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Markov Chains as Models in Statistical
Mechanics
Eugene Seneta

Abstract. The Bernoulli [Novi Commentarii Academiae Scientiarum Im-
perialis Petropolitanae 14 (1769) 3–25]/Laplace [Théorie Analytique des
Probabilités (1812) V. Courcier] urn model and the Ehrenfest and Ehrenfest
[Physikalische Zeitschrift 8 (1907) 311–314] urn model for mixing are in-
stances of simple Markov chain models called random walks. Both can be
used to suggest a probabilistic resolution to the coexistence of irreversibil-
ity and recurrence in Boltzmann’s H-Theorem. Marian von Smoluchowski
[In Sitzungsberichte der Akademie der Wissenschaften. Mathematisch-
Naturwissenschaftliche Klasse (1914) 2381–2405 Hölder] also modelled by
a simple Markov chain, with analogous properties, have fluctuations over
time in the number of particles contained in a small element of volume in a
solution.This paper explores the themes of entropy, recurrence and reversibil-
ity within the framework of such Markov chains.

A branching process with immigration, in this respect like Smoluchowski’s
model, is introduced to accentuate common features of the spectral theory of
all models. This is related to their reversibility, a key issue.

Key words and phrases: Ehrenfest, Smoluchowski, entropy and recurrence,
reversible Markov chain, stochastic matrix, Krawtchouk, Hahn, Charlier,
Meixner polynomials, branching process with immigration.

1. INTRODUCTION

1.1 Structure

In their original formulation, the models with which
we initially deal, the Bernoulli/Laplace model and the
Ehrenfest model, are urn models. These are now com-
monly cast in the form of homogeneous finite Markov
chains, a more general model, but are still studied
through their (tridiagonal, random walk-type) transi-
tion matrices using difference equations. Transition
matrices of finite Markov chains in general are stochas-
tic matrices, which are in turn a class of nonnegative
matrices. The theory of finite Markov chains is gener-
ally accepted as beginning with Markov in 1907, the
year of his dating of the paper published as Markov
(1906).

Markov’s motivation in writing his chain papers was
to show that the two classical theorems of probability
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theory, the weak law of large numbers and the central
limit theorem, could be extended to sums of dependent
random variables. Markov’s methodology works well
for strictly positive transition matrices, or at most for
transition matrices having a strictly positive column.
His (probabilistic) methodology was strongly focussed
on the method of moments in the guise of conditional
and absolute expectations, and double probability gen-
erating functions. The functions are, indeed, closely
linked (Schneider, 1977, Seneta, 1998) to the deter-
minant and hence spectral theory of stochastic matri-
ces, and thus necessarily interact with the positioning
of any zeros in the transition matrix. The underlying
structural matrix properties of nonnegative stochastic
matrices such as irreducibility, periodicity, stationary
(invariant) vector, and asymptotic behavior of powers
which determine the nature of the evolutionary prob-
abilistic behavior, were not, however, clearly in evi-
dence in Markov’s work.

The theory of finite nonnegative matrices was begin-
ning to emerge only contemporaneously with Markov’s
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first papers on Markov chains, with the work of Per-
ron (1907) and Frobenius (1908). The appearance of
the Ehrenfest and Ehrenfest (1907) urn model, in the
context of statistical mechanics, is also of that time.
The eventual connection between the three directions,
Markov, Perron–Frobenius and statistical mechanics is
credited to Von Mises (1931). The analytical treatment
of the long-term stochastic evolution of finite chains
and the Perron–Frobenius theory of nonnegative matri-
ces were not completely synthesized until the paper of
Romanovsky (1936). Hawkins (2013), Section 17.3.2,
gives an extensive background to these statements.

The primary aim of this paper is to illuminate the
statistical mechanics direction, by focussing on several
classical models in the setting of Markov chain formu-
lation. Such a formulation enables addressing classical
issues of statistical mechanics in a unified way.

We begin in Section 2 with historical background
which details how Markov’s work on chains finally
came to the attention of western European mathemati-
cians, not least because of the connection with statisti-
cal mechanics.

Sections3–6 are a technically light historical explo-
ration of the physical features of entropy, recurrence
and reversibility within the unifying framework of sim-
ple Markov chains as models. The explicit spectral
structure of the specific models considered interacts
with their “entropy analogue” behavior.

The necessary elements of Markov chain theory
are deferred to Appendix A. B rounds out biographi-
cal/historical aspects. C describes the evolution of this
paper..

1.2 Motivation

The author’s study of interaction of Markov chains
with classical models of statistical mechanics was
stimulated by the well-known article, with its strong
stochastic process coloration, of Chandrasekhar
(1943), reprinted in the collection of Wax (1954).
Chapter III of Chandrasekhar (1943) focusses on the
recurrence and entropy paradoxes of thermodynamics,
and in particular on the contributions of the physicist
Marian Smoluchowski (1872–1917) of whom Chan-
drasekhar (1943) (pages 88, 89; pages 90, 91 of Wax,
1954) writes:

“The theory of density fluctuations as developed by
Smoluchowski represents one of the most outstanding
achievements of molecular physics. . . . The absence of
references (in the more recent discussions of the laws
of thermodynamics) in particular to Smoluchowski, is
to be deplored since no-one has contributed so much as

Smoluchowski to a real clarification of the fundamental
issues involved.”

Each of the four models studied has a now-familiar
orthogonal polynomial system as its set of right eigen-
vectors corresponding to real distinct eigenvalues.
These polynomial systems are the Krawtchouk, Hahn,
Charlier and Meixner systems, which are orthogonal
with respect to the simplest nonnegative integer-valued
distributions very familiar to the mathematical statisti-
cian, respectively, the binomial, hypergeometric, Pois-
son and negative binomial, which in the four models
occur, pleasingly, as stationary distributions.

The common spectral features go well beyond the
commonality of structure expressed by Perron–
Frobenius-type properties, which relate only to the
dominant positive eigenvalue.

The simple spectral structure of the four models
makes it possible to express powers of the transition
matrix as an explicit spectral decomposition: that is, an
expansion in powers of the eigenvalues. Such expan-
sions were initiated in the setting of statistical physics
by Kac (1947); and in the setting of branching pro-
cesses are the focus of Karlin and McGregor (1966).
Historically, expansions in terms of orthogonal polyno-
mials played a central part in Markov’s (1898) method-
ology, descended from the work on interpolation and
expansion of probability densities of his supervisor
Chebyshev. At least French-language writings of the
work on polynomials by Chebyshev and Markov are
well documented in Szegö (1939).

2. EVOLUTIONARY LINES OF MARKOV CHAIN
MODELS

The best source on Markov’s publications in num-
ber theory and probability has been Markov (1951),
a Russian-language book of about 720 pages. The part
entitled Probability Theory includes reprinting of 7 of
Markov’s papers on Markov chains, including Markov
(1906, 1908, 1911). Sheynin (2004a) contains trans-
lations into English of the first two of these three.
Sapogov (1951) contains commentary on the method-
ology of both Markov (1908) and Markov (1911), es-
pecially on the effect of presence of zero elements
in the stochastic matrices of Markov’s treatment. Sa-
pogov’s commentary is also available in English in
Sheynin (2004b).

Our historical focus here is on the papers of Markov
(1908, 1911).

Markov’s (1898, 1910) papers appeared in French.
The French language was standard for the times in the
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hope of international attention to Russian scientific en-
deavour period. The first paper was in a St. Petersburg
Academy journal. The second, Markoff (1910), was in
the prestigious Acta Mathematica, but likewise seems
to have failed to attract attention. Markov (1910) is
encompassed by two earlier Russian-language articles,
Markov (1907, 1908).

In correspondence in late 1910 with the St. Peters-
burg statistician Chuprov, Markov was made aware
of earlier work on special kinds of Markov chains
by Ernst Heinrich Bruns, later called “Markov–Bruns
chains” by Romanovsky (1949). Bruns’s (1906), Lec-
ture 18, methodology like Markov’s is direct, that is:
not matrix theory focussed. Bruns (1906) claimed that
his book arose out of his lectures over the past 25 years.
On becoming aware of Bruns’s work, Markov (1911)
immediately produced a paper on “Markov–Bruns”
chains, presented to the St. Petersburg Academy of Sci-
ence in January, 1911. Markov’s paper begins by cit-
ing Bruns (1906), and saying that Bruns studies “no-
table cases of dependent trials which are not encom-
passed by the concept of a chain of trials as established
by us, to which, however, one may successfully apply
the method of mathematical expectation.” The paper
is again concerned with central limit theory, and uses
generating functions. What is entailed is dependence
of each outcome on the results of the previous two out-
comes. By overlapping successive pairs of outcomes,
and thus expanding the state space, an ordinary Markov
chain, with zero entries in the transiition matrix, ob-
tains.

A translation into German by Heinrich Liebmann
of the second edition (of 1908) of Markov’s text-
book, Ischislenie Veroiatnostei (The Calculus of Prob-
abilities) appeared as Markoff (1912). The translated
book contained additionally, as three appendices, trans-
lations into German of Markoff (1898) and Markov
(1908, 1911).

There is a Preface by Markov dated December,
1911. In relation to the 1908 Russian second edi-
tion of the book, he says that he has broadened,
over the first edition, without attempting to produce
a complete version, his bibliography on probability
theory. This list of books, on page 17, consists of
12 items, of which the most recent is Bruns (1906).
The 10 others by year (readily identified, so we
do not include most in our own citations list) are:
Laplace (1812), Poisson (1843), Lacroix (1816), Buni-
akovsky (1846), Bertrand (1889), Poincaré (1896),
Kries (1886), Stumpf (1892), Goldschmidt (1897), and

Czuber (1899). The twelfth item listed is undated: Czu-
ber’s entry,Wahrscheinlichkeitsrechnung, in the Ger-
man Mathematical Encyclopedia. Of the 3 newly added
appendices, Markov says only that these are exam-
ples of many to which the remarkable method of
Bienaymé–Tschebyscheff (Chebyshev) is applicable
in connection with mathematical expectation. Markov
concludes that the aim of the work is not the derivation
of approximative formulae for the calculation of proba-
bilities, but to give rigorous proofs for the fundamental
limit theorems of probability theory, and to provide the
capability for extensive generalization.

The translator, Heinrich Liebmann, praises Markov
as having presented his aims clearly; and moreover
having related his work to the detailed study of prob-
ability by Czuber, and to the applied mathematics of
Bruns. It is thus not unlikely that Markov was encour-
aged to include in the material for translation the item
Markov (1911) for its German connection. Liebmann
also recalls, as a companion item to Markoff (1912),
the translation of 1896 into German as Differenzen-
rechnung Markov’s book on difference calculus.

Liebmann’s translation is clearly aimed at a German
audience, to accentuate German-language eminence in
probability. And the book was cited even internation-
ally, in probabilistic monographs, as a matter of course.
But the book is distant in nature from using Markov
chains to model physical processes; and was hardly
likely, in any case, to catch the deeper attention, with
World War I and its immediate aftermath imminent, of
a French, or even German, readership. [Notice that one
of the appendices, Markov (1898), had originally been
published in French.]

Of the three appendices to Markoff (1912), Markov
(1898) is a showcase for Markov’s methodology before
its application to chains. Markov’s methodology for
chains is showcased in Markov (1908), which comes
closest to the subsequent theory of nonnegative matri-
ces. Von Mises (1931), still in a German context, rec-
ognized the significance of this appendix to both this
theory and to models in statistical mechanics.

Von Mises cites Markoff (1912) in a footnote (on
page 62) to his 6. Markoffsche Ketten (Markov Chains),
among the “Aufgaben zum IV. Abschnitt.” In Sec-
tions 3 to 5 inclusive of Section 16 of the Abschnitt
mentioned, von Mises develops the ergodic theory un-
der Perron–Frobenius structural assumptions on the
stochastic matrix P . His main theorem on ergodic-
ity assumes an irreducible (“unzerlegbar”) matrix P .
Thus, Von Mises (1931) studies Markov chains primar-
ily through the structure of powers of their transition
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matrices, that is, from the then-new standpoint of non-
negative matrix theory.

Hawkins (2013), page 644, in his Section 17.3
Markov Chains 1908–1936 writes: “. . . von Mises was
aware that the mathematics of his thought experi-
ment (urn models for phenomena in statistical physics)
was ‘closely connected’ to the ‘problem of Markov
chains’. . . ,” and could be used to justify certain as-
sumptions in statistical physics. Von Mises (1931) does
not actually formulate specific models which he studies
in statistical physics, as Markov chains.

The link between Markov’s (Russian) pre-World
War I work on chains, and that of the French School
of Poincaré founded on the concept of card-shuffling,
came through Georg Pólya and the French-trained
Sergei N. Bernstein, at the famous 1928 Bologna In-
ternational Congress of Mathematicians, where chain
dependence and the ergodic principle were hot top-
ics. Bru (2003), page 145, writes: “The motivations
of Markov were sufficiently different from those of
Poincaré and Borel. . . It was not the barrier of lan-
guage which prevented the French (and others). . . his
works had been presented in a widely read journal in
French in 1910, and in German in 1912.” The paper
of Hadamard (1928) presented at the Conference, and
written under the impetus of statistical physics, par-
tially provided by Poincaré and Hostinsky, was later
recognized as anticipating the method of Wolfgang
Doeblin, Fréchet’s student in the latter 1930s, on clas-
sifying chain structure focussed on sample paths.

The link between the Russian and French directions
led to the booklet of Hostinsky (1931), with its ex-
tensive multinational bibliography. So the works of
Hostinsky (1931) and of Von Mises (1931) mark the
initial coalescence of all three directions, Markov’s
direct approach to classical probability limit laws in
the presence of statistical dependence, the Perron–
Frobenius matrix-theoretic approach to analysis, and
the approach focussed on evolutionary behavior of
chains as statistical models. The Markov chain con-
tribution of Von Mises (1931), too, was soon appre-
ciated by the French. Although its author appears not
to have been at the Bologna Conference, in Von Mises
(1932), pages 175–190, he presents (in French publi-
cation) his “statistical theory of successively chained
events” within the context of statistical physics, using
“certain results of algebra and of analysis.” Further,
Hadamard and Fréchet (1933) then praise von Mises
fulsomely, in French, in von Mises’s own German jour-
nal.

Fréchet’s (1938) well-known monograph, with
World War II imminent, marked the end of an era for
finite Markov chain theory. It encompassed all direc-
tions, and writings in the interim, including those of
the tragic Wolfgang Doeblin (1915–1940) on discrete
chains (see Seneta, 2016).

For the contact dating from just after World War I,
between Maurice Fréchet and the Czech mathemati-
cian Bohuslav Hostinsky (then in Brno), see Havlová,
Mazliak and Šišma (2005). For contact between Doe-
blin and Hostinsky, see Mazliak (2007).

Hawkins (2013) has a Section, 17.3.2.2, on
Romanovsky’s role, culminating with Romanovsky
(1936). We amplify on this to connect with our ac-
count. Vsevolod Ivanovich Romanovsky (1879–1954)
was born in Verny (later Alma Ata, and now Almaty)
in Kazakhstan. He received his secondary education in
an academic high school (“Reelschule”) in Tashkent,
where he received an excellent grounding in languages,
graduating in 1900. In 1906, he graduated from the
St. Petersburg University and remained there to pre-
pare for an academic career. After passing his Mas-
ter’s examinations in 1908, he returned to Tashkent as
a teacher of mathematics and physics at his old high
school. From 1911 to 1915, he was Privat-Docent and
then Professor at Warsaw University. At that time, part
of Poland was still in the Russian Empire. In 1912, af-
ter he had defended his Master’s dissertation On partial
differential equations, the degree of Master of Mathe-
matics was conferred on him by St. Petersburg Uni-
versity. In 1916, Romanovsky completed his doctoral
thesis, but its defence under wartime conditions proved
impossible. Warsaw University, as a Russian institu-
tion, was closed down, and for a year or so he worked at
Don University at Rostov-on-the-Don, and returned to
Tashkent in 1917. From its beginning stages in 1918 till
his death, he was heavily involved in teaching, research
and administration at what became Tashkent State Uni-
versity (earlier called Central Asian University). In the
early period of his research, he worked on differential
equations, algebraic equations and (as expected from
his student days in St. Petersburg), on number theory,
Markov’s other great sphere of interest and influence.

Romanovsky’s research activities of the 1920s were
largely devoted to mathematical statistics. He managed
to keep in touch with, and publish in, the important
western European statistical and mathematical jour-
nals, most notably Biometrika, where a number of his
papers were devoted to polynomial expansions of prob-
ability densities corresponding to Pearson’s curves.
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His name is sometimes attached to one such poly-
nomial system. Romanovsky’s most important scien-
tific work was on finite Markov chains, but this be-
gan only in 1928. His first publication on the topic,
Romanovsky (1929), was in French, and it is from
this point that Hawkins (2013) picks up his story in
Section 17.3.2.2. It is not clear what motivated Ro-
manovsky, although his good contacts with western
European as well as Soviet scientists, and their possi-
ble connection with the Bologna Conference of 1928,
may have encouraged him to give Markov’s work its
due. His publications in the Parisian Comptes Rendus
in 1930s brought him into contact in particular with the
Czechoslovak group of mathematicians working on fi-
nite Markov chains which was forming round Hostin-
sky (see Hostinsky, 1931). Hawkins (2013) writes that
eventually Romanovsky (1936) “devoted 33 of the 105
pages of his memoir to Frobenius’ theory and its ap-
plication to stochastic matrices, thereby exposing his
readers to all of Frobenius’ significant results and mak-
ing clear their relevance to the theory of stochastic ma-
trices and Markov chains.” Romanovsky had not been
Markov’s research student as is sometimes thought.
Sarymsakov (1955) writes that Romanovsky perfected
and adopted methods of the Chebyshev school for solv-
ing problems in mathematical statistics, and that this
“can partly be explained by his. . . having attended the
course in probability theory read by the celebrated
Markov.”

For more detail, the reader may wish to consult
Seneta (2006), Section 5; Seneta (2009), Section 9; and
the obituary, Sarymsakov (1955), of Romanovsky by
his star student in Markov chain theory and applica-
tions, Sarymsakov (1915–1995). Sarymsakov was born
in the same year as Doeblin, and was familiar with
Doeblin’s work on Markov chains, arising from contact
between Doeblin and Kolmogorov (Doeblin, 2016).

3. THE BERNOULLI/LAPLACE AND THE
EHRENFEST MODELS

These two-urn models for mixing when expressed as
Markov chains have finite irreducible transition matri-
ces which have zero entries outside of the three leading
diagonals. They are examples of random walks with
reflecting barriers. Historically the random walk struc-
ture, including our two irreducible special cases, has
been, and is still, treated using difference equations.

All the eigenvalues of irreducible random walk tran-
sition matrices are real since their transition probabili-
ties satisfy (25).

(a) The Bernoulli (1769)/Laplace (1812) model. This
is a two-urn model. Label the Urns A and B. Each urn
has N balls, so total number of balls is 2N . The totality
of 2N balls consists of N white, and N black.

An interchange consists of selecting a ball at random
from Urn A, and a ball at random from Urn B, and
exchanging them.

Let Xn be the number of black balls in Urn A after n

interchanges.
Then the process {Xn} is a finite Markov chain with

irreducible transition matrix whose tridiagonal entries
are given by

pi,i−1 =
(

i

N

)2
, pi,i+1 =

(
N − i

N

)2
,

pi,i = 2
i

N

(
N − i

N

)
, i = 0,1, . . . ,N.

The Markov chain {Xn}, n = 0,1, . . . has station-
ary/limiting distribution πT = {π0, π1, . . . , πN } given
by

πi =
(N

i

)( N
N−i

)
(2N

N

) .

This is the hypergeometric distribution, as one would
expect from “good mixing.” The condition (25) is sat-
isfied, so that in its stationary regime, the Markov chain
is reversible.

For the Bernoulli/Laplace model, the complete set of
eigenvalues is

λn = 1 − n(2N + 1 − n)

N2 , n = 0,1, . . . ,N

and the entries of the corresponding right eigenvec-
tor are the nth Hahn polynomial evaluated at x =
0,1, . . . ,N . These polynomials (Karlin and McGre-
gor, 1961) are orthogonal with respect to the hyper-
geometric distribution. The spectral results may be
found in broader context in Seneta (2001a) and ear-
lier in Diaconis and Shahshahani (1987), and Donnelly,
Lloyd and Sudbury (1994). An early partial investiga-
tion of eigenvalue structure is due to Hostinsky (1939).

(b) Ehrenfest (1907) model. Also a two-urn model,
Urns A and B. Total number of balls is N . All N balls
are black, and labeled 1 to N .

An interchange consists of selecting a number at ran-
dom from the set {1,2, . . . ,N}, finding the ball with
this number and placing it in the other urn.

Let Xn be the number of (black) balls in Urn A after
n interchanges.

pi,i−1 =
(

i

N

)
,
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pi,i+1 =
(

N − i

N

)
, i = 0,1, . . . ,N.

The Markov chain {Xn}, n = 0,1, . . . , has station-
ary/limiting distribution πT = {π0, π1, . . . , πN } given
by

(1) πi =
(
N

i

)(
1

2

)N

.

This is the symmetric binomial distribution. The con-
dition (25) is satisfied, so that in its stationary regime,
the Markov chain is reversible.

For the Ehrenfest model, the complete set of eigen-
values is

λn = 1 − 2n

N
, n = 0,1, . . . ,N

and the corresponding right eigenvector is the nth
Krawtchouk (Kravchuk) polynomial. These polynomi-
als are orthogonal with respect to the symmetric bino-
mial distribution. These spectral results are due to Kac
(1947) in a classic paper, although he does not recog-
nize that the polynomials are the Krawtchouk polyno-
mials.

The Bernoulli/Laplace urn model had already been
investigated by Daniel Bernoulli (1769) during his stay
in St. Petersburg, and published in the journal of the
Russian Imperial Academy. He obtained, in particular,
the relation (which we express in modern notation)

E

(
Xk − N

2

)
=

(
1 − 2

N

)k

E

(
X0 − N

2

)
,

and the diffusion approximation (leading to “Newton’s
law of cooling”) in the special case where X0 = N .
The very same two-urn model is treated in the cele-
brated treatise of Laplace (1812), pages 287ff., eventu-
ally with the same diffusion approximation, within his
Chapitre III which begins on page 275. This is where
Markov (1915) found it, after independently consider-
ing in 1912 a slightly more general model where the
Urns A and B are permitted to contain different num-
bers of balls.

It is not surprising that Markov does not mention
Daniel Bernoulli, since Laplace (1812) had a tendency
not to cite (see Todhunter, 1865, pages 488–494) al-
though he mentions “les Bernoullis.” Bernstein (1934),
pages 127–130, in the second edition of his book, takes
up the model in Markov’s version and Markov’s dif-
ference equation treatment, without mentioning any of
Bernoulli, Laplace, or even Markov, presumably be-
cause he is writing a “textbook.” (The pagination of
the material is the same in the celebrated fourth edition
of 1946 of Bernstein’s book.)

4. STATISTICAL MECHANICS

Gases were to be viewed as aggregates of particles
undergoing movement at different velocities, and col-
lisions between the particles were to accord with the
principles of Newtonian mechanics. Hence, the term
Statistical Mechanics.

In classical thermodynamics, the process of heat ex-
change between two isolated bodies at initially unequal
temperatures is irreversible: the second law of thermo-
dynamics says entropy is nondecreasing. And Boltz-
mann’s H-Theorem asserts this. However, its derivation
is based on classical kinetic considerations (of Newto-
nian mechanics), where essentially collisions between
particles are reversible. In this kind of situation, any
mechanical system constrained to move in a finite vol-
ume with fixed total energy must return to any speci-
fied initial configuration. Thus, “recurrence” must oc-
cur; and entropy defined in such a system cannot al-
ways increase with time, but must eventually decrease
in order to return to its initial value.

Thus, one paradox was the apparent conflict in
Boltzmann’s theory between irreversibility (as mani-
fested by increasing entropy) and recurrence of states
as expected from the assumptions of Newtonian me-
chanics.

The Ehrenfest urn model (Ehrenfest and Ehrenfest,
1907) was created in response to such paradoxes which
appeared in Boltzmann’s (≈1872) theory. Parentheti-
cally, on the page where the Ehrenfest article ends, one
by von Mises (on an unrelated topic) begins, foreshad-
owing the role von Mises was to play in unifying sta-
tistical mechanics models with Markov chains.

On an elementary level with which the Ehrenfest
model has come to be associated, if we regard the two
urns as symbolizing two bodies, and the number of
white balls in each as symbolizing their temperatures,
we have a simple model for heat exchange between two
bodies at unequal temperatures. The model represents
the heat exchange as a random process, rather than an
orderly one as in classical thermodynamics, and inso-
far as movement of particles is concerned, as a kinetic
process.

It can be used to explain the apparent contradiction
between irreversibility and recurrence as follows. De-
noting by μi the mean recurrence time of state i, and
using (24) and (1),

μi = 1(N
i

)
(1

2)N
.

If N = 20,000, and i = 0,μ0 = 220,000 time units. If
the time units are seconds, this is approximately 106000
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years. However, if i ≈ N/2,μN/2 ≈ 175 time units. So
if one starts in a state with a long mean recurrence
time, one will observe an essentially irreversible evo-
lutionary process (this observation is due to Smolu-
chowski, although he used a different version of mean
recurrence time) and one therefore has vindication of
Boltzmann’s assertion that “Poincaré Cycles” are so
long compared to time intervals involved in ordinary
experiences, that predictions based on classical ther-
modynamics are fully to be trusted.

The other aspect is entropy. The Ehrenfests chose
as an analogue of the negative entropy of Boltzmann
(which is supposed to be decreasing with time) the
quantity:

(2) 2|Xn − N/2|, n = 0,1,2, . . . .

This quantity is the absolute value of the difference in
the numbers of balls in the two urns. It “jumps” by
increments of 2 with increasing n, and does not have
the same smooth behavior in the vicinity of N/2 as
2(Xn−N/2), which however will take negative as well
as positive values.

In an important follow-up article which is surpris-
ingly little-mentioned in the literature, Kohlrausch and
Schrödinger (1926) focus on 2(Xn − N/2), n ≥ 0, to
put the analysis of the Ehrenfest model on a proper
probabilistic footing using difference equation tech-
niques.

Additionally, they report (in their Sections 1 and 3)
a simulation study with 5000 successive drawings,
when N = 100, and X0 = 100. By drawing no. 200,
the plot of the quantity 2(Xn − N/2) against draw-
ing number oscillates closely about 0. In Section 3,
they use the data (from the last 4800 drawings) to plot
− log |E(Xn −N/2)|, and − log of absolute sample av-
erages of Xn − N/2 at each of n = 0,1,2, . . . ,9 for
each of the starting values |X0 −N/2| = 5,10,15. The
averages are obtained from the number of available
realizations for the starting value available within the
data, respectively, 453,106,10. The agreement is gen-
erally very good, almost perfect for the starting value
|X0 − N/2| = 5 at n = 0,1,2,3,4. This is due to the
fact that the sample size 435 is large, so agreement of
the averages with E|Xn − N/2| will be good, and be-
cause for n = 0,1,2,3,4 (Xn − N/2) does not change
sign on account of the random walk structure of transi-
tion probabilities, so that |E(Xn − N/2)| and E|Xn −
N/2| coincide. Near-coincidence of |E(Xn − N/2)|
and E|Xn − N/2| at n = 0,1,2, . . . ,9 for each of the
fixed starting values may be an attempt by the authors

to justify 2|E(Xn −N/2)|, an analytically tractable de-
terministic function of n as an appropriate analogue of
the negative entropy (Boltzmann’s H-Kurve), by argu-
ing that it is essentially equivalent to E|Xn − N/2|,
which is obtained by taking expectation of (2). In fact,
more generally, |E(Xn −N/2)| ≤ E|Xn −N/2| by the
triangle inequality.

Now, for both the Ehrenfest and the Bernoulli/
Laplace models, it is easily shown, by first calculating
conditional expectation E(Xn+1|Xn) from the transi-
tion matrix, that

E

(
Xn+1 − N

2

)
=

(
1 − 2

N

)
E

(
Xn − N

2

)

reflecting (23). So

(3) 2
∣∣∣∣E

(
Xn − N

2

)∣∣∣∣
is a deterministic function which decreases as n in-
creases providing E(X0) �= N/2, since

E

(
Xk − N

2

)
=

(
1 − 2

N

)k

E

(
X0 − N

2

)
.

The quantity (3) is reflected in all four Markov chain
models with which we are concerned, and we take it as
our analogue of negative entropy, motivated by our dis-
cussion above of Kohlrausch and Schrödinger (1926).

A referee is ambivalent of this particular use of ex-
pectations, since it reflects an inherent randomness in
modelling, and writes: “. . . our understanding of the
second law is quite insensitive to whether the under-
lying dynamics is stochastic or deterministic. . . . The
probabilities and the corresponding expectations are
indeed relevant to derivations of the second law, but
only as a tool for establishing the typical behavior
of individual systems via the law of large numbers.”
Our attempt to accommodate this reasoning is to con-
sider a “universe” consisting of a large number of
replications {X(r)

n }, r ≥ 1 of the Markov chain {Xn},
each starting with the same initial value. Then at any
fixed time point, n, from the law of large numbers,
limn→∞

∑R
r=1 X

(r)
n /R = E(Xn), so (3) at any fixed

time n reflects the average entropy state of the “uni-
verse” at time n.

A physically desirable feature is that in the stationary
(i.e., probabilistically stable) state, when the entropy
remains at zero, the kinetic model should be (proba-
bilistically) reversible, and we have noted this feature
in both the Bernoulli–Laplace and Ehrenfest models.

So, transparently, the Bernoulli–Laplace model
could have been used also to resolve by analogy the
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paradoxes in statistical mechanics and indeed has the
more desirable feature of the Markov chain having the
stationary distribution πT as the limiting distribution
as n → ∞, since it is aperiodic. But in 1907 such a
context was unlikely to be perceived; hence, the Ehren-
fest model.

To return to the concept of reversibility, for irre-
ducible finite Markov chains the connection with re-
versibility in statistical mechanics is simultaneously
due to Kolmogorov (Kolmogoroff, 1935) and Hostin-
sky and Potoček (1935). Kolmogorov cites on page 155
as a specific example a paper of Schrödinger of 1931,
titles his Section 4 Die Umkehrung der Naturgesetze
(The reversal of natural laws), and gives a random walk
example. He also cites Von Mises (1931), but in con-
nection with the structure of transition matrices, rather
than in connection with models of a system moving
from state to state. Clearly excited by this idea of re-
versibility, perhaps partly by the distinction between a
reverse Markov chain, and one that is reversible, Kol-
mogorov published a paper in the same journal the fol-
lowing year (Kolmogoroff, 1936) with the title now
being Zur Umkehrbarkeit der statistischen Naturge-
setze (The reversibility of statistical laws). In their trib-
ute to the then-recently deceased Kolmogorov (1903–
1987), Dobrushin, Sukhov and Frits (1988) explore
Kolmogorov’s legacy in this respect, both in stochastic
process theory and in statistical mechanics. The idea of
reversibility of Markov chains was, however, already
briefly present in a paper of Markov (pages 171–186
of the same year, source and volume as Markov, 1911);
and was also explored in the early papers of Bernstein,
and Onicescu and Mihoc. A listing of such papers is
given in Fréchet (1938).

We now pass to a model which receives much atten-
tion in Chandresekhar (1943). It has a similar wealth
of features as the two above, but needs to be placed in
a Markov chain modelling context to reveal this.

5. A BRANCHING PROCESS WITH IMMIGRATION

Let Xn,n = 0,1,2, . . . , denote the number of indi-
viduals at time n, where movement from time n to time
n + 1 is defined by

(4) Xn+1 = Z
(n+1)
1 + Z

(n+1)
2 + · · · + Z

(n+1)
Xn

+ In+1.

Here, Z(n+1)
j is the number of offspring of the j th indi-

vidual existing at time n, In+1 is the number of immi-
grants coming into the population to supplement these
offspring in forming the totality of the number of indi-
viduals Xn+1 at time n + 1.

All the random variables Z
(k)
j , Ik, j, k ≥ 1 are as-

sumed independent. All the Z
(k)
j ’s are assumed to

have the same probability distribution {pj }, j ≥ 0
with probability generating function (pgf) f (s) =∑

j pj s
j ,0 ≤ s ≤ 1; and all the Ik’s are assumed to

have the same probability distribution {bj }, j ≥ 0 and
pgf b(s) = ∑

j bj s
j ,0 ≤ s ≤ 1.

The process {Xn}, n ≥ 0, with X0 having some ini-
tial distribution, is clearly a Markov chain on the
countably infinite state space S = {0,1,2, . . .}, and if
Hn(s) = ∑∞

j=0 Pr(Xn = j)sj , from (4)

(5) Hn+1(s) = b(s)Hn

(
f (s)

)
, 0 ≤ s ≤ 1.

If the offspring mean m = ∑∞
j=0 jpj < 1, and if the

immigration mean λ = ∑∞
j=0 jbj < ∞, a balance is set

up between immigration and the tendency to extinction
of the branching process without immigration. There
is an approach to a limiting/stationary distribution as
n → ∞ whose pgf is H(s), that is, Hn(s) → H(s).
Thus, there is a strictly stationary (actually unique)
regime for the process, with the pgf of the stationary
Xn satisfying

(6) H(s) = b(s)H
(
f (s)

)
, 0 ≤ s ≤ 1.

Finally, from (4), using E(Xn+1|Xn),

(7) E(Xn+1) = mE(Xn) + λ,

so that, if μ denotes the mean of the limiting/stationary
distribution, μ = λ/(1 − m), substituting for λ in (7)
gives

E(Xn+1 − μ) = mE(Xn − μ),

again reflecting (23).

5.1 Marian Smoluchowski’s (1914) Model

Smoluchowski (von Smoluchowski, 1914) considers
a simple model for the fluctuation in the number of par-
ticles contained in a geometrically well-defined small
element of volume, v, in a much larger volume of so-
lution containing particles exhibiting random motion.
Observations Xn,n ≥ 1 are made at points of time at
equal intervals, τ , apart.

His model is a special case of a branching process
with immigration if we take the intervals to be of unit
length, the offspring distribution is Bernoulli(P ), so
that each individual replaces itself or “dies” and m =
1 − P ; and the immigration distribution is Poisson(λ)
so that

f (s) = P + (1 − P)s, b(s) = exp
{
λ(s − 1)

}
.
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The transition probabilities of the Markov chain
{Xn}, n ≥ 0, are in this case clearly given, using (4)
and the argument for the convolution of a binomial and
a Poisson distribution, by

Pr(Xn+1 = j |Xn = i)

= pi,j(8)

= e−λ
min(i,j)∑

k=0

(
i

k

)
(1 − P)kP i−k λj−k

(j − k)! ,

and putting r = i − k:

Pr(Xn+1 = j |Xn = i)

= e−λ
r=max(0,i−j)∑

r=i

(
i

r

)
(9)

· P r(1 − P)i−r λj−i+r

(j − i + r)! .
If we take

(10) H(s) = exp
{
μ(s − 1)

}
,

where μ = λ/P , it is readily seen that (6) is satis-
fied so the (unique) stationary distribution of {Xn} is
Poisson(μ).

Moreover, from (7),

(11) E(Xn+1 − μ) = (1 − P)E(Xn − μ).

Thus, the decreasing negative “entropy” feature is
common to all three models: Bernoulli–Laplace,
Ehrenfest and Smoluchowski.

Further, the Smoluchowski model’s transition ma-
trix given by (9) and stationary distribution given by
Pr(Xn = i) = πi = e−μμi/i! satisfy (25), so when in
a stationary regime this Markov chain is reversible. So
another common feature of each of the three models is
reversibility in their stationary regime.

The idea of a transition probability, a fundamental
idea in Markov chain modelling, is present already in
Smoluchowski (1914), where the expression for it on
the right of our (9) occurs as equation (18), page 2392.
Von Mises (1931) gives an account of Smoluchowski’s
theory, but makes no connection with Markov chains.

Smoluchowski (von Smoluchowski, 1914) did not
use pgf’s, nor did any of Fürth (1918), Von Mises
(1931) or Chandrasekhar (1943) in their accounts of
the same work. There was no need, because his model
is one of the few cases of the general branching process
with immigration where simple forms of expression are
available.

We will address the question of spectral structure
shortly, but now pass to a remarkable additional new
aspect of Smoluchowski’s (1914) model, of inference
for a stochastic process.

5.2 Statistical Inference for Branching Processes

In Smoluchowski’s theory, the number P , called the
probability after-effect, is the probability that a particle
somewhere inside v will have emerged from v during
time τ . The exact value of P = (1 − m) (as also that
of λ) depends on the precise circumstances of the prob-
lem. An explicit expression for it, in terms of the vari-
ous physical parameters, is obtained by Smoluchowski
(1914) when the motions are governed by the laws of
Brownian movement.

On the other hand, P can be estimated statistically
from observation of a trajectory of {Xn}, when the sys-
tem is in equilibrium (that is when the Markov chain
is in its stationary regime) and equilibrium is Smolu-
chowski’s context.

A comparison of the predictions of the theory of col-
loid statistics with the data observed is therefore made
possible, and was in fact carried out on data of Th.
Svedberg by Smoluchowski himself (see Sredniawa,
1992 for an account of the collaboration). The strik-
ing advance on earlier fluctuation theory is the intro-
duction of the probability after-effect (“Wahrschein-
lichkeitsnachwirkung”) P , which clearly incorporates
a Markovian probabilistic structure of the assumed
model, as well as being of great significance in physi-
cal contexts.

As regards the statistical estimation procedure, the
underlying equation [since stationarity of regime is be-
ing assumed and the stationary distribution is
Poisson(μ)] is the elegant expression:

(12) E
(
(Xn+1 − Xn)

2) = 2μP,

where μ = λ/P . Equation (12) is equation (23) of
Smoluchowski (von Smoluchowski, 1914), page 2304.

The left-hand side of (12) was estimated by Smolu-
chowski using observations X1,X2, . . . ,XN+1 by

N∑
i=1

(Xi+1 − Xi)
2/N,

and μ, which is the variance as well as the mean of the
stationary Poisson(μ) distribution, by

μ̂ =
N∑

i=1

(Xi − X̄)2/N,

where X̄ = ∑N
i=1 Xi/N . Thus,

P̂ =
∑N

i=1(Xi+1 − Xi)
2

2
∑N

i=1(Xi − X̄)2
.



408 E. SENETA

Verifications of the theory as reported by Chan-
drasekhar (1943), specifically in relation to data of
Westgren, begin by first calculating the exact values of
P and μ, using physical constants and colloid theory.

Then μ is used to give expected frequencies using the
Poisson(μ) distribution, and the expected frequencies
are compared with observed frequencies. This agree-
ment appears very good.

Then the value of P is compared with P̂ from statis-
tical estimation using observations at times nτ0, n ≥ 1,
where τ0 is the actual time gap initially used between
observations. Again the agreement looks to be very
good.

An asymptotic theory of estimation for subcritical
branching processes with immigration was initiated by
Heyde and Seneta (1972).

However, clearly what is actually needed is a large
sample test of the null hypothesis that an observed non-
negative data sequence comes from

1. A branching process with immigration, in stationary
regime;

2. More narrowly,a Bernoulli–Poisson branching pro-
cess with immigration.

Such tests were finally developed, respectively for
1 and 2, by Mills and Seneta (1989, 1991) as ana-
logues of Quenouille’s test in times series analysis,
using partial sample autocorrelations. The Bernoulli–
Poisson null-hypothesis (i.e., Smoluchowski’s model)
was found to give a striking simplification of the gen-
eral case, with sample partial autocorrelations at lag
k ≥ 2 asymptotically independent and Gaussian, as for
classical time series models.

6. BRANCHING PROCESS SPECTRAL THEORY

For the branching process with immigration in gen-
eral, we would like to prove

(13)
∞∑

j=0

pijpr(j) = mrpr(i), i = 0,1,2, . . . ,

where m,0 < m < 1, is the mean of the offspring dis-
tribution, and pr(i) is the r th orthogonal polynomial,
in i, i = 0,1,2, . . . , with the polynomial system being
orthogonal with respect to the stationary distribution on
{0,1,2, . . .} of the process {Xn}. We proceed by form-
ing the generating function

(14) G(i,w) =
∞∑

r=0

K(r)pr(i)w
r

for a sequence K(r), r = 0,1,2 . . . of positive con-
stants. Then (13) becomes

(15)
∞∑

j=0

pijG(j,w) = G(i,mw).

6.1 The Smoluchowski Model

From (10), the stationary distribution is Poisson(μ).
The Charlier polynomials are known to be orthogo-

nal with respect to the Poisson(μ) distribution, where
the r th Charlier polynomial evaluated at j = 0,1,2, . . .

is given by

pr(j) = μr/2(r!)−1/2
r∑

ν=0

(−1)r−ν

(
r

ν

)
ν!μ−ν

(
j

ν

)
,

and for small |w| (Szegö, 1939, page 35)

G(j,w) =
∞∑

r=0

μ−r/2(r!)−1/2pr(j)wr(16)

= e−w(
1 + μ−1w

)j
, j = 0,1,2 . . . .(17)

Then from the transition probabilities pij as given
by (8):

∞∑
j=0

pijG(j,w)

= e−λe−w
∞∑

j=0

(min(i,j)∑
k=0

(
i

k

)(
m

(
1 + μ−1w

))k(18)

· (1 − m)i−k {(1 + μ−1w)λ}j−k

(j − k)!
)
.

Now, the inner summation is the coefficient of zj in the
product(

1 − m + m
(
1 + μ−1w

)
z
)i

e(1+μ−1w)λz,

so putting z = 1, and invoking the outer summation
(over j ) in (18) we obtain, since μ = λ/(1 − m), fi-
nally,

e−mw(
1 + mμ−1w

)i = G(i,mw),

which establishes (15), and hence (13).
Hence, mr, r = 0,1,2, . . . is the r th eigenvalue of

the infinite transition matrix, and the column vector
pr = {pr(j), j = 0,1,2, . . .}, of values of the r th Char-
lier polynomial is the corresponding right eigenvector.

We have already shown that the transition matrix sat-
isfies the reversibility condition, so the Smoluchowski
model, an infinite Markov chain, parallels all the prop-
erties possessed by the two finite chain models, and can
be used in the same way to explain physical paradoxes.
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6.2 The Negative Binomial Model

A remaining familiar probability distribution, also
on all the nonnegative integers, is the negative bino-
mial, with probabilities specified by

πi(n) =
(
n + i − 1

i

)
pnqi

(19)

=
(−n

i

)
pn(−q)i, i = 0,1,2, . . . ,

where 0 < p = 1 − q < 1, and n,n ≥ 1, is an integer.
The pgf of this distribution is

(20) H(s) = pn(1 − qs)−n =
(

1 − q

1 − qs

)n

.

The questions to be addressed are: is it the stationary
distribution of a branching process with immigration,
and if so what are appropriate offspring and immigra-
tion distributions? What is a system of polynomials or-
thogonal with respect to the negative binomial? If so,
can they be regarded as right eigenvectors correspond-
ing to a sequence of real eigenvalues?

And finally, if such a branching process with immi-
gration can be found, does its infinite transition matrix
satisfy the reversibility condition (25)?

A system of polynomials orthogonal with respect to
the negative binomial distribution specified by (19) was
found by Kulik (1953). They have a simple generating
function:

G(j,w;n) =
∞∑

r=0

(r!)−1pr(j ;n)wr

(21)

= (1 − w)j

(1 − qw)n+j
, j = 0,1, . . . .

Next, we notice that if we take

b(s) = (1 + q − qs)−n,
(22)

f (s) = (1 + q − qs)−1,

then (6), namely

H(s) = b(s)H
(
f (s)

)
, 0 ≤ s ≤ 1,

is satisfied with H(s) given by (20). Thus, we have
a branching process with immigration, with immigra-
tion and offspring distributions specified by the pgf’s
b(s), f (s), respectively, for which the negative bi-
nomial distribution specified by the pgf H(s) is the
unique stationary distribution. The mean of the off-
spring distribution is given by m = q .

Next,
∞∑

j=0

pijG(j,w;n)

= 1

(1 − qw)n
b

(
1 − w

1 − qw

)
f i

(
1 − w

1 − qw

)
,

and substituting from (22):

= (1 − qw)i

(1 − q2w)n+i
= G(i, qw;n), i = 0,1,2, . . . .

Thus, pr(j ;n), j = 0,1,2, . . . forms the right eigen-
vector of P , corresponding to eigenvalue qr(= mr),

r = 0,1,2, . . . .

Now, using (20), we find

πj = (1 − q)nqj

(
n + j − 1

j

)

and from b(s)f i(s), using (22)

pij =
(
n + i + j − 1

j

)
qj

(1 + q)n+i+j
,

so that the reversibility condition (25) is satisfied.
Finally, differentiating H(s), b(s)f i(s), respectively,
and evaluating at s = 1 we obtain respectively

μ
def=

∞∑
j=0

jπj = nq

1 − q
;

∞∑
j=0

jpij = q(n + i)

so that
∞∑

j=0

(j − μ)pij = q(i − μ),

which is the decreasing negative entropy condition
(23). Kulik (1953) was in fact generalizing to arbitrary
n ≥ 1 the case n = 1 of Gottlieb (1938). Gottlieb’s
paper is mentioned in passing in Szegö’s (1939) trea-
tise. We note that Szegö’s book of 1959 is a almost a
reprinting of a 1939 version, so papers dating from the
middle 1930s, would receive little attention. Papers of
Krawtchouk’s associates such as Kulik and Smohor-
shevsky are not mentioned.

Further, we note that the Meixner (1934) orthogonal
polynomials Mr(x;b, a), r = 0,1,2, . . . satisfy

∞∑
r=0

Mr(x;b, a)[b]r sr

r! = (1 − s
a
)x

(1 − s)b+x
,

where 0 < a < 1, b > 0, [b]r = b(b+1) · · · (b+ r −1).
Thus, Kulik’s orthogonal polynomials pr(j ;n) are es-
sentially the Meixner polynomials, the precise relation
being

pr(j ;n) = Mr(j ;n,q)qr .
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Thus, the four familiar integer-valued distributions
which we have considered each relate to a well-known
orthogonal polynomial system relative to which distri-
bution they are orthogonal. The r th orthogonal poly-
nomial forms the right eigenvector corresponding to
eigenvalue of form mr .

6.3 The Generalized Negative Binomial Model

From (20), we are led to the obvious generalization
of the negative binomial distribution with pgf

H(s) =
(

1 − q

1 − qs

)b

,

which is the stationary distribution of a branching pro-
cess with immigration, whose immigration and off-
spring distributions have respective pgf’s

b(s) = (1 + q − qs)−b, f (s) = (1 + q − qs)−1.

The set of orthogonal polynomials pr(j ;b) orthogonal
with respect to the stationary distribution are now given
by

pr(j ;b) = Mr(j ;b, q)qr,

with the r th polynomial forming the right eigenvector
corresponding to eigenvalue mr .

Finally, as before with b = n, for any b > 0 this pro-
cess is reversible, and so the left eigenvector is easily
obtained.

6.4 The Karlin and McGregor Spectral Theory

In their concluding Section 9, Karlin and McGregor
(1966) consider branching processes with immigration,
with their brief Case II dedicated to the subcritical case
m < 1, assuming also that f (0) > 0 and f (s), b(s)

are analytic in the neighbourhood of 1. Their Theo-
rem 13 asserts that under these conditions the eigenval-
ues of P are 1,m,m2, . . . and the left eigenvector for
mr has generating function Hr(s) = ∑∞

i=0 Ui(r)s
i =

H(s)(A(s))r , r = 0,1,2, . . . . The right eigenvectors
Vj (r) for each fixed argument value j are generated
by

∞∑
r=0

Vj (r)w
r = Bj(w)

H(B(w))
.

Here,

A(s) = lim
n→∞

fn(s) − 1

mn
,

fn(s) is the nth functional iterate of f (s), and B(s) is
the inverse function of A(s). In the Smoluchowski case
of our Section 6.1 and in the negative binomial case of

our Section 6.2 when n = 1, the functions A(s),B(s)

are easily established as in fact Karlin and McGregor
(1966) point out, and our results follow almost trivially
from their exposition.

However, Karlin and McGregor’s (1966) intention is
to establish a spectral theory for given f (s), b(s), with
A(s),H(s) well defined but in general not explicitly
known. Our aim, on the other hand, is to start with
a familiar integer-valued distribution [with known pgf
H(s)], with respect to which there is a well-known sys-
tem of orthogonal polynomials, and then show that the
orthogonal polynomials form the right eigenvectors,
corresponding to eigenvalues mr of a branching pro-
cess with immigration, with H(s) as the pgf of the sta-
tionary distribution. In the cases we have considered,
reversibility of the process gives the left eigenvector.

The explicit results of our Sections 6.2, and 6.3, for
general paramater b > 0 bypass the need to obtain the
functions A(s),B(s) for the explicit construction of the
right and left eigenvectors when b �= 1 for Karlin and
McGregor’s (1966), Theorem 13.

APPENDIX A: ELEMENTS OF MARKOV CHAIN
THEORY

The purpose of this section is to review those ele-
ments of Markov chain theory that are specifically re-
flected in the context of statistical mechanical models
of our preceding account.

A Markov chain is a probability model which allows
for simple statistical dependence between observations
X0,X1,X2, . . . on a sample space S at successive time
points n = 0,1,2, . . . .

In its aspect as a dynamic model over time, that is,
as a stochastic process, it is said to describe the evolu-
tion over time of a “system” on a fixed “state space” S,
where movement is from state to state at unit time inter-
vals. This description may derive from Markov chains
as models in statistical mechanics, and is in any case
appropriate for this paper.

The homogeneous Markov property is expressed by

Pr(Xm+1 = j |Xm = i,Xm−1 = im−1, . . . ,X0 = i0)

= pij , i, j ∈ S.

When the pij are written as entries of a matrix P , then

P = {pij } ≥ 0, P 1 = 1.

Nonnegative matrices with this property are called
stochastic. P is the transition matrix of the Markov
chain. Markov chains have the property that

P n = {
p

(n)
ij

}
where p

(n)
ij = Pr(Xm+n = j |Xm = i),
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which allows their analysis by the tools of matrix the-
ory, and particularly the theory of nonnegative matri-
ces, specifically the Perron–Frobenius theory, if P is
finite.

The matrix P is said to be irreducible if for every
pair i, j ∈ S there exists a positive integer m ≡ m(i, j)

such that p
(m)
i,j > 0. In modelling terminology: for ev-

ery pair of states i, j ∈ S, it is possible with positive
probability to pass from state i to state j in some num-
ber of steps which depends in general on i, j .

For the finite chains that we shall consider, it is nat-
ural to label the states as {0,1, . . . ,N}. For our infinite
state space chains, the labels will be S = {0,1,2, . . .}.

If P is finite and irreducible, there is a unique solu-
tion vector π of

πT P = πT , πT 1 = 1.

Its elements form a probability distribution

πT = {π0, π1, . . . , πN }.
with strictly positive entries. This π is called the sta-
tionary distribution vector. It is clearly a left eigenvec-
tor of P corresponding to eigenvalue 1.

Since for any stochastic P,P 1 = 1,1 is a right
eigenvector corresponding to eigenvalue 1.

If
∑

j≥0 jpij = ai + b, i ≥ 0 or equivalently,

E(Xn+1|Xn) = aXn + b, |a| < 1

for constants a and b for irreducible P , and μ =∑
j jπj , then

∑
j≥0(j − μ)pij = a(i − μ), i ≥ 0.

Equivalently: E((Xn+1 − μ)|Xn) = a(Xn − μ). Thus
{(j − μ), j = 0,1, . . .} is a right eigenvector of P cor-
responding to eigenvalue a, where |a| < 1, and

E(Xn+1 − μ) = aE(Xn − μ)
(23)

= an+1E(X0 − μ),

so that |E(Xn − μ)| is decreasing as the chain evolves
over time.

Irrespective of the distribution over S at time 0, a
chain with irreducible finite transition matrix, is “pos-
itive recurrent,” which means that every state recurs
with probability one, and the mean time between recur-
rences is finite. For state i, the mean recurrence time is

(24) μi = 1

πi

, i = 0,1, . . . ,N.

If the Markov chain with transition matrix P starts
off at time 0 with the distribution vector πT over its
states, this is the distribution at all time points n =
0,1,2, . . .:

Pr(Xn = j) = πj , j = 0,1, . . . ,N

and, more generally, the Markov chain is (strictly) sta-
tionary.

A positive recurrent stationary Markov chain with
transition matrix P = {pij } viewed backward in time
is also a stationary Markov chain—called the reverse
chain—with transition probability from state i to state
j given by p̂ij = πjpji/πi, i, j ∈ S.

If the entries of the transition matrix P satisfy pij =
p̂ij , that is, if

(25) pij = πjpji

πi

, i, j ∈ S

a stationary Markov chain is reversible in time since
the transition and stationary probabilities for the pro-
cess are the same for the chain viewed backward in
time as when viewed forward. For example,

P(Xn = i,Xn+1 = j) = P(Xn = j,Xn+1 = i).

Such a finite transition matrix P satisfying (25) has
all its eigenvalues real, since the matrix A = {π1/2

i pij /

π
1/2
j }, a similarity transform of the matrix P , is sym-

metric.
If w(r) = {w(r)

i }, i = 0,1,2, . . . ,N is a right (col-
umn) eigenvector of a reversible irreducible P corre-
sponding to eigenvalue λr , then a left (row) eigenvec-
tor vT = {vi}, i = 0,1,2, . . . ,N is given by vi = wiπi .
Thus, if all eigenvalues are distinct, the eigenvectors
w(r), r = 0,1,2, . . . ,N form an orthonormal set (when
properly standardized) with respect to the stationary
distribution {π0, π1, π2, . . . , πN }.

The property that {(j − μ), j = 0,1, . . .} is a right
eigenvector of P corresponding to eigenvalue a, where
|a| < 1, together with the property that 1 is a right
eigenvector corresponding to eigenvalue 1, and re-
versibility suggest, then that the right eigenvector sys-
tem of P is a system of polynomials orthogonal with
respect to the stationary distribution.

APPENDIX B: SOME ADDITIONAL
BIOGRAPHICAL NOTES

For additional detail on Markov’s life and work, and
his legacy, see Seneta (2006), Sections 1–6.

Some biographical detail on Marian Smoluchowski
(1872–1917) and Mikhailo Kravchuk (Krawtchouk)
(1892–1942) is given in Seneta (2001b). Both lives
were cut short tragically by the times.

Stephen Kulik (Koulik) was a colleague and co-
author of Krawtchouk (better transliterated into En-
glish as Kravchuk) in Kyiv (Kiev) prior to World War
2, during the period of Ukrainianization. Kravchuk was



412 E. SENETA

eventually sentenced to the Siberian camps where he
died in 1942 (see Seneta, 1997, 2001b). Kulik’s (1943)
paper is his last in a Soviet journal. It was received by
the journal on 27 February, 1941. This was before the
outbreak of hostilities between Germany and the So-
viet Union later in 1941. Kravchuk had been sentenced
by then, however, and became a nonperson; mention of
his publications was prohibited. Thus, Koulik (1943)
begins with the derivation of the polynomial system or-
thogonal to the binomial distribution, without mention
of Kravchuk’s (1929) well-known paper of 1929.

Kulik (1943) has a brief résumé in French titled
“Fonctions génératrices de quelques polynomes or-
thogonaux.” In the event, he deals only with polyno-
mials orthogonal to a generalization of the binomial
distribution, still on a finite number of points. One
of his sources is a rare Ukrainian-language version of
Bernstein (1934). Bernstein around this time was Com-
missar for Education in the Ukrainian SSR.

During the war, Kiev was for a time occupied by the
Germans. Kulik managed to make his way to the West,
first apparently to England where he was publishing
from No. 1 Laboratory of Cortauld’s Limited, Coven-
try, in 1948; and then to the US, where he was teach-
ing and publishing from the-then Claremont Men’s
College in California, in 1953. He is very likely the
Stephen Kulik born 6 January 1899, who died 12 Oc-
tober 1989, in Santa Ana, Orange County, California.

Kulik (1943, 1953) cites the work of the slightly
older disciple of Kravchuk on orthogonal polynomial
systems Aleksandr (Oleksander) Stepanovich Smohor-
shevsky, born 1896, who had been a schoolteacher.
Smohorshevsky continued to publish until 1941 and
then, having remained in Kiev, from 1945 until at least
1956 still in Soviet journals, but not on orthogonal
polynomials.

The contributions of the Kravchuk School in Kiev of
the later 1930s gained little traction in the West com-
pared to the contributions on orthogonal polynomials
by German and French authors. The relative isolation
of Soviet authors from outside journals led to overlap.

The journal in which Kulik’s (1953) paper [which
does cite Krawtchouk (1929) as well as his own Kulik
1943] was published, was an organ of the Shevchenko
Scientific Society of L’viv (Lemberg, Lwów, L’vov)
until the Society was closed down by the Soviets in
1939. Kravchuk and Smohorshevsky had published in
it, and eminent scientists such as Einstein had been
Honorary Members of the Society, which had been
founded when Lemberg was in the Austro-Hungarian

Empire. The Society was incorporated in New York af-
ter the war, and its Proceedings (Sitzungsberichte) con-
tinued as a new series in 1953.

APPENDIX C: EVOLUTION OF THIS PAPER

My initial publication on themes of the present pa-
per in the context of finite Markov chains was Seneta
(1982).

An invited talk to the 4th World Congress of the
Bernoulli Society, in Vienna, Austria, 26–31 August,
1996 (presented on my behalf by Professor Peter
Jagers), introduced Smoluchowski’s model as a special
case of a branching process with immigration, and thus
of a Markov chain with countably infinite state space
which was reversible and, in this guise, could be also
used to illuminate “the fundamental issues involved.”

A unified consideration of the properties of three
models (Bernoulli/Laplace, Ehrenfest and
Smoluchowski) was presented on 3 November, 2006
as the Moyal Medal Lecture, at Macquarie University,
Sydney (Seneta, 2014). Part of its focus was on the re-
markably simple common features of the three models,
their reversibility and the nature of their spectral the-
ory in contrast to the dissimilar probabilistic structure
of the Smoluchowski model from the other two.

Sections 3–6.1 of the sequel contain the material of
these lectures in enhanced form, at another interval of
10 years.

Section 6 of the present paper was completed re-
cently. It includes a fourth model, another special case
of a branching process with immigration, to round out
the picture of common features of the models.
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