s)>0)≤h≤πa(r1(s)>0)∨πb(r1(s)>0)}N λ(ds,dh)

)

= λ

∫ t

0

∣∣πa

(
r1(s) > 0

)− πb

(
r1(s) > 0

)∣∣ds.
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Note that for every coupling π ∈ CT (πa,πb) of πa and πb,

∫ t

0

∣∣πa

(
r1(s) > 0

)− πb

(
r1(s) > 0

)∣∣ds

=
∫ t

0

∣∣π((ra, rb) : ra
1 (s) > 0

)− π
((

ra, rb) : rb
1 (s) > 0

)∣∣ds

≤
∫ t

0

∫
ω=(ra,rb)∈D2

T

|1{ra
1 (s)>0} − 1{rb

1 (s)>0}|π(dω)ds

≤
∫ t

0

∫
ω=(ra,rb)∈D2

T

∣∣ra
1 (s) − rb

1 (s)
∣∣∧ 1π(dω)ds.

By taking the infimum among all the couplings of πa and πb, we have

(e)
∫ t

0

∣∣πa

(
r1(s) > 0

)− πb

(
r1(s) > 0

)∣∣ds ≤
∫ t

0
ρs(πa,πb)ds.

Now, by combining the estimates (a), (b), (c), (d), (e), we conclude

E
(‖Rπa − Rπb

‖∞,t

)
≤ (2λ + 3μ)

∫ t

0
E
(‖Rπa − Rπb

‖∞,s

)
ds + λ

∫ t

0
ρs(πa,πb)ds.

Grönwall’s inequality then gives

E
(‖Rπa − Rπb

‖∞,t

)≤ CT

∫ t

0
ρs(πa,πb)ds ∀t ∈ [0, T ],

with CT = λ exp(2λ + 3μ)T . Hence using (17), we have

(19) ρt

(
�(πa),�(πb)

)≤ CT

∫ t

0
ρs(πa,πb)ds ∀t ∈ [0, T ].

Uniqueness of the fixed point for the equation �(π) = π follows immediately
from (19). Also, a typical iterative argument proves the existence: pick any π0 ∈
P(DT ), and define the sequence (πn) inductively by πn+1 = �(πn). It follows
from relation (19) that

WT (πn+1, πn) ≤ ρT (πn+1, πn) ≤ (T CT )n

n!
∫ T

0
ρs(π1, π0)ds.

The metric space (P(DT ),WT ) is complete and, therefore, the sequence (πn) con-
verges. Since � is continuous with respect to the Skorohod topology, its limit is
necessarily a fixed point of � . This completes the proof. �
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4. Mean-field limit. The empirical distribution 
N(t) of (RN
i (t),1 ≤ i ≤ N)

is defined by, for f a function on N
2,


N(t)(f ) = 1

N

N∑
i=1

f
(
RN

i (t)
)= 1

N

N∑
i=1

f
((

RN
i,1(t),R

N
i,2(t)

))
.

As it has already been remarked, at the beginning of Section 3, the process (
N(t))

does not have the Markov property. The goal of this section is to prove that the
stochastic process (
N(t)) is converging in distribution as N goes to infinity, that
is, for any function f with finite support, the sequence of stochastic processes
(
N(t)(f )) converges in distribution; see Billingsley [3] and Dawson [10].

The main result of this section is the following theorem.

THEOREM 2 (Mean-field convergence theorem). Suppose the process (XN(t))

is initialized according to Assumption 1. The sequence of empirical distribution
process (
N(t)) converges in distribution to a process (
(t)) ∈ D(R+,P(N2))

which is defined as follows: for f with finite support on N
2,


(t)(f )
def.= E

(
f
(
R1(t),R2(t)

))
,

where (R1(t),R2(t)) is the unique solution of equations (14). Moreover, for any
p ≥ 1, the sequence of finite marginals (RN

i,1(t),R
N
i,2(t),1 ≤ i ≤ p) converges

in distribution to ((Ri,1(t),Ri,2(t)),1 ≤ i ≤ p), where (Ri,1(t),Ri,2(t)) are i.i.d.
processes with the same distribution as (R1(t),R2(t)).

The last statement is the “propagation of chaos” property.

4.1. Uniform bound for (RN
i (t)). We start with a technical result which will

be used to establish mean-field convergence. It states that, uniformly on a compact
time interval, the number of files with a copy at a given server i is stochastically
bounded and that, with a high probability, all other servers have at most one file in
common with server i. This is a key ingredient to prove that the non-Markovian
process (RN

i,1(t),R
N
i,2(t)) is converging in distribution to the nonlinear Markov pro-

cess described in Theorem 1.

LEMMA 1. If the initial state of the process (XN(t)) is given by Assumption 1,
for 1 ≤ i ≤ N and T > 0 then, for i ∈ N,

(20) sup
N≥1

E

(
sup

0≤t≤T

(
RN

i,1(t) + RN
i,2(t)

)2)
< +∞

and if

Ei
N (T )

def.=
{

sup
0≤t≤T ,1≤j≤N

XN
i,j (t) ≥ 2

}
,

then there exists a constant C(T ) independent of i such that P(Ei
N (T )) ≤

C(T )/N .
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PROOF. For i = 1, . . . ,N , the total number of files DN
i,0 initially on server i

satisfies

(21) DN
i,0

def.= RN
i,1(0) + RN

i,2(0) = XN
i,0(0) +

N∑
j 
=i

XN
i,j (0) = Ai +

N∑
j 
=i

Aj∑
�=1

1{V N
j,�=i},

and hence, E(DN
i,0) = 2E(A1) and var(DN

i,0) = 2 var(A1) + E(A1)N/(N − 1).

Also, the total number of files DN
i,1(t) copied on server i from all other servers

during the interval [0, t] verifies

(22) DN
i,1(t)

def.=
N∑

j 
=i

∫ t

0
1{RN

j,0(s)>0}N
U,N
λ,j

(
ds, {i})≤ N∑

j 
=i

NU,N
λ,j

(
t, {i}).

Therefore, for every t ≤ T , E(DN
i,1(t)) ≤ λT and E(DN

i,1(t)
2) ≤ 2λT . The bound

(20) then follows from the inequality

sup
0≤t≤T

(
RN

i,1(t) + RN
i,2(t)

)≤ DN
i,0(T ) + DN

i,1(T ).

For the next part, note that on Ei
N (T ), there exists 1 ≤ j ≤ N such that either

server i or j make two copies on the other one or both i and j make one copy
on the other during the time interval [0, T ]. Recall again that server i initially
copies Ai files on other servers, and that the total number of files copied from
server i onto server j during (0, T ] is upper bounded by NU,N

λ,i (T , {j}). Define the
sequence (ZN

i,�,1 ≤ i ≤ N,� ≥ 1) as follows: ZN
i,� = V N

i,� when 1 ≤ � ≤ Ai , and
ZN

i,� = Ui
�−Ai

when � > Ai . For the first Ai indices �, ZN
i,�s are therefore the indices

of servers which received an initial copy of a file of server i, while the subsequent
ZN

i,�s are the server indices on which (potential) duplications from server i can take

place. (ZN
i,�) is therefore a sequence of i.i.d. random variables uniformly distributed

on {1, . . . ,N}\{i}. Therefore, P(EN
i (T )) ≤ P(BN

i ), where

BN
i

def.=
N⋃

j=1,j 
=i

( ⋃
1≤�≤Ai+Li(T )

1≤�′≤Aj+Lj (T )

{
ZN

i,� = j,ZN
j,�′ = i

}

× ⋃
1≤� 
=�′≤Ai+Li(T )

{
ZN

i,� = j,ZN
i,�′ = j

}

× ⋃
1≤� 
=�′≤Aj+Lj (T )

{
V N

j,� = i, V N
j,�′ = i

})
,

with Li(T ) = Nλ,i([0, T ]) + Ai . Since the probability of each of the elementary
events of the right-hand side of this relation is 1/(N − 1)2, Zk,�s are independent
of Lk′(T ) for all k, k′ and E(Li(T )) = λT + E(A1). It is then easy to conclude.

�



868 R. AGHAJANI, P. ROBERT AND W. SUN

4.2. Evolution equations for the empirical distribution. Denote e1 = (1,0)

and e2 = (0,1), and define the operators

�±(f )(x) = f (x + e1 − e2) − f (x),

�∓(f )(x) = f (x − e1 + e2) − f (x),

�+
2 (f )(x) = f (x + e2) − f (x),

for x ∈ N
2 and f :N2 →R+. For every function f :N2 →R+ with finite support, it

follows from equations (10) and (11) and using martingale decomposition for the
Poisson processes, we have

df
(
RN

i (t)
)

= dMN
f,i(t) + �∓(f )

(
RN

i (t)
)
1{RN

i,1(t)>0}λdt

(23)

+ �+
2 (f )

(
RN

i (t)
) λ

N − 1

∑
j 
=i

1{RN
j,1(t)>0} dt + [f (0,0) − f

(
RN

i (t)
)]

μdt

+∑
j 
=i

[
f
(
RN

i (t) + XN
i,j (t)(e1 − e2)

)− f
(
RN

i (t)
)]

μdt,

where MN
f,i is a martingale. The j th term of the last sum in on the right-hand

side above corresponds to the event when server j breaks down and, therefore, the
copies of XN

i,j (t) files at node j are lost, and the remaining copies are only located

at node i. Using the notation of Lemma 1, then outside the event EN
i (T ), XN

i,j (t)

is either 0 or 1, and hence, t ∈ [0, T ],∑
j 
=i

[
f
(
RN

i (t) + XN
i,j (t)(e1 − e2)

)− f
(
RN

i (t)
)]= RN

2,i(t)�
±(f )

(
RN

i (t)
)
.

By summing up both sides of relation (23) over i and denoting N
∗ = N\{0}, we

have


N(t)(f ) = 
N(0)(f ) +MN
f (t)

+ λ

∫ t

0

∫
N2

�∓(f )(x, y)1{x>0}
N(s)(dx,dy)ds

+ λN

N − 1

∫ t

0

N(s)

(
N

∗×N
)

(24)
×
∫
N2

�+
2 (f )(x, y)
N(s)(dx,dy)ds − HN

1 (t)

+ μ

∫ t

0

∫
N2

(
f (0,0) − f (x, y)

)

N(s)(dx,dy)ds

+ μ

∫ t

0

∫
N2

y�±(f )(x, y)
N(s)(dx,dy)ds + HN
2 (t),
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where

MN
f (t) = 1

N

(
MN

f,1(t) +MN
f,2(t) + · · · +MN

f,N(t)
)
,

HN
1 (t) = λ

N − 1

∫ t

0

∫
N2

�+
2 (f )(x, y)1{x>0}
N(s)(dx,dy)ds,

HN
2 (t) = μ

1

N

N∑
i=1

∫ t

0
hN

2,i (s)ds,

with

hN
2,i(t) =∑

j 
=i

(
f
(
RN

i (t) + XN
ij (t)(e1 − e2)

)− f
(
RN

i (t)
))

−
∫
N2

y�±(f )(x, y)
N(t)(dx,dy).

Now, we investigate the asymptotic properties of the terms of the right-hand side
of equation (24).

4.3. The negligible terms. We first prove that the two processes (HN
1 (t)) and

(HN
2 (t)) converge to zero in distribution as N goes to infinity. For the former, the

result follows immediately from the simple bound

∥∥HN
1

∥∥∞,T ≤ 2λT

N
‖f ‖∞.

For (HN
2 (t)), first note that, for 0 ≤ t ≤ T and 1 ≤ i ≤ N , hN

2,i(t) is nonzero

only on the event EN
i (T ), and hence,∥∥∥∥∥ 1

N

N∑
i=1

hN
2,i (s)

∥∥∥∥∥∞,T

≤ sup
0≤s≤T

1

N

N∑
i=1

∣∣∣∣∑
j 
=i

[
f
(
RN

i (s) + XN
ij (s)(e1 − e2)

)− f
(
RN

i (s)
)]

− RN
2,i(s)�

±(f )
(
RN

i (s)
)∣∣∣∣

≤ 4μ‖f ‖∞
1

N

N∑
i=1

∣∣RN
2,i(s)

∣∣∞,T 1{EN
i (T )}.

By an application of the Cauchy–Schwarz inequality and using Lemma 1 there
exists a constant C1(T ) such that

1

N

N∑
i=1

E
(∣∣RN

2,i

∣∣∞,T 1{EN
i (T )}

)≤ 1

N

N∑
i=1

√
E
(∣∣RN

2,i

∣∣2∞,T

)√
P
(
EN

i (T )
)≤C1(T )√

N
.
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Consequently,

lim
N→+∞E

(
sup

0≤t≤T

∣∣∣∣∣ 1

N

N∑
i=1

∫ t

0
hN

2,i (s)ds

∣∣∣∣∣
)

= 0,

which implies that the process (HN
2 (t)) is also vanishing in distribution.

4.4. The martingale. Careful calculations show that the previsible increasing
process of (MN

f (t)) is given by

(〈
MN

f

〉
(t)
)= ( λ

N2 GN
1 (t) + μ

N2 GN
2 (t)

)
,

with

GN
1 (t) =

N∑
i=1

∫ t

0

(
�∓(f )

(
RN

i (s)
)+ N

N − 1

N(s)

(
�+

2 (f )
)

− N

N − 1
�+

2 (f )
(
RN

i (t)
))2

1{RN
i,1(s−)>0} ds

and

GN
2 (t) =

N∑
i=1

∫ t

0

(
f (0,0) − f

(
RN

i (s)
)

+∑
j 
=i

[
f
(
RN

j (s) + XN
i,j (s)(e1 − e2)

)− f
(
RN

j (s)
)]

1{XN
ij (s)>0}

)2
ds.

From the simple bounds ‖GN
1 ‖∞,T ≤ 16 · NT ‖f ‖2∞ and∥∥GN

2

∥∥∞,T ≤ 8NT ‖f ‖2∞
(
1 + ∥∥RN

i,2

∥∥2
∞,T

)
,

and, by using relation (20) of Lemma 1, we get

lim
N→+∞E

(〈
MN

f

〉
(T )
)= 0.

Therefore, by Doob’s inequality, the martingale (MN
f (t)) converges to zero in

distribution as N goes to infinity.

PROPOSITION 1 (Tightness of the empirical distribution process). The se-
quence (
N(t)) is tight with respect to the convergence in distribution in
D(R+,P(N2)). Any limiting point (
(t)) is a continuous process which satisfies


(t)(f ) = 
(0)(f ) + λ

∫ t

0

∫
N2

�∓(f )(x, y)1{x>0}
(s)(dx,dy)ds

+ λ

∫ t

0

(s)

(
N

∗×N
) ∫

N2
�+

2 (f )(x, y)
(s)(dx,dy)ds(25)



A LARGE SCALE ANALYSIS OF UNRELIABLE STOCHASTIC NETWORKS 871

+ μ

∫ t

0

∫
N2

(
f (0,0) − f (x, y)

)

(s)(dx,dy)ds

+ μ

∫ t

0

∫
N2

y�±(f )(x, y)
(s)(dx,dy)ds

for every function f with finite support on N
2.

Note that the Fokker–Planck equation (2) in the Introduction is the functional
form of the stochastic equation (25).

PROOF OF PROPOSITION 1. Theorem 3.7.1 of Dawson [10] states that it is
enough to prove that, for any function f on N

2 with finite support, the sequence
of processes (
N(·)(f )) is tight with respect to the topology of the uniform norm
on compact sets. Using the criterion of the modulus of continuity (see, e.g., The-
orem 7.2, page 81 of Billingsley [3]), we need to show that for every ε > 0 and
η > 0, there exists a δ0 > 0 such that if δ < δ0 then

(26) P

(
sup

0≤s≤t≤T

|t−s|≤δ

∣∣
N(t)(f ) − 
N(s)(f )
∣∣≥ η

)
≤ ε

holds for all N ∈ N. Fix 0 ≤ s, t ≤ T with |t − s| ≤ δ, and remember the equal-
ity (24) for the process (
N(t)(f )). We have already shown that the processes
(HN

1 (t)), (HN
2 (t)) and (MN

f (t)) vanish as N goes to infinity. For the remaining
terms on the right-hand side of (24), note that there exists a finite constant C0 such
that ∣∣∣∣

∫ t

s

∫
N2

�∓(f )(x, y)1{x>0}
N(u)(dx,dy)du

∣∣∣∣≤ C0δ‖f ‖∞,

∣∣∣∣
∫ t

s

N(u)

(
N

∗×N
) ∫

N2
�+

2 (f )(x, y)
N(u)(dx,dy)du

∣∣∣∣≤ C0δ‖f ‖∞

and ∣∣∣∣
∫ t

s

∫
N2

(
f (0,0) − f (x, y)

)

N(u)(dx,dy)du

∣∣∣∣≤ C0δ‖f ‖∞.

Also, by relation (20) of Lemma 1 shows that there exists C1 < ∞ independent of
N such that

E

(∣∣∣∣
∫ t

s

∫
N2

y�±(f )(x, y)
N(u)(dx,dy)du

∣∣∣∣
)

≤ 2‖f ‖∞δ
1

N

N∑
i=1

E

(
sup

0≤u≤T

RN
i,2(u)

)
≤ C1δ‖f ‖∞.

If follows from the Chebyshev’s inequality that the sequence (
N(·)(f )) satisfies
relation (26), and hence it is tight.
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Moreover, if 
 is a limiting point, from relation (24) and the fact that the pro-
cesses HN

1 , HN
2 and MN

f vanish as N gets large, one obtains that relation (25)
holds, Finally, it is straightforward to show that all the terms on the right-hand side
of (25) are continuous in t . �

We now show that equation (25) that characterized the limits of (
N(t)) has a
unique solution.

LEMMA 2. Let (
(t)) be a solution to equation (25) with an initial condition

(0), a probability on N

2 with bounded support. Then, for any T > 0, there exists
a constant CT such that for all K ≥ 2 log(2),

(27) sup
0≤t≤T

∫ t

0

∫
N2

y1{y≥K}
(s)(dx,dy)ds ≤ CT e−K/2.

PROOF. For all t ≤ T , since y ≤ exp(y/2) if y ≥ 2 log(2), then for K ≥
2 log(2),

(28)
∫
N2

y1{y≥K}
(t)(dx,dy) ≤ e−K/2
∫
N2

ey
(t)(dx,dy).

For every K1 ≥ 0, using equation (25) for 
 with f replaced by

f̃ (x, y) = ex+y1{x+y≤K1},

and since �∓(f̃ ) = �±(f̃ ) = 0, we have∫
N2

ex+y1{x+y≤K1}
(t)(dx,dy)

≤
∫
N2

ex+y
(0)(dx,dy)

+ λ(e − 1)

∫ t

0

∫
N2

ex+y1{x+y≤K1}
(s)(dx,dy)ds

+ μ

∫ t

0

(
1 −

∫
N2

ex+y1{x+y≤K1}
(s)(dx,dy)

)
ds.

By an application of Grönwall’s inequality, there exists a constant cT independent
of K1 such that

sup
0≤t≤T

∫
N2

ey1{x+y≤K1}
(t)(dx,dy) ≤ cT .

The bound (27) can be obtained by letting K1 go to infinity in the above inequality,
and substituting it in relation (28). �

PROPOSITION 2 (Uniqueness). For every 
0 a probability on N
2 with finite

support, equation (25) has at most one solution (
(t)) in D(R+,P(N2)), with
initial condition 
0.
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PROOF. Let (
1(t)) and (
2(t)) ∈ D(R+,P(N2)) be solutions of (25) with
initial condition 
0. Let f be a bounded function on N

2 and t ≥ 0, we have


1(t)(f ) − 
2(t)(f )

= λ

∫ t

0

∫
N2

�∓(f )(x, y)1{x>0}
(

1(s) − 
2(s)

)
(dx,dy)ds

+ λ

∫ t

0

1(s)

(
N

∗×N
) ∫

N2
�+

2 (f )(x, y)
(

1(s) − 
2(s)

)
(dx,dy)ds

+ λ

∫ t

0

(

1(s) − 
2(s)

)(
N

∗×N
) ∫

N2
�+

2 (f )(x, y)
2(s)(dx,dy)ds

+ μ

∫ t

0

∫
N2

(
f (0,0) − f (x, y)

)(

1(s) − 
2(s)

)
(dx,dy)ds

+ μ

∫ t

0

∫
N2

y�±(f )(x, y)
(

1(s) − 
2(s)

)
(dx,dy)ds.

For a signed measure m on N
2, denote

‖m‖TV = sup
{∫

N2
f (x, y)m(dx,dy), f :N2 →R with ‖f ‖∞ ≤ 1

}
.

Therefore, for every f on N
2 with ‖f ‖∞ ≤ 1 and every K > 0, we have∣∣
1(t)(f ) − 
2(t)(f )

∣∣
≤ (6λ + 2μ + 2μK)

∫ t

0

∥∥
1(s) − 
2(s)
∥∥

TV ds

+ 2μ

∫ t

0

∫
N2

y1{y≥K}
1(s)(dx,dy)ds

+ 2
∫ t

0

∫
N2

y1{y≥K}
2(s)(dx,dy)ds.

Now using (27) of Lemma 2, and taking the supremum over all functions f on N
2

with ‖f ‖∞ ≤ 1, we have

∥∥
1(t) − 
2(t)
∥∥

TV ≤ 4μCte
−K/2 + (6λ + 2μ + 2μK)

∫ t

0

∥∥
1(s) − 
2(s)
∥∥

TV ds.

Therefore, by another application of Grönwall’s inequality,∥∥
1(t) − 
2(t)
∥∥

TV ≤ 4μCT e−K/2e(6λ+2μ+2μK)t .

For t < 1/(4μ), by letting K go to infinity in the above relation, one gets that

1(t) = 
2(t). By repeating the same argument on successive time intervals of
width less than 1/(4μ), one obtains the uniqueness result. �

Now we can conclude the proof of Theorem 2.
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PROOF OF THEOREM 2. Let (x, y) ∈ N2 and 
0 = δ(x,y), then if (R1(t),

R2(t)) is the unique solution of equation (14) and the measure valued process
(
1(t)) is defined by, if f is a function with finite support on N

2,


1(t)(f )
def.= E

(
f
(
R1(t),R2(t)

))
,

it is straightforward to check that this is a solution of equation (25). The conver-
gence of (
N(t)) follows from Propositions 1 and 2. The last assertion is a simple
consequence of Proposition 2.2 in Sznitman [31]. �

5. An asymptotic bound on the decay of the network. The asymptotic pro-
cess (R(t)) = (R1(t),R2(t)) of Theorem 1 is an inhomogeneous Markov process
with the following transitions: if (R(t)) is in state r = (r1, r2) at time t , the next
possible state and the corresponding rates are given by

r �→
{
(0,0) with rate μ,

r + e2 with rate λp(t),
and

(29)

r �→
{
r − e1 + e2 with rate λ1{r1>0},
r + e1 − e2 with rate μr2,

where p(t) = P(R1(t) > 0) is the nonlinear part of the dynamic. A simple feature
of this process is that it resets to the state (0,0) at the epoch times of a Poisson
process with rate μ, and between two consecutive epoch times, the sum of its co-
ordinates grows according to an inhomogeneous Poisson process with rate p(·).
With this observation, the following proposition gives a representation of the dis-
tribution of the total number of copies with the function (p(t)).

PROPOSITION 3. If the initial state of (R1(t),R2(t)) is (0, r2) with r2 ∈ N,
then for u ∈ [0,1] and t ≥ 0,

E
(
uR1(t)+R2(t)

)= e−μtur2 exp
(
−λ(1 − u)

∫ t

0
p(z)dz

)

+
∫ t

0
exp
(
−λ(1 − u)

∫ s

0
p(t − z)dz

)
μe−μs ds.

PROOF. From relation (29), one obtains that the transition rates of the process
(R1(t) + R2(t)) are given by

r �→ r + 1 at rate λp(t) and r �→ 0 at rate μ.

The Fokker–Planck equation associated to this process yields the relation

d

dt
E
(
uR1(t)+R2(t)

)= μ + (λp(t)(u − 1) − μ
)
E
(
uR1(t)+R2(t)

)
.

It is then easy to conclude. �
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The problem with the above formula is that the function t �→ p(t) is unknown.
In the following, we obtain a lower bound on the asymptotic rate of decay of the
network, that is, the exponential rate of convergence of the process (R1(t),R2(t))

to (0,0).
Recall that RN

i,1(t) and RN
i,2(t) are the number of files on server i with one and

two copies, respectively. Therefore, the quantity

LN(t) =
N∑

i=1

RN
i,1(t) + 1

2

N∑
i=1

RN
i,2(t)

is the total number of distinct files in the system at time t . By Theorem 2, equa-
tion (20) of Lemma 1, and an application of the dominated convergence theorem,
we have

(
L(t)

) def.= lim
N→∞

(
LN(t)

N

)
=
(
E
(
R1(t)

)+ 1

2
E
(
R2(t)

))
.

The following proposition gives therefore a lower bound on the exponential rate of
decay (L(t)).

PROPOSITION 4. If (R(t)) = (R1(t),R2(t)) is the solution of equation (14),
then

(30) E

(
R1(t) + 1

2
R2(t)

)
≤ E

(
R1(0) + 1

2
R2(0)

)
e−κ+

2 (ρ)μt ,

where

κ+
2 (x) = (3 + x) −√(3 + x)2 − 8

2
, x ∈ R,

and ρ = λ/μ.

The quantity κ+
2 (ρ)μ is thus a lower bound for the exponential rate of decay.

When there is no duplication capacity, that is, λ = 0, κ+
2 (ρ) = 1 and the lower

bound becomes μ, the failure rate of servers, as expected. On the other hand, when
the duplication capacity goes to infinity, the lower bound goes to 0.

PROOF OF PROPOSITION 4. Let m1(t) = E(R1(t)) and m2(t) = E(R2(t)).
Taking expectation from both sides of equations (14), we conclude that the pair
(m1,m2) satisfy the following set of ordinary differential equations (ODEs):

(31)

{
ṁ1(t) = −λp(t) + μ

(
m2(t) − m1(t)

)
,

ṁ2(t) = 2λp(t) − 2μm2(t).

Defining g(t) = m1(t) − p(t), then clearly 0 ≤ g(t) ≤ m1(t). The ODEs (31) can
be rewritten as

d

dt

(
m1(t)

m2(t)

)
= A

(
m1(t)

m2(t)

)
+ λ

(
g(t)

−2g(t)

)
,(32)
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where A is the matrix

A =
(−(λ + μ) μ

2λ −2μ

)
.

It has two negative eigenvalues, −μκ+
2 (ρ) and −μκ−

2 (ρ) with

κ+
2 (ρ) = (3 + ρ) −

√
(3 + ρ)2 − 8

2
, κ−

2 (ρ) = (3 + ρ) +
√

(3 + ρ)2 − 8

2
.

Defining the constants y1 = (−μκ+
2 (ρ)+λ+μ)/μ, y2 = (−μκ−

2 (ρ)+λ+μ)/μ,

h1 = 1

y1 − y2

(−y2m1(0) + m2(0)
)

and h2 = 1

y1 − y2

(
y1m1(0) − m2(0)

)
,

the standard formula for explicit solution of the linear ODE (32), with g regarded
as an external force, gives

m1(t) = h1e
−μκ+

2 (ρ)t + h2e
−μκ−

2 (ρ)t

− λ

y1 − y2

∫ t

0
g(s)

[
(y2 + 2)e−μκ+

2 (ρ)(t−s)(33)

− (y1 + 2)e−μκ−
2 (ρ)(t−s)]ds,

m2(t) = y1h1e
−μκ+

2 (ρ)t + y2h2e
−μκ−

2 (ρ)t

− λ

y1 − y2

∫ t

0
g(s)

[
(y2 + 2)y1e

−μκ+
2 (ρ)(t−s)(34)

− (y1 + 2)y2e
−μκ−

2 (ρ)(t−s)]ds.

Therefore, using the fact g(s) ≥ 0 in the first inequality, and the relations y1 >

y2 ≥ −2 and κ+
2 (ρ) < κ−

2 (ρ) in the second inequality below, we conclude

m1(t) + 1

2
m2(t)

=
(

1 + y1

2

)
h1e

−μκ+
2 (ρ)t +

(
1 + y2

2

)
h2e

−μκ−
2 (ρ)t

− λ

y1 − y2

1

2
(y1 + 2)(y2 + 2)

∫ t

0
g(s)

(
e−μκ+

2 (ρ)(t−s) − e−μκ−
2 (ρ)(t−s))ds

≤
(

1 + y1

2

)
h1e

−μκ+
2 (ρ)t +

(
1 + y2

2

)
h2e

−μκ−
2 (ρ)t

≤
(
m1(0) + 1

2
m2(0)

)
e−μκ+

2 (ρ)t .

This completes the proof. �
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6. The case of multiple copies. In this section, we consider the general case
where each file has a maximum number of d copies in the system. We now describe
the algorithm without too much formalism for sake of simplicity. The duplication
capacity of a given node is used for one of its copies corresponding to a file with
the least number of copies in the network. Provided that this number is strictly less
than d , a new copy is done at rate λ at random on a node of the network. See Sec-
tion 3 of Sun et al. [30] for a quick description of how this kind of mechanism can
be implemented in practice. The node receives copies from other nodes from this
duplication mechanism. As before, at rate μ all copies of the node are removed.

As it will be seen, the model does not seem to be mathematically tractable as in
the case d = 2. To understand the effect of the maximum number of copies d on the
performance of the file system, we study the asymptotic behavior of a stochastic
model which is dominating (in some sense) our network. We then study the decay
rate of this new model.

The initial condition of our system are given by the following assumption.

ASSUMPTION 2 (Initial state). There is a set FN of FN initial files, and for
f ∈FN , a subset of d nodes of {1, . . . ,N} is taken at random and on each of them
a copy of f is done.

It should be noted that, with the duplication mechanism described above, a copy
can be made on a node which has already a copy of the same file. But, with similar
methods as the ones used in the proof of Lemma 1, it can be shown that on any
finite time interval, with probability 1, there is only a finite number of files which
have at least two copies on a server. In particular, this assumption has no influ-
ence on the asymptotic results obtained in this section since they are concerning
asymptotic growth in N of the number of files alive at time t .

With these assumptions, if f is a file, f ∈ FN , one denotes by AN
f (t) ⊂ {1, . . . ,

N} the subset of nodes which have a copy of f at time t . The cardinality of the set
AN

f (t) is denoted as cN
f (t), it is at most d . The process

(
AN(t)

) def.= (
AN

f (t), f ∈ FN

)
gives a (Markovian) representation of the time evolution of the state of the network.

6.1. The additional complexity of the model. A analogous Markovian descrip-
tion as for the case d = 2 can be done in the following way. If S is the set of
nonempty subsets of {1, . . . ,N} whose cardinality is less or equal to d and, for
A ∈ S , if XN

A (t) is the number of files with a copy only in the nodes whose index
is in A,

XN
A (t) = ∑

f ∈FN

1{AN
f (t)=A}



878 R. AGHAJANI, P. ROBERT AND W. SUN

then it is not difficult to show that (XN(t)) = (XN
A (t),A ∈ S) is a Markov process,

even if its transitions are not so easy to write formally. Following the analysis
done for the case d = 2, it is natural to introduce, for 1 ≤ i ≤ N , and 1 ≤ k ≤ d ,
the quantity

RN
i,k(t) = ∑

A∈S,i∈A

card(A)=k

XN
A (t) = ∑

f ∈FN

1{i∈AN
f (t),cN

f (t)=k}

is the number of files having k copies in the whole network, with a copy on server
i. It is the equivalent of the variables RN

i,1(t) and RN
i,2(t) of the case d = 2.

The vector RN
i (t) = (RN

i,k(t),1 ≤ k ≤ d) gives also a reduced representation of
the state of the node i at time t . It turns out that the evolution equations of this
model are much more involved. To observe why our method cannot be worked out
for general d > 2, let us try, as in Section 3, to heuristically obtain the transition
rates of a possible asymptotic limit process for this model.

Fix 1 ≤ k < d and 1 ≤ i ≤ N , ek is the kth unit vector of Nd , and r = (rj ) =
(RN

i,j (t−)), then the process (RN
i,j (t)) jumps from r to r − ek + ek+1 at time t

according with two types of events:

(a) due to the duplication capacity at node i, it occurs at rate λ under the con-
dition r1 = r2 = · · · = rk−1 = 0 and rk > 0. Recall that only files with the least
number of copies are duplicated.

(b) If a copy of a file is present at i with a total k copies is duplicated on one of
the other k − 1 servers having a copy of this file, conditionally on the past before
t , it occurs at rate

λ
∑
j 
=i

1{RN
j,�(t−)=0,1≤�<k,RN

j,k(t−)>0}
1

RN
j,k(t−)

∑
A∈S:i,j∈A

card(A)=k

XN
A (t−).

The first event is similar as in the case d = 2, the jump rate can be expressed in
terms of the vector r . This is not the case for the second event. The last sum of the
above expression does not seem to have an expression in terms of the components
of the vector r . It requires a much more detailed description. The information
provided by r is not enough, even in the limit when N goes to infinity as it is the
case when d = 2. Consequently, it does not seem that one can derive autonomous
equations describing the asymptotic dynamics of (RN

i (t)).

6.2. Introduction of a dominating process. We now consider the following
related Markov process. We first describe it, without too much formalism for sake
of simplicity, in terms of a duplication system. Note that this is not an alternative
algorithm but merely a way of having a mathematically tractable stochastic process
that will give us a lower bound of the exponential decay rate of the initial system.
For convenience, we will use nevertheless the terminology of “files,” “copies,”
“duplication” and “servers” to describe this new process.
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The initial condition is also given by Assumption 2. If f is one of the files of
the network, as long as the total number of copies of f is strictly less that d , each
of the nodes having one of these copies generates a new copy of f at rate λ at
random on a node. The case of multiple copies on the same server is taken care
of as for the process (AN(t)). The failures of a given node occur according to a
Poisson process with rate μ, and as for our algorithm, all copies are lost.

The system works the same as the original model, except that each file on a
server i with strictly less than d copies in the network, can be duplicated at rate λ,
regardless of any other copy on that server. Consequently, if, for 1 ≤ k ≤ d , a node
has rk files, each of them with a total of k copies, at a given time, the “duplication
capacity” of this node is given by

λ(r1 + r2 + · · · + rd−1),

instead of λ in our algorithm. Remember nevertheless that such system is not pos-
sible in practice, it is used only to estimate the performances of the algorithm
introduced at the beginning of this section.

For f ∈ FN , one denotes by BN
f (t) the finite subset of {1, . . . ,N} of nodes

having a copy of f at time t and its cardinality is denoted by dN
f (t). We define

(
BN(t)

) def.= (
BN

f (t), f ∈FN

)
.

Since the duplication mechanism associated to the process (BN
f (t)) is more active

than for our algorithm, intuitively the decay rate of our system should be faster
that the decay rate of the process (BN

f (t)). The following lemma will be used to
establish rigorously this relation.

LEMMA 3. There exists a coupling of the processes (AN(t)) and (BN(t)) such
that, almost surely, for all f ∈ FN and t ≥ 0, AN

f (t) ⊂ BN
f (t).

PROOF. This is done by induction on the number of jumps of the process
(BN(t)). By assumption, one can take AN(0) = BN(0), if the relation AN

f (t) ⊂
BN

f (t), at the instant t = τn of the nth jump of (AN(t)) and (BN(t)). We review
the different scenarios for the next jump after time τn, at time τn+1:

(a) if some node i0 ∈ {1, . . . ,N} fails, then, for f ∈ FN ,

AN
f (τn+1) = AN

f (τn)\{i0} if i0 ∈AN
f (τn),

AN
f (τn+1) = AN

f (τn) otherwise,

and a similar relation holds for BN
f (τn+1). The relation AN

f (t) ⊂ BN
f (t) still

holds for t = τn+1 since it is true at time τn.
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(b) If a duplication occurs for the process (AN(t)) at time τn+1 at some node i0 ∈
{1, . . . ,N} and for file a f ∈ FN , In particular, i0 ∈AN

f (τn) and, therefore, by

induction hypothesis, i0 ∈ BN
f (τn), so that we can couple both the duplication

process for both processes (AN(t)) and (BN(t)) as follows:

− If card(BN
f (τn)) < d . A copy is made on the same node for both processes

(AN(t)) and (BN(t)).
− If card(BN

f (τn)) = d . There exists some node i0 such that i0 /∈ AN
f (τn) and

i0 ∈ BN
f (τn). We can then set AN

f (τn+1) = AN
f (τn) ∪ {i0}, remember that

for the process (BN(t)) the servers where to make a copy are also chosen
at random.

In both cases, the relation AN
f (τn+1) ⊂ BN

f (τn+1) will hold.

(c) If a duplication occurs for the process (BN(t)) at time τn+1 but not for the
process (AN(t)), then clearly the desired relation will then also hold at time
τn+1.

The lemma is proved. �

For the dominating model, for k ∈ {1, . . . , d} and 1 ≤ i ≤ N , we will denote by
T N

i,k(t) the number of files of type k and with one copy on node i at time t ≥ 0; this
is the analogue of the variable RN

i,k(t) defined above

T N
i,k(t) = ∑

f ∈FN

1{i∈BN
f (t),dN

f (t)=k}.

For a given node i, if (T N
i,k(t−)) = r = (rk), provided that there are no multiple

copies on the same server just before time t , the transition rates of this process at
time t are given by

r �→
{
r − ek + ek+1 at rate λkrk, 1 ≤ k < d,

r + ek−1 − ek, μ(k − 1)rk, 1 < k≤d,

and

r �→

⎧⎪⎪⎨
⎪⎪⎩

(0,0) at rate μ,

r + ek, λ
(k − 1)

N − k + 1

∑
f ∈FN

1{i /∈BN
f (t),dN

f (t−)=k−1}.

Note that the last sum is the sum of the terms T N
j,k−1(t−), j = 1, . . . , N minus some

term which is less that (k − 1)T N
i,k−1(t−). The term T N

i,k−1(t−), with appropriate
estimates as in Section 4, will vanish in the limit when divided by N − k + 1. Con-
sequently, asymptotically, the transitions of the vector (T N

i,k(t)) can be expressed
as a functional of its coordinates. With the same methods as for the original model
for d = 2 in Section 4, it is not difficult to show that an analogue of Theorem 2
holds.
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THEOREM 3 (Mean-field convergence theorem). Suppose the process (AN(t))

is initialized according to Assumption 2. The process of the empirical distribution

(

N(t)

)=
(

1

N

N∑
i=1

δ(T N
i,k(t),1≤k≤d)

)

converges in distribution to a process (
(t)) ∈ D(R+,P(N2)) such that: for every
function g with finite support on N

d ,


(t)(g)
def.= E

(
g
(
T k(t)

))
,

where (T (t)) = (T k(t)) is a nonlinear Markov process with the following transi-
tion rates: if (T (t)) is in state r = (rk) just before time t , the next possible state
and the corresponding rates are given by

r �→
{
(0,0), μ,

r + ek, λE
(
T k−1(t)

)
, 1≤k ≤ d,

and

{
r − ek + ek+1, λkrk, 1≤k < d,

r + ek−1 − ek, μ(k − 1)rk, 1 < k≤d.

An argument similar to that in the proof of Theorem 1 shows the existence and
uniqueness of the Markov process (T (t)). Note that the nonlinear component is
now given by the vector of the mean values E(T k(t)), k = 1, . . . , d .

The limiting Markov process (T (t)) = (T k(t)) can also be seen as the solution
of the following SDEs. For t ≥ 0,

dT 1(t) = −T 1(t−)Nμ(dt) −
∫
R+

1{0≤h≤T 1(t−)}N λ(dt,dh)

(35)
+
∫
R+

1{0≤h≤T 2(t−)}Nμ(dt,dh),

for 1 < k < d ,

dT k(t)

= −T k(t−)Nμ(dt)

−
∫
R+

1{0≤h≤T k(t−)}N kλ(dt,dh)

+
∫
R+

1{0≤h≤T k−1(t−)}N (k−1)λ(dt,dh)(36)

−
∫
R+

1{0≤h≤T k(t−)}N (k−1)μ(dt,dh)

+
∫
R+

1{0≤h≤T k+1(t−)}N kμ(dt,dh)
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+
∫
R+

1{0≤h≤E(T k−1(t))}N λ,k−1(dt,dh),

dT d(t)

= −T d(t−)Nμ(dt)

+
∫
R+

1{0≤h≤E(T d−1(t))}N λ,d−1(dt,dh)(37)

+
∫
R+

1{0≤h≤T d−1(t−)}N (d−1)λ(dt,dh)

−
∫
R+

1{0≤h≤T d(t−)}N (d−1)μ(dt,dh).

The interesting property of these SDEs is that the vector of expected values can
be expressed as the solution of a classical ODE, as the next proposition states.

PROPOSITION 5. For t ≥ 0, the function V (t) = E(T k(t/μ)) satisfies

(38)
d

dt
V (t) = Mρ ·V (t),

with

Mρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(ρ + 1) 1 0 0
2ρ −2(ρ + 1) 2 0 0
0 3ρ −3(ρ + 1) 3 0 0
. . . . . . . . . . . . . . . . . .

0 0 kρ −k(ρ + 1) k 0
. . . . . . . . . . . . . . . . . .

0 0 dρ −d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ρ = λ/μ. Moreover, the matrix Mρ has d distinct negative eigenvalues and
the largest of them, −κ+

d (ρ), satisfies

(39) 0 < κ+
d (ρ) ≤ κd(ρ)

def.=
(

d∑
k=1

ρk−1

k

)−1

< 1.

Finally, there exists a positive constant K0 such that, for all 1 ≤ k ≤ d and t ≥ 0,

(40) E
(
T k(t)

)≤ K0e
−μκ+

d (ρ)t .

PROOF. Equation (38) can be obtained by taking the expected value of both
sides of the integral version of equations (35), (36) and (37). For the next claim,
since the matrix Mρ is a tridiagonal matrix, it has d distinct real eigenvalues (see,
e.g., Chapter 1 of Fallat and Johnson [12]). If D is the d×d diagonal matrix whose
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kth diagonal component is 1/

√
kρk−1, then

DMρD−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(ρ + 1)
√

2ρ 0 0√
2ρ −2(ρ + 1)

√
6ρ 0 0

0
√

6ρ −3(ρ + 1)
√

12ρ 0 0
. . . . . . . . . . . . . . . . . .

0 0
√

k(k − 1)ρ −k(ρ + 1)
√

k(k + 1)ρ 0
. . . . . . . . . . . . . . . . . .

0 0
√

d(d − 1)ρ −d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a symmetric matrix with the same eigenvalues as Mρ . A straightforward calcu-
lation shows that its associated quadratic form is given by

q(x1, . . . , xd)
def.= −

d−1∑
i=1

(√
kρxk −√(k + 1)xk+1

)2 − x2
1 , (x1, . . . , xd) ∈ R

d,

which implies that all eigenvalues of Mρ are negative. The maximal eigenvalue of
the symmetric matrix can be expressed as

sup
(
q(y) : y = (y1, . . . , yd) ∈R

d,‖y‖ = 1
)
,

with ‖y‖2 = y2
1 + · · · + y2

d ; see, for example, page 176 of Horn and Johnson [14].
Taking the vector x = (x1, . . . , xd) such that

xk = xk−1

√
k − 1

k
ρ, 1 < k ≤ d,

and x1 is chosen so that ‖x‖ = 1, one gets the upper bound (39).
Finally, equation (38) shows that the components of V (·) can be expressed as a

linear combination of the functions (exp(λkμt)), 1 ≤ k ≤ d . Since all eigenvalues
of Mρ are negative, −κ+

d is the largest eigenvalue, relation (40) follows. �

REMARKS. (1) We have not been able to get a closed-form expression for the
actual exponential decay rate κ+

d (ρ) associated to the process (T k(t)). However,
the upper bound κd(ρ) defined in equation (39) gives a lower bound for the decay
rate. In Figure 1, we plot the ration κ̄d(ρ)/κ+

d (ρ) for different values of ρ and d .
(2) Note that if the duplication rate λ is larger than μ, that is, ρ > 1, then

lim
d→+∞κ+

d (ρ) = 0.

Finally, for the case d = 2, we can compare our result on the decay rate of file
system with the decay rate of the process (E(T k(t))).

COROLLARY 1. For d = 2, if (T 1(0), T 2(0)) = (0, r2), we have

E
(
T 1(t)

)= r2

κ+
2 (ρ) − κ−

2 (ρ)

(
e−μκ+

2 (ρ)t − e−μκ−
2 (ρ)t ),

E
(
T 2(t)

)= r2

κ+
2 (ρ) − κ−

2 (ρ)

(
y+e−μκ+

2 (ρ)t − y−e−μκ−
2 (ρ)t ),
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FIG. 1. Accuracy of the upper bound of relation (39): the ratio κd(ρ)/κ+
d (ρ) for various values of

ρ and d .

where

κ±
2 (ρ)

def.= (3 + ρ) ±
√

(3 + ρ)2 − 8

2

and y± def.= −κ±
2 + ρ + 1.

The definitions with ± just indicate that the identities are taken for + and −
separately. Note that the definition of κ+

2 (ρ) is consistent with the definition of
Proposition 5.

PROOF OF COROLLARY 1. The above proposition can be used but the work
has already been done to prove Proposition 4. It is not difficult to show that(

m1(t),m2(t)
)= (E(T 1(t)

)
,E
(
T 2(t)

))
satisfies relation (31) with p(t) = m1(t), that is, so that g(t) = 0 with the notation
of the proof of Proposition 4. One concludes by using relations (33) and (34). �

A bound on the exponential decay rate of the algorithm. The following propo-
sition gives an estimation of the rate of decay of the network.

PROPOSITION 6. If LN(t) is the number of files alive at time t ,

LN(t) = ∑
f ∈FN

1{AN
f (t) 
=∅},
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then there exists a constant K1 > 0 such that, for all t ≥ 0,

lim sup
N→+∞

E

(
LN(t)

N

)
≤ K1e

−μκ+
d (ρ)t ,

where κ+
d (ρ) is the constant defined in Proposition 5.

PROOF. By using the coupling of the last proposition, one gets

E
(
LN(t)

) ≤ ∑
f ∈FN

P
(
BN

f (t) 
= ∅
)

≤ ∑
f ∈FN

E
(
BN

f (t)
)= N∑

i=1

d∑
k=1

1

k
E
(
T N

i,k(t)
)

= N

d∑
k=1

1

k
E
(
T N

1,k(t)
)
.

Theorem 3 gives the convergence of the sequence of processes (T N
1,k(t)) to the

solution of the EDS (35), (36) and (37). It is not difficult to obtain an analogue
of Lemma 1 which guarantees the boundedness of the second moments of the
variables T N

1,k(t), k = 1, . . . , d , which gives the convergence of the first moments.
One has obtained the relation

lim sup
N→+∞

E

(
LN(t)

N

)
≤

d∑
k=1

1

k
E
(
T k(t)

)
,

one concludes with inequality (40). The proposition is proved. �
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