Probability Surveys
Vol. 14 (2017) 53-154
ISSN: 1549-5787

DOI: 10.1214/16-PS272

Fringe trees, Crump—Mode—Jagers
branching processes and m-ary search
trees

Cecilia Holmgren* and Svante Janson'

Department of Mathematics, Uppsala University, PO Box 480
SE-751 06 Uppsala, Sweden
e-mail: cecilia.holmgren@math.uu.se; svante. janson@math.uu.se

Abstract: This survey studies asymptotics of random fringe trees and
extended fringe trees in random trees that can be constructed as family
trees of a Crump—Mode—Jagers branching process, stopped at a suitable
time. This includes random recursive trees, preferential attachment trees,
fragmentation trees, binary search trees and (more generally) m-ary search
trees, as well as some other classes of random trees.

We begin with general results, mainly due to Aldous (1991) and Jagers
and Nerman (1984). The general results are applied to fringe trees and
extended fringe trees for several particular types of random trees, where
the theory is developed in detail. In particular, we consider fringe trees of
m-ary search trees in detail; this seems to be new.
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1. Introduction

Aldous [1] introduced the concept of a random fringe subtree of a random tree.
(See Section 4 below for definitions.) This is a useful concept since many prop-
erties of a tree can be formulated in terms of fringe trees, and thus results on
the asymptotic distribution of fringe trees can imply various other asymptotic
results; a simple example is the degree distribution (considered already in [1])
and some other examples are given in Section 10 (protected nodes and rank).
(See also Devroye and Janson [37] and Holmgren and Janson [59] for some re-
cent related applications of fringe trees.) Moreover, Aldous [1] also introduced
the extended fringe tree that allows for consideration of e.g. parents and siblings
of a chosen node; see Section 11 for some applications (e.g. maximal clades).

It is thus of interest to describe the asymptotic distribution of random fringe
trees and extended fringe trees for various classes of (random) trees. Aldous [1]
gave several examples of asymptotic fringe trees, including the case of random
binary search trees; he also, more briefly, gave examples of asymptotic extended
fringe trees. One of the purposes of the present paper is to extend these examples.
In particular, we describe asymptotic fringe trees and extended fringe trees for
m-ary search trees (see Section 3 for a definition and Section 7 for results).
We give some applications of these results for m-ary search trees in Sections 10
and 11.
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Our characterization uses some of the ideas in Aldous [1], in particular the
reduction to results for continuous-time Crump-Mode-Jagers branching pro-
cesses by Jagers and Nerman [65], [95]. (The m-ary search trees have earlier
been studied by similar methods by Pittel [102]; however there the focus was on
the height of the trees and not on the fringe trees.) In a sense, the results are
implicit in [1], and partly in [65, 95], but the details are not completely trivial
so we give a detailed explicit treatment.

We therefore begin with a survey of fringe trees and extended fringe trees
for family trees of Crump—Mode—Jagers branching processes, including many
other examples besides the m-ary search trees. The general theory is described
in Sections 4 and 5. In Section 6, several examples are studied in detail, in
particular various versions of preferential attachment trees, which earlier have
been studied by these methods by Oliveira and Spencer [98], Rudas, T'6th and
Valké [105] and Rudas and Téth [104]. We then specialise on m-ary search
trees; explicit results for them are given in Section 7. In Section 8 we consider
the random median-of-(2¢ 4+ 1) binary search tree as yet another example.

Furthermore, as another novel example, we consider in Section 9 the class of
fragmentation trees; these too can be constructed using family trees of Crump—
Mode—Jagers branching processes, but in a slightly different way from the pre-
ceding examples. We extend the results for the asymptotic distribution of ran-
dom (extended) fringe trees to this case too.

In Sections 10 and 11, as mentioned above, we give some applications of the
results on asymptotic fringe trees and extended fringe trees to protected nodes
and maximal clades (and related properties). This serves partly to illustrate the
general theory and its uses and some results are old, but we also give a number
of new results for m-ary search trees. In particular, we give a recursion that
yields the asymptotic probability that a random node in an m-ary search tree
is k-protected, for general m and k, and a closed formula for the case k = 2,
together with asymptotics as m — oo of this probability for £ = 2.

In the main part of the paper, we consider the fringe tree or other properties
of a uniformly random node in the tree. In Section 12 we consider variations
for a random node with a non-uniform distribution. We study first restricted
sampling, where we sample only nodes with some given property, for example
a random leaf. For m-ary search trees, we study also the node containing a
random key.

In Sections 4-12, we study (more or less) local properties of the tree, that
are related to (extended) fringe trees. Branching process methods have also for
a long time, beginning with Devroye [29], been used to study global properties
of random trees, such as the height and other properties related to the dis-
tance to the root from the nodes. As a complement to the previous sections,
we give in Section 13 a survey of such results for the height. This uses the
same set-up as the preceding sections with random trees constructed as family
trees of Crump—Mode—Jagers branching processes, but the methods are differ-
ent and based on results on branching random walks by Biggins [11, 12, 13,
14]. This section is thus essentially independent of the previous sections, ex-
cept for definitions and some basic results. The main results are well-known,
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but we believe that the results on moment convergence in Section 13.2 are
new.

In this paper, we concentrate on results obtained by general branching pro-
cess methods, in particular results on the asymptotic distribution of (extended)
fringe trees and applications of such results. Typical results can be expressed
as convergence in probability or almost surely (a.s.) of the fraction of fringe
trees that are isomorphic to some given tree, see for example (5.22); see also
(4.7)—(4.8) and Remark 4.1. Such results can be seen as a law of large numbers
for fringe trees, and typical applications yield first-order results for the propor-
tion or number of nodes that have a certain property (see Sections 6-12). In
some special cases, for example for some properties of the binary search tree,
much more precise results have been derived by other methods. We give some
references to such results, but we do not attempt completeness.

A natural next step would be to show a general central limit theorem, i.e.,
asymptotic normality of the number of fringe trees of a given type, under suitable
conditions. This will not be attempted in the present paper, but we give some
comments and references in Section 14; in particular we note that such results
have been proved, by other methods, for some special cases (the binary search
tree and random recursive tree), but that they do not hold in other cases (m-ary
search tree with m > 27).

The appendices contain some results that are used in the main part of the

paper.

Remark 1.1. In the present paper we consider random trees that are generated
by stopping a supercritical branching process at a suitable (random) time, for
example when its size (the number of individuals) is a given number.

Note that the results are quite different from the results for fringe trees of
conditioned Galton—Watson trees, where we also start with a branching process
but instead of stopping it, we let it run until extinction and condition on its
total size being a given finite number, see [1, 7, 69, 70].

2. Some notation

The trees considered here are rooted and finite, unless otherwise indicated. (The
infinite sin-trees, that arise as limits in Section 4, are important exceptions.)
Furthermore, the trees are ordered, again unless otherwise indicated; unordered
trees may be considered by giving them an arbitrary (e.g. random) ordering of
the children of each node.

Moreover, there may be further information on the children of each node.
In a binary tree, each child is labelled as left or right (with at most one child
of each type at any node); the tree is ordered, with a left child before a right
child, but also a single child is labelled left or right. More generally, in an m-ary
tree, see Section 3, a node has m slots for children and the children are labelled
with distinct numbers in {1,...,m}; these numbers determine the order of the
children, but not conversely, since a node may have less than m children and
thus only use a subset of these labels. (In an extended m-ary tree, each node
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has either m children or 0, so these labels are determined by the order and are
therefore redundant.)

We write T7 =~ T when T7 and T, are isomorphic rooted trees. We often
identify trees that are isomorphic. We may regard all finite rooted trees as sub-
trees of the infinite Ulam-Harris tree with node set Vi := [J,, N™ consisting
of all finite strings of natural numbers, where () is the root and the mother of
d1 ik 1S 41 -+ - g1, see e.g. [65, § VL.2] and [96].

Let |T| be the number of nodes in a tree T'.

We regard the edges in a tree as directed from the root. Thus the outdegree
d*(v) = df(v) of a node v in a tree T is its number of children.

The depth h(v) of a node v is its distance from the root.

Given a tree T and a node v € T, let T denote the subtree rooted at v, i.e.,
the subtree consisting of v and its descendants.

If T and S are trees, let ng(T") be the number of nodes v in T' such that
TV ~ S. Similarly, given a property P of nodes in a tree, let np(T) be the
number of nodes v in T that have the property P. (Thus ng(T) = np, (T) if Pg
is the property of v that T% ~ §.)

For a random rooted tree 7 and a fixed tree S, let ps(7T) = P(T ~ S).
Furthermore, if P is a property of nodes, let pp(7) be the probability that the
root of 7 has the property P. (Note that ps(7T) = ppy(T) with Pg as in the
preceding paragraph, so the notation is consistent.)

Note that when we talk about a property P of nodes, it is implicit that the
property depends also on the tree containing the node, so it is really a property
of pairs (v,T) with v € T. We will frequently consider properties of a node v
that depend only on v and its descendants, i.e., on the subtree 7. In this case
(but not in general), we may also regard the property P as a property of rooted
trees: we say that a tree T has P if the root of T has P. In this case we also use
P for the set of rooted trees that have the property P; thus a node v in a tree
T has P < TY € P.

If P is a property of nodes, we sometimes write v € P for the event that v
has P.

By Exp(A), we mean the exponential distribution with rate A > 0, and thus
mean 1/\: if X ~ Exp(A) then P(X > t) = e~ *. Geg(p) denotes the geometric
distribution with probability function p(1 — p)¥, k > 0, and Ge;(p) denotes the
shifted geometric distribution with probability function p(1 — p)*=1, &k > 1.

We let (z);, and (), denote the rising and falling factorials:

() =z(x+1)--(z+k-1)=T(z+k)/T'(x), (2.1)
(@) =z(x—-1)--(z—(k=1)=T(x+1)/T(x —k+1). (2.2)

We let Zso :={0,1,2,...} and Zgo := {0,-1,-2,... }.

We say that a function f(z) is decreasing if © < y implies f(x) > f(y); note
that we allow equality. (This is sometimes called weakly decreasing.) If x < y
implies f(x) < f(y), we may say strictly decreasing. Increasing and strictly
increasing are defined similarly.
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We consider asymptotics of various random trees when some parameter n (for
example the number of nodes, or number of keys in an m-ary search tree) tends
to infinity. Similarly, for the continuous-time branching processes, we consider
limits as the time t tends to infinity. As usual, w.h.p. (with high probability)
means with probability tending to 1.

3. m-ary search trees

An me-ary search tree, where m > 2 is a fixed number, is an m-ary tree con-
structed recursively from a sequence of distinct keys (real numbers) as follows,
see e.g. [85] or [40]. (In the case m = 2, we say binary search tree.) The m-ary
search trees were first introduced in [93].

Each node may store up to m — 1 keys. We start with a tree containing just
an empty root. The first m — 1 keys are stored in the root. When the (m —1):th
key is placed in the root, so the root becomes full, we add m new nodes, initially
empty, as children of the root. Furthermore, the m — 1 keys in the root divide
the set of real numbers into m intervals Ji, ..., J,,. Each further key is passed
to one of the children of the root depending on which interval it belongs to; a
key in J; is passed to the ¢:th child.

This construction yields the extended m-ary search tree. Nodes containing at
least one key are called internal and empty nodes are called external. Usually
one eliminates all external nodes and consider the tree consisting of the internal
nodes only; this is the m-ary search tree.

For both versions, we often wish to keep track of the number of keys in each
node, so we regard the trees as labelled trees where each node has a label in
{0,...,m — 1} indicating the number of keys. (Thus external nodes have label
0 while internal nodes have labels in {1,...,m — 1}.)

We assume that the keys are i.i.d. random variables with a continuous distri-
bution, for example U|0, 1]. With a given number n of keys, this gives a random
m-ary search tree T),. (As is customary, we usually omit the word “random” for
convenience. Also, we regard m as fixed, and omit it from the notation.) Note
that only the order of the keys matter; hence we obtain the same random m-ary
search tree T}, also if we instead let the keys be a uniformly random permutation

of {1,...,n}.
Note that in T}, we have fixed the number of keys; not the number of nodes.
A node may contain 1,...,m — 1 keys, and the total number of nodes will be

random when m > 3. (The binary case m = 2 is an exception; each internal
node contains exactly one key, so the number of (internal) nodes equals the
number n of keys, and the number of external nodes is n + 1.)

In an extended m-ary search tree, say that a node with ¢ < m — 2 keys has
141 gaps, while a full node has no gaps. It is easily seen that an extended m-ary
search tree with n keys has n+1 gaps; the gaps correspond to the intervals of real
numbers between the keys (and +00), and a new key has the same probability
1/(n 4+ 1) of belonging to any of the gaps. Thus the evolution of the extended
m-ary search tree may be described by choosing a gap uniformly at random at
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each step. Equivalently, the probability that the next key is added to a node
is proportional to the number of gaps at that node. For the m-ary search tree
(with only internal nodes) the same holds with minor modifications; a full node
now has one gap for each external node in the extended version, i.e., m —d gaps
if there are d children, and a key added to one of its gaps now starts a new node.

4. Fringe trees and extended fringe trees

Given a (finite, rooted) tree T, the random fringe tree of T is the random tree
obtained by taking the subtree TV with v chosen uniformly at random from the
nodes of T'; we denote the random fringe tree of T' by T*.

Consider a sequence T,, of (possibly random) trees such that the random
fringe tree T,¢ converges in distribution to some random tree F:

T -4 F, (4.1)
which simply means (since the set of finite trees is countable)
P(T; =~ S) = P(F =~ 95) (4.2)

for every finite rooted tree S. We then say, following Aldous [1], that F (or
rather its distribution) is the asymptotic fringe distribution of T,,.
If the trees T,, are deterministic, then (4.2) can be written

ns(Tn)
T

— ps(F), (4.3)

for every tree S; this is equivalent to the seemingly more general

’I’L73<Tn)
T

— pP(]:)a (44>

for every property P of a node v that depends only on the subtree T, i.e., on
v and its descendants.

In the more general case when T,, are random (which is the case we are
interested in), (4.2) instead can be written

ns(Tn)

E
T

— ps(F) (4.5)

or, more generally but equivalently,

E TL'p(Tn)
T

= pp(F) (4.6)

for properties P as above. In interesting cases, we may typically strengthen
(4.5)—(4.6) to convergence in probability:

np(Tn)

T -5 pp(F); (4.7)
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Aldous [1, Proposition 7] gives a general criterion for this (the distribution
of F is extremal in the set of fringe distributions), but we will instead prove
(4.7) directly in the cases considered here; moreover, we will in our cases prove
convergence almost surely:

metln) 2ty (7). (48)
||
Remark 4.1. Note that
T,
"T; ‘ ) _ P(T; ~ S| T,) (4.9)

and, more generally, for a property P as above,

’I’L"p(Tn)
T

=P(T; € P | T,). (4.10)

It follows from (4.9) that (4.7) and (4.8) (for all properties P considered there)
are equivalent to conditional versions of (4.1):

L(T; | T,) = L(F) (4.11)
and
L(T | Tn) = L(F), (4.12)

respectively, with convergence in probability or a.s. of the conditional distri-
bution, in the space of probability distributions on trees. (Note that any such
property P corresponds to a set of finite rooted trees T', and conversely.)
Results such as (4.11) and (4.12), where we fix a realization T;, of a random
tree and then study the distribution of its fringe tree (or something else), as
a random variable depending on T;,, are usually called quenched, while results
such as (4.1), where we consider the random fringe tree of a random tree as a
combined random event, are called annealed. See further e.g. [37] and [70].

4.1. FExtended fringe trees

The fringe tree T* considers only the descendants of a random node. Aldous [1]
introduced also the extended fringe trees that include the nearest ancestors and
other close relatives. If k > 0 and v € T with h(v) > k, let v(¥) be the ancestor
of v that is k generations earlier (i.e., with h(v(®)) = h(v) — k), and let TV —*
be the subtree rooted at v(*)| with the node v marked. (Or, equivalently, with
the path from the root v*) to v marked.) Thus 7%~ is a rooted tree with a
distinguished node of depth k. (Note that 7%~0 = T".)

We define the random extended fringe tree T* % as T%~* for a uniformly
random node v € T this is really not defined when h(v) < k, but we may
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define T% % in this case too by some supplementary definition, for example as
a path of length k — h(v) with a copy of T attached, with v marked. We are only
interested in asymptotics of the random extended fringe trees for sequences of
trees 1" such that

h(v) 25 oo (4.13)

for a random node v, i.e., P(h(v) < k) — 0 for every fixed k, and thus each
T*~F is well-defined w.h.p., and then the supplementary definition does not
matter.

Aldous [1] showed that if T;, is a sequence of (possibly random) trees such that
(4.13) holds and an asymptotic fringe distribution exists, i.e., (4.1) holds, then,
more generally, each T*~* converges in distribution to some random tree F %
with a distinguished node o of depth k. Note that the trees T"~* are consistent
in an obvious way, with Tﬁ’_(k_l) a subtree of 7%~ and thus the same holds for
the limits F~* (after a suitable coupling). Hence it is possible to regard the trees
F~F as subtrees of a (random) infinite tree F with a distinguished node o and
an infinite line o, 0", 02, . .._of ancestors of o, such that Fk = Fok = Fol,
Furthermore, every node in F has a finite number of descendants; thus there are
no other infinite paths from o. (Aldous [1] calls such a tree a sin-tree, for single
infinite path.) We may then say that the extended fringe trees converge to the

random sin-tree F , in the sense that 77 ~* 4, 7o for each k, or, equivalently,
using the product topology on the set of sequences of (finite) trees,

. —k\ 00 d Zo(k)y oo

(T ")y = (F2 )y (4.14)
For a random sin-tree 7 and a property P of nodes, let pp(]? ) be the proba-

bility that the distinguished node o has the property P. Then, cf. (4.6) (which

is the case k = 0), (4.14) implies, and is equivalent to,

np(15) =

BT = (), (4.15)

for every property P that depends only on TV ~* for some k, i.e., on v and
its descendants and the descendants of its ancestors at most a fixed number of
generations back. Again, we may typically strengthen (4.15) to convergence in
probability, and in our cases we shall prove convergence a.s.:

nngjn) asy pP(j})- (4.16)

By standard truncation arguments, it may be possible to extend (4.15) or
(4.16) also to some more general properties P, depending on an unlimited num-
ber of ancestors, see Sections 5.1 and 11 for some examples.

Remark 4.2. Similarly to Remark 4.1, (4.16) is equivalent to a conditional
version of (4.14):

LT )y | T) 25 £((F) ). (4.17)
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5. Family trees of general branching processes

A Crump—-Mode—Jagers process is a general branching process defined as follows,
see e.g. [64] for further details and for basic facts used below.

The branching process starts with a single individual born at time 0. This
individual has a random number N of children, born at random times (&)X ;
here 0 < N < oo, and we assume 0 < & < & < ---. It is convenient to
describe the birth times {&;}2V as a point process = on [0, 00). Every child that
is born evolves in the same way, i.e., every individual = has its own copy Z, of
= (where now &; means the age of the mother when child ¢ is born); these copies
are assumed to be independent and identically distributed. Denote the time an
individual x is born by o,.

Recall that formally a point process = is best defined as an integer-valued
random measure, where Z(A) is the number of points in a set A, see e.g. [75].
In our setting, = = Zf\;l 0¢,, where §; is a point mass (Dirac measure) at ¢. In
particular, we have N = E([0, 00)). Furthermore, for j < N, Z([0,¢]) > j if and
only if £ < t. We let p := EZ= denote the intensity measure of =, and write
w(t) == p([0,t]) = EZ([0,¢]). In particular, u(co) =EN.

Usually one also assumes that each individual has a random lifetime A €
[0, 00]; for our purposes this plays no role, so we ignore it. (Formally, we may
assume that A = oo.) There may also be other random variables associated
to the individuals. Formally, we give each possible individual z its own copy
(Qy, Fuy ttz) of some probability space (Q,F,u) on which there are defined
some given functions defining N, §; (and thus =), and possibly other random
variables describing the life history such as the marks v; or label £(¢) in Re-
marks 5.1 and 5.2 below; the branching process then is defined on the product
[1.(Q%, Fz, pte) of these probability spaces. (The individuals may be labelled in
a natural way by strings in Vo := [J,—, N"; hence the set of individuals that
are realized in the branching process is a random subset of V,,, and we may
extend the product over z € V.)

Let Z; be the number of individuals at time ¢ > 0; since we assume no deaths,
this equals the number of individuals born in [0, ¢]. (We follow standard custom
and let all processes be right-continuous; thus an individual born at ¢ exists at
t and is included.) We say that the process is finite (or dies out) if Zo, < o0,
i.e., only a finite number of individuals are ever born.

Let 7 be the family tree of the branching process. This is a (generally
infinite) tree obtained from the branching process by ignoring the time structure;
in other words, it has the individuals as nodes, with the initial individual as the
root, and the children of a node in the tree are the same as the children in the
branching process. Let T; be the subtree consisting of all individuals born up to
time ¢. Note that the number of nodes |T;| = Z;. (We are mainly interested in
cases where Z; < oo for every finite ¢, but Z,, = 00.)

Remark 5.1. This defines the family tree 7; as an unordered tree. Sometimes
we want an ordered tree, so we have to add an ordering of the children of each
individual. This can be done by taking the children in order of birth (which is
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the standard custom), but in our examples we rather want a random order. In
general, we can obtain ordered family trees by assuming that each individual has
a marked point process E* (augmenting the plain = above), where each point
& has a mark v; € {1,...,i} telling at which position the new child is inserted
among the existing ones. (This includes both the birth order case, with v; = i,
and the random order case, with v; uniform and independent of everything else.)

For the m-ary search trees in Section 7, we want further information; this is

obtained by instead giving each of the m children a distinct mark v; € {1,...,m}
telling the position of the child among all (existing and future) children. (Equiv-
alently, we may equip each individual with a random permutation of {1,...,m}

giving the order of birth of the children.)

Remark 5.2. We may also have labels on the nodes of 7;; this is important for
our application to m-ary search trees, since they have nodes labelled with the
number of keys, see Section 3. In general, we may assume that each individual
has a label given by some random function £(t) of its age. We assume that
the set of possible labels is countable (with the discrete topology); we may
assume that the labels are integers. We also assume that the function £(t) €
DI0,00); thus £(t) is constant on some intervals [t;,%;4+1). (As everything else
in the branching process, the label may depend on = and other properties of
the same individual, but not on other individuals, and they have the same
distribution for all individuals; this is also a consequence of the formalism with
probability spaces (€, Fy, i) above.)

A characteristic of an individual, see e.g. [64, 65, 94, 95], is a random function
@(t) of the age t > 0; we assume that ¢(t) > 0 and that ¢ belongs to the space
DJ0, 00) of right-continuous functions with left limits. (Note that we consider
only ¢t > 0. We may extend ¢ to (—oo,00) by setting ¢(¢t) = 0 for ¢ < 0.) We
assume that each individual has its own copy ¢,, and we at first for simplicity
assume that the pairs (2, ¢,) for all individuals are independent and identically
distributed; this assumption can (and will) be relaxed, see Remark 5.10 below.

Given a characteristic ¢, let

ZP =Y ult—oa) (5.1)

Tio, <t

be the total characteristic at time ¢ of all individuals that have been born so
far. (Recall that z is born at time o,, and thus has age t — o, at time ¢.)

The random tree 7; has a random size. We are usually interested in random
trees with a given number of nodes, or trees where something else is given,
for example the number of keys in an m-ary search tree. We can obtain such
random trees by stopping the branching process as follows. Fix a characteristic
(t), which we shall call weight, and let 7(n) := inf{t : Z > n}, i.., the first
time the total weight is at least n. (As usual, we define inf ) = co.) We exclude
the trivial case when ¢ (t) = 0 for all ¢ > 0 a.s. (which would give 7(n) = oo
a.s.). Define T}, := T, (), the family tree at the time the total weight reaches n
(provided this ever happens).
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Random trees T, defined in this way, for some Crump-Mode—Jagers branch-
ing process and some weight 1(t), are the focus of the present paper. We shall
always denote the weight by v and the random tree, stopped as above, by T,
omitting 7 from the notation for simplicity. (In all our examples, ¥ is integer-
valued, so it is natural to let n be an integer. This is not necessary, however,
and all our results are valid for arbitrary real n — oo.)

Example 5.3. If ¢(t) = 1,¢ > 0, then ZZ/’ = Z,, and T,, is the family tree of the
branching process stopped when there are n nodes or more; if the birth times
have continuous distributions and there are no twins, then a.s. no two nodes
are born simultaneously, and thus we stop when there are exactly n nodes, so
|T},| = n. (This weight is used in all examples in Section 6, but not for the m-ary
search trees in Section 7.)

We define the Laplace transform of a function f on [0, 00) by
7o) = 9/000 e ft)ydt,  0>0, (5.2)
and the Laplace transform of a measure m on [0, c0) by
m(f) = /000 e Otm(dt), —00 < 0 < 0. (5.3)

(Note that there is a factor 6 in (5.2) but not in (5.3). A justification of this
difference is that a measure m has the same Laplace transform m as the function
m(t) := m([0,¢t]), as is easily verified by an integration by parts, or by Fubini’s
theorem for the integral [[, , fe=m(ds).)

Some standing assumptions in this paper are:

(A1) u{0} = EZ{0} < 1. (This rules out a rather trivial case with explosions
already at the start. In all our examples, u{0} = 0.)

(A2) p is not concentrated on any lattice hZ, h > 0. (The results extend to the
lattice case with suitable modifications, but we ignore it.)

(A3) EN > 1. (This is known as the supercritical case.) For simplicity, we
further assume that N > 1 a.s., but see Remark 5.5. (In this case, every
individual has at least one child, so the process never dies out and Z,, =
00.)

(A4) There exists a real number « (the Malthusian parameter) such that i(«) =
1, i.e.,

/OOO e pu(dt) = 1. (5.4)

(By (A3), > 0.)
(A5) fi(f) < oo for some 0 < a.
(A6) The random variable sup, (e ~?*¢(t)) has finite expectation for some 6 < .

Nerman [94, Theorem 6.3] (see also Jagers [64, Section 6.10] for related re-
sults) shows that under the conditions (A1)-(A6), as t — oo,

— = my =E¢(a) =Eod(a) = a/ooo e " E¢(t)dt. (5.5)
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The right-hand side of (5.5) is finite by (AG6). Thus, if we exclude the trivial
case when ¢(t) =0 for all £ > 0 a.s., 0 < my < 00.

Note that (A1)-(A5) are conditions on the branching process, while (A6) is
a condition on the characteristic ¢ (and «), and thus is relevant only when we
consider some ¢. When discussing trees T, defined by stopping using a weight
1 as above, we sometimes want (A6) to hold for 1; we denote this version of the
condition by (A6y). (However, for most of our results, (A6¢) is not required.
In any case, in Example 5.3 and in all our examples in Sections 6 and 7, ¥ (t) is
bounded, so (A6v) holds trivially.)

Remark 5.4. As a consequence of (A4), u(t) < oo for every ¢t < co. (However,
pu(0o) = EN may be infinite.) It is a standard result that this implies that Z;
and E Z; are finite for every ¢t < oo.

Remark 5.5. We do not really need the assumption N > 1 in (A3); it suffices
that EN > 1. In this case, the extinction probability ¢ := P(Z, < o0) < 1,
so there is a positive probability that the process is infinite, and (5.5) and the
results below hold conditioned on the event Z., = oo. (This is the standard
setting in [94, 65, 95].)

Remark 5.6. By (5.4), e~*'u(dt) is a probability measure on [0, 00). See Re-
mark 5.22 for an interpretation of this distribution.

Remark 5.7. By the definitions,

N

2(0) = /000 e Y=(dt) = Ze“%i. (5.6)

i=1
Since p = EE, we have 7i(d) = EZ(A) and (5.6) yields

N

i) =EY e % (5.7)

i=1
Thus, (5.4) can be written EZ(a) = 1, or

N

EY e =1. (5.8)

i=1

Similarly, (A5) says that the random variable Z(f) has finite expectation
EE() < oo for some 6 < «.

Remark 5.8. The conditions (A5) and (A6) may be weakened somewhat if we
further assume EZ(a)log™ Z(a) < oo, see [94, Conditions 5.1 and 5.2], but the
versions above are sufficient for our applications.

Remark 5.9. The results can be extended to multi-type branching processes,
see Jagers and Nerman [66].
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Remark 5.10. We have for simplicity assumed above that the characteristic
¢.(t) associated to an individual z is independent of the life histories of all other
individuals. As shown by [94, Section 7], the results extend to characteristics
¢.(t) that may depend also on the descendants of x; we may let ¢o(t) be any
non-negative random function that depends on the entire branching process (and
belongs to D[0, c0) and satisfies (A6)), and then define ¢, (t) as ¢o(t) evaluated
for the branching process consisting of  and its descendants (shifting the origin
of time to the birth of z). This will be important below.

Remark 5.11. Nerman [94] showed also that, under the assumptions (Al)-
(A5) above, there exists a random variable W such that, as t — oo,

e Mz BB W (5.9)

and, more generally, for every ¢ satisfying (A6),

et Z? 25 my W (5.10)

If furthermore N N
EZ(a)log’ Z(a) < oo, (5.11)
which is the case in our applications, then W > 0 a.s. (on the event {Z,, = 00}),

see also [39], so Z; and Zf grow exactly at rate e*’; moreover, (5.5) then follows
from (5.9)—(5.10). However, if (5.11) fails, then W = 0 a.s., so Z¢ = o(e®") a.s.;
nevertheless, also in this case

e 7P 2% 5o (5.12)
for every 6 < a, as follows easily by truncating the offspring distribution = to
at most M children, for some large M, and applying (5.10) to the truncated
process. It follows easily from (5.10) and (5.12) that if (A1)-(A6) hold, then

log Z¢ /t 22 a. (5.13)

(See also [14, Theorem 2.1] for this result under a slightly weaker condition.)
Furthermore, the expectation E Z always grows as e®, even when (5.11)
fails so W = 0 a.s.; more precisely [94, Proposition 2.1], with 8 > 0 is given by
(5.38) below,
EZ ~ (af) 'mge. (5.14)

If (5.11) holds, then
EW = (af)™ !, (5.15)

so (5.14) says that the expectation converges in (5.9). (However, as just said,
(5.14) holds also when (5.9) holds with W = 0.)

Our main results are now simple consequences of the general results by Ner-
man [94] above. We consider the random trees T, defined by stopping the
branching process according to some fixed weight i as above. We begin by
noting that 7(n) < oo so that T, really is well-defined. (See e.g. [34].)
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Theorem 5.12. (i) Under the assumptions (A1)—(A5), and for any weight ),
ZZZ’ 2% 50 as t — 00; thus a.s. T(n) < oo for every n > 0 and T}, := Trn) is a

well-defined finite random tree. Furthermore, T(n) 2% 50 as n — 0.

(ii) If moreover (A6vy) holds, then

T’I’L a.s. 1
u — — € (0,00) (5.16)
n My
and )
T(1) as 1 (5.17)
logn «

S

Proof. (i): If (A6t) holds, then (5.12) (with @ = 0) shows that Z/ 2% oo
In general, apply (5.12) to the truncated weight 1 (t) := ¥(¢) A 1 and deduce
zy > Zzpl 2% 0. Hence, 7(n) < oo for every n. Finally, for every finite t,
Z¥ < o0 a.s., and thus 7(n) > t for large n; hence 7(n) — .

(ii): By the definition of 7(n) (and right-continuity of the process and ),

AT n, while z? s < nforany 6 > 0. Fix § > 0 and define the char-

7(n) T(n)—
acteristic ¥5(t) = (t — ), with 1s(t) := 0 for ¢ < 8. Then Z}® = Zzlié.
Consequently,

AL

T(n

_ ¥ P
)—ZT(n)75<n<Z

T(n)

(5.18)

Recall also that |T5,| = [Ty | = Z7(n)-
We have assumed (A6) for 1, and it follows that it holds for 5 too. Conse-
quently, (5.5) applies to both 1 and s, which by (5.18) implies

»

lim sup o < limsup Zrn) = My, (5.19)
Ps

hnrgloléf T > hnni{gf o = Myps- (5.20)

Furthermore,

My :a/ e*atEw(;(t)dt:a/ e Eap(t —5)dt
o 0 (5.21)
= a/o e—a(utd) E¢(u)du = e*’l‘smw.

Since 0 > 0 is arbitrary, the result (5.16) follows from (5.19)—(5.20) and (5.21)
by letting § — 0.

Similarly, (5.13) applies to both ¢ and 15, which by (5.18) yields logn/7(n)
2% «, which is (5.17). O

Remark 5.13. Note that (5.16) does not hold in the lattice case (in this paper
excluded by (A2)), since then the population and Z} grow in discrete steps with
asymptotically a fixed factor > 1 each time.



68 C. Holmgren and S. Janson

We next study the fringe tree T¥. Note that the following theorem (and its
proof) applies both if we consider 7; as an unordered tree and if we consider it
as an ordered (or m-ary) tree as in Remark 5.1; in the latter case T;, and the
fringe tree T,F are random ordered (or m-ary) trees, and T' below should be an
ordered (or m-ary) tree. We may also have labels on the nodes, defined by some
random function £(t) as in Remark 5.2; then T should be a tree with (arbitrary)
labels on the nodes.

Recall from Section 2 that a property of a node v that depends only on v
and its descendants may also be regarded as a property of rooted trees (and
conversely).

Theorem 5.14 (Jagers, Nerman, Aldous). Under the assumptions (A1)—(Ab),
the following hold:

(i) (Annealed version.) The random fringe tree T): converges in distribution
as n — oo to the random tree T := T, where T ~ Exp(a) is a random
time, independent of the branching process.

(ii) (Quenched version.) For every finite tree T, as n — oo,

TLT(Tn)

P(T; ~T|T,) = T 25 P(T = T). (5.22)

More generally, for every property P of a node v that depends only on v
and its descendants,

np(Tn)
T

P(T;eP|T,) = 2% pp(T). (5.23)

Furthermore, for a property of this type,
p— e ~
pp(T) = / ae”pp(T;) dt = my = E¢(a), (5.24)
0

where ¢(t) is the characteristic 1{T; € P}.

More precisely, the characteristic ¢ in (5.24) is defined as in Remark 5.10
with ¢g(t) := 1{T; € P}.

Proof. This is a special case of the main results in Jagers and Nerman [65] and
[95], and is one of the main examples in Aldous [1], but we give the simple proof
for completeness and in our setting.

Note first that (5.22) is a special case of (5.23), with P = Pr, see Section 2,
and thus ¢(t) = 1{7; =~ T}. (Some readers might prefer to consider this case
first.)

The function ¢(t) is clearly a {0,1}-valued random function in D]0, c0), so
¢ is a characteristic. The assumption (A6) holds trivially since ¢ is bounded.
Furthermore, (5.24) is a consequence of the definition 7 := 7=, the fact that
7 ~ Exp(a) has the density function ae™@t, E¢(t) = P(T; € P) = pp(Ts),
and (5.5).
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Moreover, the characteristic ¢, (t — o) of x at time ¢ is the indicator 1{7,* €
P} that the subtree 7,% of T; rooted at x satisfies P. Thus, the total characteristic
Z? is the number of nodes v € T; such that 7;* € P, which by definition holds
if and only if v has the property P; hence, Z,? = np(T;). Consequently, (5.5)
yields .

np (7;) Zt a.s.,

T e (5.25)
By Theorem 5.12, we also have (a.s.) 7(n) < oo for every n and 7(n) — oo as
n — oo; thus (5.25) implies, as n — oo,

nP(Tn) n'P(/ﬁ'(n)) a.s.

The result (5.22) follows from (5.26) and (5.24). As said above, (5.22) is a
special case, and the annealed version (i) follows by taking the expectation in
(5.22), yielding (by dominated convergence) P (T ~ T) — P(T ~ T) for every
fixed tree T'. (Recall that there is only a countable set of finite trees T, so this
shows convergence in distribution. Alternatively, one can take the expectation
of (5.23).) O

Remark 5.15. As said above, (5.22) is a special case of (5.23). Conversely,
again because there is only a countable set of finite trees T, (5.22) is equivalent
to the a.s. convergence of the distributions in (4.12), and thus to (5.23), cf. Re-
mark 4.1. (In general, for distributions on a countable sample space, convergence
of the individual point probabilities is equivalent to convergence in total vari-
ation [54, Theorem 5.6.4].) Hence, (5.22) and (5.23) are equivalent. (We state
both versions for convenience in later applications.)

Remark 5.16. We have stated the result (5.22) for the stopped trees T,,, but
proved it by proving the corresponding result for the full branching process,
see (5.25) and (5.26). In fact, the two types of results are equivalent; by choos-
ing the weight ¢ = 1 as in Example 5.3, the trees 7; run through the same
(countable) set of trees as t — oo as T}, does as n — oo; hence (5.25) and (5.26)
are equivalent. The same holds for (5.23) and for (5.43) and (5.51) in Theo-
rems 5.25 and 5.26 below, where again we state the results for T},, in view of
our applications in later sections, but the results also hold for 7;.

Remark 5.17. Note that the asymptotics in Theorem 5.14 do not depend
on the choice of weight v; any weight gives the same asymptotic fringe tree
distribution. Of course, this is an immediate consequence of the proof using
(5.26) and (5.25), see also Remark 5.16. Note that for this proof, it is essential
that we consider convergence almost surely (and not, e.g., in probability).

Remark 5.18. In cases when |T,,| is random, it is often of interest to study
the number np(T),) rather than the fraction np(T),)/|T,| in (5.23). Assuming
(A6v), we can combine (5.23) and (5.16) and obtain

np(T,) asg pp(T)
n my

(5.27)
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Remark 5.19. Since the fractions in (5.22) and (5.23) are bounded by 1, the
a.s. convergence above immediately yields also convergence of the expectation
by the dominated convergence theorem; thus

T, —

g2 7). (5.28)
T

This is particularly nice in the common case when the weight (t) = 1, so

|T%,| = n deterministically; then (5.28) can be written

Enp(Tn) = pp(TIn + o(n). (5.20)

For other weights 1, we can (assuming (A6¢)) use (5.27). If we furthermore
have a deterministic bound |7},| < Cn for some constant C' (which, for example,
is the case for the m-ary search trees in Sections 7.1 and 7.2), then dominated
convergence applies again and yields

_pp(T)

E np (Tn) my

n+ o(n). (5.30)

We give a simple but important corollary to Theorem 5.14, showing that the
degree distribution in T;, converges to the distribution of D := =Z([0,7]) (with =
and 7 independent).

Corollary 5.20. Let ng(T,) be the number of nodes in T, with outdegree k.
Under the assumptions (A1)-(A5) above,

nk(,rn) a.s, o
o S BD = k), (5.31)

where D = Z([0,7]) is the degree of the root of T. In other words, if D,, denotes
the outdegree of a uniformly random node in T, then

L(D, | T,) %% £(D). (5.32)

Proof. Let P be the property of a node that it has outdegree k. Then ny(T) =
np(T). Hence, (5.23) shows that ny(T,,)/|Ty| a.s. converges to the probability
that the root of 7 has (out)degree k. However, the root of T; has degree Z([0, ¢]),
so the degree D of the root of T = T+ equals Z([0,7]) and (5.31) follows. O

Remark 5.21. Since D = =([0,7]) and 7 ~ Exp(«),
P(D > i) =P(F > &) = Ee 2%, (5.33)

See further Remark 5.23 below.

In order to extend Theorem 5.14 to the extended fringe, we first define the
limiting random sin-tree 7T; this is the family tree of the doubly infinite pedigree
process in [95] (doubly infinite stable population process in [65]). In the latter, we
start with an individual o (“ego”) born at time 0, and grow a branching process
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starting with it as usual. We also give o an infinite line of ancestors o), 0 . ..
having a modified distribution of their life histories defined below, and let each
child z of each ancestor o(*), except z = 0o*~1) | start a new branching process
where all individuals have the original distribution. We denote the (infinite)
family tree of this branching process by 7~§, —00 < t < co. Finally, we stop the
entire process at a random time 7 ~ Exp(«) as before, and let T := T+ be the
resulting sin-tree, with distinguished node o. (Note that the subtree of T rooted
at o equals 7 defined in Theorem 5.14.)

It remains to define the distribution of the life history of an ancestor. This
is really a distribution of a life history with a distinguished child, which we call
the heir. The heir may be any child, but the probability distribution is weighted

by e~", where 7 is the time the heir is born. Thus, recalling that the children
are born at times (&)X, for any event € in the life history,
P(€, and the heir is the 4:th child) = / e8P, (5.34)
£

where for i > N we define & = oo, so e~ % = (. In particular,

q; := P(the heir is the i:th child) = Ee™ 2. (5.35)
Note that (5.34) defines a probability distribution, since the total probability
equals
e} N
Z/ e *NdP=EY e =1 (5.36)
i=17% i=1
by (5.8).

We may give the children of the ancestor another order as in Remark 5.1,
still using (5.34). Note that then (5.34)—(5.35) hold also if we consider the i:th
child in the final order and redefine &; as the birth time of that child; this is seen
by summing over all children and combinations of marks v; that put a certain
child in place 7 at a given time.

The ancestors o*) are given independent copies of this modified life history
distribution, and are put together so that the heir of 0(*) is 0*~1) (with 0(?) = 0);
this also defines recursively the birth times of all o(¥).

Remark 5.22. Let 5 * denote the age of an ancestor when its heir is born. Then
€* has by (5.34) the distribution e~ **u(dt), i.e., the distribution in Remark 5.6.
Its Laplace transform is given by

Ee 5" — / e St y(dt) = fi(a + s) = Eé(a +s), (5.37)
0

cf. (5.34) and (5.6)—(5.7). Assumption (A5) thus says that Ees¢" < oo for some
€ > 0. In particular, £* has a finite expectation

B:=E& = /000 te~* p(dt) < oo. (5.38)
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By (5.37), we also have the formula

_ d -
=R =——Ee™*¢ =7 :
=B = LEc€| — ) (5.39)
and directly from (5.34), or by (5.38),
N
B=E) ge . (5.40)
i=1

Remark 5.23. Let, as in (5.35), ¢; be the probability that the heir in the
ancestor distribution is child 4 (in birth order), and let D = Z([0,7]) be the
degree of the root in 7, which by Corollary 5.20 is the limit in distribution of
the outdegree of a random node in 7,,. By (5.35) and (5.33),

¢ =Ee % =P(D > i), (5.41)

so the two distributions are closely related. Note also that (5.41) implies

ED:iP(D)i):iqizl, (5.42)
=1 =1

so the average asymptotic outdegree is always 1. This should not be surprising;
it just is an asymptotic version of the fact that in a tree with n nodes, there are
together n — 1 children, and thus the average outdegree is 1 — 1/n; see also [1,
Lemma 1].

Remark 5.24. Recall that we may regard the node set of 7 as a subset of
Vs, the node set of the infinite Ulam—Harris tree. Let v € V. By the recursive
definition of the branching process 7; and the memoryless property of the expo-
nential random variable 7, it follows that conditioned on v € T = T=, the subtree
of T rooted at v has the same distribution as 7. In particular, conditioned on
v € T, the outdegree of v has the same distribution as D.

It follows from this and (5.42), by induction, that for every k > 0, the ex-
pected number of nodes in the k:th generation of 7 is 1. In particular, the
expected size E|T| = oo.

Note also that the outdegrees of two different nodes are not independent,
since they both depend on the common stopping time 7; it is easy too see that
for any v, w € Vs, conditioned on v, w € T, the outdegrees deg(v) and deg(w)
are (strictly) positively correlated.

In fact, the properties in this remark except the last one hold for any fringe
distribution in the sense of Aldous [1], see [1, Section 2.1]. However, the positive
correlation of node degrees is not general; in particular, it makes the asymptotic
fringe trees T studied in this paper different from the ones obtained from con-
ditioned Galton—Watson trees, since the latter are just unconditioned Galton—
Watson trees, where all outdegrees are independent, see [1].



Fringe trees, branching processes and m-ary search trees 73

Theorem 5.25 (Jagers, Nerman, Aldous). Under the assumptions (A1)—(A5),

as n — 00, h(v) L5 0 for a random node v € T, and thus each Tk s
well-defined w.h.p.; moreover, the following hold:

(i) (Annealed version.) The extended random fringe tree of T,, converges in
distribution asn — oo to the random sin-tree T defined above, in the sense
(4.14), see Section 4.1.

(ii) (Quenched version.) The convergence in (i) holds also conditioned on T,,
a.s. Equivalently, for every property P of nodes v that depends only on v,
its descendants and the descendants of its ancestors at most a fized number
of generations back, we have if v is a uniformly random node in T,

P@hm?|ﬂ)ngﬁﬂaﬁpﬂ%) (5.43)
Proof. Again, this is a special case of the main results in Jagers and Nerman
[65] and [95], and is at least implicit in Aldous [1], but we give the proof for
completeness.

First consider the case of ordered trees (possibly with labels) with the children
taken in order of birth. Fix a finite tree T' with a distinguished node of depth
k > 0, and let vg - - - v; be the path in T from the root to the distinguished node;
also, let v; be the j;:th child of v;_;. Let P = P(T') be the property of a node v
that it has depth at least k£ and that, if w is its k:th ancestor, the subtree T,
with v as distinguished node, is isomorphic to T. Then np(T;,), the number of
v € T, that have this property, equals the number of w € T, such that IV = T,
i.e., nr(Ty). Thus, by Theorem 5.14,

npr)(Tn) — nr(Th)

= ERPT =T)=P(T=~T). 5.44
T.] T.] TR o4

Construct 7 = 7= as above, and let (i) = &v;,j; be the age of v; when its
distinguished child v;11 is born. The distinguished node vy, is thus born at time
V = Z::Ol §@y- If T= = T, then necessarily 7 > V. Moreover, conditioned on
7 > V, 7T has the same distribution as V + 7" with 7/ ~ Exp(a) and independent
of everything else. Thus, by conditioning on V,

k—1
B(Tr ~T) = E(e™ YTy ~ T} = B(YTv i T} [[ 740, (5.45)
1=0

By shifting the time parameter in 7 by V, so that the distinguished node vy
becomes born at time 0, and recalling that the subtree 7°" has the modified
distribution (5.34) for the ancestors of the distinguished node, we see that (5.45)
equals

) ~
Consequently, (5.44)—(5.46) show that

n Tn a.s. i i

7’(@7)(') asy P(T‘)(’“’ ~T) = ppry(T) (5.47)

for every finite tree with a distinguished node of depth k.
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More generally, for any fixed k& > 0 and any set A of finite trees, each having
a distinguished node of depth k, let P = P(A) := (U 4 P(T) be the property
of a node v that it has depth at least k£ and that T% € A, where w is its k:th
ancestor. Then as in (5.44), by Theorem 5.14 applied to the property T% € A,
and using again (5.45)—(5.46),

npa) (Tn)

T SRR A) = Y BT AT) = Y BT < T)

TeA TEA (5.48)
= [P’(:fo(k) S A) = pfp(A)(%).

In particular, taking A to be the set of all finite trees, P(A) is the property that

h(v) = k and pp(a) (T) =1, so (5.48) shows that for any k, P(h(v) > k) — 1 for
a random node v in Tj,. Since k is arbitrary, thus h(v) 24 50. Moreover, every
property P in (5.43) is of the form P(A) for some k and A, and thus the result
(5.43) follows.

As in Theorem 5.14, the annealed case follows from the quenched case by
taking expectations.

The case of unordered trees follows by ignoring the order.

Finally, if 7; is an ordered tree with the order of children defined by marks
v; as in Remark 5.1, we first fix an integer M and consider 7; and T ordered
by birth order and with each node labelled with the sequence of marks vy, :=
(v;)MAN (in addition to existing labels, if any). (We use a cut-off M in order
to keep the space of labels countable.) We have just shown that (5.48) holds for
any set A of ordered trees with such a label vj; on each node. Since the birth
order and the marks define the true order in the trees, it follows immediately
that (5.47) holds also with the true order in T;, and T, for any tree T' with such
marks and with maximum degree at most M. Since M is arbitrary, it holds with
the true order for any 7', and we may then forget the marks. (For an m-ary tree,
we keep the marks.) Then (5.48) and (5.43) follow as above. O

5.1. An extension to some more general properties

In Theorem 5.25, we consider only properties of a node v that depend only on v,
its ancestors at most a fixed number of generations back, and their descendants.
(Theorem 5.14 is even more restrictive.) In this subsection, we show how this
result can be extended to some properties that depend on all ancestors of v.
A typical example is the property that v has no ancestor with outdegree 1; we
consider this and some related examples in Section 11. (This section can be
omitted at the first reading.)

Theorem 5.26. Let Py and Q be two properties of a node v in a tree, such that
both Py and Q depend only on v and its descendants. Let P be the property of a
node v that v satisfies Py but no ancestor of v satisfies Q. Suppose, in addition
to (A1)—(Ab), that

EE(a)? < oo (5.49)
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and that if A :=sup{t:T; € Q}, then
Ee’? < oo (5.50)

for some § > 0.
Then, as n — oo, if v is a uniformly random node in T,,

n (Tn) a.s, ~
TTnI == pp(T). (5.51)

P(v has P | T,) =

In other words, (5.43) holds also for properties P of this type, although they
are not covered by Theorem 5.25.

Remark 5.27. The assumption (5.50) entails A < oo a.s.; moreover, (5.50) is
equivalent to assuming P(A > t) = O(e%") for some (possibly different) § > 0,
and thus to

P(T, € Q for some u > t) = O(e™"). (5.52)

In the examples in Section 11, the property Q is (or can be taken as) de-
creasing in the sense that if it holds for some rooted tree 7', then it holds also
for every subtree with the same root; hence if @ holds for 7, with u > ¢, then
it holds for T, so (5.52) can be simplified to

P(T: € Q) = O(e™). (5.53)

Before the proof, we give a lemma.

Lemma 5.28. Suppose that (A1)~(A5) and (5.49) hold. Let Q be a property of
rooted trees such that (5.52) holds for some 6 > 0. Then there exists n > 0 and

a < oo such that
1

7 SITEMTY € QF 2 a. (5.54)

vET:

Proof. The left-hand side of (5.54) equals Z7/|T;|, where ¢(t) is the character-
istic given as in Remark 5.10 with

¢o(t) = |Ti|"""U{T; € Q). (5.55)

The result thus follows from (5.5), provided we can choose > 0 such that (A6)
holds for this ¢.
To verify (A6), we first note that (5.49) (together with the other conditions)
implies
E|T;|> < Cre*, (5.56)

for some Cy < oo, see [64, Theorem 6.4.3 with Note or Theorem 6.8.1] or [65,
Theorem 3.5].
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If 0 < p < 1, we thus have by (5.55), Holder’s inequality, (5.56) and (5.52),

E sup et(bo Z E sup (e %o (t))

t>0 n<t<n+1

o0

< Z e_O”IE(\EJrﬂH"l{'E € Q for some u > n})
n=0
< Z e (E |7;l+1‘2)(1+n)/2 (P(T. € Q for some u > n))(l_n)/2 (5.57)

< Z o C’ eza(n+1))(1+n)/2 (026—5n)(1_77)/2
=C4 Z en(*9+a(1+n)*5(1fn)/2),
n=0

which is finite provided
(I+na<0+6(1—mn)/2. (5.58)

If 0 < n < min(d/4e, 1/2), then na < §/4 < §(1 —n)/2, and thus there exists
0 < « such that (5.58) holds; hence the sum in (5.57) is finite and (A6) holds,
which completes the proof. O

Proof of Theorem 5.26. For each integer M, let Py; be the truncated property
“v satisfies Py but no ancestor at most M generations before v satisfies Q.”
Then Py, is covered by Theorem 5.25, so

7nP|MT(i|Fn) 25 ppy (T) (5.59)

as n — oo, for each M. Since P is the intersection of the decreasing sequence
of properties Py, it is clear that pp,, (T) — pp(7T) as M — oco. Furthermore,
np(T:) < np,, (T;) and for any n > 0, writing w < v when w is an ancestor of v,

np,, (Tt) — np(Tr) < Z Z 1{w < v,h(w) < h(v) — M and T;* € Q}

vET: wET:
< Z Z 1{|7;w| > M and 7;11) c Q}
wET; v>w
= > (¥ - DT > M and T,* € Q}
weTy
<MY T MTY € Q). (5.60)
weT:

By Lemma 5.28 we can choose 1 > 0 and a such that (5.54) holds. Then for any
M, by (5.60) and (5.54), a.s

T,) — np(Ty . _
lim sup 7Py (Tn) = np(Tn)| < limsup Inp,, (Tt) —np(T:)|
n—oo ‘Tn| 00 ‘7”

<M a. (5.61)
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Consequently, using also (5.59), a.s.,

|n73M (Tn) —np (Tn)|

Tn =t .
lim sup np(Tn) pp(T)’ < lim sup

n—oo | |Tnl n—ro0 Tl
+limsup MMT*T(JT") = ppo (T)| + [ppn (T) = 22 (T))|
<M+ 0+ |pp, (T) — pp(T)|- (5.62)
The right-hand side tends to 0 as M — oo, and the theorem follows. O

6. Examples with uniform or preferential attachment

We begin with a few standard examples, where we repeat earlier results by
other authors, together with some new results on the limiting sin-trees. In all
examples in this section, |T,,| = n, so we stop the branching process using the
weight ¢ (t) = 1 as in Example 5.3. Since this weight is bounded, (A6¢) holds
trivially.

Example 6.1 (random recursive tree). An important example, considered al-
ready by Aldous [1], is the random recursive tree. This tree, usually considered
as an unordered rooted tree, is constructed recursively by adding nodes one by
one, with each new node attached as a child of a (uniformly) randomly cho-
sen existing node, see [40, Section 1.3.1]. It is easy to see, by the memoryless
property of the exponential distribution, that the random recursive tree with n
nodes is the tree T,, defined in Section 5 for the branching process where each
individual gives birth with constant intensity 1, i.e. with independent Exp(1)
waiting times between births, and weight function ¢ (¢) = 1 as in Example 5.3.
In other words, the point process Z describing the births of the children of an
individual is a Poisson process with intensity 1. This branching process (or just
the sizes (|T¢])e>0) is often called the Yule process, so the process (7;); of trees
is called the Yule tree process [1]. Note that Yule process formed by the size |T;|
is a pure birth process where the birth rate \,, = n, see Example A.3.

We will need some notation. Let X; := §; —&;—1 (with & := 0) be the waiting
times between the births of the children of a given individual. Thus X; are i.i.d.
Exp(l), and § = 375, X; ~ I'(,1) has a Gamma distribution.

The intensity measure u is Lebesgue measure on [0, 00), so

o0 1
ao) = / e dt = 7 6 >0, (6.1)
0

and (5.4) holds with a = 1. The conditions (A1)—(A5) are trivially verified.

As shown by Aldous [1], the limiting fringe tree 7 = 7= can also be described
as a random recursive tree with a random number M nodes, where

1

P(M =n) = m,

n>1. (6.2)
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In fact, by symmetry, if M = |T| and we condition 7 on M = n, we get a
random recursive tree on n nodes. Moreover, if we at some time have n > 1
individuals in the branching process, then a new child is born with intensity
n, while the process stops (at 7) with intensity 1, so the probability that the
process continues With at least one more individual is n/(n+1). In other words,
P(M >n+1) =25 P(M > n), and thus by induction P(M > n) = 1/n and
(6.2) follows. (For an alternative argument, see Example 6.4 below.)

As noted by [1], various results for the random recursive tree T, now follows
from Theorem 5.14. For example, the asymptotic distribution of the size of a
random fringe tree is given by (6.2). Furthermore, the asymptotic distribution of
the outdegree of the nodes in T}, equals by Corollary 5.20 the distribution of the
root degree D in T, which is geometric Geg(1/2) as an immediate consequence
of (5.33). (See (6.3) below and (5.41).) See Section 10.2 for yet another example.

In order to construct the random sin-tree 7~', which enables applications of
Theorem 5.25 on the extended fringe, we have to find the distribution of the life
history of the ancestors, given by (5.34). Consider an ancestor and denote its
successive birth times by EZ-, i>1,and let X; == 52 fl 1 (with 50 = 0) be the
succesive waiting times. Furthermore, let = be the point process of all births of
children of this ancestor (thus Z =}, dz ) and let J be the number of the heir
(in birth order). Then, by (5.35),

. J ,
P(J=j)=Ee % =Ee 21X =[[Ee X =277, j>1.  (63)
i=1

Thus J has the (shifted) geometric distribution Ges (1/2). Moreover, conditioned
on J = j, the joint density of (X1,...,X,,), for any m > j, is by (5.34)

m m

P(J Rt He_ml = HQ@‘QZ’ H e % (6.4)

=741

Consequently, conditioned on J = j, the waiting times X between the births
for an ancestor are independent, with X; ~ Exp(2) for i < J and X; ~ Exp(1)
for i > J. B

We claim that we can describe = in a simpler way as a Poisson process =
with intensity 1, plus an extra point Z ~ Exp(1), independent of =, with Z the
heir. To see this, note that with this description, the first point of = is either the
first point of Z or Z; these two first points are both Exp(1) and independent,
so the first point )~(1, which is the smallest of these two points, will be Exp(2).
Furthermore, with probability 1/2, this point is the heir Z, so J = 1, and then
the rest of the process is E, with independent Exp(1) waiting times. And with
probability 1/2, X 1 comes from =, and then the whole process repeats from X 1
so the next waiting time )?2 ~ Exp(2), and so on. A simple induction shows
that this yields both the distribution of J in (6.3) and the right conditional
distribution of ()?1)‘1’0 given J = j for each j, which proves the claim.
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In particular, an ancestor’s age §~* when its heir is born has distribution
Exp(1), which also follows directly from Remark 5.22. As a consequence, § =
E&* =1, cf. (5.38) and (5.39).

We can thus describe the random sin-tree 7 as follows: First construct an
infinite chain of ancestors o), 0(?), ... of o (backwards in time), with the times
between their births i.i.d. Exp(1); in other word, (0(®))>; are born according
to a Poisson process with intensity 1 on (—oc0,0). Then grow independent Yule
tree processes from all o*)| k > 0. Finally, stop everything at 7 ~ Exp(1). (Cf.
Aldous [1, Section 4], where the description is less explicit.) For an application,
see Theorem 11.6.

Example 6.2 (binary search tree). Another important example studied by
Aldous [1] is the (random) binary search tree. This is the case m = 2 of the
m-ary search tree in Section 3, but it is simpler than the general case, so we
treat it separately, using a slightly different but equivalent formulation. (Since
each (internal) node has exactly one key, the number of keys equals the number
of nodes, and we can ignore the keys completely.)

The binary search tree can be grown recursively as follows. (See e.g. [40]
for other, equivalent, constructions.) Start with a single node. Since we grow a
binary tree, each node may have a left child and a right child. When the tree has
n nodes, there are n+ 1 empty places for children (these places are the external
nodes in the description in Section 3). The tree grows by adding a node to one
of these n + 1 places, chosen uniformly at random. Similarly as in Example 6.1,
it is easy to see that the binary search tree is the tree T,, produced by the
branching process where each individual has two children, labelled left and right
and born at age £ and &g, say, with £ and &g both Exp(1) and independent;
furthermore we use again the weight function ¢ (¢) = 1 as in Example 5.3. (This
continuous-time branching process seems to have been first used to study the
binary search tree by Pittel [101], who considered the height and saturation
level, see Section 13.)

We thus have N = 2. Since each child is born with the density function e™*,
the intensity measure p of = has density 2e~*. Thus

-~ > —bx—x 2
1(0) 7/0 2e dz = 36 0> -1, (6.5)
and (5.4) holds with the Malthusian parameter v = 1. The conditions (A1)—(A5)
are trivially verified.

Note that if we order the children in order of birth as usual, then & =
min (&L, &r), and thus & ~ Exp(2), while the waiting time 3 — &; for the second
child is Exp(1) and independent of &;.

We see also that the size |T;| grows as a pure birth process with birth rate
An = n+1, see Appendix A. Equivalently, |7¢| + 1, which can be interpreted as
the number of external nodes, is a pure birth process with rate A\, = n, i.e., the
Yule process in Example A.3, and in Example 6.1, but started at 2 instead of 1.

As shown by Aldous [1], the limiting fringe tree 7 = 7+ can be described as
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a binary search tree with a random number M nodes, where

2

P =)= G D v 2y

n>1; (6.6)

cf. the similar result (6.2) for the random recursive tree. To see this we argue
as in Example 6.1; the difference is that when there are n individuals, there
are now n + 1 places to add a new node, and thus n + 1 independent Exp(1)
for these, competing with the random time 7 that stops the process; hence the
probability of adding another node is (n + 1)/(n + 2) and thus by induction
P(M > n) = 2/(n+ 1) and (6.6) follows. (For an alternative argument, see
Example 6.4 below.)

By Theorem 5.14, the asymptotic distribution of the size of a random fringe
tree is given by (6.6). Another simple calculation in [1] shows that the asymptotic
distribution of the outdegree of the nodes in T}, which by Corollary 5.20 equals
the distribution of the root degree D in T, is uniform on {0, 1,2}, see (5.33).
This can also be seen without calculation: & ,£r and T are three i.i.d. Exp(1)
random variables, so the three events that 7 is the smallest, the middle, or the
largest of these three have by symmetry all the same probability 1/3. These
events equal the events that the root in T has degree 0,1, 2.

To find the random sin-tree 7, note that by the comments after (5.34)—-(5.35),
(5.34) holds also when taking the children in order left-right. For an individual
in T, the pair (£ ,&Rr) has the density function e~®-~%%k. For an ancestor, the
probability that the heir is the left child is 1/2 (by symmetry or by (5.35)),
and it follows that conditioned on the heir being the left child, the pair (£, &gr)
has the density function 2e~"te™"t=%r = 2672IL671R.~IH other words, for an
ancestor, given that the heir is the left child, the age £* when the heir is born
is Exp(2) and the age when the other child is born is Exp(1), and these two
ages are independent. The same holds given that the heir is the right child. In
particular, £* ~ Exp(2) and thus 8 = E£* = 1/2, cf. Remark 5.22.

Consequently, the random sin-tree T can be described as follows, cf. the case
of the random recursive tree in Example 6.1: First construct an infinite chain of
ancestors o), 0, ... of o (backwards in time), with the times between their
births i.i.d. Exp(2); in other word, (o(*));>; are born according to a Poisson
process with intensity 2 on (—o0,0). Moreover, make a random choice (uniform
and independent of everything else) for each ancestor to decide whether its heir
is the left or right child. Then grow independent binary tree processes at all
empty places (external nodes), with independent Exp(1) waiting times for all
new nodes. Finally, stop everything at 7 ~ Exp(1). (Applications are given in
Section 11.)

Example 6.3 (general preferential attachment trees). We can generalise the
preceding examples as follows, see Rudas, Téth and Valké [105] and Rudas and
T6th [104] where this example is studied using the branching process method
described here; see also Bhamidi [10]. The branching process below was also
earlier used by Biggins and Grey [15] to study the height of these trees. Moreover,
the method has been generalized by Deijfen [28] to a class of random trees
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where vertices also may die. We give only a summary and some complements,
in particular on sin-trees. Some special cases are treated in Examples 6.4-6.8
below, see in particular Example 6.6; these cases have been studied by many
authors, using various methods. (Further references are given below, but we do
not attempt a complete history.)

Suppose that we are given a sequence of non-negative weights (wy )2, with
wop > 0. Grow a random tree T;, (with n nodes) recursively, starting with a
single node and adding nodes one by one. Each new node is added as a child of
some randomly chosen existing node; when a new node is added to T,,_1, the
probability of choosing a node v € T),_1 as the parent is proportional to wg+ (.,
where d* (v) is the outdegree of v in T},_1. (More formally, this is the conditional
probability, given T;,_; and the previous history. The sequence (T;,)22; thus
constitutes a Markov process.) If we want the trees T, to be ordered trees, we
also insert the new child of v among the existing d*(v) children in a random
position, uniformly chosen among the d*(v) + 1 possibilities.

The random recursive tree in Example 6.1 is the special case wy =1, k >
and the binary search tree in Example 6.2 is the special case with wy =
wy = 1 and wg, = 0, k > 2 (and, furthermore, each first child randomly assigned
to be left or right).

Note that we require wy > 0 (and w; > 0 will be implicitly assumed, as a
consequence of (6.12) below), but we allow w,,, = 0 for some larger m, as in the
example of the binary search tree. In this case, no individual will ever get more
than m children; in fact (provided m is chosen minimal), N = m a.s. In this
case, the weights wy,+1,Wm42,... are irrelevant, so it suffices to prescribe wy
for k < m. (In this case, we interpret 1/w,, = co below, and the infinite sums
in (6.11) become finite. We leave such obvious modifications to the reader.)

In some important examples, for example Example 6.6 below, wy is a strictly
increasing function of k, which means that nodes with a high degree are more
likely to attract a new node than nodes with a low degree; hence the name
preferential attachment, which comes from Barabdsi and Albert [6] where this
type of model was introduced (in a more general version, in general yielding
graphs and not trees), see Example 6.6. The tree version of their model had
been studied earlier under a different name by Szymanski [107] and others, see
Example 6.5. The model with general wy was considered by Méri [92].

As in the examples above, the tree T, can be constructed by a branching
process as in Section 5, again with weight ¥(¢) = 1 and taking the birth times
& = Z;‘:1 X, now with the waiting times between births X; = & — &§;_1 ~
Exp(w;_1) and independent. In other words, the stochastic process =([0,¢]),
t > 0, (i.e., the number of children of a given individual born up to age t) is
a pure birth process, starting at 0 and with birth rate w; when the state is k.
(See Appendix A.)

Let £oo i=1lim,, o0 &, = Z;i1 X; € (0,00]. Then

0,
2,
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We distinguish between two cases, depending on whether this sum is finite or
not.

In the explosive case,
o0

1

Eéo kZ:O o <o (6.8)
Thus £ < 00 a.s., i.e., an individual will have an infinite number of children in
a finite time (the point process = explodes). In this case, the branching process
will explode in finite time, and several of the assumptions in Section 5 fail.
Nevertheless, this case can be treated separately. It turns out that the random
fringe tree T)¥ is asymptotically degenerate and w.h.p. consists of a single node
only, i.e., |T) -5 1, see Theorem 6.11 below. (Equivalently, the proportion
of leaves in the tree T,, tends to 1.) The case wx = (k + 1)P for some p > 1
is studied by Krapivsky, Redner and Leyvraz [81], Krapivsky and Redner [80]
and (rigorously and in detail) by Oliveira and Spencer [98], who show that if
p > 2 (but not if 1 < p < 2), the random tree process Ty, n > 1, is even more
strongly degenerate: a.s. there exists a (random) ng and a node v € T,,, such
that all nodes added after time ny become children of v (and thus remain leaves
forever). See also Athreya [3].

In the sequel we consider the non-explosive case

=1
Y — =c. (6.9)
Wk
k=0
In this case, by (6.7), E{,, = o0; moreover, it is easy to see that &, =
lim,,_,~ &, = 0 a.s., for example by calculating
A 1
e Mo =[Ee ™ = =] —F+=0 6.10
H ‘ H/\—ka kl;[()l%-)\/wk (6.10)

for any A > 0, see [3]. Hence, an individual has a.s. only a finite number of
children in each finite interval, i.e., Z([0,¢]) < oo for every ¢ < oo. Furthermore,
using (5.7),

e o n oo n—1
A)=E) e % = Ee "% = (6.11)
; ;H nzlkl_[() 1+9/wk

We assume that there exists 6 > 0 such that 1 < 1(0) < oo, i.e.,

1<ZH1+9/wk 0. (6.12)

n=0 k=0

(This is also easily seen to imply (6.9).) This implies, by dominated convergence,
that A — fi(A) is continuous on [6, 00|, with fi(co) = 0, and thus there exists
a > 6 such that fi(a) = 1. Hence the assumptions (A4) and (A5) hold. The
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remaining assumptions are trivially satisfied, and thus Theorems 5.14 and 5.25

apply.
The asymptotic degree distribution is by Corollary 5.20 and (5.33) given by

7 i—1
P(D > i) = Ee o = —aX; _ il

(Dzi)=EFEe HE@ i Hwara (6.13)

7j=1 k=0

and thus
w;
= = >1) — > = —
P(D=i)=P(D>i)—P(D>i+1) ( W+Q)MD/®

(6.14)

i—1
o |
wi+ozk_0wk+a'

This can also be seen as an example of Theorem A .4.

To describe the life of an ancestor, let & be the event that the heir of
the ancestor is child i. We note first that if we fix M < oo, then in the
point process £, the waiting times X1,..., X3; have the joint density function
Hj]\/il w;—1e”"i-1%i It follows from (5.34) that for any ¢ and M with 1 <i < M,

conditioned on &, the waiting times (X )L, between the M first children of
the ancestor have a joint density function that is proportional to

_ M i M
e 5=1 7 H e Wi—1%5 — H e~ (Wwj—1t+a)z; H e~ Wi-1T5 (6.15)
j=1 j=1 j=it1
Furthermore, by (5.41) and (6.13) (or by tracking constants in the argument

just given),
i—1

g =PE)=]]

k=0

Wk

, 1> 1. (6.16)
Wy + «

Consequently, the point process = describing the births of the children of an an-
cestor can be constructed as follows: Select the number I of the heir at random,
with the distribution (6.16). Then, conditioned on I = i, let the waiting times
X ; be independent exponential variables, with X ;i ~ Exp(w;j—1 + a) for j <
and X; ~ Exp(w;_,) for j > i.

The limiting random sin-tree T then is constructed as in Section 5.

In Examples 6.1 and 6.2, we have seen alternative, simpler, constructions of
. This will be extended to the linear case in Example 6.4 and Theorem 6.9, but
it does not seem possible to extend it further. In particular, we show in Theo-
rem 6.10 that the age £* when the heir is born has an exponential distribution
only in the linear case. See also Example 6.8 for a simple non-linear example.

[1]

Example 6.4 (linear preferential attachment). The simplest, and most studied,
case of preferential attachment as in Example 6.3 is the linear case

wy, = xk +p, (6.17)
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for some real parameters y and p, with p = wy > 0. Note that we obtain the
same random trees T,, if we multiply all wy by a positive constant. (In the
branching processes, only the time scale changes.) Hence, only the quotient x/p
matters, and it suffices to consider x € {1,0, —1}.

The case x = 0 is the (non-preferential) random recursive tree in Example 6.1.
(In this case p is irrelevant and we take p = 1.)

The case x = 1 (the increasing case) is studied in Example 6.6.

In the case x = —1, so wy = p — k, wy, is eventually negative. This is im-
possible, and violates our basic assumption in Example 6.3. However, this is
harmless if (and only if) p = m is an integer; then w,, = 0 and, as said above
in Example 6.3, the values wy, for k > m do not matter. This is the m-ary case
studied in Example 6.7; the binary search tree in Example 6.2 is the special case

We continue with some results valid for any linear weight (6.17), and refer to
Examples 6.1, 6.6 and 6.7 for further results for the different cases y = 0,1, —1.

Since Z([0,t]) is a pure birth process with a rate that is a linear function
xk + p of the current state k, and with initial value 0, it is easy to see, see
Theorem A.6, that the expectation E=Z([0,t]) = p(t) is given by

L2 (ext — 1 ) Oa
u(t) = xle ) Xf (6.18)
pt, x=0.
Hence, 11 has density peX! (also when y = 0), cf. (A.15), and thus
() = / peXt =0t dt = L, 0> x. (6.19)
0 0 —x

It follows that (6.12) holds, and that (5.4) holds with
a=x+p=uw. (6.20)

(Alternatively, (6.19) can be verified algebraically, see (6.30) and (6.41) below.)

By Remark 5.22 and (6.20), the age ¢€* when an heir is born to an ancestor
has density e~ u(dt) = e~ peXt dt = pe~P! dt; thus £* has an exponential dis-
tribution Exp(p). (This also follows from (6.19) and the formula for the Laplace
transform in Remark 5.22.) As a consequence, generalizing the values of 8 found
in Examples 6.1 and 6.2,

B=E& =p ' =uwyt. (6.21)

We claim that the life history = of an ancestor can be described as follows
(as a simpler alternative to the general construction in Example 6.3), cf. the
special cases in Examples 6.1-6.2; we postpone the proof to Theorem 6.9 below:
For an ancestor, the ordinary children are born according to a point process
=’ which is a pure birth process, with birth rate wgy; = wyp + x when the
state (number of ordinary children so far) is k, and the heir is born at an age

E* ~ Exp(p), independent of ='. Consequently, the limiting random sin-tree T



Fringe trees, branching processes and m-ary search trees 85

can be constructed as follows, generalising the constructions in Examples 6.1—
6.2: First construct an infinite chain of ancestors o1, 0(?), ... of o (backwards in
time), with the times between their births i.i.d. Exp(p); in other word, (o)),
are born according to a Poisson process with intensity p on (—o0,0). Give each
ancestor additional children according to independent copies of Z' (where the
intensities are shifted from Z, as said above). Then, every other individual gets
children according to independent copies of =. Finally, stop everything at 7 ~
Exp(a) = Exp(x + p).

The linear case (6.17) treated in this example is simpler than the general case
in Example 6.3 in several ways. For example, we have shown that the age E*
when the heir of an ancestor is born has an exponential distribution, and (as
said earlier) it will be shown in Theorem 6.10 that this holds only in the linear
case. An important reason (perhaps the main reason) that the linear case is
simpler is that the total weight in a tree depends only on the size of the tree: if
|T'| = n, then the total weight of the nodes in T', which we may label by 1,. .., n,
is

n

> wary = Y (xd(i)+p) = x Y dT(i)+np = x(n—1)+np = na—x. (6.22)
i=1 =1 =1

This property has several important consequences. First, it follows (as remarked
for the random recursive tree and the binary search tree above) that if M = |T|
and we condition 7 on M = n, we get the random tree T),. (The property called
coherence by Aldous [1, Section 2.6].) The distribution of M can be found by
the same argument as for the random recursive tree in Example 6.1, which now,
using (6.22) and (6.20), yields

_ P p
]P(M>n)_n0‘_x_ (n—Da+p (6.23)
and hence
—n) = pa _ o
P(M =n) (n—1Da+p)(na+p) nm+r—1Dn+k) (6.24)
with

k=L =2 70 (6.25)
a  x+tp w
Consequently, 7 can be described as the random tree T); with a random size
M given by (6.24).

An alternative way to see (6.24) is to note that (6.22) implies that the size
Zy = |Ti| of the branching process is a pure birth process with birth rates
An = na—x =n(x+p)—x, and thus |T;| — 1 is a pure birth process with birth
rates A, = (n+ 1)a — x = na + p. (The special case x =0, p = 1, when |T;] is
a Yule process, was noted in Remark 6.1.) Theorem A.5 shows that

IT| —1=|T#| =1 ~HG(p/a,1; (p+ @) /a+ 1) = HG(k, 1;k +2),  (6.26)
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which by (B.3) and (B.5), or simpler by (B.10), yields (6.24). Note also that The-
orem A.7 shows that the size |T¢| at a fixed time, minus 1, has a negative binomial
distribution.

Furthermore, (6.22) implies that if we label the nodes of T, by 1,...,n in
the order they are added to the tree, so that T, becomes an increasing tree
(or recursive tree [40, Section 1.3]), then the probability that T,, equals a given
ordered increasing tree T' (with |T| = n) is, by the definition and a simple
rearrangement,

n dt(i)—1
L= (d%(z)' [Ti—o’ ™ we)
n—1,/.
Hj:l (ja —x)
d—1

which is proportional to H?zl Ga+ (i) With ¢g = % w—o Wk Hence T, has the
distribution of a simply generated random increasing tree [40, Section 1.3.3],
with weight sequence ¢4 = % Z;é wg. Conversely, a simply generated random
increasing tree can be generated by a random evolution where nodes are added
one by one only when its weight sequence is of this form, for some wy, of the
form (6.17) [82], [100]. (Such trees are called very simple increasing trees in
[82], [100].) In other words, the random increasing tree generated by a general
sequence of weights wy, (as in Example 6.3) is a simply generated increasing tree
if and only if the weights are of the linear type (6.17). (I.e., we are in the case
of the present example.)

Finally, (6.22) is very useful when using martingale methods (which we do
not do in the present paper).

(6.27)

Example 6.5 (plane oriented recursive tree). A random plane oriented recur-
sive tree, introduced by Szymanski [107], is constructed similarly to the random
recursive tree in Example 6.1, but we now consider the trees as ordered; an
existing node with £ children thus has k + 1 position in which a new node can
be added, and we give all possible positions of the new node the same proba-
bility. The probability of choosing a node v as the parent is thus proportional
to d*(v) + 1, so the plane oriented recursive tree is the case wy = k + 1 of Ex-
ample 6.3. This is the special case x = p = 1 of Example 6.4, and thus the
special case p = 1 of the following example (Example 6.6), where some results
and further references are given.

Example 6.6 (positive linear preferential attachment). Consider the case y = 1
of (6.17), i.e.,
w =k + p, k>0, (6.28)

where p > 0 is a parameter.

Thus, wy, is a strictly increasing function of k, so this is a model with preferen-
tial attachment as mentioned in Example 6.3. This is a popular model, that has
been studied by many authors (often by methods different from the branching
processes used here). The original preferential attachment model by Barabdsi
and Albert [6] was the case p = 1, so wy = k + 1; thus the probability of at-
taching a new node to an existing node v is proportional to d*(v) + 1 = d(v),
the total degree of the node (except for the root). As said above, trees of this
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type had earlier been studied by Szymaniski [107]. (Barabési and Albert [6] con-
sidered a more general model where a new node may be attached to more than
one existing node, thus creating graphs that are not trees. We only consider the
tree case here.) Bollobds, Riordan, Spencer and Tusnddy [17] made a precise
formulation of the definition, and found (and proved rigorously) the asymptotic
degree distribution (in the general, graph case). See also van der Hofstad [58
Chapter 8|, with many details and references. The tree model with a general
p was studied by Mori [92]. See also Athreya, Ghosh, and Sethuraman [4] for
an extension with multiple edges, treated by an extension of the methods used
here. Rudas, T6th and Valké [105] and Rudas and Téth [104] also used the
branching process method described here.
In the case (6.28), (6.11) becomes a hypergeometric series

oo n—1

k+p
1ip+6;1 6.29
0=3 1L = Floto o) - (6:29)

where F' is a hypergeometric function, see (B.1) in Appendix B; the series con-
verges for § > 1, and then (6.29) and (B.2) yield
T(p+0)T'(0—1) p+0—1 p

O =r,vo-1re T o1 tTgor (630

as we have seen by another method in (6.19). Consequently, or by (6.20), the
Malthusian parameter is
a=p+1 (6.31)
The asymptotic degree distribution is by (6.13)—(6.14) and (6.31) given by
o 1:[1 k+p T2+ DI+ p)
k+2p+1 T(p)l(i+2p+1)’

i>0, (6.32)

_(p+DI(2p+ 1I(i 4 p)
T +2p+2)

. i>0.
(6.33)

This is the hypergeometric distribution HG(p, 1;2p+2), see Definition B.1. (This
also follows from Theorem A.5, using Example A.1 and (6.31).) This degree
distribution has a power-law tail: (6.33) implies, see Theorem B.7,

P(D =) ~ c(p)i~ "2, as i — 0o, (6.34)

for the constant c(p) = (p + 1)I'(2p + 1)/T'(p), as shown by Méri [92]. (Note
that this power-law is quite sensitive to the choice of wy, with the exponent
depending on the constant term p in (6.28).)

In the special case p =1, D ~ HG(1, 1;4) and (6.33) becomes

4

PO =)= G300 73)

i>0, (6.35)
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found by Szymanski [107] (showing the annealed version); see also Mahmoud,
Smythe and Szymanski [89], Lu and Feng [84], Bollobds, Riordan, Spencer and
Tusnddy [17] (quenched version), and Janson [68].

By (5.41) and (6.32),

i—1

1—2
. k+p P E+p+1 .
i =P(D =) =[] = >1,  (6.36
¢ =P(D >1) 9,1 z+2pkl;lok+2p+1 ’ (6.36)

which in the special case p = 1 simplifies to

2

T (6.37)

q; =
Again using Definition B.1, this says that if I is the index of the heir of an
ancestor, then I —1 ~ HG(p+ 1,1;2p + 2).
The limiting random sin-tree is given by the construction in Example 6.4.

Example 6.7 (m-ary increasing tree, negative linear preferentialattachment).
We may generalise the binary case Example 6.2 and grow a random m-ary tree
as follows, for any m > 2. This is sometimes called an m-ary increasing tree.
Note that for m > 2, this will not give the m-ary search tree defined in Section 3.
(One difference is that we here fix the number of nodes to be n, while the m-ary
search tree has a random number of nodes, but this is a minor technicality,
see Remark 7.1. A more essential difference is seen in the asymptotic degree
distribution D, see Theorem 7.14)

Start with a single node. Let each node have m positions for children, labelled
1,...,m. Add each new node to an empty child position in the tree, chosen
uniformly at random. (We may, as in Section 3, regard the empty child positions
as external nodes.)

Since a node with outdegree d has m — d empty positions for children, this
is an instance of the general preferential attachment in Example 6.4, with

wg =m — k, k=0,...,m. (6.38)

This is thus the case x = —1 of the linear case in Example 6.4 (with p =m), so
all results there hold. In particular, by (6.19)-(6.20), u has density me™*,
m
pd) = — 6.39
o) = 5 (6:39)
and
a=m—1. (6.40)

Also in the case (6.38), (6.11) becomes a hypergeometric series; in this case
we obtain, cf. (6.29) and (B.1),

oo n—1

~ m—k
1(0) = Z H m_kt0 o Fi(—m,1;—m —6;1) — 1. (6.41)
n=1 k=0
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(This is a case where the hypergeometric series is finite.) Gauss’ formula (B.2)
yields another proof of (6.39).
The asymptotic degree distribution is by (6.13)—(6.14) and (6.40) given by

N om—k o om!(2m—1—-49)! (2";:_1171.)
PD > = kgo 2m—1—k  (2m—Dl(m—d)! (")) (6.42)
and thus
. 2m—2—i
P(D =)= (m(273l)ﬁ1'1()?7(7:n_22)' 2 - ((221_—?1)) ) 1=0,...,m. (6.43)

Thus, using Definition B.1 or Remark B.2, D has the hypergeometric distribu-
tion HG(—m, 1,2 — 2m). (Again, this also follows by Theorem A.5 and Exam-
ple A.1.) Note that the distribution (6.43) is the same as the distribution of balls
in a given box when m indistinguishable balls are distributed in m distinguish-
able boxes, with all distributions having the same probability (Bose—Einstein
statistics, see Example B.12); equivalently, it is the distribution of the first term
in a random composition of m into m (possibly empty) parts.

It follows easily from (6.43) that as m — oo, the distribution of D converges
to the Geometric distribution Geg(1/2), which is the distribution of D for the
random recursive tree. (Cf. [69, Example 12.2 and Theorem 11.7].)

The point process = contains m points, with successive exponential wait-
ing times with rates m, m — 1, ...,1. As is well-known, this process can also
be constructed by taking m ii.d. &,...,&, ~ Exp(1) and ordering them as
& < - < &y Since the construction of the m-ary tree also involves randomly
labelling the children, it follows that if & denotes the age when child at position
i is born, then &, ..., &, are i.i.d. Exp(1). The growing tree 7; is thus the sub-
tree of the (rooted) infinite m-ary tree, where each child of each node is born
after an Exp(1) waiting time (with all these waiting times independent).

Similarly, for an ancestor, the process =’ of its ordinary children described
in Example 6.4 and Theorem 6.9 simply consists of m — 1 i.i.d. Exp(1) points.
Furthermore, the age £* when the heir is born is Exp(m) and independent of Z'.
Consequently, the description of the limiting random sin-tree T in Example 6.4
can be simplified as follows, cf. the binary case in Example 6.2: Construct an
infinite chain of ancestors o), 0(?), ... of o (backwards in time), with the times
between their births i.i.d. Exp(m); in other word, (0(®))> are born according to
a Poisson process with intensity m on (—oo, 0). Moreover, make a random choice
(uniform and independent of everything else) for each ancestor to decide which
of its m children that is its heir. Then grow independent m-ary tree processes
at all empty places (external nodes), with independent Exp(1) waiting times for
all new nodes. Finally, stop everything at 7 ~ Exp(m — 1).

The examples above are all cases of Example 6.3, and all except the gen-
eral Example 6.3 itself are special cases of Example 6.4. We have seen that in
the latter cases, the age £* when the heir is born to an ancestor has an expo-
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nential distribution, and is independent of the births of the other children. We
give a simple example showing that this is not always the case.

Example 6.8 (Binary pyramids). Let wg = w; = 1 and wy, = 0 for & > 1. Thus
no node ever gets more than 2 children, and we can regard the result as a binary
tree by randomly labelling children as left or right as in Example 6.2, but the
difference is that we here have wg = wi; hence, when adding a new node, the
parent of the new node is chosen uniformly among all existing nodes with less
than 2 children. (I.e., as in Example 6.1 but with a cut-off at 2 children.) This
random tree was called a binary pyramid by Mahmoud [86] who studied their
height. (The name comes from pyramid schemes for chain letters, see Gastwirth
and Bhattacharya [51]. As said in [86], the definition can be generalized to an
arbitrary cut-off m > 2; we leave this case to the reader.)

We have & = X7 ~ Exp(1) with density e™® and & = X7 + X2 ~ I'(2,1)
with density xe~”. Hence, the intensity p has density (1 4+ z)e™® and Laplace
transform, by (5.7) or (6.11),

. 1 1
o) = 110" (14 6)2’

6> —1. (6.44)

Hence (5.4) is satisfied with o = (v/5 — 1)/2 (the inverse golden ratio). By Re-

mark 5.22, the age & when an heir is born has the density (1 4 t)e~ (1)t =

(1+t)e2(V5+Dt and thus, or by (5.39), 8 =E&* = (3v/5 — 5)/2.
Furthermore, by (5.35),

n=1/14+a)=a=(5-1)/2, (6.45)
p=1/1+a)2=a*=1-a=(3-5)/2. (6.46)

Thus, by (5.34), é, describing the life history of an ancestor, can be described
as a mixture: with probability ¢ = (v/5 — 1)/2, an heir is born at age & ~
Exp(1 + «), and then another child is born after an independent waiting time
§~2 — §~1 ~ Exp(1); with probability 1 — ¢y, first another child is born at age
21 ~ Exp(l 4+ @), and then an heir is born after an independent waiting time
E— & ~ Exp(1 + «). We obtain also, by this or directly from (5.34), the joint
density f(x,y) of the ages when the ordinary child and the heir is born as

efocfwy7 0< y<uz,
- 6.47
[z, y) {e“*““ﬂ 0<z<uy. (047

Consequently, the two births are not independent (unlike the linear case in
Example 6.4).

Since £* is not exponential, the times of births of the ancestors o(1), 0, ...
do not form a Poisson process on (—o0,0).

The asymptotic degree distribution is by (5.41) given by P(D = 0) = P(D =
2)=1-a=(3-v5)/2,P(D=1)=2a—1=+5-2.
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We end this section by proving some claims made above. First the ancestor
in the linear case.

Theorem 6.9. For the linear preferential attachment in Ezample 6.4, with
weights wy, = xk+p, the life history Z of an ancestor consists of an heir born at
age & ~ Exp(p) together with ordinary children born according to a pure birth
process =/, with rate wiy1 when there are k ordinary children, with 5* and =’
independent.

Proof. Consider an ancestor, let :g: * be its age when the heir is born, and denote
its age at the births of the other children by & < & < .... (Also, let & = 0.)
Let &; be the event that the heir is child ¢. Thus &; a.s. equals the event {&/_; <

&< &!}; furthermore, if this event holds, then £* = §; and

~v . < .7
& = N (6.48)
£j+17 J = 1.
Fix 4 and M > 4. For an ordinary individual, the joint distribution of
(€1,- -+, &n41) has density, on {0 <1 <--- < xp41} and with 2o = 0,
M M
H wje_wj(xj“_xj) = H wy, - erAil(wj*wj—l)ﬂﬁj*waMﬂ
J=0 k=0
M (6.49)
= H Wy + er”il XTj—WMEMAL
k=0

Hence, for an ancestor, (5.34) shows that restricted to the event &;, the joint

density of (&1,...,&m41) 18, on {0 <z < -+ < xpr41},
M M
M M
e*afﬂz‘ H wy, - 621:1 XTj—WMITM+1 H wy, - eXZJ:l Tj—WMIM+1— QL4 (650)
k=0 k=0

and, using (6.48), the joint distribution of (£1,...,&),,&*) on the set {0 < 21 <
e <X <y < xp <o < app)is, recalling (6.20) and wy = p,

M M

M-1 M-1
| I W - eX(Zﬂ‘Zl :Ejer)*waM*OCy = wy I | Wy, - ezjzl XTj—WM T M —PY
k=0 k=1

M
M-1
= pe PV H Wy, - e g=1 (Wit1—W;)T;=wnT
k=1

M—-1
= pe PV H wj_i_le*wjﬂ(wjﬂ*%). (6.51)
j=0

This equals the joint density of the first M points of the birth process Z’ defined
in the statement, together with an independent £* ~ Exp(p). The result follows,
since M is arbitrary. O
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We have shown in Example 6.4 that the age §~* when the heir is born to an
ancestor has an exponential distribution in the linear case. We now show the
converse: this happens only in the linear case. (Recall that if w,, = 0 for some
m, the weights wy, for k > m are irrelevant.)

Theorem 6.10. Consider a general preferential attachment tree defined as in
Ezample 6.3 by a sequence (wy)3° of weights. If the age & when an ancestor
gets an heir has an exponential distribution, then wy = xk + p for some x € R

and p > 0 (at least until wy, = 0, if that ever happens).

Proof. The Laplace transform of £ is by (5.37) Ji(s +«). Hence, if £* ~ Exp())
for some A > 0, then for all s > 0,

o A

m =Ee ¢ = : 6.52
s +a) = Best = 2 (652)

Consequently, by (6.11),
eI (p—. )= — > (6.53)

. “ e S = 5 .
wy+Ss wyg+s wi+s H A—a+s
at least for s > a.
Consider, more generally, the equation
wWo wo w1 a

. cee = . 6.54
w0+s+w0—|—s w1+s+ b+ s ( )

for some real a and b, and all large s. Multiply (6.54) by (wq+$)/wp. This yields

+
wi o oown o _wa o o(wots) (6.55)
wy+s wi+s wy+s wo(b+ s)

1+

Now let s — co. On the left-hand side, each term except the first decreases to
0, and by dominated convergence, the sum converges to 1+ 0+ ...; thus (6.55)
implies

a(wg + s) a

1=140+--- = lim ——— = —. 6.56
T+ SLHOlO wo(b+8) wo ( )

Consequently, (6.54) implies wy = a. Use this in (6.55) and subtract 1 to obtain

—-b
w1 " wy W 4. _wo+s 1 wo—.
wy+8s w;+Ss ws+s b+ s b+ s

(6.57)

If wy = 0, then the left-hand side vanishes, so wy — b = 0. Otherwise, (6.57)
is of the same type as (6.54), with the weights (wy) shifted to (wg+1), and a
replaced by wg — b. Hence, the argument above yields w; = wg — .

Thus, in both cases w; = wg — b. Moreover, if w; # 0, we can iterate the
argument, and find we = wy — b, w3 = wo — b, and so on, as long as the weights
are non-zero. Thus wy = wg — kb = xk + p, with x = —b and p = wy. O

Finally, we prove the result claimed above in the explosive case (6.8).
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Theorem 6.11. Let T, be a general preferential attachment tree, defined by a
sequence wy, and assume that the explosion condition (6.8) holds. Then P(|T)| =

1) 235 1.

Proof. Let Too := Tr(s), the (infinite) tree obtained by stopping when the
process explodes. Thus T, C T, for every n. Let, for 1 < ¢ < n < oo,
Iin = l{d;n (v;) > 0}, the indicator of the event that the i:th node (in or-
der of appearance) v; has at least one child in T,.

Fix 6 > 0, and let &; 5 be the event that the i:th individual (in order of birth)
in the branching process gets at least one child before age d, i.e., that it has
& < 6. Further, let J; 5 := 1{&; s}. The events &; 5 are independent and have
the same probability P(§; < §) = P(X; < ¢). Thus, by the law of large numbers,

TL J’L a.s
721:; 0 2% P(X, < §) =1 — e "% < wy. (6.58)

Furthermore, a.s. 7(c0) < 0o, and then ¢; > 7(00) —¢ for all but a finite number
of i, i.e., all but a finite number of individuals have age less than § when the
process explodes. Hence, I; oo < J; 5 for all but a finite number of ¢ and, a.s.,

iz lico < ki Liz1 Jis : (6.59)
n

Since § > 0 is arbitrary, this shows limsup,, .o > i, lico/n = 0 a.s. Further-
more, the finite tree T;, is a subtree of T.; hence, a.s.,

P(|T > 1) = Zizilin  Zimliso (6.60)
" n n 0

7. m-ary search trees and branching processes

In this section, as always when we discuss m-ary search trees, m is a fixed
integer with m > 2. We apply the general theory in Section 5 to the m-ary
search tree in Section 3. Recall from Section 3 that besides the m-ary search
tree, we may also consider the extended m-ary search tree (including external
nodes). It turns out that both versions can be described by stopped branching
processes. It is easy to go between the two versions, but we find it instructive
to treat them separately, and describe the two related but different branching
processes connected to them. The reader is recommended to compare the two
versions, even when we do not explicitly do so.

Remark 7.1. The random m-ary search tree is defined as in Section 3 to have
a given number of keys, which makes the number of nodes random (in general).
We can also define a random m-ary search tree with a given number of nodes,
by adding keys until the desired number of nodes is obtained. This is obtained
by the branching processes below, stopping when the number of nodes is a given
number n; we thus use the weight ¢(¢) = 1 in Example 5.3 (as in Section 6).
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The asymptotics are the same for this version, see Remark 5.17. We therefore
ignore this version in the sequel, and consider only the standard version with a
given number of keys.

7.1. Extended m-ary search tree

Recall from Section 3 that we can grow an extended m-ary search tree by starting
with an empty tree (a single external node) and then adding keys, each new key
added with equal probability to each existing gap. Hence, we can also grow
the extended m-ary search tree in continuous time by adding a key to each
gap after an exponential Exp(1) waiting time (independent of everything else).
By the construction of the extended m-ary search tree in Section 3, this is a
Crump—Mode—-Jagers branching process, where the life of each individual is as
follows (Pittel [102]):

An individual is born as an external node with no keys. It acquires m — 1
keys after successive independent waiting times Y1, ..., Y,,_1, where Y; ~ Exp(i)
(since the node has 7 gaps when there are ¢ — 1 keys). When the (m — 1):th key
arrives, the individual immediately gets m children.

We let ¥ (¢) be the number of keys stored at the individual at age ¢. Thus ZZZ’
is the total number of keys at time ¢ and 7(n) is the time the n:th key is added.
Hence T,, is a random m-ary search tree with n keys, as we want.

Let Sy := ZleYi, k=0,....,m—1; for 1 <k <m—1, this is the time the
k:th key arrives. Let further S, := co. Then ¢ (t) = k for Sy <t < Sg41. For
0 > 0 (in fact, for § > —1) and k < m — 1,

k

k .
k!
Ee 05 = TTEe " = JT —— = . (7.1)
11 | S ATy

(See also Theorem C.1, which furthermore gives the distribution of Sg; in the
notation used in Appendix C, Sy 4 Viek-)

Furthermore, all children are born at the same time with §; = - =&, =
Sm—1, and thus the random variable Z(0) in Remark 5.7 equals me~
Hence, see (5.7) and (7.1),

|
i) =mEe Sn = " g5 1 (7.2)

[5G+ 0)

In particular, we see that fi(1) = 1, so the Malthusian condition (5.4) is satisfied
with o = 1. It is easy to see that all other conditions (A1)—(A5) are satisfied.
(Note that in this case, N = m is non-random. Furthermore, 7 is bounded, so
(A6%) holds too.) Consequently, Theorem 5.14 applies, and shows (in particular)
that the random fringe tree T)' converges in distribution to 7, which is obtained
by running the branching process above and stopping it after a random time
7 ~ Exp(1).

Similarly, Theorem 5.25 applies. In order to find the sin-tree ’7', note that since
all children of an individual are born at the same time, so &, = -+ =&, = Si_1,
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it does not matter which one is the heir. It thus follows from (5.34), that if we
let 171, e Ym 1 be the successive waiting times between the arrival of keyb for
an ancestor, so all m children are born at time § Zm ly, Y;, then Yl, cey Ym_1
have joint density

m—1 m—1 m—1
me— Wit Fym—1) H ie” Wi — m) H e~ (i+Dys H (i + 1)6—(i+1)y1:_ (7.3)
i=1 i=1 i=1

Thus Yy, ..., Y,,_; are independent with Y; ~ Exp(i+1). (Cf. (6.4) and the proof
of Theorem 6.9, with similar calculations in different but related situations.) The
m children are numbered 1, ..., m, with the heir chosen uniformly at random
among them.

Remark 7.2. The age E* when the heir is born is E* = Z?i_ll 571-, with mean

-1 m—1
—RE& = EY, =
b ¢ / P 141

3

~1, (7.4)

where H,,, :== >_1" 1 denotes the m:th harmonic number. (See also (5.39) and
(7.2).) The distribution of £* is given by Theorem C.1; using the notation there

-1

3

<!

m
i g ZY; - Vm,’m—1~ (75)

1 =2

m
I

K3

In particular, 5* is not exponentially distributed unless m = 2.

In the construction of T; above, the number of gaps is always 1 + the number
of keys, and we add keys (and thus gaps) with an intensity equal to the number
of gaps. Hence, the number of gaps at time ¢ forms a pure birth process with
birth rates Ay = k, starting at 1 (this is again the Yule process in Example 6.1,
see Example A.3), and thus the number of keys at time ¢ forms a pure birth
process with birth rates A\, = k+ 1, starting at 0. (Note that this is independent
of the choice of m.)

Since 7 has the same distribution Exp(1) here as in Example 6.1, it follows
that the number of gaps in 7 = 7 has the same distribution as the number
of nodes M in 7= in Example 6.1, given by (6.2). Moreover, by symmetry,
conditioned on the number of keys K = kin 7= = T, T has the same distribution
as the random extended m-ary search tree T}, with k keys. Hence, we get the
following result:

Theorem 7.3. The number K of keys in the asymptotic fringe tree T has the
distribution

P(K=k) =P(M=k+1)= k> 0. (7.6)

(k+1)(k+2)’

Furthermore, T can also be described as an extended m-ary search tree with a
random number K keys, where K has the distribution (7.6). O
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Remark 7.4. Using the notation in Definition B.1, K ~ HG(1, 1;3). (This also
follows from Theorem A.5, with xy =p=a =1.)

The property in the second part of the theorem, describing the asymptotic
fringe tree 7 as an extended m-ary search tree with a random number K keys
is called coherence by Aldous [1, Section 2.6], and was seen also in Example 6.4.
(In the present case with respect to the number of keys; we might call this
key-coherent.)

We proceed to derive some properties of the random extended m-ary search
tree T,,. Note that, unlike the examples in Section 6, T}, does not have n nodes;
n is the number of keys, while the number of nodes is random for m > 3. (For
m = 2, the number of nodes is 2n + 1, of which n are internal, see Section 3.)
To find the asymptotic number of nodes, we use Theorem 5.12 and obtain the
following result.

Theorem 7.5. For the extended m-ary search tree T,, with n keys,
ITn| as, 1 1

— = . 7.7
n —>mw H, -1 (77)

The asymptotic value of the expectation E [T, |/n was found by Baeza-Yates
[5]. We do not know any reference where (7.7) is stated explicitly, but closely
related results for the number of internal nodes have been shown in several
papers, see Remark 7.12; the result follows also immediately from the main
result by Kalpathy and Mahmoud [76].

Proof. This follows from Theorem 5.12(ii), except for the value of m,, which
we calculate as follows. Since ¥(t) = Z:’;l 1{S, <t},

P(1) = /OOO e () dt = i /OOO e '1{S; <t} dt = Z e i (7.8)

By (7.1),

7! 1
Ee 5 = = =0,....m—1 7.9
€ Gr1) vy T oomTh (7.9)
and thus,
) m—1 m—1 1
=E(1) = Ee 5 = =H,, — 1. 7.10
my =E(1) Z; e Z;i+1 ( 5

Theorem 7.6. Let Ni(T,,) be the number of nodes in T,, with k keys, for k =
0,...,m—1. Then,

1
Ni(Tw) as, | sy 0<k<m—1, (7.11)
T ] o k=m-1.

Again, we do not know any reference where this is stated explicitly; the
asymptotic values of the expectations E Ny (T, )/n were found by Baeza-Yates
[5]; see also the references in Remark 7.12. The result can also easily be shown
using Pélya urns, see [67, Example 7.8], [76] and [60].



Fringe trees, branching processes and m-ary search trees 97

Proof. Ni(T,) = np(T},), where P is the property of a node v that it contains
k keys. Hence, pp(T) is the probability that the root of 7 = T+ contains k keys,
i.e., that ¥(7T) = k or, equivalently, S, < 7 < Sk+1. We apply Theorem 5.14, and
note that the characteristic ¢ there is ¢(t) = 1{¢p(¢t) = k} = 1{Sk <t < Sk41}.
By (5.24), arguing similarly to (7.8)—(7.10) and in particular using (7.9), and
recalling that Sy, := oo,

pp(T) =Eo(1) = E/ e "1{S, <t < Spy1}dt =E(e” % — e 1)
0

(7.12)
E+1 +2>

B AL o<k<m—1,
B . k=m—1.

The result follows by Theorem 5.14. (Alternatively, one can use Theorem A.4.)

O
Remark 7.7. In particular, the fraction of external nodes
NO (Tn) as, 1
28y~ 7.13
T o (719

and thus the same holds for the number of internal nodes; the numbers of exter-
nal and internal nodes are thus asymptotically the same. (Perhaps surprisingly,
the asymptotic fractions of external and internal nodes are thus independent
of m.)

Remark 7.8. The asymptotic degree distribution D is not very interesting for
the extended m-ary search tree, since every internal node has outdegree m and
every external node has outdegree 0; thus, as a corollary of (7.13), P(D =0) =
P(D=m)=1/2.

7.2. m-ary search tree, internal nodes only

Usually, we consider an m-ary search tree as consisting only of the internal
nodes. This can be obtained from the tree with external nodes in Section 7.1 by
deleting all external nodes, but it may also be constructed directly as follows,
using a different Crump—Mode—Jagers process.

We now start with a node containing a single key. Thus each individual is
born as a node with 1 key. It acquires more keys after successive waiting times
Ya,..., Y1, where Y; ~ Exp(i). At the arrival of the (m — 1):th key, at time
S = Z:i;l Y;, the individual becomes fertile; it then gets m children, marked
by 1,...,m, with child ¢ born after a further waiting time X;, i.e., at time
& =S+ X, where X4,...,X,, are independent and Exp(1). (The children are
here marked by their final positions in the tree, see Remark 5.1.)

Alternatively, taking the children in order of birth, we may say that after
the (m — 1):th key, there are m children born after successive waiting times
Xi,..., X}, with X! ~ Exp(m + 1 —4), all waiting times independent.
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We let again the weight ¢ (¢) be the number of keys at time ¢ in an individual.
It is easy to see that then 7;, is a random m-ary search tree with n keys, as
defined in Section 3. R

The random variable Z(¢) in Remark 5.7 is now given by

0) = 26—9(54-)9) - Ze—(’(zzle YitX;), (7.14)

J=1 Jj=1

(1

Its distribution is not the same as in Section 7.1, but the mean EZ(6) = 7i(6)
is easily seen to be the same as in (7.2), and thus we still have « = 1; similarly,
by (5.39), S is the same as in (7.4), i.e.,

f=Hp—1 (7.15)

(That « has to be the same for the m-ary search tree with and without external
nodes is rather obvious, since the number of internal nodes in 7; is the same
for both versions, and grows like e¢** by (5.10) and (7.13).) The conditions
(A1)—(Ab) and (A6y) are satisfied, and Theorem 5.14 shows that the random
fringe tree T converges in distribution to 7, which is obtained by running this
branching process and stopping it after a random time 7 ~ Exp(1).

Moreover, the random sin-tree T is constructed by the general procedure in
Section 5. To find the distribution of an ancestor, we note that by symmetry,
each child has the same probability 1/m of being the heir. Furthermore, using
171- and X ;j to denote the waiting times (corresponding to Y; and X; above) for
an ancestor, it follows from (5.34) that conditioned on the heir being the child
marked k, the joint distribution of 172, e ,lem,l, )?1, e ,)?m has density

m

m—1
— m—1 P « —aay. . —_a .
me Zi:z Yi— Tk || e 1Yi I |j€ JTj
i=2 j=1

m—1
=[] G+ e @0 [ je 7 - 272", (7.16)
i=2 j#k

Consequently, Y; ~ Exp(i + 1) and, given that the heir is child &, X ~ Exp(2)
while X j 4x ; ~ Exp(1) for j # k, all waiting times independent (conditioned
on k).

Remark 7.9. The distributions of the birth times can be obtained from The-
orem C.1; it follows that using the notation there, S 4 Vin—1,m—2, and &; 4
Vin—1,m-1 (with marks as above), while the ¢:th child in birth order is born at
time & = S + Vi, i, with S and V,, ; independent.

Similarly, an ancestor becomes fertile at time S = Z:’;l 371 ~ Vim,m—2 and
the heir is born at time

E=8+Xe 23 Y ~ Vi1 (7.17)
=2
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Thus 5* has the same distribution as for the extended m-ary search tree, see
(7.5). (This is not surprising since we really construct the same trees in two
somewhat different ways.)

As for the extended m-ary search tree in Section 7.1, the number of gaps
in the process (= 1 + the number of keys, i.e., 1 + th) forms a Yule process
(see Example A.3), but in the present case it starts at 2, while it starts with 1
for the extended m-ary search tree in Section 7.1. (In other words, the number
of gaps is the sum of two independent standard Yule processes.) The number
of keys in T; thus evolves in exactly the same way for every m > 2, and hence
is the same as for the binary case m = 2 treated in Example 6.2. In particular,
since also 7 ~ Exp(1) is the same for all m, the number K of keys in 7+ has
the distribution (6.6). Moreover, as for the extended m-ary search tree, if we
condition on K = k, then 7 has the same distribution as the random m-ary
search tree Ty with k keys. Hence, we get the following result:

Theorem 7.10. The number K of keys in the asymptotic fringe tree T has the
distribution

2

T Iy

k1. (7.18)
Furthermore, T can also be described as an m-ary search tree Tx with a random
number K keys, where K has the distribution (7.18). d

Cf. (7.6), the similar result for the extended m-ary search tree, and note
that the distribution (7.18) equals the distribution (7.6) conditioned on K > 1.
Furthermore, the number of keys thus grows as e?, so the number of nodes has
to grow at the same rate, which again shows that o = 1. Note that the second
part of the theorem is another instance of key-coherence.

As for the extended m-ary search tree in Section 7.1, the number of nodes
is random for m > 3. We can again find the asymptotics from Theorem 5.12,
yielding the following theorem. (Alternatively, we can obtain the result from
(7.7) and (7.11) for the extended m-ary search tree.)

Theorem 7.11. For the m-ary search tree T,, with n keys,

|T| as, 1 1
— —_— = 7.19
n my  2(H, —1) (7.19)
In other words, the average number of keys per node converges a.s. to
2(Hp—1 —1).

Remark 7.12. This result was first shown, in a weaker form with convergence
in probability, by Mahmoud and Pittel [87]; convergence of the expectation had
been shown earlier by Knuth [78, answer to exercise 6.2.4-8] and Baeza-Yates
[5].

For the variance and asymptotic distribution (which we do not consider in
the present paper), there is an interesting phase transition: the variance is linear
in » and the distribution asymptotically normal if m < 26 but not if m > 27,
see [87], [83], [26], [25].



100 C. Holmgren and S. Janson

Proof. For the present branching process, ¢(t) = 1 + Zﬁ;l 1{S! < t}, where
Si= Z;zz Y; is the time the i:th key comes to the node. Arguing as in (7.8)-
(7.10) we find (omitting some details)

m—1

¥(1) :/ ety dt =1+ e (7.20)
0 i=2
and thus,
m—1 1 m—1 9
— ) _ -Y; _ —
my =Ed(1) =1+ Z HIEe D=4 Y g = 2He D). (721)
i=2 j=2 =2
Hence, Theorem 5.12(ii) yields
[T as. 1 1
— —_— = . 7.22
n my  2(H, —1) ( D)

The asymptotic number of nodes with a given number of keys can be found
similarly. Note that the tree is constructed so that each node contains at least
one key. (This theorem is also an immediate corollary of results by Kalpathy
and Mahmoud [76], shown using a Pélya urn, see also [67, Example 7.8].)

Theorem 7.13. Let Ni(T,) be the number of nodes in T,, with k keys, for
k=1,...,m—1. Then,

2
Ni(T5) asy {(k+1)(k+2)’ Isksm-=2, (7.23)

|| § k=m-—1.

m?

Proof. This follows either from (7.11) for the extended m-ary search tree or by
a similar argument as in the proof of Theorem 7.6 (which we omit). O

Finally, we give the asymptotic degree distribution D. (This was found, using
a Pdlya urn, by Kalpathy and Mahmoud [76], generalizing the special case of
leaves (k = 0) given in [60].)

Theorem 7.14. Let ni(T),,) be the number of nodes of outdegree k in T,,. Then

T, mt, k=0,
nTn) asy pop gy = {m+; (7.24)
The asymptotic degree distribution is thus uniform on {1,...,m}, but with

a large proportion of the nodes being leaves (outdegree 0). (For m = 2, the
distribution is uniform on {0, 1,2}.) Note that E D = 1, as always, see (5.42).

Proof. This follows by straightforward calculations from (5.33) and Remark 7.9,
for example using Theorem C.1. However, we find it illuminating to instead give
a less computational proof, using the properties of the exponential distributions.
Recalling that D is the degree of the root of T, we consider the life of an
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individual (the root), stopped at 7; we regard T as an exponential clock (the
doomsday clock) that strikes at a random time, and then stops the process.
After the creation (at ¢ = 0, and with a single key), the next thing that
happens is either the arrival of the second key, or that the doomsday clock
strikes. Since the second key arrives with intensity 2 and the clock strikes with
intensity 1, the probability is 2/3 that the second key will arrive before the
clock strikes. Conditioned on this event, the same argument shows that the
probability that also the third key arrives before the clock strikes is 3/4, and so
on. It follows that the probability that the node acquires all m — 1 keys before

the clock strikes is 53 ) )
..... m-l_Z (7.25)

34 m m

(Note that this argument also yields another proof of Theorem 7.13.)

After the arrival of all m — 1 keys, assuming that the doomsday clock still has
not struck, we wait for the m children. Each child arrives with intensity 1, and
the clock strikes with the same intensity, so by symmetry (and independence),
the order of the m births and the strike of the clock is uniform among all (m—+1)!
possibilities. In particular, the position of the clock strike is uniform among these
m+1 events, i.e., the number of children born before the clock strikes is uniform
on {0,...,m}. Combining this and (7.25) we obtain, for 1 < k < m,

2 1
P(D=k) = 1 (7.26)
and, including the cases where less than m — 1 keys arrive before the clock
strikes,

PD=0)=1—-—+———. (7.27)
The result follows. O

Remark 7.15. Note that the degree distribution in (7.24) differs from the
degree distribution (6.43) for the random m-ary tree defined in Example 6.7;
as said there, the two different types of random m-ary trees are thus not even
asymptotically equivalent.

8. Median-of-(2¢ + 1) binary search tree

Let £ > 1 be a fixed integer. The random median-of-(2¢ + 1) binary search tree,
see e.g. [33], is a modification of the binary search tree in Example 6.2, where
each internal node still contains exactly one key, but each external node can
contain up to 2¢ keys. (We can also include the case ¢ = 0; this is just the
extended binary search tree, i.e., the special case m = 2 of Section 7.1.)

The tree is grown recursively, starting with a single external node without
any keys. The first 2¢ keys are placed in this node. When the (2¢ + 1):th key
arrives to the node (or to another external node later in the process), the node
becomes an internal node with two new external nodes as children, say vy and
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vg; moreover, the median of the 2¢ + 1 keys now at the node is found and put
in the internal node, while the ¢ keys that are smaller than the median are put
in the left child v;, and the ¢ keys that are larger than the median are put in
the right child vg.

In order to model this by a branching process, we start the tree with ¢ keys
in the root. (This is no restriction, since the first £ keys always go there.) Then
each external node will contain between ¢ and 2¢ keys, throughout the process,
and the median-of-(2¢+1) binary search tree is produced by a branching process
with the following life histories: An individual is born as an external node with ¢
keys. It acquires £+ 1 additional keys after successive independent waiting times
Yi,...,Yey1, where Y; ~ Exp(¢ + ¢) (since the node has ¢ + i gaps when there
are £ + i — 1 keys). When the (¢ + 1):th key arrives, the individual immediately
gets 2 children.

We let the weight 1 (t) be the number of keys stored at the individual at age
t. Thus Z/ is the total number of keys at time ¢ and 7(n) is the time the n:th
key is added. Hence, assuming n > ¢, T;, is a random median-of-(2¢ + 1) binary
search tree with n keys.

Note that this construction is very similar to the one for the extended m-ary
search tree in Section 7.1, and we analyse it in the same way. Let Sy := Zle Y,
k=0,...,¢+ 1; this is the time the node gets its (¢ + k):th key. Then

L+ k <t , 0<Ek <Y,
¢(t){ Th Sk << Sk, 0 (8.1)
17 Sk+1<t-
For>—¢—1and k</+1,
k LB (£+1)
Ee % = [[Ee ™ = = E_. 2
¢ 1;[1 ¢ Wrive v+ ®.2)

(See also Theorem C.1; in the notation used in Appendix C, Sk 4 Vetkk-)

Furthermore, &, = & = Sp41, and thus the random variable Z(6) in Re-
mark 5.7 equals 2¢~%5¢+1. Hence, see (5.7) and (7.1),

R _ 2<€+ 1>@+1 <£+2>e+1
9) = 2 ¢~ 05e+1 — = . 8.3
o) ¢ L+140)41 (C+140)p41 ( )

In particular, we see that fi(1) = 1, so the Malthusian condition (5.4) is satisfied
with o = 1. (Again, a = 1 has to hold since the number of keys is a Yule process,
although now started with ¢ keys.) It is easy to see that all other conditions
(A1)-(A5) are satisfied. Consequently, Theorem 5.14 applies; the asymptotic
random fringe tree 7 is obtained by running the branching process above and
stopping it after a random time 7 ~ Exp(1).

Theorems 7.5 and 7.6 can be adapted with minor modifications as follows;
we omit the proofs which are similar to the ones in Section 7.1, now using (8.2).
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Theorem 8.1. For the median-of-(2¢ + 1) binary search tree T, with n keys,

|Tn| as, 1 1
—_— = — = . O (8.4
n my (04 1)(Hopro — Hoqr) (8.4)

Theorem 8.2. Let Ni(T,) be the number of external nodes in T,, with k keys,
for k= £,...,2¢, and let N}(T,) be the number of internal nodes (all having
one key). Then, for the median-of-(2¢ 4+ 1) binary search tree,

NE(Th) as. (41
= , (< k<2, 8.5
|| (k+1)(k+2) (8:5)
N]lg(Tn) as, 1
= O .
2 (8.6)

Remark 8.3. Chern, Hwang and Tsai [27] consider (using different methods)
a more general class of trees, where an external node has up to r — 1 keys; when
the r:th key arrives to the node, a pivot is selected among them at random,
such that its rank R (i.e., its number if the r keys are ordered) has some fixed
distribution on {1, ...,r}. (The case above is thus r = 2¢+1 and R = ¢+1; in this
case R is deterministic.) The pivot is put in the internal node, and its children
get R — 1 and r — R keys. Translated to the branching process, this means (in
general) that the individuals start with different number of keys, which would
require a multi-type version of the results above (see Remark 5.9). However, it is
possible to modify the branching process by including the external nodes in the
life of their parent. Thus the individuals now are the internal nodes. (Properties
of external nodes can be found using suitable characteristics.) The life of an
individual starts with r keys; these are immediately split up with a random R
as above, and we regard the individual as carrying two unborn children (fetuses)
with initially R — 1 and r — R keys. The fetuses get new keys, independently
of each other and each with rate 1 + the number of existing keys, and each is
born when it has got r keys. We omit the details.

Example 8.4. An m-ary generalisation, introduced by Hennequin [57] and
further studied by e.g. [26], [27], [24] and [44], has internal nodes with m — 1
keys and external nodes with up to m¢ +m — 2 keys. (Here m > 2 and £ > 0.)
When an external node gets mé+m — 1 keys, it is converted to an internal node
with m external children; the mf + m — 1 keys are ordered and keys number
0+1,2(£+1),...,(m—1)(¢+1) are put in the internal node, while the external
children get ¢ keys each. The m-ary search tree in Section 7.1 is the case ¢ = 0.

This version can be treated as above; again each individual starts with ¢ keys,
but now it acquires (m—1)(¢+1) more keys, after waiting times Y; ~ Exp(£+1),
i=1,...,(m—1)(£+1). At time S(;,_1)(¢41), m children are born. Note that
(7.1)—(7.2) generalize to, cf. the special case (8.3),

(m—1)(£+1)
[(0) = mEe Stm-ven = m H R e—0Yi

i=1
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(m—1)(£+1)

+ /0 m{l+ 1) —
- 1;[1 iti+0 (¢ Ji 1+ Zg(mli(ﬁfji) (®.7)
2ty
(€A 140) (m—1)e+1)
and hence again o = 1. It then follows from (8.7) and (5.39) that
(m-n@e+)
B= > i1 Hmerm = He, (8.8)

i=1

cf. (7.4) for the case ¢ = 0. Results for this model can be derived as above, but
we leave this to the readers.

More generally, one can similarly make an m-ary version of the model with
random pivot in Remark 8.3, see [27]; a corresponding Crump-Mode-Jagers
branching process (with the internal nodes as individuals) can be constructed
as there.

9. Fragmentation trees

Another type of example is provided by the following fragmentation process,
introduced by Kolmogorov [79], see also Bertoin [9, Chapter 1] and Janson and
Neininger [73], and the further references given there. Fix b > 2 and the law for
a random vector V = (Vq,...,V}); this is commonly called the dislocation law.
We assume that 0 < V; <1, j=1,...,b, and

V=1, (9.1)

b
=1

J

i.e., that (V3,...,V;) belongs to the standard simplex. For simplicity we also
assume that each V; < 1 a.s. (We allow V; = 0.)
Starting with an object of mass xg > 1, break it into b pieces with masses

Vizo, ..., Voxo. For a given threshold z; € (0,x¢], continue recursively with
each piece of mass > z1, using new (independent) copies of the random vector
(V1,..., V) each time. The process terminates a.s. after a finite number of steps,

leaving a finite set of fragments of masses < x1. We regard the fragments of mass
> x1 that occur during this process as the (internal) nodes of a (random) tree,
the fragmentation tree; the resulting fragments of mass < x; can be added as
external nodes.

Obviously, the fragmentation tree depends only on the ratio zg/z1, so we
denote it by fzo o1 (We may assume either zp = 1 or 2; = 1 without loss of
generality, but we prefer to be more flexible.)

We can translate the fragmentation process to a Crump—Mode—Jagers branch-
ing process by regarding a fragment of mass x as born at time log(zo/x); an
individual will have b children, born at ages &;,...,& with & := —logV;. (If
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some V; = 0, we get £ = 0o, meaning that this child is not born at all, so there
are fewer than b children. Note also that in this section, we do not require that
&1,&2,. .. are ordered in increasing order.) It is easy to see that the fragmenta-
tion tree fxo /z, defined above for a threshold z; is the same as the family tree
Tiog(zo /=) Of this branching process at time log(zo/21).

The relation (9.1) can be written as

b
deti=1 (9.2)
j=1

Taking the expectation we find, see (5.7), fi(1) = 1, so the Malthusian parame-
ter « = 1. It is easy to see that the assumptions (A1)—(A5) hold, except possi-
bly (A2); we say that the fragmentation process is non-lattice if (A2) holds, i.e.,
if not every V; is concentrated on {r,7%,73...} for some r € (0,1). (A sufficient
condition for (A2) is thus that V] has a continuous distribution.)

Furthermore, (9.2) and (5.6) say that Z(a) = 1 is non-random. This has the
consequence that the random variable W in Remark 5.11 also is deterministic;
more precisely, see [64, Theorem (6.8.1)],

W =1/8, (9-3)
where by (5.40),
b b
B=E) &e & =E) V;log(1/V)). (9.4)
j=1 j=1

Remark 9.1. The Laplace transform ¥(s) := Ee~*" of the limit W in Re-
mark 5.11 satisfies the functional equation

N
U(s) = EHm(se*“fi), (9.5)

and this equation together with (5.15) (provided (5.11) holds) determines W
uniquely, see [39]. Assuming o = 1 (which can be regarded as a normalisation
of the time scale), it is easy to see that a constant W satisfies (9.5) if (9.2)
holds, which gives an alternative proof of (9.3). Yet another proof of (9.3) is
obtained by noting that when (9.2) holds, the martingales R,, and Y; in [94]
are constant 1, and then (9.3) follows from [94, Corollary 3.2]. (The related
intrinsic martingale in [9] is constant 1 too, see [9, Section 1.2.2].) Note also
that the converse holds: W is constant (and then 1/4) if and only if (9.2) holds;
this too follows from the functional equation (9.5).

Remark 9.2. Note that unlike the trees studied in the previous sections, we
consider the family tree 7; at a fixed time ¢ = log(zg/z1) instead of stopping
when some weight th reaches a given value. However, since W is constant, this
makes a very small difference. In fact, by (5.9) and (9.3), Z; ~ B~ 'e! a.s., and
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thus, if we use the characteristic ¥ (t) = 1 again, the stopping time 7(n) when
the tree has n nodes satisfies a.s.

7(n) =log(Bn) + o(1) = logn + log 8 + o(1). (9.6)

We may define a fragmentation tree T;, of fixed size n by stopping at 7(n); in the
original formulation this means that we choose the threshold z; to be the size of
the n:th largest fragment in the process, so that there will be exactly n fragment
of size > x1 (unless there is a tie). We see from (9.6) that asymptotically, this
is almost the same as taking a constant time ¢ = logn + log 8. For more precise
results on |Z;|, and thus on 7(n), see [73].

Theorem 9.3. Let 72.0/3,:1 be a random fragmentation tree defined as above, for
a non-lattice fragmentation process. Then Theorem 5.14 holds also (as xo/x1 —
0o, and with other obvious notational modifications) for the random fringe tree

~

*
Io/ml'

The limiting random fringe tree T can be constructed by the fragmentation
process above, starting at xg = 1 and with a random threshold x1 = U ~ U(0, 1),
with U independent of the fragmentation.

Proof. By the equivalence above of the fragmentation process and the Crump-
Mode-Jagers branching process, T, /2, = Tiog(o /1), and the first part follows
from Theorem 5.14 (and its proof).

The limiting fringe tree 7 is obtained by stopping the branching process
T: at a random time 7 ~ Exp(1); by the equivalence above, this is equivalent
to starting the fragmentation process at zog = 1 and stopping at a threshold
x1 = exp(—7). This completes the proof, since exp(—7) ~ U(0, 1). O

Similarly, Theorem 5.25 holds, and the random sin-tree T can be defined by a
suitable extension of this random fragmentation process; we leave the details of
the general case to the reader, and discuss only one case in the example below.

Example 9.4 (Binary splitting). Let b = 2 and V = (V1,V2) = (V1,1 — 1)
with Vi ~ U(0,1). Thus, at each fragmentation event, the object is split into
two parts, with uniformly random sizes.

In the corresponding Crump—Mode—Jagers branching process, each individual
gets two children, born at ages &; and &3, where &1, &2 ~ Exp(1) and one of them
determines the other by

e 8 pe 2 =1, (9.7)

Note the similarities with the Crump-Mode-Jagers branching process for the
binary search tree in Example 6.2; the difference is that there & and & are
independent, while here they are dependent. For properties that depend only
on the individual (marginal) distributions of £1,&; and not on their joint dis-
tribution, we thus have the same results for both processes; some examples are
the intensity u, the distribution of £ ~ Exp(2) and its mean § = 1/2, and
the expected size of the population E Z; = 2(e* — 1). However, many properties
really depend on the joint distribution of the times of birth of the children, and
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are thus in general different for the two processes. For example, although E Z;
is the same for both processes, the distributions of Z; are not: for the present
process, there is by (9.7) always one child of the root born before time log 2,
S0 Ziog2 > 2, while for the process in Example 6.2, P(Z; = 1) = e > 0
for every t > 0. Also the fringe tree distributions will be different, as is seen
below.

Let us first consider the asymptotic outdegree distribution in the fragmenta-
tion tree, which equals the distribution of the root D in 7. We have, using the
construction of 7 in Theorem 9.3,

D=0 < U >max(V1,1 -Vp)
D=1« min(\,1 -WV) <U < max(Vp,1—V;) (9.8)
D=2 < U <min(V;,1-W)

and simple calculations yield
PD=0)=PQl-U<WV<U)=EQ2U -1)y =1/4 (9.9)

and similarly P(D = 1) = 1/2 and P(D = 2) = 1/4. Consequently, D ~
Bi(2,1/2) has a binomial distribution. (This differs from Example 6.2, where D
has a uniform distribution.)

Furthermore, let Xy := V1 /U and X3 := (1 —V;)/U be the masses of the two
children of the root, relative to the threshold U. Then X1, Xo > 0 and X;+ X, >
1, and a calculation of the Jacobian of the mapping (U, V) — (X1, X5) shows
that in this region, (X1, X») has the density f(z1,22) = (z1+x2)~3. This enables
us to again compute the distribution of D; for example, D = 0 <— X, X < 1.
Moreover, we can now easily find the distribution of nodes in the second gener-
ation too; we give a few examples.

Denote the children of the root by v; and v,. Then T contains v; but not
vg if and only if X7 > 1 > X5; denote this event by &;. Conditioned on &, the
density of X is, by a small calculation, 2(z~2 — (z+1)~2), z > 1. Furthermore,
the outdegree of vy is given by (9.8) with U replaced by 1/X; (and Vi by an
independent copy V11); hence, in analogy to (9.9),

P(deg(vy) =0 | &) = E((Xll - 1)+ ‘ &)

2
2 2 2
[EE G
/1 (x 2 (z+1)2 v
3
— 5 —8log2+4log 3 ~ 0.34927, (9.10)

and, similarly,

P(deg(vi) =1]&) = 2E(min(XL1, 1- Xi1> ‘ 51)

=1+ 12log2 — 8log 3 ~ 0.52887, (9.11)



108 C. Holmgren and S. Janson

P(deg(vi) =2 &) = ]E((l - Xil)Jr ‘ 6’1)

3
=—5~ 4log2 + 4log3 ~ 0.12186. (9.12)

Recall that if we just condition on vy € T, its outdegree distribution equals the
unconditional distribution of D, i.e., Bin(2,1/2); hence, (9.10)—(9.12) illustrate
the dependencies between the outdegrees of different nodes (in this case, o and
v1), see Remark 5.24.

We obtain also P(|T| = 1) = P(D = 0) = 1/4 and, from (9.10),

P(|T| =2) =2P(& and deg(vy) = 0) = 2P(deg(v1) =0 | &) P(&1)
3 (9.13)
— 7 —4log2+2log3 ~ 0.17464.

Again, this differs from the binary search tree in Example 6.2. We do not know
any general formula for the probability distribution of the size |T|.

The irrational probabilities in (9.10)—(9.12) and (9.13) seem to exclude any
simple combinatorial construction or interpretation of the asymptotic fringe
tree 7. B
_ To construct the limiting sin-tree 7 in Theorem 5.25, we note that the heir
&* of an ancestor has distribution Exp(2) by (5.34) (as in Example 6.2). Going
back to the mass scale, we note that Y := exp(€*) has the Pareto(2) distribu-
tion

P(Y > z) = P(&* > logz) = 22, x> 1 (9.14)

The random sin-tree 7 can thus be constructed as follows: Start with a root
o of mass 1 (as in Theorem 9.3) and give it an infinite sequence of ancestors
of mass Y7, Y1Ys, Y1Y5Y3, ..., where Y; are i.i.d. with the distribution (9.14);
the other child of the ancestors thus has mass Y7 — 1, Y1(Y> — 1), Y1Y5(Y3 — 1),
.... Grow independent fragmentation trees from these other children and from
o0, using uniformly random binary splittings, and stop at a common threshold
xr1 = UNU(O,l)

Remark 9.5. We have, for simplicity, assumed that the branching factor b is
a constant finite integer. (Although we may allow fewer than b fragments by
letting some V; = 0.) We can also allow b = oo, or a random b (which can be
reduced to b = oo by adding variables V; that are 0). The results above extend,
provided (A5) holds.

Remark 9.6. As noted in Section 5, the results extend also to the lattice case,
with minor modifications, but for simplicity we ignore that case. Only very spe-
cial fragmentation processes are lattice; one trivial example is the deterministic
symmetric binary splitting V3 = Vo = 1/2. More generally, the deterministic
binary splitting V3 = p, Vo = ¢ = 1 — p is lattice if and only if log p/log ¢ is ra-
tional. For a random example, let 7 = (v/5 —1)/2, take b = 3 and let (V;, Vs, V3)
be either (r,72,0) or (2,72, r3) with probability 1/2 each.
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Remark 9.7. The split trees defined by Devroye [35] are related to fragmenta-
tion trees. A split tree is a b-ary tree defined using a number of balls that enter
the root and are distributed (randomly and recursively) to the subtrees of the
root and further down in the tree according to certain rules that are based on a
splitting law V = (V4,...,V;) satisfying (9.1), see [35] for details. (A splitting
law is thus the same as a dislocation law.) Far away from the fringe, where
there are many balls and the law of large numbers applies, the numbers of balls
in different subtrees are distributed asymptotically as the masses in the cor-
responding fragmentation tree, so there are many similarities between the two
types of random trees. However, at the fringe, the details differ, and the asymp-
totic fringe distributions are in general not the same. For example, the binary
search tree in Example 6.2 can be defined as a split tree, where the splitting
law V = (V1,Va) = (V1,1 — Va) with V4 ~ U(0, 1) uniform. The corresponding
fragmentation tree is thus the tree studied in Example 9.4, and as noted there
the asymptotic fringe tree distribution is not the same as for the binary search
tree; for example, the degree distributions differ. Fringe distributions of split
trees will be studied in another paper.

10. Rank

Define, following Béna and Pittel [19], the rank of a node in a rooted tree to
be the smallest distance to a descendant that is a leaf. Thus a leaf has rank
0, while a non-leaf has rank > 1. A node with rank > k is also said to be k-
protected. (For example, 1-protected = non-leaf; 2-protected = non-leaf and no
child is a leaf.) The simplest “non-trivial” case is 2-protected, which sometimes
is called just protected. There has in recent years been a number of papers on
the number of 2-protected nodes in various random trees, or (equivalently) the
probability that a random node is 2-protected, and a few papers on k-protected
nodes for higher k; see e.g. Devroye and Janson [37] and the references therein.
Such results can equivalently be described as results on the distribution of the
rank of a random node.

For a tree T (deterministic or random), let R(T') be the rank of a uniformly
random node in T, and let Ry(T) be the rank of the root of T. (Thus R(T)
is a random variable, while Ro(T) is deterministic if 7" is.) Since the rank of v
depends only on the subtree T%, R(T) = Ro(T™), the rank of the root of the
random fringe tree 7. This reduces the study of rank and k-protected nodes to
the study of random fringe trees. (This was the method by Devroye and Janson
[37], there applied to several classes of random trees, including random recursive
trees and binary search trees but also conditioned Galton-Watson trees which
are not of the type considered in the present paper.)

For the random trees considered here, Theorem 5.14 applies, for any fixed
k > 0, to the property that a node has rank > k (i.e., is k-protected); we
denote this property by Pk (in this section) and deduce the following. (Note
that, depending on one’s point of view, (10.1) can be seen both as a limit result
for the distribution of the rank, and as a limit result for the proportion of
k-protected nodes.)
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Theorem 10.1. Suppose that (A1)—(A5) hold. Then, for any k > 0, as n — oo,

np, (Tn) a.s,

P(R(T,) 2 k| T,) = I =% Py :=P(Ro(T) > k). (10.1)

In other words, the conditioned random variables (R(T,) | T,) converge in
distribution a.s. as n — 0o,

L(R(T,) | T,) =2 L(Ro(T)). (10.2)

In particular, the same holds for the unconditioned random variables, i.e.,
R(T,) -5 Ro(T). (10.3)
Proof. An immediate application of Theorem 5.14. O

10.1. m-ary search tree

We consider here the rank and k-protected nodes in the m-ary search tree in
Section 7.2. (The binary case m = 2 has been studied by Mahmoud and Ward
[90], Béna [18], Devroye and Janson [37], Béna and Pittel [19], Holmgren and
Janson [59]; the case m = 3 by Holmgren and Janson [60] and some higher m
by Heimbiirger [56].)

We let as in (10.1) Py = P(m) := P(Ro(T) > k). Thus, by (10.1), the frac-
tion of k-protected nodes in an m-ary search tree T, converges a.s. to Pg(m).
Recall that (for m > 3) the number of nodes |T},| is random. Hence it is interest-
ing to study not only the fraction of k-protected nodes, but also the (random)
number np, (T},) of them in T;,. (The results are formulated in this way in some
of the references above.) We note that, as an immediate consequence of (10.1)
and (7.19), see Remark 5.18,

"PkT(lTn) = 2(?(771)1)'

(10.4)

Note also that this implies asymptotics for the expectation Enp, (T,,), see Re-
mark 5.19.

We proceed to the calculation of the numbers Py (m). It will be convenient to
use the extended m-ary search tree in Section 7.1, but note that we really are
interested in the subtree of internal nodes; to emphasize this we say internally
k-protected for the k-protected nodes in the tree of internal nodes. As usual, m
is fixed and will often be omitted from the notation.

With this in mind, define, for k > 0,

hi(t) := P(the root of T; is internal and internally k-protected). (10.5)

The root becomes an internal node at time S; ~ Exp(1), when it receives its
first key. Every node is O-protected, so ho(t) is the probability that the root is
internal; thus

ho(t) =P(S; <t)=1—e"". (10.6)
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Recall that all m children of the root are born at time & = S,,,_1. Let f(t)
be the density function of £ = S,,,_1. For k& > 1, the root of 7; is internal and
internally k-protected if and only if ¢ > £ and the m children of the root either
are external or internally (k —1)-protected, but not all external. Conditioned on
&, with € < t, the m subtrees of the root of T; are independent, and distributed as
Ti—e. Hence, the conditional probability (given £) that a given child is internally
(k — 1)-protected is hy_1(t — &), while the probability that it is external is
1 — ho(t — &) = e~ =9 Consequently,

t
hy(t) = / F(8) ((hi—1(t — s) + e~ Emo)ym — e=m=9)) 45, (10.7)
0
This can be written as a convolution
hk(t) = f(t) * ((hk_l(t) + €7t)m — eimt). (108)

Furthermore, f(t) is the density function of the sum S,,_; = Zf;_ll Y; of inde-
pendent random variables, and thus f(t) is itself a convolution of their densities
ie~ . Hence, (10.8) can be written

hie(t) = (i1 (t) + €)™ — ™) x ”zl je~t, (10.9)
This, with the initial (10.6), makes it possible to calculate any hy(t) by recursion
(preferably using computer algebra).
By Theorem 5.14 and (10.5), the fraction of nodes in T,, that are internal
and internally k-protected converges a.s. to

P(the root of T is internal and internally k-protected) = / hi(t)e™ " dt.
0
(10.10)

Recall that we are really interested in the internal nodes only. By (7.13),
asymptotically half of the nodes in the extended m-ary search tree are internal,
and thus the fraction of k-protected nodes in the (internal) m-ary search tree
T,, converges a.s. to

P, = Pk(m) = 2/ hk(t)eit dt. (1011)

0
This can be regarded as a value of a Laplace transform. Since the Laplace trans-
form transforms convolutions to multiplications, and fooo fle tdt =

Ee~%m-1 = 1/m by (7.9), we have by (10.8) also the alternative formula (that
might be better for numerical calculations)

=2 [Tt ey - a0

In the binary case m = 2, these formulas are equivalent to the formulas
derived by a very similar argument in Devroye and Janson [37]. (The function
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r(t) in [37] equals 1 — e~ " — hy(t).) For a different method to find Py(2), see
Boéna [18] and Béna and Pittel [19].

Consequently, Theorem 10.1 says that for an m-ary search tree the asymptotic
distribution of the rank is

P(R(T,) = k | T,)) == P(Ro(T) = k) = Py — Piy1, (10.13)

where P, is given by (10.11)—(10.12).

Note that (by induction), each hy(t) is a polynomial in e~ and ¢ with rational
coefficients. Hence, each Py(m) is a rational number.

Trivially, Py = 1 for every m by (10.1).

For k=1, ho(t) + et =1 by (10.6), and thus by (10.12),

m/ 1 — e ™) dt = 2(1— ! ): 2 (10.14)

m m+1 m+1

in accordance with (7.24) (recall that the 1-protected nodes are precisely the
non-leaves).
Also for P,, we may deduce a rather simple formula.

Lemma 10.2. For the m-ary search tree, with m > 2,
hi(t) = (1 —e H)™. (10.15)

Proof. We extend the notation of Section 7.1 and let S; := Ez:1 Y; for any
integer j > 0, where Y; ~ Exp(i) are independent. (We thus change the earlier
special definition of S,,.) By Theorem C.1,

4

S; =V, = max E;, (10.16)

Iis

)

where E1, Es, ..., E; ~ Exp(1) are i.id.
Since hq(t) + et =1 by (10.6), (10.8) yields, recalling that f is the density
function of S,,—1 and using (10.16),

hi(t) = f(t) * (1 — e ™) = f(t) *x P(Yy, / F)P(Y,, <t—s)ds
=P(Sy-1+ Y, <t)=P(S,, <t) = (121222}%' E; < t)
= ﬁ]P’(Ei <t)=(1—-eH)m O

Theorem 10.3. The asymptotic probability that a random node in an m-ary
search tree Ty, is 2-protected is

mt (m(m — £))!

2
Py = Py(m) = — (m—0 (m(m -0+ L+ 1)

(10.17)
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Proof. By (10.12), a binomial expansion, (10.15), the change of variables x = e~*

and a standard evaluation of a beta integral,

m—1
2 [ m m—L_—bt
PQ:E/O e Z(€>h1(t) (& dt

m—1 00
_ 2 m / (1 — e~ t)mm=0=(t+1)t gy
m E 0
(=0
m—1 1
2
== (TZ) / (1 —2)™m=050 4t (10.18)
™= 0
2 /m
-— (E)B(m(m—f)-i-l,f—&-l)
=0
2 (m (m(m = )10 -
7m£:0 ) (mim—~0)+£+ 1)1

Remark 10.4. We can also prove this result using a more combinatorial proof
with balls and boxes. We recall from Theorem 7.10 that the asymptotic fringe
tree T can be constructed as an m-ary search tree with a random number K of
keys, where by (7.18) P(K = k) = m = 1/(’“'2"2), k > 1. We condition
on K = k and find the probability that the root of T} is 2-protected.

Recall that a node is 2-protected if it is not a leaf and has no child that is
a leaf. Thus, the root of T} is 2-protected if and only if it is filled with m — 1
keys and each of the m subtrees of the root has the property that it is either
empty or contains at least m keys, and at least one of the subtrees is nonempty;
in particular, we must have k > 2m — 1.

For £ > 2m — 1 we order the keys in increasing order and represent the
k —m+ 1 keys that are distributed to the m subtrees of the root by 0’s and the
m — 1 keys that stay in the root by 1’s. We also add two additional 1’s first and
last. This gives a string of length k + 2, beginning and ending with 1, and with
m — 1 additional 1’s. There are (mk_ 1) such strings, and all occur with the same
probability.

Furthermore, the corresponding tree T}, is 2-protected if and only if between
every pair of 1’s in the string, there is either no 0’s, or at least m 0’s. In other
words, the 1’s appear in clusters, separated by at least m 0’s. Let the number
of clusters be r 4+ 1, and note that 1 < r < m. To count the number of strings
of length k + 2 such that these properties are satisfied for a given r, we first
distribute the m + 1 1’s into r 4+ 1 boxes, such that no box is empty. This gives
(T) different choices. We then distribute the & — m + 1 0’s into the r gaps
between the clusters; it is required that there should be at least m 0’s in each
gap, but the remaining k —m + 1 — mr 0’s can be distributed arbitrarily into

the r gaps. This can be done in (kM;TYH)) ways. Hence, summing over r and
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k and using (7.18), we obtain

m 00 (m) (k+r—m(r+l))
Py=Py(m)=> > (=S e . (10.19)
r=1 k:m(r+l)—1 ( 2 )(mfl)

The sum over k can be written as a hypergeometric sum (B.1), which using
Gauss’ formula (B.2) simplifies and yields

(m) (m —1)! (mr)!
— \r/)(mr+m+1) (10.20)
o (m—1)! (mr)! '
72Zr!(mr+m—r+1)!’

.
E)
I
NE
[N}

Fimr+1,r;mr+m+2;1)

which is equivalent to (10.17) by letting r = m — £.
We can find the asymptotics of Pa(m) as m — oo from (10.17).

Theorem 10.5. As m — oo, the probability Py = Py(m) in Theorem 10.3 is

2 _
Py(m) = —+ O(m™). (10.21)
Proof. Write (10.17) as
m—1
2
Py(m) = — ag(m) (10.22)
m
£=0
with
m! (m(m —£))!
= . 10.2
alm) = B Tatm =0 £+ 1)1 (10.23)
In particular,
(m?)! 1
= = . 1 . 4
For each fixed ¢, as m — oo,
ag(m) ~mf(m(m — 0))~1 ~ mbfm 720D = =62, (10.25)
Furthermore, rather crudely, if £ < m/2, then
1 ml 2Z+1
<mt < = 10.2
ag(m) <m (m(m — )1 = (m2/2)iH1 — pf+2 (10.26)
and thus
m/2 92 9\ —1 ,
3 ag(m) < ﬁ(l - E) = 0(m™). (10.27)
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If m/2 < £ <m—1, we instead note that £ —m/4+ O(1) = m/4+ O(1) of the

factors (m—1i),4i=0,...,¢—1, are less than %m, and thus, similarly to (10.26),
3ym/4to) 1 3\ m/4+0(1)
< (- — < (- 10.2
alm) < (3) ™ Cmm = )1 (3) (10-28)

and thus )
e m/4
Z ag(m) =0 (m(i) > =0(m™®). (10.29)
t=|m/2]+1
Consequently, by (10.24), (10.27) and (10.29),

[

. ag(m) = ag(m) + O(m™3) = % +0(m™?) (10.30)
(=0

and the result follows from (10.22). O

Remark 10.6. The proof shows that ZT:;L ag(m) = O(m=*=3) for any fixed

k, and thus
9 K
Py(m) = — Thea :
2(m) = — > ar(m) +0(m*) (10.31)
(=0
which together with (10.23) gives an asymptotic expansion of P»(m) in powers
of m™! to arbitrary precision. For example, taking k = 2,

2 1 m m(m — 1) —6
Py(m) = =
2(m) m(m2+1 * (m? —m+1)2  (m? —2m—|—1>3) +O(m™)
2 2 4 _
= 8 Tt T TO(m°). (1032)

We give some numerical examples for small m and k, calculated by Maple
using (10.11), (10.12) or (for k = 2) (10.17). Recall that Py(m) = 1 and P;(m) =
2/(m + 1) by (10.14). The value P»(2) was first found by Mahmoud and Ward
[90]. Béna [18] found also P3(2) and P4(2) in an equivalent form; in our notation
he computed P(Ro(T) = k) for k < 4; this was extended to k < 6 by Béna and
Pittel [19], see also Devroye and Janson [37]. For m > 2, Py(m) was found
using Pdlya urns for m = 3 by Holmgren and Janson [60] and for m = 4,5,6,7
by Heimbiirger [56]. The values of P5(3) and Ps(4) are new. (We have also
calculated e.g. P4(3) and P3(5), but they have too many digits to fit on a line.)

_ 1
Py(2) = 55
_ 1249
P 3(2) — 38100
Py(2) = 103365591157608217
4 2294809143026400000
Ps5(2) = 28988432119470126428745503472450231049113704894255010839147852677
5 3353377025022449199852900725670960067418280803797231788288000000000
_ 19
Py(3) = 140
P5(3) = 1550707922167467531619
3 109171218839281719120000
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__ 54731
P2(4) — 1021020
Ps(4) = 18669293609273671848329391002724727078204420654827428710651571011801
3 10647619779410811926633805505705710276401405786992612983909862200000000
3491
P2(5) — 145860
__ 760687429
Py(6) = 61618399920
__30706935422593
Py(7) = 1254556530624400
__351290243384177
Py(8) = 75964420635503400
Py(9) = 4396518809902327
2 1391843538882476680
P(10) = 2342020375280850167304355177
2 1036489488884911417519833710040
Py(13) = 26484106080648861012732023951265705943439
2 26631299618409351014679549721918492033886700
Py(15) = 3345241368583279619305030461877889463409229379479549149
2 5237499866293002299315802678302280652458939709867850337600
Py(18) = 291057072374356381926366502629609543999495527334257770304419581448683067
2 798438501453518964732193240994834409677783210033312650160515213913065316400

The numerators and denominators of these rational numbers evidently grow
very rapidly with k; Béna and Pittel [19] note that (in our notation) the denom-
inator of Ps(2) has 274 digits, but the largest prime factor is only 61, and they
show that in general, the largest prime factor of the denominator of Py (2) is at
most 2% 4 1. This can be generalized to arbitrary m, using the recursion above;
this also gives a new and simpler proof for m = 2. (Nothing similar seems to
hold for the numerators; they typically have only a few and often large prime
factors in these examples. The numerator of P»(13) happens to be a prime with
41 digits.)

Theorem 10.7. The largest prime factor of the denominator of Pi(m) is at
most mF + 1, forany k >1 and m > 2.

Proof. A simple calculation shows that for integers j,a,b > 0 with a # b, the
convolution t/e~ x e~ is of the form Y 7_ c;t’e" + ¢'e = with coefficients
¢i,c € (b—a)~771Z; if a = b, we obtain instead j%tj“e_“t. It follows by (10.9),
(10.15) and induction that for k > 1, hy(t) is a polynomial in e~* and ¢ of degree
mF in e~* and of degree (at most) 1 +m +---+mF=2 = (mF1 —1)/(m - 1)
in ¢, with rational coefficients whose denominators have all their prime factors
< mPF. The result then follows from (10.11). d

For the binary case m = 2, the probabilities P, (2) where shown to have an
exponential decay by Béna and Pittel [19]. We conjecture that this holds for
m > 3 too, but leave that as an open problem.

10.2. Random recursive tree

Consider the random recursive tree in Example 6.1. This has been studied by
Mahmoud and Ward [91] and Devroye and Janson [37]; we follow here [37]. Let
T¢ be the Yule tree process in Example 6.1 and define

pi(t) :=P(Ro(Tz) = k), (10.33)
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the probability that the root of T; is k-protected. By the construction of the
fringe tree T = T#, with 7 ~ Exp(1), the limit Py in (10.1) is given by

sz/ pr(t)e t dt. (10.34)
0

The functions pg(t) can, in principle, be found by recursion. The children of
the root in 7; arrive according to a Poisson process with intensity 1, and a child
that is born at time s < ¢ is not (k — 1)-protected at time ¢ with probability
1 — pr—1(t — s). Hence, for any k > 1, the number of children of the root in
T: that are not (k — 1)-protected at time ¢ is Poisson distributed with mean
f(f (1—pe—1(t—s))ds = fg (1 —pr—1(s)) ds. Since the root is k-protected if and
only if there is no such child, but there is at least one child, and the probability
that there is no child at all is e~¢, we obtain the recursion

pi(t) = exp (— / (1= e (s) ds) et

t
=t <exp (/ pk_l(s)ds> 1> , k>1,t>0,
0

with po(t) = 1.
Taking k = 1 in (10.35) we obtain the obvious p;(t) = 1 — e~*. Taking k = 2
in (10.35), we then find

(10.35)

pa(t) =exp(e™" —1) —e™" (10.36)

and thus by (10.34)

oo (oo}
P, = / exp(e_t — 1)e_t dt — / e 2t dt
0 0

1

1 ) (10.37)
:/ exp(z —1)dz — = = = —e 1,
0 2

2

in accordance with Mahmoud and Ward [91].
In principle, the recursion (10.35) yields pg(t) and Py for larger k too, but
we do not know any closed form for k£ > 3.

11. Maximal clades in m-ary search trees

We define a clade in an m-ary tree to be a node with less than m children. (In
the formulation using extended m-ary search trees with external nodes, a clade
is thus a node with at least one external child.) A mazimal clade is a clade such
that no ancestor is a clade.

Remark 11.1. The reason for this somewhat strange terminology comes from
applications of the binary case m = 2 to mathematical biology, where the clade
is regarded as a set of external nodes, see e.g. Blum and Francois [16], Durand,



118 C. Holmgren and S. Janson

Blum and Francois [45], Chang and Fuchs [23], Durand and Francois [46], Dr-
mota, Fuchs and Lee [42] and (for the elementary equivalence with the definition
here) Janson [71]. We consider here the natural extension to m-ary trees. (As
a mathematically interesting example; we do not claim any biological applica-
tions.)

The number of clades is thus the number of nodes with outdegree less than
m, and the fraction of such nodes is by Theorem 5.14 asymptotically given by
the probability that the root of the asymptotic fringe tree 7 has outdegree less
than m. (This is found to be 1 — m in Theorem 7.14.)

The property that a clade is maximal, however, depends also on its ancestors,
and therefore we need the extended fringe and the random sin-tree 7; moreover,
we have to consider all ancestors, so Theorem 5.25 does not apply and we
use Theorem 5.26.

Theorem 11.2. Let nymc(T) be the number of mazimal clades in T. If T,, is a
random m-ary search tree with n keys, then

mc Tn .S, . . I
n|T_(|) 2% Pmc = Pmc(m) = P(o is a mazimal clade in T). (11.1)

Proof. We apply Theorem 5.26 with Py = Q = “the outdegree is < m”, i.e.,
the property that a node is a clade. Then P in Theorem 5.26 is the property
that a node is a maximal clade. The assumption (5.49) holds trivially, since
é(a) < m. The random variable A is the time the root of 7; gets it final child;
by Remark 7.9, this can be written as a sum of a number of exponential variables
(with different rates), and thus (5.50) holds for some small 6 > 0. (In fact, for
all § < 1, by Remark 7.9 and Theorem C.1.)

Hence, Theorem 5.26 applies and the result follows. O

The constant Pnc(2), i.e., the asymptotic proportion of maximal clades in a
binary search tree, was found to be (1 — e~2)/4 by Durand and Frangois [46],
see also [42] and [71]. We give a different proof of this, using the properties of
the sin-tree 7 in Example 6.2.

Theorem 11.3.

1—e2
Prnc(2) = 1

(11.2)

Proof. Recall the general construction of the sin-tree T in Section 5 and the
specific version for the binary search tree in Example 6.2. In the construction,
we stop the tree at 7 ~ Exp(1), but we first consider the tree T; at a fixed time
t > 0. (Equivalently, we condition on 7 = ¢.)

We thus want to compute the probability ]P(o is a maximal clade in 7~§) We
first note that o is a clade unless it already has got its two children; each child
has appeared with probability 1 — e~* and thus

P(o is a clade in ’7}) =1-(1—e "2 =2""—e?. (11.3)
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We also require that no ancestor is a clade, i.e., that each ancestor has two
children. Note that each ancestor has an heir, so it is not a clade if and only if
the other child is not yet born. Suppose that the ancestors are born at times
—11, =172, ..., and condition on these times. Ancestor o(¥) thus has age n; +t at
time t, so the probability that it is not a clade is e~ "+, Consequently, using
the independence of different parts of the sin-tree,

P (o is a maximal clade in Tl m, .. ) = (27" —e7) (1767(’““)). (11.4)

=

1=1

The next step is to find the expectation of (11.4) over all {7;}. In the present
case, this is not difficult since, by Example 6.2, {—;} is a Poisson process with
intensity 2 on (—00,0), and thus {7;} is a Poisson process with intensity 2
on (0,00). For any Poisson process Z = {;} on some space S, with intensity
measure A, and any function f on § with 0 < f(z) < 1, there is a standard
formula

E[] £(6) = e Js0-I@nrdn), (11.5)

ez

(See e.g. [75, Lemma 12.2]. Or note that (11.5) follows easily if f takes only a
finite number of values, and the general case follows by monotone convergence.)
Consequently, taking f(z) =1 — et (11.4) yields

IP’(O is a maximal clade in 7~Z)

(27 =) ET] 70m)

= (Qe*t — e*Qt)ef JoSe " 2da (11.6)
= (Qe_t — e_zt)e_Qeft.
Finally, recalling that T = T= with 7 ~ Exp(1),
IP’(O is a maximal clade in ’7~‘) = / (267t efzt) —2e ot qy
0 (11.7)

For further, somewhat surprising, results on the number of maximal clades
in the binary case (moments and asymptotic distribution), see Drmota, Fuchs
and Lee [42] and Janson [71].

Problem 11.4. Unfortunately, we do not know how to compute Pnc(m) for
m > 2, and we leave this as an open problem. Using the description in Section 7.2
of T, it is straightforward to modify (11.3)—(11.4) (although the result is more
complicated since the birth times do not have exponential distributions, see Re-
mark 7.9), but the birth times of the ancestors do not form a Poisson process
so (11.5) does not apply and we do not know how compute the expectation.
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We can use the same method for other, related, problems. We give two ex-
amples. Let us first consider again the binary search tree, but we simplify the
property of being a maximal clade studied above by considering only the condi-
tion for the ancestors but ignoring the number of children. Thus, let P, be the
property of a node that none of its ancestors has only one child, and let n,(7")
be the number of nodes in T with this property.

Theorem 11.5. If T,, is a random binary search tree with n keys, then
nx(Tn) as, 1— e 2
— .
T | 2
Proof. We apply Theorem 5.26 as in the proof of Theorem 11.2, but with Py
the trivial property “true”. This yields convergence almost surely, to the limit

P(o0 has Py in 7~') This probability is computed as in the proof of Theorem 11.3,
replacing the factor (11.3) by 1, which yields the result

X g ' 2 L1,
/ e % eTtdt :/ e “dr=-——-e " (11.9)

The property Py, as formulated above, can be studied also in other trees. We
consider the random recursive tree as a different simple example.

(11.8)

Theorem 11.6. If T,, is a random recursive tree with n keys, then

"T;TT) L (11.10)

Proof. We argue as in the proof of Theorem 11.5, now using the description of
the sin-tree 7 in Example 6.1. In this sin-tree, the ancestors form a Poisson
process with intensity 1 on (—oc0,0), and, as in the binary search tree case,
for an ancestor, the time until birth of the first non-heir is Exp(1). Hence the
limit P(o has Py in ’7') can be calculated by the method above, now yielding, cf.

(11.9),
0o 1
/ e et dt = / e Pdr=1—e" (11.11)
0 0 0

12. Restricted sampling and sampling by a random key

We have so far considered the properties of a random node in the tree T;,. As
pointed out by Jagers and Nerman [65], one can similarly obtain results for a
random node sampled with some restriction. (For example, a random leaf, a
random non-leaf, a random node with no sibling, ....)

In general, let Q be a property of the type in Theorem 5.14 or 5.25 and
sample v uniformly among all nodes in 7,, that satisfy Q. If P is another such
property, then, by Theorem 5.25,

npao(Th) as, pPAQST)_ (12.1)

Pvhas P | T) = =" po(T)
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If we let 7o denote T conditioned on o € Q, then we can write (12.1) as

npao(Th)
nQ(Tn)

If Theorem 5.14 applies, we can replace 7 by T in (12.1)—(12.2).

P(v has P | T},) = 2% pp(Ta). (12.2)

Example 12.1. We have already seen an example of this in the first suggested
proof of Theorem 7.13, where we note that sampling a node uniformly in an
m-ary search tree is the same as sampling an internal node uniformly in the
corresponding extended m-ary search tree. Thus T, is the extended m-ary search
tree and Q is “internal”. Furthermore, P = Py, is the property of having exactly
k keys. (In this example, Q is the complement of Py, so Py A Q is the empty
property while Py A Q = Py, for k > 1.)

Let us consider the example of sampling a random leaf v in more detail.
Of course, the fringe tree TV rooted at v is trivial, so the interest is in the
extended fringe and in properties of the type in Theorem 5.25. For example,
Drmota, Gittenberger, Panholzer, Prodinger and Ward [43] study the number
of internal nodes (and the number of leaves) in the subtree rooted at the father
of a randomly chosen leaf, for a variety of different types of random trees.

We have the following general result.

Theorem 12.2. Suppose that (A1)—(A5) hold, and that P is a property as in
Theorem 5.25. If v is a uniformly random leaf in T, then

P(v has P | T,) 25 pp(Trear), (12.3)

where ’ﬁeaf is T conditioned on o being a leaf.

_The random sin-tree Tieat may be constructed directly from the tree process
(Tz) in Section 5 by removing all descendants of o and stopping at a random
time T, with the density function

et P(&; > t)
Jo et P&y > t)dt’

t>0, (12.4)

where &1 is the time of birth of the first child of an individual in the branching
process. In particular, if & ~ Exp(a) for some a > 0, then 7, ~ Exp(a + ).

Proof. Let Q be the property of a node that it is a leaf. Then (12.3) is the same
as (12.2), with ’Hcaf TQ, ie. T conditioned on o being a leaf.

To see that ﬂeaf can be constructed as stated, note that in the construction
of the tree process (7¢) in Section 5, the descendants of o and the rest of the
tree are independent. Since T is obtained by stopping T; at 7, it follows that if
we ignore descendants of o, ﬂeaf is obtained by stopping 7} at an independent
random time 7, having the distribution of 7 conditioned on o being a leaf in
T=. Moreover, if the first child of o is born at &;, then o is a leaf in T = T=
if and only if & > 7. Since T has the density function ae™%t, it follows that
conditioned on the event &; > 7, 7 has the density function (12.4). |



122 C. Holmgren and S. Janson

Example 12.3. Let 7;, be an extended binary search tree with n internal
nodes, let v be a (uniformly) randomly chosen external node in 7, and let X,
be the number of internal nodes in 7"~!, i.e., the number of internal nodes
that are descendants of the parent of v. Equivalently, if v’ denotes the sister
of v, X, is 1 plus the number of internal nodes in the subtree T)V. It follows
from Theorem 12.2 that if X similarly is the number of internal nodes of ﬁeaf
that are descendants of the parent o)) of o, then P(X,, = k | T},) 23 P(X = k)

for every k > 1, ie., X, 4, X, also conditioned on T;, in the sense L£(X,, |
T,) 2% L£(X), cf. Remark 4.1.

For the extended binary search tree, we use the branching process in Sec-
tion 7.1 (with m = 2), where each individual gets 2 children at the same time,
at age & ~ Exp(1). Hence, the last statement of Theorem 12.2 applies with
a = 1. Furthermore, o = 1, and thus 7, ~ Exp(2).

Since X equals 1 plus the number of internal nodes in the subtree ﬁg;f rooted
at the sister o’ of o, we do not have to consider the ancestor o(!); we just note
that o’ and o are twins, and thus o’ too is born at time 0. The number of internal
nodes in 7;0, is a pure birth process with birth rates A\, = k 4 1, started at 0.
(In other words, it is J; — 1, where ), is a Yule process, see Example A.3.)
Stopping this at 7, ~ Exp(2) we find by Theorem A.5 (with x =p=1, a =2)
X — 1~ HG(1, 1;4). In other words, using (B.3)-(B.5),

4
(k+1)(k+2)(k+3)°

P(X = k) = k> 1. (12.5)

This limit distribution was found by Drmota, Gittenberger, Panholzer, Prod-
inger and Ward [43] (in a slightly different setting, keeping track of the position
of the nodes).

Example 12.4. Let T, be a random recursive tree with n nodes, as in Exam-
ple 6.1, let v be a uniformly random leaf in 7,, and let T} := T~ \ {v}, the
random tree consisting of the parent v of v and all its decendants except v.
Further, let X,, := |T}}|, the number of nodes that are descendants of the parent
of v, including the parent but excluding v.

As in Example 12.3, it follows from Theorem 12.2 that if X similarly is the
number of nodes in T := lgz;;l \ {0}, then P(X,, = k | T),) &3 P(X = k) for

every k > 1, and thus £(X,, | T,,) 22 £(X), cf. Remark 4.1.
By the description at the end of Example 6.1, the tree process ﬁgaf_tl , minus o

and its descendants, is a Yule tree process, starting at time —E * when the parent
o is born. Furthermore, £* ~ Exp(1). We stop this tree process at time 7,
where by the last statement in Theorem 12.2 (with a« = « = 1), 7, ~ Exp(2).

Consequently, X < yg* +r,» & Yule process (started at time 0 as usual) stopped
at 5* + 7,, with E* ~ Exp(1) and 7, ~ Exp(2) independent.

A simple calculation shows that £*+7, has the density function 2e~* (1—e™1),
t > 0, while J; ~ Ge;j(e™?), see Example A.8. Hence, for any k > 1, with
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[e'S) 1
= / efl—e i let(1—e ") dt = 2/ (1 —z)kdz (12.6)
0 0

(k+1)(k+2)

We have here considered only the number of nodes in T However, it is
furthermore clear from the symmetry of the Yule tree process that given X =
|T|, the random tree 7! is distributed as a random recursive tree of order X,
ie., T! is a random recursive tree with random order X given by (12.6). This
describes, at least in principle, any properties of T*. For example, we may as in
[43] count leaves and non-leaves separately in 7. It is easy to see by induction
that if k£ > 2, then

P(Ty has i leaves) = P(T} has i non-leaves) = (12.7)

where <]::11> denotes the Eulerian number (see e.g. [53] or [97]); i.e., the number

of leaves in T}, is distributed as 1 + the number of ascents in a random permu-
tation of length k — 1. (In fact, both random vectors (#leaves, #non-leaves) and
(1 4 #ascents, 1 + #descents) evolve when k is increased as generalized Pélya
urns with balls of two colours where we draw a ball and return it together with
a ball of the opposite colour.) Consequently we find, for k > 2 and 1 < i < k,

P(T}! has i non-leaves and k — i leaves)
235 }P’(fl has i non-leaves and k — i leaves)

2 G 2k(E)

(k+1D(k+2)(E—1)! (k+2)!

(12.8)

Let p; := }P’(fl has i non-leaves). Summing (12.8) over k we find for example,
after short calculations (partly assisted by Maple), p; = 6 — 2e = 0.563, ps =
11 —4e ~ 0.127, p3 = L — 5e — 3e? + Ze® ~ 0.072.

Using [97, (26.14.6)], it is easy to see that p; is a polynomial in e with rational
coefficients, of degree at most i, but we do not know any simple general formula
for p;.

12.1. Sampling a random key

Similarly, in an m-ary search tree, one might sample a key uniformly at random
and consider the properties of the node containing that key.
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Theorem 12.5. Let T,, be a random m-ary search tree, and let P be a property
as in Theorem 5.14. Sample a random key uniformly, and let v be the node
containing that key. Then, as n — oo, letting R(T) denote the number of keys
in the root of T,
E(R(T)I{T € P E(R(T)I{T € P
Do has p) 25 BRTIUT €P)) _ E(RTI(T € )
ER(T) 2(H,, — 1)
Proof. Let Qf be the property of a node v that it contains k keys. Then, by The-
orem b5.14,

(12.9)

o Zk kn'f’/\Qk (Tn) a.s. Zk kP(? cPA Qk)
IP’(U has 77) =S ko, (Th) RN S LE(T € Op)
_EQC AT € P AQ})
E(Zk kT € Qk}) )

which equals the second term in (12.9) because T € Q) <= R(T) = k.
Furthermore, for the same reason,

(12.10)

Zk an . (Tn) a.s. — —
TT —>z};kﬁ"(7’6 Q) =ER(T). (12.11)
Since Y, kng, (T5,) = n, the total number of keys, (12.11) and Theorem 7.11
imply

ER(T) = 2(H,, — 1) (12.12)
which completes the proof. (Alternatively, (12.12) follows from Theorem 7.13,
noting that the limits in (7.23) are the probabilities P(R = k).) O

Remark 12.6. Theorem 12.5 extends to properties as in Theorem 5.25 (or The-

orem 5.26) with only notational changes: replace R(7) by the number of keys
in the distinguished node o and 1{T € P} by 1{o has P}.

Example 12.7. Let K’ be the number of keys in the node containing a random
key in an m-ary search tree T},. Theorems 12.5 and 7.13 imply that

1 k
B(K' = k) 25 { T TGO L<ksm=2, (12.13)
it b=m=—1

For m = 3,4,5, this yields the limit distributions (%,3), (%,%,%), and
(E 10 9 4_8)

T T T T )
Example 12.8. Let D’ be the number of children (the outdegree) of the node
containing a random key in an m-ary search tree T,,. It follows from Theo-
rems 12.5 and 7.14, noting that a node with outdegree different from 0 always
contains m — 1 keys,

—

1— _ (m-1) k
P(D' = k) =% (et NHn =1
mmA D) (Hy,—1) 1

(12.14)
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_ < vields the Limit distributions (2.1 1 1) (20 9 9 9 9
For m37— 3;4,85, t;llb E%flelgds the limit distributions (5, 55> 5), (65, 65 65 85 65)
and (3, 77, 77> 75> 7 77) -

13. Height

We have in this paper so far considered fringe properties of random trees. How-
ever, the connection with Crump-Mode-Jagers branching processes has also
been used very fruitfully to study properties related to the distance to the root,
in particular the height of the tree. This was pioneered by Devroye [29] us-
ing results by Kingman [77] and Biggins [11, 12] for branching random walks
with discrete time (based on Galton—Watson processes), see also Devroye [30],
Mahmoud [85], the survey Devroye [34], and Broutin and Devroye [20]. (Par-
tial results for the binary search tree had been proved earlier by Pittel [101],
using the same continuous-time branching process as [29] in a somewhat dif-
ferent way.) The method was further developed by Biggins [13, 14] using the
continuous-time Crump—Mode—Jagers branching processes used in the present
paper. We give in this section a description of the method and apply it to the
height; further applications to the saturation level, profile, typical depth and
total path length are given in a preliminary version of the present paper [61].
See also the papers just mentioned for further details and results; in particular,
note the second order results in [30, 34].

Recall that the depth h(v) of a node v is its distance from the root. The height
H(T) of a tree T is defined as max,e7 h(v), the maximum depth of a node.

The key idea that makes it possible to apply results on branching random
walks is to plot the individuals in a branching process in the plane, using two
coordinates that we call time and position; time is the usual time of birth in
the branching process and position is an additional variable. We assume that
for each individual is defined, besides the sequence (£;)¥; of birth times of the
children (relative to the birth of the parent), also a sequence (1;)X.; (of the
same length N) of random displacements, with —oco < n; < oo; if the parent
is born at time and position (o,y), then child ¢ is born at time and position
(0 + &,y + m). (The general results in [13], [14] allow also a further random
component, describing a random motion of each individual during its life. For
our purposes, we put that motion equal to 0 and let each individual be static.)

Results for branching random walks have been applied to the height (and
other properties) of random trees in two different ways. In the original appli-
cation of Devroye [29], see also [30, 34], the “position” is what we have called
time in the Crump—Mode-Jagers branching process, while “time” is the num-
ber of the generation, i.e., the depth in the family tree 7;. This means that
“time” is discrete and that we consider a Galton—Watson process where each
individual has a position that is its time of birth in the Crump—Mode—Jagers
process studied elsewhere in the present paper. (Furthermore, in this applica-
tion, the Galton—Watson process is deterministic; in the original application to
binary search trees, we consider an infinite binary tree.) Note that H(T;) > n
if and only if the minimum position of an individual in generation n is < t,
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which gives the required connection with the theorems on branching random
walks.

The alternative approach, described by Biggins [14], reverses the two coor-
dinates and lets “time” be time in the Crump-Mode—-Jagers branching process
while “position” is the generation number, i.e., the depth in the family tree. The
offsets n; are thus non-random with 7; = 1. (We sometimes reverse signs and
take n = —1.) We use this approach in the present section, referring to [14] for
further details on branching random walks and to [13] for proofs of the theorems
used here.

13.1. Almost sure limits

Let B; be the maximum of the positions y, of all individuals x that are born
before or on time ¢, i.e., with birth time o, < ¢. In our case with n; = 1, y, is
the generation number of x, and thus By = H(T;), the height of 7.

Define the two-dimensional Laplace transform, for ¢, 0 € (—o0, ),

N
m(¢,0) = EZ@*"F%I‘ € (0, ). (13.1)

i=1
Note that by (5.7), m(0,0) = fi(#). In our case with n; = 1, we thus simply have
m(¢,0) = e~ fi(6). (13.2)
Furthermore, let
v = inf{a : inf logm((, —a¢) < 0}. (13.3)
One of the main results of Biggins [13, 14] is the following (valid for general
7; under some conditions that are satisfied in our case n; = 1):
Theorem 13.1 (Biggins [13, 14]). As t — oo,
B/t &% . (13.4)
O

In our case H(T;) = By, so this yields the asymptotic height of 7y; this
translates to the height of T}, = T, as follows.

Theorem 13.2. Under the assumptions (Al)-(A5) and (A6%), as n — oo,

H(T,) as, _
(Tn) 2% 5= . (13.5)
logn «

Proof. By Theorem 13.1, H(T,,)/7(n) % +, and the result follows by (5.17).
([
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Remark 13.3. The fragmentation trees in Section 9 are of a slightly different
type than the trees T, that are our main object of study, since they appear
as the family tree 7; stopped at a fixed time ¢ = log(zo/z1) instead of a ran-
dom time 7(n), see Remark 9.2. This means that asymptotics for the height of
fragmentation trees follow directly from Theorem 13.1 rather than from Theo-
rem 13.2. In this section we usually consider only trees of the type T,,, and leave
corresponding results for fragmentation trees to the reader.

Remark 13.4. Also the split trees defined by Devroye [35], see Remark 9.7,
are in general not exactly of the type of trees studied here, but for the purpose
of studying the height, they can be approximated by fragmentation trees and
similar results can be obtained, see Broutin and Devroye [20] and Broutin,
Devroye and McLeish [21].

By (13.5), v > 0, and thus the fundamental constant v in (13.3) and (13.5)
can also be evaluated as

y=inf{a>0: in%logm(c7 —a¢) < 0}
inf{a > 0 §<f1 0/a,0) <0 (136)
= inf{a > : inf ogm(—0/a,0) < 0}.

In our case, when (13.2) holds, this simplifies to

v=inf{a>0: ég%{@/a—&-logu(@)} <0}

= int{a>0; 52%{2 M %} <0} (13.7)
:inf{a>0:é<féggw}

and thus
log 11(6)

—1
v 6>0 6 0>a 0

log 7i(6) (13.8)

Geometrically, (13.8) says that —y~! is the slope of the tangent from the
origin to the curve log fi(6), 6 > 0, provided such a tangent exists. (Otherwise,
—~~1 is the slope of the asymptote, as follows from Lemma 13.5(ii) and Re-
mark 13.6 below.) Analytically, v can be found as follows.

Lemma 13.5. 0 < 87! < v < oo.
(i) If 0 > 0 is a solution of the equation

7o)

0

ogi(0), (13.9)

then

Al = 710g9ﬁ(9) - ﬁﬁ/((g)) — —(log7d)'(0). (13.10)

Furthermore, (13.9) has at most one positive solution.
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(ii) If (13.9) has no positive solution, then

log j1(60
7! =~ lim log 7i(6) = sup{z : p[0,z) = 0}. (13.11)
0— o0 0
Proof. Since logi(6) < 0 for § > «, (13.8) yields y~! > 0 and thus v < oo.
It is well-known, and follows from Hélder’s inequality, that log fi(6) is convex;
furthermore, using (5.39),

(log i)' (a) = =7'(a) = —B. (13.12)
Hence, for any real 6,

log i(0) > log fi(a) + (0 — a)(log ) () = —B(0 —a) > —G0.  (13.13)

Hence, for § > 0, log7i(0)/0 > —f3, and (13.8) yields v~ < 3. Thus v > 8~ 1.

Next, for any differentiable convex function f(6) defined on an interval Z C
(0, 00), the function ¢(0) := 0f'(0) — f(0) is increasing since ¢'(0) = 0" (0) > 0.
Hence, g(0) has at most one zero in Z, and since (f(@)/@)l = g(0)/6?, a zero
of g(0) is a global minimum point of f(#)/ in Z. Taking f(0) := logi(f) on
Z:={0>0:7(0) < oo}, we see that g(f) = 0 is equivalent to (13.9). If (13.9)
has a positive solution, it is thus unique and a minimum point of logfi(6)/6
which yields (13.10) by (13.8) and (13.9).

On the other hand, if (13.9) has no positive solution, then g(6) has a fixed sign
in Z. Since g(a) = alogfn) () < 0, g(0) < 0 for all € Z and f(6)/0 is strictly
decreasing. Thus, the infimum in (13.8) is the limit as § — oo, which yields
the first equality in (13.11). The final equality is a straightforward property of
Laplace transforms. O

Remark 13.6. The case (ii) in Lemma 13.5 is exceptional. We see from (13.11)
that u has no mass in [0,771), so no child is ever born to a parent of age less
than v~ 1. Moreover, by (13.8), 7i(0) = e=7 ¢ for all > 0, and it follows easily
that u{y~'} > 1, so u has a point mass at y~!. This case is thus exceptional,
and does not appear in any of our examples.

Example 13.7. For the random recursive tree in Example 6.1, originally treated
by Devroye [30] in a related but somewhat different way, see also [34], we have
w(0) =1/6, 0 >0, see (6.1). Consequently, (13.9) is

—1=—1logb (13.14)

with the solution 8 = e, and then (13.10) yields

v = —(log i) (6) = % = (13.15)

i.e.,, ¥y =60 =e. Since a = 1, the limit in (13.5) is § = ~.
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Example 13.8. For the binary search tree in Example 6.2, originally treated
by Devroye [29], see also [30], [14] and [34], we have u(0) =2/(1+6), 6 > —1,
see (6.5). Consequently, (13.9) is

——— =log (13.16)

1+6 1+6
and (13.10) is
1
,1:_1 ~\/ - -
Y (log ) (0) = 775

ie.,y=1+0. Since a = 1, ¥ = . We may substitute (13.17) in (13.16), noting
that 8 > 0 corresponds to v > 1, and obtain

7t —1=1log(2y"") = —log(v/2) (13.18)

(13.17)

or
~vlog(y/2) +1—~ =0, (13.19)

which has the root v = 4.311070. (The theory above implies that (13.19) has a
unique root vy > 1.)

Example 13.9. More generally, consider a linear preferential attachment tree
as in Example 6.4, with weights wy = xk + p as in (6.17). (This was originally
treated by Pittel [102], at least in the case x > 0; see also Biggins and Grey
[15].) Since only the quotient x/p matters, and p > 0, we may and shall for
simplicity assume p = 1. (It follows that (13.24) below holds also in the general
case provided we replace x by x/p.)

We then have [i(6) = 1/(6 — x) by (6.19), and thus (13.9) is, with 6 > ¥,

0
— —— = —log(f — 13.20
7 x og (6 — x) (13.20)
and (13.10) is
1
-l _ 13.21
Y v ( )
i.e., v =6 — x. We may substitute this in (13.20) and obtain
logy = L = H_X (13.22)
0 —x gl
or
vylogy — v = x. (13.23)

The limit in (13.5) is 7 := v/o; we have a = x + 1 by (6.20), and thus (13.23)

yields
_ _ _ X
Flog((x +1)7) =7 = 1 (13.24)

Example 13.7 is the case x = 0. For the binary search tree in Example 13.8
we have y = —1 and p = 2, which is equivalent to xy = —% and p = 1; thus we
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take y = —3 above. Indeed, (13.24) with y = —1 is the same as (13.19). More
generally, the m-ary increasing tree in Example 6.7 is obtained by x = —1/m.

For this m-ary tree, (13.24) yields, cf. the binary case (13.19),

-1 1
mog(m—fy) A — =0 (13.25)
m m—1
The height of the m-ary increasing tree was found by Broutin, Devroye, McLeish
and de la Salle [22], see also Drmota [40, Theorem 6.47].

Example 13.10. A somewhat more complicated example is the m-ary search
tree in Section 7.1 or 7.2. (For this example, it does not matter whether we
include external nodes or not, since this only changes the height by 1. Further-
more, p is the same for both versions, so the calculations are the same.) This was
originally treated by Devroye [31], see also Mahmoud [85], Pittel [102], Biggins
[14] and Devroye [34].

Recall that o =1, so ¥ = . By (7.2),

m—1
log fi(f) = logm! — " log(i + 6). (13.26)
=1
Hence (13.9) is
m—1 1 m—1
9Z;9+i—2;bge+n+bym=o (13.27)
and (13.10) is
m—1 1
1= ; 13.28
K ; o+ (13.28)

which yields v after (numerically) finding the unique positive root of (13.27).

Example 13.11. We can extend Example 13.10 for m-ary search trees to the
generalization in Example 8.4. (The case m = 2, the median-of-(2¢ + 1) binary
search tree, was treated by Devroye [33]; the general case was studied, by differ-
ent methods, by Chauvin and Drmota [24], see also Drmota [40, Section 6.5.2].)
We still have a = 1, so 5 = ~. It follows from (8.7) that (13.9) is

(m-D(E+D) (m—1)(£+1) (me + m)!
—_— — 1 j log——~ = 13.2
; Triie ; og(0+i+¢) +log ) 0 (13.29)

and (13.10) is
(m—1)(€+1) 1

= — 13.
i ; 0+ite (13.30)
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Example 13.12. Another example is the binary pyramids in Example 6.8,
where the height was found by Mahmoud [86] by similar methods, see also
Biggins and Grey [15] and Broutin, Devroye and McLeish [21]. The equations,
now using (6.44), become a bit involved; we refer to [86], [15] and [21] for a
numerical solution.

Example 13.13. For the fragmentation tree in Example 9.4, we have a branch-
ing process that differs from the one for the binary search tree in Example 13.8,
but the intensity u is the same, so all calculations in Example 13.8 are valid
for this tree too. Thus, see Theorem 13.1 and Remark 13.3, H(T;)/t = ~
with v given by (13.19). Furthermore, if we stop at n nodes as in Remark 9.2,
H(T,)/logn 22 ~, just as for the binary search tree. More precise results for
the height of this fragmentation tree, and m-ary generalizations of it, are given
by Chauvin and Drmota [24].

13.2. Moment convergence

We can also obtain moment convergence in Theorem 13.2, in particular conver-
gence of the expectation E H(T),,)/logn to 7, at least if we assume the following
additional condition on the birth times for an individual in the Crump—Mode—
Jagers process.

(A*) There exists § > 0 such that E ez < oo.

In other words, each individual gets at least two children (N > 2), and the age
when the second child is born has an exponential moment. (Equivalently, it has
exponentially decreasing tails.)

The condition (A*) is satisfied in all examples in Sections 6-8, since &5 is the
sum of one or several exponential waiting times.

Remark 13.14. We use (A*) in the proof of Lemma 13.16 below. Some ex-
tra condition is clearly needed for Lemma 13.16 (at least Ee%1 < oo for some
d > 0, since 7(n) > & if n > 1 and, say, ¥(t) = 1.) However, we do not
know whether (A*) really is needed for Lemmas 13.17 and 13.18 and for The-
orem 13.19. In fact, we conjecture that Theorem 13.19 holds assuming only

(A1)—(A5) and (A6v).

We begin with some lemmas. The first two are stated somewhat more gener-
ally than actually needed here.

Lemma 13.15. For every r > 0, there exists ¢, such that, for large t,
P(H(T;) > crt) <e ™. (13.31)

Proof. Let Ni[x,00) be the number of nodes in 7; that have depth > z, and let
e[z, 00) := E(N;[z,00)). We also introduce, as in [13, 14], the function

a(¢) :=inf{f : m({,0) <1} = inf{ : (9) < ec} =inf{0 : logi(9) < ¢},
(13.32)
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and its one-sided Legendre transform
o*(z) == Cin%{x( +a(Q)}. (13.33)
<

Then, by [13, Theorem 4 and its proof], for any real x,

log n¢[tx, o0)

lim sup < o (). (13.34)

t—o00 t
In fact, [13, Theorem 4] shows that the limit exists and equals a*(x) except
possibly for one exceptional z. The upper bound (13.34) (for every x) is the
simple part of the proof and follows from [13, Corollary 1].
Using (13.32), we can rewrite (13.33) as, for > 0,

of(z) = éﬂ% {z¢+6} = ﬁ(lg;il{xlog 1(0) + 6}
log i(0)<C (13.35)
= 61r>1£{x10gu(9) +6}.

Since log 1(#) < 0 for any 6 > «, (13.35) implies
lim a*(z) = —oc0. (13.36)

Tr—r00
Consequently, we can choose ¢, such that a*(¢,) < —r, and then (13.34)
yields logn;[c,t,00) < —rt for large ¢t. This yields the result (13.31), since

P(H(T;) > crt) = P(Ne[ept,00) 2 1) < mylept,00) < e ™. (13.37)
U

Lemma 13.16. Assume (A1)—(A5) and (A*). Then, for every r > O there
exists c,. such that P(7(n) > cl.logn) =0 (n™").

Proof. First, if (A6y) holds, then 7(n)/logn =% a~! by Theorem 5.12. In
general, we may as in the proof of Theorem 5.12 consider the truncation 1 (t) :=
¥(t) A1 and the corresponding stopping time 7;(n). Then 71(n)/logn 2% a~!
and 7(n) < 71(n). Hence, in any case, if b := 2a~1, then P(7(n) < blogn) — 1;
in particular, if n is large enough (which we assume in the rest of the proof; the
result is trivial for small n),

P(7(n) > blogn) < e (13.38)

Let L := [rlogn]. Let vg = o, the root, and let v; be the second child of
v;—1, i > 1. (Thus, denoting the individuals by strings in Vo := (J,o,N",
see Section 5, the nodes v; are (),2,22,222,....) Let 7, := o, , the time vy, is
born. Let A := Ee%2 which is finite by (A*), and let B := r(log A+1)/§. Then,
6763 logn]E657'L _ 6758 logn(E 6552)11 _ e—SBlognAL
—d0Blogn+(1+rlogn)logA _ An—6B+7'10gA = An~".

(13.39)

gy
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Let w; be the first child of v;_1, ¢ > 1. Then w; is born before (or at the
same time as) v;, so wy,...,wy, are all born before (or at) 7.,. Each w; starts
an independent copy 7;(1') of the branching process and its family tree (we do
not distinguish between these two), with local time ¢ = 0 when w; is born, i.e.,
at global time o,,,. Let Zzp’(i) be the total weight of 7;(i) and let 7(Y(n) be the
corresponding stopping time 7 (n) := inf{t : Zf’(i) > n}.

For every t > 0, the individuals (nodes) in 7;@) form a subset of 75, 4+, and
they have the same ages in both trees; hence the definition (5.1) implies that

Zg)wﬁt > tha(i)_ Consequently, Z n and thus, for every i < L,

P
O, +7(D (n) z

T(n) < o, + T(i)(n) <7+ T(i)(n). (13.40)
In other words, _
T(n) < 11 + mi{l 70 (n). (13.41)

Moreover, the stopping times 7% (n) are independent, and have the same
distribution as 7(n). Hence, (13.38) implies that

P(min7®(n) > blogn) = P(r(n) > blog n)L <elg<n, (13.42)
i<L

Combining (13.41), (13.39) and (13.42), we obtain

P(r(n) = (b+ B)logn) < (A+1)n"". (13.43)
O

The next lemma will immediately be improved in Lemma 13.18. Lemma 13.18
is trivially true for n = 1 too; however, we assume n > 2 since as said in
Section 5, in principle we do not require n to be an integer; any real positive n
is possible. (We use this in the proof of Lemma 13.18 below, for convenience,
when we do not round m to an integer.)

Lemma 13.17. Assume (A1l)—(A5) and (A*). Then there exists ¢ such that,
for alln

P(H(T,) > clogn) =0 (n™"). (13.44)

Proof. Let ¢; and ¢| be as in Lemmas 13.15 and 13.16 with » = 1; we may
assume ¢; > 1. Then by Lemmas 13.16 and 13.15, recalling that T;, := T; (),
for large n,

P(H(T,) > c1ci logn) < P((n) > ¢} logn) +P(H(Ty 105n) = c1¢) logn)
<O(n™)+ e~cilogn O(n™1). (13.45)
This completes the proof, since (13.44) is trivial for small n. O

Lemma 13.18. Assume (A1)—(A5) and (A*). Then there exists C' such that,
foralln>2 andt > 1,

P(H(T,) > Ctlogn) <n~". (13.46)
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Proof. By Lemma 13.17, there exists ¢ and A such that, for all n,
P(H(T,) > clogn) < A/n. (13.47)

We may assume A > 1.
Givenn > 2 and t > 1, let m := An’. Then m > n and thus 7(m) > 7(n)
and H(T,,) > H(T,). Consequently, (13.47) applied to m yields

P(H(T,) > clogm) < P(H(T},) = clogm) < A/m=n"". (13.48)

Moreover, logm = log A + tlogn < (1 + log A/ log2)tlogn. Hence, with C :=
c(1+log A/log?2), (13.48) implies

P(H(Tn) > Ct logn) < P(H(Tn) > clog m) <nh (13.49)
O

Theorem 13.19. Assume (Al)—(A5), (A6y) and (A*). Then the convergence
in (13.5) holds also in L" for every r > 0, i.e.,

E|H(T,)/logn —7|" — 0. (13.50)
In particular,
E(H(T,)"
M — 4", r > 0. (13.51)
log" n

Proof. Let X,, := H(T},,)/logn. By Lemma 13.18, forn > 2 and t > 1, P(X,, >
Ct) <n~t <27t < 217 which obviously holds also for t < 1. Hence, for 7 > 0,

EX! = r/ t"IP(X, > t)dt < 7’/ tr—121=t/C 4t < oo (13.52)
0 0

This shows that each moment E X is uniformly bounded for n > 2. As is

well-known, this implies uniform integrability of X for each r, and thus also of

|X,, — 7|"; since X,, &% 7 by Theorem 13.2, this implies (13.50) and (13.51).

(See e.g. [54, Theorems 5.4.2 and 5.5.2] for uniform integrability.) O

In particular, Theorem 13.19 shows that E H(T,,) ~ 7 logn, and similarly for
higher moments, in Examples 13.7-13.12. We obtain also corresponding results
for the fragmentation tree in Example 13.13, using Lemma 13.15.

Remark 13.20. It follows from (13.50), with = 2, that the variance E |H(T,,)—
E H(T,)> = o(log?n). In the case of a binary search tree, Reed [103] showed
the much sharper result that E |H(T,,) — E H(T,)|* = O(1); this was extended
to higher central moments and to m-ary search trees by Drmota [41].

14. Asymptotic normality?

As said in the introduction, it is natural to try to show asymptotic normality of
the number of fringe trees of a given type. There are several previous results of



Fringe trees, branching processes and m-ary search trees 135

this type for special cases. Central limit laws for fringe trees have been shown,
by several different methods, for binary search trees in e.g. [32], [36], [49], [50],
[23] and [59], and for random recursive trees in e.g. [50] and [59]. For m-ary
search trees, the situation is more complicated: no results for general fringe
trees have been published (this is work in progress [62]), but some special cases
(such as the degree distribution and the number of fringe trees of a given size)
and related quantities (the number of internal nodes) have been treated, and
it turns out that central limit theorems hold for m < 26 but not for m > 27,
see e.g. [87], [85], [83], [26], [63], [25], [48], [67] and [60]. Further examples of
asymptotic normality include the degree distribution of plane oriented recursive
trees (preferential attachment trees, see Example 6.5) [8], [88], [67], [68], and
the number of internal nodes in median-of-(2¢+ 1) binary search tree for £ < 58,
but not for £ > 59, see [26], [27].

The examples of m-ary search tree and median-of-(2¢+ 1) binary search trees
thus show that central limit theorems do not always hold for fringe trees of the
random trees generated by Crump-Mode—Jagers branching processes as in the
present paper.

Problem 14.1. Find a characterization of the Crump—Mode—Jagers processes
that yield asymptotic normality for the number of fringe trees of a given type.

Using the methods of Section 5, Problem 14.1 can be seen as a special case
of the following problem for branching processes:

Problem 14.2. Find a characterization of the Crump-Mode—-Jagers branching
processes such that for suitable characteristics ¢ and v, and with 7(n) as in
Section 5, Zf(n) is asymptotically normal as n — oo.

Problem 14.2 considers a stopped branching process. It is closely related to
the following problem for fixed times:

Problem 14.3. Find a characterization of the Crump—-Mode—-Jagers branching
processes such that for suitable characteristics ¢, (Zf) —myZ) /N Z; is asymp-
totically normal as ¢ — co.

This problem has been studied, at least for some branching processes. As-
mussen and Hering [2, Theorems VIII.3.1 and VIIL.12.1] give a central limit
theorem of this type for a somewhat different class of branching processes, viz.
multi-type Markov branching processes. In principle, as pointed out in [2], this
class includes the Crump-Mode—Jagers branching processes studied here (with
the “type” taken as the entire previous history of the individual), but the result-
ing type space is typically so large that the technical conditions in [2] are not sat-
isfied. (In particular, “Condition (M)”.) However, for the Crump-Mode—Jagers
branching processes used in the examples above, with life histories that are com-
posed of one or several independent waiting times, the process can be described
using a finite dimensional type space. It seems that the results in [2] then apply
and can be translated to conditions for these Crump-Mode-Jagers branching
processes. Presumably, the same conditions then apply to Problems 14.1 and
14.2 too, but that remains an open problem.
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Moreover, it seems likely that the same type of conditions apply to much
more general Crump-Mode-Jagers branching processes. The conditions in [2]
are stated in terms of eigenvalues of a certain operator A defined by the process,
and the result says (under some technical assumptions) that if A\; is the largest
eigenvalue of A (this eigenvalue is real), then we have asymptotic normality if
every other eigenvalue A has Re A < %/\1, but (typically, at least) not otherwise.
The same condition also appears in the different but closely related context of
generalized Pélya urns, see [67]. We conjecture that this condition (in a suitable
form) applies to rather general Crump—Mode—Jagers branching processes. This
has been proved in the discrete-time case [72], but the continuous-time case
relevant here is more challenging.

Remark 14.4. In contrast, for conditioned Galton-Watson trees (see
Remark 1.1), asymptotic normality for fringe trees holds in general, see [70].
(Such trees are not treated in the present paper.)

Appendix A: Birth processes

Recall that a pure birth process with birth rates A\ > 0 is a continuous-time
stochastic process (X;);>0, taking values in Z>( and with some given initial
value Xy = xg (usually 0 or 1), which is Markov and such that when X; = k,
the process jumps to k£ + 1 with rate Ag; equivalently, the process jumps from &
to k + 1 after an exponential waiting time Yy ~ Exp(\x), and all these waiting
times are independent. (We allow A, = 0; we then let Yj, = co.) Thus, the time
the process jumps to k is

k—1
Sei=Y_ Y,  kZao+1, (A1)

i:frg
and, for k > g, with S, := 0,
X(T) =k <— Sp<t< Sk+1. (AQ)

Example A.1. In the branching process corresponding to a general preferential
attachment tree in Example 6.3, the children of an individual are born at the
jumps of a pure birth process (with birth rates A\ = wy); the birth process X;
is thus the number of children at time t.

Example A.2. As a special case (see Example 6.1), the counting process Z[0, t]
corresponding to a Poisson process = with intensity 1 is a pure birth process with
constant intensity Ay = 1, started at 0. More generally, a pure birth process with
constant birth rate A\ = A, started at 0, is a Poisson process with intensity .
(We have earlier defined a Poisson process as a point process; the corresponding
pure birth process considered here is also called a Poisson process. There is
an obvious equivalence between the two points of view, and hardly any risk of
confusion.)
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Example A.3. The Yule process in e.g. Example 6.1 is a pure birth process
with birth rates Ay = k, started at 1. More generally, for a Crump—Mode—-Jagers
process where each individual gets children according to a Poisson process with
intensity « > 0, the total size (number of individuals Z;) is a pure birth process
with birth rates A\, = ak, started at 1; we call this a Yule process with rate
a > 0. (It evidently differs from the standard case a = 1 only by a simple
change of time.)
If () is a Yule process with rate «, it thus follows from (5.9) that

ety — W (A.3)

for some random variable W. (Note that the intensity measure p is adt, so
(5.4) holds and the Malthusian parameter a equals the rate «.) It is easy to
verify (5.11) and thus W > 0 a.s.; in fact, it follows from (A.23) below that
W ~ Exp(1). (This is one of the few cases with a simple explicit distribution
for the limit W.)

We state a general result on stopping a pure birth process by an exponential
clock .

Theorem A.4. Let (X}) be a pure birth process with birth rates A\, > 0, started
at Xy = 0. Furthermore, let 7 ~ Exp(a) be independent of the birth process.
Then X := X, has the distribution

o o ozHl-C_lx\
P(X =k) = == k>0 (A.4)
)\k + « i—0 )\Z + [0 H'L:O()\i + a)

We give two different proofs (both simple) to illustrate different ways of
arguing with exponential random variables; the first proof is more direct proba-
bilistic and the second more analytic. (The second proof is essentially the same
as (6.13)—(6.14) given in Example 6.3; it was there given for a special case but
the argument is general, as is shown below.)

First proof of Theorem A.j. Regard T as an exponential random clock that
strikes and stops the process. When &; = k£ and 7 > ¢, so the process has
not yet stopped, the next event that happens is either that the clock strikes
(rate @), and then X = k, or that X; jumps to k+1 (rate A;), and then X > k.
Consequently,

[e%

P(X=k|X>k)= —, A.
(X =k X2 = o (A5)
Ak
PXZ2k+1|X2>2k)= —. A.
(X2 k1] X 20 = 25 (A6)
By (A.6) and induction,
Ely
P(X > k) = i A.
w0157 (A7)

and the result follows by (A.5). O
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Second proof of Theorem A.4. With the notation above, we have by (A.2)
P(X > k) = B(X, > k) = P(S < 7). (A8)

Conditioning on Sy, we have P(S;, < 7 | Si) = e~*%, and taking the expecta-
tion we find, using (A.1) and independence of Y7,..., Y1,

k—1 k—1
s
_ —aSg __ —aY; __ 7
P(X > k)=Ee k_HJEe _H)\H—a' (A.9)
i=0 i=0
The result follows by taking the difference P(X > k) —P(X > k + 1). O
We consider in particular the linear case, when
A = xk + p, (A.10)

for some constants y and p. (As in Example 6.4, only the ratio x/p matters,
up to a change of time scale, so we might assume y € {1,0,—1}, but we shall
not require this.) Note that Examples A.2 and A.3 both are of this type, with
(x,p) = (0,p) and (1,0) (or («,0)), respectively.

Note that p = A\g > 0, while x can be any real number. As in Example 6.4,
if x < 0, we have to assume that p = m|y| for a non-negative integer m (and
Xo < m); then A,, = 0 and the process stops when it reaches m, so the values
Ak, k > m, can be ignored.

Theorem A.5. Let (X;) be a pure birth process with birth rates \, = xk+p as
in (A.10), for some x and p, started at Xy = 0. Furthermore, let T ~ Exp(«)
be independent of the birth process. Then X := X, has the distribution, when

X#0,

B(x = k) = ILico (xi +0)

[T—o(xi+p+0) (A.11)
__a o (e/x LS 0
pta ((p+a)/x+1)i -

Thus, using the notation in Definition B.1, X has the hypergeometric distribu-

tion HG(p/x,1; (p+ @) /x + 1).
In the special case x =0 (so A\ = p is constant), we have instead

k
P(X:k)zi< P )’ k> 0. (A.12)
p+al\pta

Thus, in this case X has the geometric distribution Geo(a/(a+ p)).
Proof. An immediate corollary of Theorem A.4. O

In the linear case, it is also easy to find the distribution of &} for a fixed ¢.
We begin with the expectation.
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Theorem A.6. Let (X;) be a pure birth process with birth rates \i, = xk + p
as in (A.10), for some x and p, started at Xy = xo. Then, for every t > 0,

L Xt _ L 0
EX, = <X+x°>e x X70 (A.13)
pt + xo, x = 0.
Consequently, for every x and everyt > 0,
d
EEXt = (p + xxo)eX". (A.14)

Proof. Since X, grows with a rate that is a linear function xk + p of the current
state k, its expectation E &} grows at rate Y E &; + p, i.e.,

d
TEX =xEX, +p. (A.15)

This differential equation, with the initial value E Xy = x(, has the solution
(A.13). (The reader that finds this argument too informal may note that A, —
fg(x.)c's + p) ds is a martingale, and take the expectation to obtain (A.15).) O

We give the distribution of X; only for the case x¢g = 0, leaving the general
case to the reader.

Theorem A.7. Let (X;) be a pure birth process with birth rates \i, = xk + p
as in (A.10), for some x # 0 and p, started at Xo = 0. Then, for all t > 0 and
k>0,

P(X; = k) = <”2>!<>’“ (1— e Xtykert = (—1)’f(_’/’€/x)(1 — e XykeP (AL16)

Equivalently, the probability generating function is given by
—xt p/x
Xy _ _—pt o =Xt —p/X _ e X
Ez% =e 7 (1—2(1—e X)) = (—1 2 _e—xt)> . (A.17)

In the case x > 0, this says X; ~ NBin(p/x,e X!), a negative binomial
distribution.

In the case x < 0, when necessarily p = mlx| for some positive integer m,
(A.16) can be written

P(X, = k) = (’:) (1 — e~ IXItyk=(m=R)Ixt (A.18)

and thus X, ~ Bin(p/|x|,1 — e~ XI"), a binomial distribution.
In the case x = 0, we have instead

£k
P(X; = k) = %e*m (A.19)
and
E 2% = (>= Vet (A.20)

Thus Xy ~ Po(pt), a Poisson distribution, when x = 0.
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Note the well-known fact for the Poisson process in Example A.2, we thus
have (A.19), yielding a Poisson distribution Po(pt).

Proof. With py(t) := P(X; = k), we have the initial values po(0) = 1, px(0) =0,
k > 1, and the Kolmogorov forward equation (with p_; := 0)

Pr(t) = Xe—1pr—1(t) = Mepr(t) = (x(k = 1) 4+ p)pr—1(t) — (xk + p)pr(t). (A.21)

This system of differential equations determines pg(¢) uniquely for k = 0,1, ...,
and it is easily verified that the functions in (A.16) and (A.19) give a solu-
tion. The probability generating functions (A.17) and (A.20) follow by summa-
tion. (Alternatively, one may derive and solve a partial differential for g(z,t) :=
E z%¢.)

In the case x < 0 and p = m|x| = —my, (A.16) can be written as

Pt = k) = () e = e (A.22)

and (A.18) follows. O

Example A.8. Let ), be a Yule process, see Example A.3. This birth process
starts at Yy = 1, so we consider instead ), — 1 which is a pure birth process
started at 0, with birth rates Ay = k+ 1, £ > 0. Theorem A.7 applies with
X = p = 1 and yields the well-known result }; — 1 ~ NBin(1,e~*) = Geg(e™?),
and thus

Vi~ Ger(e™),  t=0. (A.23)

For the expectation we get from (A.23), or directly from Theorem A.6 with
x=1,p=0and zg =1, EY, = €’.

Similarly, Theorem A.5 applied to V; — 1 shows that if 7 ~ Exp(«) is inde-
pendent of the Yule process, then

Y, — 1~ HG(1,1;0 +2). (A.24)

Appendix B: Hypergeometric functions and distributions

Recall that the hypergeometric function F'(a,b;c;z) (also denoted by o2 F; (a, b;
¢;z)) is defined by the sum

3

Flabe;z) =Y (@n (bl Z— (B.1)

n=0

see e.g. [97, §15.2] or [53, §5.5]. In general, the parameters a, b, ¢ can be arbitrary
complex numbers (except that ¢ = 0,—1,—2, ... is allowed only in special cases),
and z may be a complex number, but we are here only interested in real a,b, ¢
and z. If a € Zgg or b € Zgg, then the hypergeometric terms in (B.1) vanish
for n > |a| or n > |b|, respectively, so F(a,b;c; z) is a polynomial; otherwise the
series (B.1) converges for |z| < 1 and diverges for |z| > 1. (The hypergeometric
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function F'(a,b; c; z) extends by analytic continuation to z € C\ [1, 00), but we
have no use for this extension here.)

The hypergeometric series (B.1) converges for z = 1 if and only if a € Zg,),
b € Z«o (in these cases the sum is finite, as said above) or Re(c —a —b) > 0,
and then its sum is, as shown by Gauss [52], see also [97, (15.4.20), (15.4.24)],

I'(c)T(c—a—10)

F(a,b;c;1) = T(c—aT(c—b)"

(B.2)

We say that a random variable has a (general) hypergeometric distibution if
its probability generating function is, up to a normalization constant, a hyper-
geometric function F(a,b;c;z), for some a,b, c. We denote such a distribution
by HG(a, b; ¢). (There seems to be no standard notation.) Some such distribu-
tions appear above in the study of random trees, and we give here some general
properties and examples of such distributions, as a background and for easy
reference. See further e.g. Johnson, Kemp and Kotz [74, Chapter 6] and the
references given there.

We repeat the definition somewhat more formally:

Definition B.1. The general hypergeometric distribution HG(a,b; ¢) is the dis-
tribution of a non-negative integer-valued random variable X such that

_ o ~la)k(b)
P(X_k)—OW,

for some constant C'. Equivalently, the probability generating function is

k>0, (B.3)

E X = CF(a,b;c; 2). (B.4)
By (B.4), the normalizing constant C' is necessarily 1/F(a,b; ;1) and thus,

_ 1 _ I(c—a)l(c—b)
©= FatieD ~ FT(e-a-b ®5)

Furthermore, the probability generating function (B.4) is

F(a,b;c; 2)
Ez¥ = 1122 B.
: F(a,b;c;1) (B-6)

Note the symmetry HG(a, b;c) = HG(b, a; ¢).
Remark B.2. The definition (B.3) is equivalent to

P(X=k+1) _(k+a)(k+D)
PX=k _ (ktok+n 20 (B.7)

with a suitable interpretation if P(X = k) = 0.

A hypergeometric distribution HG(a, b; ¢) does not exist for all real parame-
ters a, b, c. We see from (B.3) and (B.5) that a necessary and sufficient condition
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for the existence of HG(a, b; ¢) is that (a)r(b)r/{c)r = 0 and that F(a,b;c;1) <
0o. We do not give precise necessary and sufficient conditions for this here, see
e.g. [74], but we note the following cases where HG(a, b; ¢) exists; these comprise
all cases of interest to us (and to others as far as we know), if we recall that a
and b can be interchanged.

(i) a,b> 0, ¢ > a+b. The distribution has support Z¢. (Examples are (6.33)
and Theorem A.5 for x > 0.)
(ii) @ € Zgo, b > 0, ¢ < a + 1. The distribution has support {0,...,]|a|}.
(Examples are (6.43) and Theorem A.5 for x < 0.)
(i) a € Zgo, b < a+ 1, ¢ > 0. The distribution has support {0,...,|a|}.
(One example is Example B.4 below. Typically, as there, we have both
a,b € Zgo and ¢ > 0; then, if we do not assume b < a, the support is

{0,...,min(|al, |b])}.)

Remark B.3. Assaid above, the hypergeometric function (B.1) in general does
not exist when ¢ € Z¢o. However, it is still possible to define HG(a, b; ¢) is some
cases. We assume that also a € Zgg. (Of course, the case b € Zg is similar,
by symmetry.) If ¢ < a (and b > 0, included in (ii)), there is no problem with
the definition (B.3), letting X have support {0, ..., |a|}. Also the case ¢ = a is
interpreted in this way; in particular, note that HG(—n,1; —n) is the uniform
distribution on {0,...,|a|} [74, §6.10.1].

In the case a,c € Zgp and a < ¢, (B.3) does not make sense, since it would
yield infinite values. We can extend the definition to this case by rewriting (B.3)
as

(@) (b)k

(et k) kI’ k>0, (B.8)
cf. (2.1), where now C’" =T'(¢)C =T'(¢)/F(a,b; c; 1), which exists by continuity
also for ¢ € Z¢g. (The function F(a,b;c; z)/I'(c) is denoted F(a, b; ¢; 2) in [97].)
With this interpretation, we can define HG(a, b; ¢) also in this case, for suitable
b. (See Example B.4 for an example.) Note that for this case, P(X = k) = 0
for 0 < k < |¢|. It is easily verified that if X ~ HG(a,b;c) with ¢ = —n € Zo,
then X = X'+ n+ 1 with X’ ~ HG(a+n+ 1,b+n+ 1;n+ 2). (This makes it
possible to reduce to the case ¢ ¢ Zgo.)

P(X = k) = " —LEVIE

Example B.4. The classical hypergeometric distribution describes the number
of red balls in a sample of m balls drawn (without replacement) from a popula-
tion of N balls, of which n are red; see e.g. [47, Section I1.6]. (Here n,m, N are
integers with 0 < n < N and 0 < m < N.) The probability function is

() Gu )

P(X =k)= (N)
n! (N n) (N —m)!'m! (B.9)
|

Tk (=) (m—k)I(N— m—n—i—k:)
_ (N=m)!(N n) (=m)r(=n)&
NI(N—m—-n)l (N—m—n+1)
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(In the case m +n > N, the final line in (B.9) is not valid, but it can be
interpreted as in Remark B.3.) This is thus the distribution HG(—m, —n; N —
m—mn-+1).

Remark B.5. In the case a = —n € Zgo, when X ~ HG(a,b;c) satisfies
0 < X < n, it is easy to see that n — X ~ HG(a,a —c+ L;a—b+ 1) =
HG(—n,1—n—c¢;1—n—1). (Natural examples can be seen from Example B.4.)

Remark B.6. Most hypergeometric distributions in this paper are of the special
form HG(a, 1;¢), i.e., with b = 1. In this case, (B.3) and (B.5) simplify and yield

P(X = k) = % - % (B.10)

Such distributions are also called Waring distributions [74, §6.10.4].

As said above a hypergeometric variable X ~ HG(a,b;c) with a € Z¢( or
b € Zgo is bounded, and thus has moments of all orders. If a,b ¢ Zgo, the
distribution has a power-law tail, and thus only a finite number of moments.
We give a precise asymptotic formula for P(X = k) and then formulas for
(factorial) moments.

Theorem B.7. Suppose that X ~ HG(a,b;c), and that a,b ¢ Z¢o. Then, as
k — oo,

I(c—a)l'(c—0)
I‘(a)F(b)F(c —a—0)
Proof. By (B.3) (or (B.8)), (B.5) and (2.1),

Flc—a)'(c—=b) T'(k+a)l'(k+D)
@) '®l(c—a—5b) T(k+c)l(k+1)

gotbmesl, (B.11)

P(X = k) =

(B.12)

The result follows since I'(z 4 8)/T'(z) ~ z° as x — oo for every fixed s. O
Theorem B.8. Suppose X ~ HG(a,b;c) and m € Zxy.

(i) Ifa,b¢ Zgo and m = ¢ —a —b, then the moment EX™ and the factorial
moment E(X),, are infinite.
(ii) Ifa € Zgo, b€ Zgo orm < c—a—b, then

_ <a>m<b>m
E(Xm = = (B.13)

In particular, for a € Zgo, b€ Zgo orc>a+b+1,

ab
EX=——— B.14
c—a—b-—1 ( )

and, for a € Zgo, b€ Zgo orc>a+b+2,

ablc—a—1)(c—b—1)

X = .
Var (c—a—b—-1)2(c—a—-b—-2)

(B.15)
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Proof. (i): Follows from Theorem B.7.
(ii): It follows from (B.1), using (B.2) and (2.1), that

_ g Fabici2)lmt _ (@mbm | Flatmbtmetml)
E(X)m = d Fl(a,b;c;1) - (m . F(a,b;c;1)
(@) (D) m

(c—a—b—m)y

This proves (B.13). Taking m = 1 we find (B.14), and the casesm = 1 and m = 2
yield (B.15) after a small calculation, using Var X = E(X)2+EX —(EX)2. O

We see from Theorems A.5 and A.7 that a hypergeometric distribution can
arise as a mixture NBin(a,e X") of negative binomial distributions, or a mix-
ture Bin(m, 1 — e~XI7) of binomial distributions. In this case, 7 ~ Exp(a), so
the random parameter e~XI™ in the negative binomial or binomial distribution
has the beta distribution B(a/|x]|,1), and 1 — e~IXI™ has the beta distribution
B(1,a/]x|). This extends to mixing using arbitrary beta distributions.

Theorem B.9. (i) Let a,b,r > 0 be real numbers. Let X have a distri-
bution that is a mizture of the negative binomial distribution NBin(r,p) with
p~ B(a,b). Then X ~ HG(r,b;r + a+ ).

(ii) Let a,b,m > 0, with m an integer. Let X have a distribution that is
a mizture of the binomial distribution Bin(m,p) with p ~ B(a,b). Then X ~
HG(—m,a;1 —b—m).

Proof. The proofs of both parts are similar: we use the definitions of the negative
binomial, binomial and beta distributions, evaluate a beta integral and make
some manipulations using (2.1) and (2.2). It is not difficult to keep track of
the constant factors during the calculations (and, indeed, this is a useful check,
which we leave to the reader), but it is simpler to ignore them, since the final
factor is determined by (B.5) and thus does not need to be computed; we thus
just write Cy,... for various constants (depending on the parameters but not
on k).

(i):

P(X = k) = /1 0y e A

o kI Bl(a,b)
_(me B(r+a,k+b) (ryD(b+ k)
~ k' B(a,b) Olk!r(r+a+b+k) (B.16)

_ ()i ()
r+a+bypk!

(ii):

P(X = k) :/0 (’%pk(l ek AT
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(m) Bk +a,m—k+b) __ (m)L(k +a)L(b+m — k)

TR B(a,b) =Cs !

(B.17)
o~ (m)I'(k+a) (=m)r{a)k
_04(b+m71)kk!_05(17b7m>kk!' H

Remark B.10. In this context the resulting hypergeometric distributions are
known as beta-negative binomial distributions and beta-binomial distributions.
(Note that we can obtain any distribution of type (i) or (ii) above.) There are
also several other names used for various cases of the general hypergeometric
distribution, see [74]; in particular, case (ii) is sometimes called negative hyper-
geometric.

Example B.11. Yule [108] considered a simple model of evolution, where each
existing species creates new species in the same genus with a constant rate g,
and also (independently) new species in new genera with another rate ;. What
is the limiting distribution of the number of species in a random genus?

Note that the evolution of all species, ignoring their genus, is a Crump-—
Mode-Jagers branching process, where each individual gets children according
to a Poisson process with intensity A; + 4. Hence, assuming that we start with
a single species, the total number of species forms a Yule process with rate
As + Ag, see Example A.3. Similarly, the number of species in the same genus
as the root (the original species) forms a Yule process with rate As.

One way to treat this problem is to consider each genus as an individual in a
Crump—Mode—Jagers process, where each individual has an internal Yule process
V: with rate A\s (the number of species in the genus), and new births occur with
rate A\g);. Since E Y, = e+t see Theorem A.6, the offspring process has intensity
p(dt) = Agerstdt, from which it follows that (5.4) holds with the Malthusian
parameter & = A; + Ay. The assumptions (Al)—(A5) hold, and Theorem 5.14
shows that the number of species in a random genus converges in distribution
to Y&, the number of species in the root at time 7 ~ Exp(As + Ay). The Yule
process V; starts as 1, but we may as in Example A.8 (which is the case Ay = 1)
apply Theorem A.5 to J;—1, with x = p = A4, and it follows that the asymptotic
distribution of the number of species in a given genus is 1 +HG(1,1;34+ X, /As).
(One can, as said above, also use Theorem B.9(i), since Theorem A.7 implies
that J; — 1 has the geometric distribution NBin(1,e=*s*) = Geg(e~*+!), and
e~ B((Ag+Ag)/Ass 1))

This result was found by Yule [108] (by a different method), and a distribution
of the form 14+HG(1, 1; ¢) is therefore called a Yule distribution, see further [106]
and [74, §6.10.3]. (Here ¢ > 2. Often one writes ¢ = 2 + p, with p > 0; in the
present example, thus p = (As + Ag)/As.) Note that the case ¢ = 3 appears in
(6.2) and (shifted to HG(1,1;3)) in (7.6).

An alternative method to treat this example is to consider the Yule process
(with rate A;+X\y) of all species. Call the first species in each genus the progenitor
of the genus, and give each progenitor a mark; then each species (except the
original one) is marked with probability p = Ay/(As + Ag), and these marks are
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independent of each other and of everything else. Hence, we obtain the same
asymptotic distribution of fringe trees (except for the mark at the root) if we
sample a random progenitor as if we sample a random species, cf. Section 12.
Using Theorem 5.14 it follows that the number of species in a random genus
converges in distribution to the number of descendants in the same genus of a
fixed individual stopped at a random age 7 ~ Exp(As + Ay). This yields the
same result as above.

Note also that if we erase the edges between different genera and only keep
the edges between species in the same genus in Yule’s model, we obtain a grow-
ing forest. If we let F), be this forest when it has reached n nodes, we obtain
a growing forest process which is the same as UGROW defined by Devroye,
McDiarmid and Reed [38]. Results for the size of the subtree rooted at a given
node in UGROW are given by Devroye, McDiarmid and Reed [38] and Pakes
[99].

Example B.12. Let n indistinguishable balls be distributed in m > 2 labelled
boxes, so that each of the (":@m 1) possibilities has the same probability. (This
is called Bose-Finstein statistics, see e.g. [47, page 39] or [69, Example 12.2].)
Equivalently, we consider a uniformly random composition of n into m (possibly
empty) parts.

The number X; of balls in a given box, say box 1, has the distribution

N G o (m — 1)(n)x _
]P)(lek)* (n::ﬁil) 7(n+m_1)(n+m_2)k7 k—O,...,TL,

(B.18)
which shows that X; ~ HG(—n,1;2 —n —m). See [74, Chapter 10.4.2].

Example B.13. Pdlya’s urn contains balls of different colours. We draw a ball
uniformly at random and replace it together with ¢ new balls of the same colour.
This is repeated n times. Let W be the number of white balls drawn, assuming
that the urn initially contains w white and b black (or non-white) balls.

We assume ¢ # 0, to avoid the trivial case ¢ = 0 when W has a binomial
distribution, but ¢ < 0 is allowed, meaning that balls are removed. In particular,
c = —1 gives drawing without replacement, when W has the classical hyperge-
ometric distribution in Example B.4. (It is natural to let ¢, b, w be integers, but
the model has a natural interpretation also for real values of these parameters,
see e.g. [67, Remark 4.2].) In the case ¢ < 0, we assume that b,w and n are
such that we never can be required to remove a ball of a colour that is no longer
present, or draw a ball when the urn is empty.

It is easy to see that P(X = k) is proportional to

()I_Twﬂ—l ljbﬂ—l (Z)c”<w/c>k<b/c>nk

and thus W ~ HG(—n,w/c;1 —n —b/c), see [74, §6.2.4].
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For a connection with Example B.12, suppose instead that the urn starts
with one ball each of m colours (including white), and that ¢ = 1. The number
W of white balls drawn is the same as if we start with 1 white and m — 1 black
balls, and thus W ~ HG(—n,1;2 —n — m). On the other hand, it is easy to
see by induction, that for each n, the composition of the urn is uniform over
all possible colour combinations. Thus W has the same distribution as X7 in
Example B.12 (with colours corresponding to boxes).

Appendix C: Order statistics of exponential variables

Let, for 1 < k < m, Vi, i be the k:th smallest of m i.i.d. Exp(1) random variables
Eq, ..., Ey; further, let V,,, o = 0.

Theorem C.1. Let 1 < k < m. Then the following holds.
(i) If Y; ~ Exp(i) are independent, then

m

‘/m,k g Z Yz (Cl)

i=m—k-+1
(ii) Vinx has the density function

m)!

me*(mwﬂ)m(l eyt

, x> 0. (C.2)

(iii) e~V has the beta distribution B(m —k + 1, k).
(iv) For any @ > —(m —k +1),

m

—OVimk _ i (m)
Ee ¢}£Hi+9 CET (C.3)

Proof. (i): Consider m independent exponential clocks that strike at Eq,...,
E,,. As is well-known, by the lack of memory for exponential distributions, the
waiting times W; := Vi, ; — Vi, i—1 between the strikes are independent and
exponentially distributed, with W; ~ Exp(m — i + 1) since there are m —i + 1
clocks left. Let Y; := W,,_;4+1 ~ Exp(7) and note that V,,, ,, = Z?Zl W;.

(iii): Let U; := e~ Fi. Then Uy, ..., Uy,, ~ U(0,1) are m i.i.d. uniform random
variables, and e~ V™* is the k:th largest of them; it is well-known that this has
the beta distribution B(m — 1 + k, k).

(ii): By (iii), e~¥"* has the density

I'(m+1)

o ) = e =)L ()

(m— k) (k1)

for 0 < z < 1, and (C.2) follows.
(iv): A simple consequence of (i), or alternatively of (iii). O
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