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How About Wearing Two Hats, First
Popper’s and then de Finetti’s?
Elja Arjas

I am grateful to Nozer Singpurwalla for having
brought up so clearly and openly these puzzling, and
partly confusing, foundational issues in reliability the-
ory, and to the Editors for the opportunity to take part
in this discussion.

My comments are concerned mainly with the first
part of the paper. There an important distinction is
made between the concepts of reliability and surviv-
ability, by linking the former to the, in some sense,
physical or objective propensity interpretation of the
probability concept advocated by Popper, and the latter
to the personalistic or subjective probability concept of
de Finetti.

There is a clear need for both types of perceptions:
While the personalistic Bayesian point of view offers a
systematic approach for statistical inference from data,
well anchored in probability calculus, it does not make
direct reference to the “true” states of the considered
physical objects or systems. Such states, or changes in
them, such as the repair of a defective part in a me-
chanical device, are of intrinsic importance in nearly
all problems relating to reliability and risk assessment.

The existence of a certain gap between physical re-
ality and a corresponding statistical modelling frame-
work of reliability problems, even when based on the
more traditional frequentist interpretation of probabili-
ties, has been noted already much earlier. For example,
thirty years ago Bo Bergman wrote in his review pa-
per (Bergman, 1985): “However, some care has to be
taken when this (repair) model is used; we have to dis-
tinguish between statistical minimum repair, for which
the above interpretation (the equality between two fail-
ure rates) is taken as the definition, and physical min-
imum repair, in which case the failed unit is restored
to the exact physical condition as it was just before
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the failure. These two kinds of minimum repair are not
necessarily the same!”

Singpurwalla not only makes a distinction between
the concepts of reliability and survivability; he also
suggests that there would be a single conceptual frame-
work which contains, and combines, objective physi-
cal entities and statistical tools, the latter based on de
Finetti’s personalistic approach to probability. Adopt-
ing this framework, he says, would entail a change in
the current paradigm of reliability theory. This is not a
modest claim.

I believe it is useful to first consider this possibil-
ity from a wider perspective, which is not restricted to
reliability problems. To continue with another quota-
tion, Philip Dawid has written (Dawid, 2004) on the
relationship between the physical reality and our theo-
ries on it as follows: “I regard it as of vital importance
to distinguish, carefully and constantly, between two
very different universes, which I will term “intellec-
tual” and “physical”. Any kind of scientific, mathemat-
ical or logical theory is a purely intellectual construct.
It will typically involve a variety of symbols and con-
cepts, together with rules for manipulating them. The
physical universe, on the other hand, just does its own
thing, entirely ignorant of, and careless of, any of our
intellectual theories. It manifests itself to us by means
of observations”.

This, I think, is a very fitting description of the sit-
uation which we face in statistics in general. In reli-
ability problems, for example, nuclear power plants,
cars or computer codes when in use, “just do their own
thing”, ignorant of our intellectual constructs or the-
ories, whether they be based on Popperian propensi-
ties, on de Finetti’s epistemic probabilities, or some-
thing else. The key link between the two universes, as
stated above in the last sentence, is in being able to
make observations on objects and processes belonging
to the physical universe, and then transporting these
observations into the intellectual one as data. Data con-
sisting of registered values of observables in the phys-
ical world can be smuggled, through a back door, into
the intellectual world, and then treated there in a prob-
abilistic inferential framework as fixed values. What
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comes out as a result, through the front door, are ex-
plicit probabilistic predictions for future observables.

Of particular practical interest are predictive prob-
abilities of the form P(Xn+1 = xn+1, . . . ,Xn+m =
xn+m|X1 = x1, . . . ,Xn = xn), n,m ≥ 1, where {X1 =
x1, . . . ,Xn = xn} are the data observed up to the
present time n, and {Xn+1, . . . ,Xn+m} are future ob-
servable responses of interest. In the context of sur-
vival problems, Singpurwalla uses the term tracking
survivability for the inductive process of monitoring
such conditional probabilities as n takes on larger val-
ues, and the observer is thereby learning from increas-
ing amounts of data. This process is a version of the
more general predictive statistical inference, the ap-
proach originated by Laplace and de Finetti and pro-
pounded, among others, by Geisser (1993). I should
think that predictive inference has particular relevance
in reliability applications: the main interest is in what
is going to happen to the considered system or device
in the future, not whether we can reject some hypoth-
esis concerning an unobservable model parameter. At
a later point in time we are then in a position where
we can see how well a prediction we made matches
with what the physical universe actually happened to
produce.

There are systematic ways in the literature for speci-
fying predictive probabilities in a closed form, with-
out making recourse to standard parametric mod-
els with real valued parameters; examples can be
found in Berliner and Hill (1988), Pitman (1996) and
Spizzichino (2001). I am not aware of that such ap-
proaches would have been widely applied in reliability,
however.

In reliability problems, one faces the additional chal-
lenge that, even if Popper’s idea of the existence of
an objective propensity concept in the physical sense
were accepted and it were used as a model parame-
ter, there is no way in which it, or its strength, could
be measured on individual units. Unlike in the case of
entities such as mass, length, etc., there is no instru-
ment which would provide us with an operational def-
inition of this concept. With such an operationalisation
lacking, Singpurwalla’s solution for establishing a link
to observables, in the case of infinitely exchangeable
sequences, is to use de Finetti’s representation theo-
rem (Theorem 1). Considering the prototype example
of sequential Bernoulli trials, the theorem implies that
probabilities P(X1 = x1, . . . ,Xn = xn), n ≥ 1, can be
expressed as integrals, with respect to some distribu-
tion F(dθ), of the function θ

∑n
1 xi (1− θ)n−∑n

1 xi . Thus,

different coherent people, who would all agree to con-
sider the variables {Xi;1 ≤ i ≤ n} exchangeable with
respect to their personal probabilities, would end up us-
ing the same integrand θ

∑n
1 xi (1−θ)n−∑n

1 xi in the inte-
gral representation of their P(X1 = x1, . . . ,Xn = xn).
Moreover, they would expect the empirical relative
frequencies 1

n

∑n
1 Xi of “success” to converge almost

surely to a limit; this limit could then be taken as the
definition of parameter θ , also called chance. In this
sense, by assuming infinite exchangeability, one can in-
deed behave as if the model parameter θ existed. It is
a matter of semantics, or perhaps taste, whether these
mathematical results would justify calling θ objective.

But Singpurwalla wants more: he wants to establish
another link between the two universes, and now in
the opposite direction, from intellectual to physical. He
writes: “The left-hand side of the theorem is a personal
probability which we shall refer to as an item’s sur-
vivability under its key quantities and the conditions
which characterize its propensity. This makes reliabil-
ity an objective, albeit unobservable, physical quantity,
whereas its survivability is a subjective predictive en-
tity”. Jaynes [(1990), page 22] coined the term mind
projection fallacy for such attempts to transport enti-
ties belonging to the intellectual world to the physi-
cal world. In my view, too, and apparently in contrast
to Singpurwalla’s, θ remains firmly in the intellectual
universe.

Here, however, as a thought experiment, it may be
useful to study what consequences, and possible ad-
vantages, would follow if we, as statisticians, behaved
as if such a mind projection were possible. In fact,
such behaviour, be it conscious or not, appears to be
consistent with practices routinely followed in both the
frequentist and the Bayesian camps of statistical in-
ference when specifying models. This is also neces-
sary, because de Finetti’s theorem, even in the case of
exchangeable sequences, is only a mathematical exis-
tence result, not a practical recipe for constructing a
prior F(dθ).

The standard practice in setting up a statistical model
is to move from parameters to observables, and do this
by specifying a likelihood. This is only possible if the
parameters in question are given some meaningful in-
terpretation relating it to the physical world, at least in
the mind of the person in question. The Bernoulli like-
lihood for a binary outcome is again the prototype of
such reasoning, and then the parameter itself is given
the probability interpretation θ = Pθ(Xi = 1). Adopt-
ing Popper’s idea of θ as a physical propensity param-
eter solves then the problem of such interpretation.
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In standard Bayesian modelling, θ is considered as
a random variable, which means simply that its “true”
value is unknown to the observer, and a (prior) distri-
bution F for θ is understood to be an expression of
his or her uncertainty about this value. Consideration
of θ as a random variable implies that Bernoulli like-
lihood, for a Bayesian, becomes the conditional prob-
ability P(Xi = 1 | θ). But at this point the Bayesian,
too, usually claims to have some understanding of
what θ would represent in the physical world in which
he lives; otherwise quantifying uncertainty would not
make sense. This line of thought has been followed
in Bayesian approaches to reliability theory for a long
time. For example, Natvig and Eide (1987) write: “As-
sume that we have described our present uncertainty on
the reliabilities of the components, at a fixed point of
time, by the moments up till order m of their marginal
distributions”.

The same recipe can be applied more generally,
for defining more involved multivariate or hierarchical
statistical models. Consideration of such multi-level
structures is indeed necessary for all system reliabil-
ity considerations. This process uses sequential con-
ditioning of, and on, additional variables being intro-
duced into the model, and then applying the chain
multiplication rule for deriving joint distributions, as-
suming conditional independence where it seems ap-
propriate. Similar ideas are followed when making use
of the popular framework of graphical models, or the
theory of stochastic processes in modelling of devel-
opments in time; importantly, both these approaches
allow for explicit consideration of causal dependences.

However, such straightforward inclusion of new
variables into the models on several different levels of
hierarchy happens at a certain cost: it becomes increas-
ingly difficult to keep faith in the idea that the new vari-
ables, if their values cannot be measured, would have
an objective existence, let alone correspond to entities
in the physical universe. A relatively simple example
of this are the frailty parameters ξ considered in Sec-
tion 5.4.1 of the paper. Lack of objective existence does
not mean that introducing such variables into statisti-
cal modelling would necessarily be a bad idea, how-
ever. Shared frailties have turned out to be a convenient
way of introducing dependence between recurrent fail-
ure times of the same repairable unit, or between the
life lengths of genetically closely related individuals.
A Google search of frailty models in survival analysis
gave 157.000 hits, showing the enormous popularity of
such ideas in practice.

In the Popper–de Finetti controversy, although
Singpurwalla explicitly states that “propensity is not a
probability”, he nevertheless uses exclusively the rules
of logic and probability calculus in his technical treat-
ment of reliability problems, based on the adopted dic-
tum “everything that is not forbidden is allowed”. This,
in my view, is indeed necessary for any meaningful
systematic treatment for such problems. But it makes
the models technically inseparable from what would
be arrived at by applying the principles and practices
of hierarchical Bayesian modelling. A variant of the
well-known duck test would therefore give the conclu-
sion that, what Singpurwalla is using, and in spite of
his claiming the opposite, is probability.

Somewhat optimistically, Singpurwalla suggests that
“the notions of chance and propensity need to work in
concert with that of personal probability to produce the
framework we need”. If both Popper’s and de Finetti’s
tunes were played together in a concert, I would ex-
pect to hear more dissonances than harmony. But per-
haps Popper’s tune could be played first, and then de
Finetti’s. Likewise, as statisticians, we could follow
Popper in our attempts to set up a reasonably descrip-
tive statistical model in the considered real world con-
text, and then de Finetti, in performing posterior pre-
dictive inference based on that model and the acquired
data. Or, to put it differently, we could first fit on Pop-
per’s hat, not caring much about de Finetti, and then
switch to de Finetti’s hat, forgetting Popper.

There is, admittedly, an element of the end justi-
fies the means mentality in this suggestion of changing
tunes or hats. But the added flexibility gained from ap-
plying different interpretations of probability is useful,
as it plays an important role in our cognitive ability to
create in our mind reasonable representations of phys-
ical world entities. Concrete reliability problems of-
ten involve complex physical structures and processes,
and of causal dependences between them. This requires
elaborate statistical modelling, in which considerations
based on exchangeability alone are not sufficient. Us-
ing probability calculus in the modelling as if Popper’s
concept of physical probability existed, jointly with
epistemic and frequentist interpretations, may then be
the only practical recipe which works.

Lack of space does not allow me to comment here
on the technical details of the material in Section 6
of Singpurwalla’s paper. He ends the paper by writ-
ing: “. . . the algorithm presented here has the mak-
ings of a prototype approach for filtering and control
in the presence of complete and partial observations,



548 E. ARJAS

a topic on which there appears to be a dearth of liter-
ature”. I have not followed closely the research litera-
ture in reliability during the past twenty years, so I can-
not say whether this is indeed true. But I believe there
are papers which are methodologically closely related.
I would like to use this opportunity to provide refer-
ences to two older ones of my own, with co-authors,
Arjas, Haara and Norros (1992) and Arjas and Holm-
berg (1995).
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