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Abstract: In recent years there has been an increased interest in statis-
tical analysis of data with multiple types of relations among a set of en-
tities. Such multi-relational data can be represented as multi-layer graphs
where the set of vertices represents the entities and multiple types of edges
represent the different relations among them. For community detection in
multi-layer graphs, we consider two random graph models, the multi-layer
stochastic blockmodel (MLSBM) and a model with a restricted parame-
ter space, the restricted multi-layer stochastic blockmodel (RMLSBM). We
derive consistency results for community assignments from the maximum
likelihood estimators (MLEs) in both models where MLSBM is assumed
to be the true model, and either the number of nodes or the number of
types of edges or both grow. We compare MLEs in the two models with
other baseline approaches, such as separate modeling of layers, aggregating
the layers and majority voting. In simulations RMLSBM is shown to have
advantage over MLSBM when either the growth rate of the number of com-
munities is high or the growth rate of the average degree of the component
graphs in the multi-graph is low. We also derive minimax rates of error and
thresholds for achieving consistency of community detection in both mod-
els, which are then used to compare the multi-layer models with a baseline
model, the aggregate stochastic block model. The simulation studies and
real data applications confirm the superior performance of the multi-layer
approaches in comparison to the baseline procedures.
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1. Introduction

Over the last decade, relational data has become ubiquitous in all forms of
human activities. In many applications of statistics and machine learning, one
encounters relational data where the entities are represented as nodes or vertices
and the relations or interactions between the entities as edges of a graph. Ap-
plications of such graphs or networks include many information systems such as
social networks, World Wide Web, user information databases in e-commerce,
metabolic networks, gene regulatory networks, protein-protein interaction net-
works and food web.

In majority of the cases dealt with in the literature, the relations are assumed
to be of the same type such as web page linkage, friendship, co-authorship and
protein-protein interaction. However in modern complex relational databases
and networks, we often have information regarding relationships of multiple
types among the nodes. For example, in the context of internet services a set
of users may be connected through email, messaging, social media, etc., each
one of them creating one layer or type of the user-user interaction network [35].
Similarly, users in a social network can have “friendship”, “mentions”, “follow-
ing”, etc. [15] or researchers in academia may have co-authorship, citations,
title/abstract similarity, etc., as different types of relations among themselves.
In genomics data, cellular components can have different aspects of interactions
among them, e.g., protein-protein physical interactions and gene co-expressions
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[31]. Such multi-relational data can be represented as multi-layer graphs where
multiple types of edges represent the relations and the set of vertices/nodes
represents the entities [21].

One of the most important and widely investigated learning goals in an in-
formation network is clustering the entities on the basis of the relationships
between them into densely connected subsets called “communities”. From a
probabilistic point of view, communities can be thought of as groups of vertices
which are more likely to be connected to each other compared to the rest of the
graph, i.e., the probability of having an edge between two vertices belonging to
the same group is higher than that of having an edge between vertices belonging
to different communities. Consequently we would observe the number of intra
community edges to be higher than inter community edges.

Many researchers have proposed methods and algorithms for community de-
tection in networks. Such methods can broadly be divided into three categories:
methods based on probabilistic models, methods based on the maximization
of a global objective function and those based on spectral or matrix factoriza-
tion of the adjacency matrix or the Laplacian matrix. The stochastic blockmodel
[20, 34] is a statistical model for random graphs with a natural community struc-
ture. It is one of a large class of statistical models described in the literature for
community detection in complex networks, which includes the latent variable
[18] and latent space models [19], the degree corrected blockmodel [22, 44] and
the mixed membership blockmodel [2]. Various likelihood maximization based
inference strategies have been proposed in the literature to simultaneously infer
the block assignments and the parameters in the stochastic blockmodel, e.g.,
profile likelihood maximization [3], maximizing the conditional likelihood [8],
and variational EM under mixture model settings [10]. Other strategies involve
Bayesian inference using Gibbs sampling or variational methods [24] and opti-
mizing a modularity function over all possible partitions of the graph [32]. See
Goldenberg et al. [14] for a detailed review of statistical inference in networks.

Several authors have also studied the conditions required on the growth of
the number of communities and the degree density of networks for the estima-
tion strategies to be consistent. Bickel and Chen [3] and Zhao, Levina and Zhu
[44] studied the conditions for community detection through modularity max-
imization under the stochastic blockmodel and the degree corrected stochas-
tic blockmodel respectively. Choi, Wolfe and Airoldi [8] laid down the condi-
tions necessary for the consistency of maximum likelihood estimation under the
stochastic blockmodel. This work was extended by Rohe, Qin and Fan [37] with
a regularized estimator to high dimensional settings where the number of com-
munities grows roughly as fast as the number of nodes. Celisse, Daudin and
Pierre [7] derived consistency and Bickel et al. [4] derived asymptotic normality
of the maximum likelihood estimators and their variational approximations in
the mixture model settings.

In this paper our primary focus is on the problem of detecting an underlying
community structure in multi-layer networks. We assume that such networks
have an implicit community structure and different observed layers manifest
that underlying structure with varying amount of information and noise. As
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Fig 1. A 3-layer twitter network of British MPs. The nodes are colored according to an
underlying community structure: the party memberships.

an example of a network where such an assumption is reasonable, we analyze
a twitter network of British Members of Parliament (see Figure 1) where the
underlying communities are based on their party memberships and the three
observed layers, “mentions”, “follows” and “re-tweets” manifest that structure
in varying proportions. In such cases the multi-layer graph is a more accurate
representation of the underlying similarity of the objects and each layer can
provide only “partial” information about the data [36]. The goal in such cases
would be to correctly identify the underlying set of communities combining
information from all three layers.

Earlier approaches towards multi-relational data or multi-layer graph cluster-
ing suffer from the deficiency that they either cluster each graph independently
and combine the results, or aggregate the graphs and cluster the aggregated
graph. These approaches fail to take into account the dependency among the
different layers, in particular the correlation among different types of edges that
share the same pair of nodes. Moreover, the multiple network layers can have
different characteristics in terms of sparsity and noise. Some layers may be dense
but may carry little worthwhile information, whereas some layers may be ex-
tremely sparse but may carry valuable information. The aggregation process
of graphs could lose the intrinsic heterogeneity of the network layers. Here we
attempt to address the problem of how to efficiently cluster the nodes or en-
tities in a network taking into account all types of layers or relations among
them. Several approaches have been recently proposed in the literature for this
purpose. Among them are approaches based on collective or joint matrix factor-
ization [33, 40, 36], non-parametric Bayesian models and latent factor models
[21], extensions of spectral clustering [11] and modularity [30] to multi-layer
graphs. However there is a lack of statistical analysis of the properties of those
methods.

For community detection in multi-layer networks, we consider a natural ex-
tension of the standard stochastic blockmodel to multi-layer settings that we
will call “multi-layer stochastic blockmodel” (MLSBM). This model, also con-
sidered in Han, Xu and Airoldi [17] as “multi-graph SBM”, is in the spirit of
multi-relational models described in Holland, Laskey and Leinhardt [20], Taskar,
Segal and Koller [41] and Kemp et al. [23]. Han, Xu and Airoldi [17] proved the
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consistency of the maximum likelihood estimates (MLEs) in this model when the
number of relations grows. They keep the number of nodes (and hence the num-
ber of communities) fixed. However, as we will see later in both the asymptotic
analysis and simulation studies that MLE in this model does not perform very
well when either the number of communities grows fast or the network layers are
sparse on average. Hence, we propose a restricted version of this model through
restrictions on the parameter space which is capable of handling networks with a
large number of communities. We call this model “restricted multi-layer stochas-
tic blockmodel” (RMLSBM). We derive conditions on the growth of the number
of communities and the average edge density of the networks under which the
MLE of the class assignment vector is consistent (in the sense that the pro-
portion of misclassified nodes tends to 0 as the number of nodes, and possibly
the number of relations as well, grows). We further derive the minimax rates of
error for community detection in MLSBM and obtain thresholds for consistent
community detection. To compute the unknown class assignments and block
model parameters simultaneously, we follow Daudin, Picard and Robin [10] and
propose a variational estimation strategy.

The rest of the paper is organized as follows. Section 2 extends the stochas-
tic blockmodel to multi-layer settings and defines the two models, MLSBM
and RMLSBM. Section 3 settles the consistency of the community assignments
through maximum likelihood estimation in the two models when the true data
generating model is MLSBM. Section 4 describes a few baseline procedures and
Section 5 compares the multi-layer models with the baseline models in terms of
minimax error rate and threshold results. Section 6 describes estimation strate-
gies for the MLEs in the two models. Section 7 develops a hypothesis testing
procedure to test between independent community structure and commonality
in community structure. Section 8 describes the results of a simulation study to
validate the theoretical results. Section 9 presents the application of the methods
to the Twitter UK politics data set. Section 10 gives concluding remarks.

2. Extension of blockmodels to multi-layer settings

We consider an undirected multi-layer graph G = {V,E}, where the vertex set
V consists of N vertices and the edge set E consists of edges of M different
types representing different relations. We can view the multi-graph as a graph
with vector valued edge information, i.e., the adjacency matrix A consists of

elements Aij , who are themselves M dimensional vectors: Aij = {A(1)
ij , A

(2)
ij ,

. . . , A
(M)
ij }. An alternative way to approach the problem is to view the multi-

graph as a collection of M , N × N adjacency matrices {A(1), A(2), . . . , A(M)},
each corresponding to one particular type of relation. The rest of the set up
is similar to the regular stochastic block model (SBM) for one-layer case with
K blocks [34]. We assume the number of communities K is known. Let z =
{z1, z2, . . . , zN} be the community indicator vector for the N nodes, such that
each zi takes exactly one value from the set {1, . . . ,K} and zi = q if and only
if node i belongs to community q. Conditional on the community indicator
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vector z, the edges are formed independently as Bernoulli random variables
with probabilities depending only on the community assignments and the type
of edges. In what follows we describe the two extensions of the standard SBM
to multi-layer settings.

Except for the estimation algorithm, the model is always represented as a
conditional block model and z is assumed to be a fixed unknown parameter of
the model and needs to be estimated from data. Conditioned on the community
assignments of the nodes zi and zj , the edges are formed independently following
Bernoulli distribution

A
(m)
ij |(zi = q, zj = l) ∼ Bernoulli(P

(m)
ql ).

The first model assigns a separate probability for the mth type of edge be-
tween nodes belonging to the qth and the lth community independent of all other
edges. We call this model the “multi-layer stochastic blockmodel” (MLSBM).
The probability of an mth type of edge between nodes i and j belonging to
communities q and l respectively can be written as

P
(m)
ij = π(m)

zizj = π
(m)
ql , i, j ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, q, l ∈ {1, . . . ,K}.

The set of parameters for the model, π = {π(m)
ql ; q ≤ l, q, l ∈ {1, . . . ,K}, m ∈

{1, . . . ,M}} has K(K+1)M/2 elements. This model is “saturated” in the sense
that we have a different parameter for each of the different types of edges be-
tween nodes belonging to different communities. Denote the range of this pa-
rameter set or array as Π = {π ∈ [0, 1]K(K+1)M/2}.

In our asymptotic settings, where both N and M grow and K grows with
N , the number of parameters to be estimated in the MLSBM grows as K2M
and quickly becomes large. Hence the MLE performs poorly especially when
the individual network layers are sparse. This problem does not arise in the
asymptotic settings of Han, Xu and Airoldi [17] where only M grows and N,K
remain fixed. However, it has been empirically shown that in most real world
networks the average cluster size does not grow with the size of the network
[25, 37, 5] and consequently, K grows with N . Hence in our asymptotic settings
where N grows, keeping K fixed would be rather unrealistic. This motivates us
to propose the second related model whose number of parameters grows much
slowly compared to MLSBM.

The second model assumes the probability of the mth type of edge appear-
ing between nodes i and j is governed by two factors: the first one being the
community assignment of the two nodes and the second one being the type of
edge. Hence the model has two sets of parameters: a K ×K parameter matrix
πK×K corresponding to the community structure, and an M × 1 vector βM×1

which contains the parameters for different types of edges. We call this model
the restricted multi-layer stochastic blockmodel (RMLSBM).

Notice that in the second model, if the edges were all of the same type, we
would just have βm = β for all m ∈ {1, . . . ,M} and then we will recover the
standard stochastic blockmodel, with probabilities of edges determined solely by
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the community assignments. On the other hand, if we did not have a community
structure, but M types of edges, then πql would be identical for all communities
q, l and the probability of an edge between nodes i and j will solely be determined
by the type of edge. This model can retrieve information from sparse but highly
informative edge types as the sparsity of the network layers will be captured in
the βm parameters. Hence, although we assume the edges to be conditionally
independent, this model induces two types of correlations unconditionally —
among the edges of the same type and among the edges that share nodes of the
same community.

The probability P
(m)
ij in RMLSBM, which denotes the probability of an mth

type of edge between nodes i and j belonging to communities q and l respectively,
can be modeled in the following way with the logit link function

logit(P
(m)
ij ) = πql + βm, i, j ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, q, l ∈ {1, . . . ,K}.

This model has K(K + 1)/2 +M parameters for an undirected graph. Hence,
when both K and M grow, the growth rate in the number of parameters for
this model is the same as the maximum of the growth rates in K2 and M . In
comparison, the number of parameters in MLSBM would grow as K2M . This
makes the maximum likelihood estimator in RMLSBM a regularized estimator.

For the RMLSBM to be identifiable, we require the parameters βm to satisfy
the condition

∑
m βm = 0. Hence we have one less free parameter. Denote the set

of parameters for RMLSBM as πR = {(πql, βm) : q ≤ l, q, l ∈ {1, . . . ,K}, m ∈
{1, . . . ,M}} and its range as ΠR = {πR ∈ RK(K+1)/2+M ,

∑
m βm = 0}. To

prove the consistency of maximum likelihood estimation under MLSBM, we
assume πql, βm ∈ (−C log(MN2), C log(MN2)) for some constant C > 0. This
condition ensures that πql and βm are bounded away from ±∞.

3. Consistency

In this section, we discuss the consistency of maximum likelihood estimation of
the proposed models under three asymptotic regimes with varying conditions
imposed on the growth of the number of communities (K) and the expected
total number of edges of the multi-layer graph (L). We first define a one to one
transformation of the parameters of RMLSBM as

φ
(m)
ql = logit−1(πql + βm) =

exp(πql + βm)

1 + exp(πql + βm)
. (3.1)

Now we assume that the data are generated from the more general model
MLSBM and view RMLSBM as a MLSBM with the following restrictions on
the parameters:

Φ = {φ ∈ [0, 1]K(K+1)M/2 : φ
(m)
ql = logit−1(πql + βm), (3.2)

πql, βm ∈ (−C log(MN2), C log(MN2))}.
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This way the MLE in RMLSBM can be thought of as a restricted MLE (RMLE)
of MLSBM.

Our aim is to investigate the consistency of both the MLE and the RMLE
under three asymptotic regimes where we let either the number of nodes (N)
or the number of types of edges (M) or both to grow. This setup is quite
appropriate for modern day multi-layer networks, where data collection increases
both in terms of new entities as well as new features or layers getting added to
the database. Consequently methods are being sought which would be consistent
in such situations. Some consistency results for the MLE were obtained in Han,
Xu and Airoldi [17] under the settings when M grows, but N and consequently
K remain fixed. Here we prove consistency results for the MLE in the more
general asymptotic setting where N can also grow (and K grows with N). We
then compare the MLE with the restricted estimator in terms of the sufficient
asymptotic conditions for consistency.

The different asymptotic setups we consider under the three regimes of growth
in N and M are described below.

1. As both M and N grow, let K = O(N1/2) and L = ω(MN(logN)3+δ)
for some δ > 0 for the MLE, while K = O((MN)1/2−ε) and L =
ω(MN(logN)3+δ) with ε, δ > 0 for the RMLE. For the RMLE, we further
require that M = O(N) so that K does not exceed N .

2. As N grows, M either is fixed or grows slower than N , i.e., either M is
O(1), or M → ∞ and M = O(N). In this regime, let K = O(N1/2),
L = ω(N(logN)3+δ) for some δ > 0 for the RMLE.

3. As both N → ∞ and M → ∞ with M growing faster than N , i.e., M =
ω(N), for RMLE we consider two related setups: (a) K = O( N

logM logN ),

L = ω(MN(logN)1+δ) for some δ > 0; and (b) K = O(N1/2), L is
either ω(M(logM)2+δ(logN)1+δ) for some δ > 0 if (logM)2+δ = O(N),
or ω(MN(logN)1+δ) for some δ > 0 otherwise. In setting (a), we further
require logM to grow slower than N for the growth of K to be meaningful.
Also, in that setup if logM grows at the same rate as (logN)β for some
β > 0, the number of communities grows almost as fast as the number of
nodes except for the log terms and is “highest dimensional” in the sense
of Rohe, Qin and Fan [37].

Note that the first regime assumes no relation between the growth rates of
N and M , while the next two regimes assume certain relations between the
two growth rates. So the last two regimes can be thought of as special cases
of the first one in terms of the growth rates of N and M . Naturally we expect
some relaxation in the required growth conditions on K and L in the last two
regimes. The asymptotic setups described above reflect this relaxation for the
RMLE. However no such relaxation is possible for the MLE. Hence we will prove
that MLE in MLSBM is consistent under the first asymptotic regime, whereas
MLE in RMLSBM (i.e., the RMLE of MLSBM under the restrictions defined by
Equation (3.2) is consistent under all three asymptotic regimes. We point out
that the MLSBM, despite being intuitively the simplest extension, does not per-
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form well for community detection in multi-relational networks if the networks
are sparse at an average or contain a large number of communities. While the
sufficient asymptotic conditions are not enough for a theoretical comparison be-
tween the methods, this observation is corroborated by an extensive simulation
study comparing the two methods that mimics the asymptotic setup.

3.1. Preliminaries

Since in this paper our primary interest is in modeling multi-layer networks
where layers are sparse on an average, we require the true MLSBM model prob-

abilities π
(m)
ql to satisfy certain sparsity conditions. As Zhao, Levina and Zhu

[44] pointed out, if the block model probabilities remain fixed as N increases,
then the network will be unrealistically dense. In this connection it is worth
noting that Snijders and Nowicki [39] let the probabilities remain fixed and as
a result the networks considered there have linearly increasing average degree,
while both Bickel and Chen [3] and Choi, Wolfe and Airoldi [8] considered net-
works with poly-logarithmically increasing average degree and hence gradually
decaying probabilities. Here to keep the network sparse, we scale down the block
model probabilities accordingly as N increases.

We introduce a new notation L′ to denote the quantity inside the asymp-
totic notation ω in the growth rate of L under different asymptotic setups.
As an example, consider the case when L = ω(MN(logN)3+δ), then L′ =
MN(logN)3+δ. Hence L′ can be viewed as the minimum rate at which L is
required to grow under a particular asymptotic setup. The blockmodel param-
eters are restricted to have an upper bound that decreases with increasing N
except for a small finite set indexed by the triplet Q = {q, l,m} such that the

expected number of edges in the set |EQ| = o
(

L′

log(MN2)

)
. For the set Q we

can have 1
MN2 ≤ π

(m)
ql ≤ 1 − 1

MN2 . For all {q, l,m} /∈ Q, the parameters are
restricted in the following way

π
(m)
ql ∈

(
1

MN2
, C

L′

MN2(logM logN)2+δ

)
, (3.3)

for some δ > 0 and some constant C, so that the upper bound is determined
by the expected density of the network. The exact upper bound is determined
by L′ and consequently, by the growth rate of L and varies under the different
asymptotic assumptions.

For any arbitrary partition z of the entities in the graph, the log likelihood
of the set of M adjacency matrices A = {A(1), . . . , A(M)} under the MLSBM

with parameters π = {π(m)
ql } is

l(A; z, π) =

M∑
m=1

∑
i<j

{A(m)
ij log π

(m)
zizj + (1−A

(m)
ij )log (1− π

(m)
zizj )}. (3.4)

Note that for an undirected graph with no self-loops, both A(m) and π(m),
m = 1, . . . ,M , are symmetric matrices in {0, 1}N×N and [0, 1]K×K respectively.
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The Bernoulli parameters π
(m)
zizj depend both on the class assignment z and the

type of relation m. For a fixed class assignment z, let Nq denote the number
of nodes assigned to class q, and nql denote the maximum number of possible

edges between classes q and l. So we have nql = NqNl and nqq =
(
Nq

2

)
. For an

arbitrary partition z, the MLE of π(z) is

π̂
(m)
(z)ql =

1

nql

∑
i<j

A
(m)
ij 1{zi = q, zj = l}, m = 1, . . . ,M, q, l = 1, . . . ,K, (3.5)

where 1{·} is the indicator function. Note that for a fixed partition z, the de-

nominator nql in the MLE π̂
(m)
(z)ql is the same for all edge types m.

Now we define the expectation of π̂(z) as π̄(z) and that of l(A; z, π) as l̄P (z, π)

under the independent Bernoulli(P
(m)
ij ) model. Then we have

π̄
(m)
(z)ql =

1

nql

∑
i<j

P
(m)
ij 1{zi = q, zj = l}, m = 1, . . . ,M, q, l = 1, . . . ,K, (3.6)

l̄P (z, π) =

M∑
m=1

∑
i<j

{P (m)
ij log π

(m)
zizj + (1− P

(m)
ij )log (1− π

(m)
zizj )}. (3.7)

Clearly for a given z, π̂(z) and π̄(z) are the maximizers of the functions l(A; z, π)
and l̄P (z, π) respectively, and we let l(A; z) and l̄P (z) denote the corresponding
maximum values.

We extend Lemma 1 of Choi, Wolfe and Airoldi [8] to multi-layer settings as
follows:

l(A; z)− l̄P (z) =
∑
m

∑
i<j

{
A

(m)
ij log

(
π̂
(m)
zizj

π̄
(m)
zizj

)
+ (1−A

(m)
ij ) log

(
1− π̂

(m)
zizj

1− π̄
(m)
zizj

)}

+X − E(X)

=
∑
m

∑
q≤l

nqlD(π̂
(m)
(z)ql||π̄

(m)
(z)ql) +X − E(X), (3.8)

where

X =

M∑
m=1

∑
i<j

A
(m)
ij log

(
π̄
(m)
zizj

1− π̄
(m)
zizj

)
. (3.9)

Here D(a||b) is the Kullback-Liebler divergence between two Bernoulli random
variables with parameters a and b respectively. This equation decomposes the
difference between the maximized likelihood and its expected value in terms of
π̂(z) and π̄(z) for a given class assignment vector z.

Next we turn our attention to RMLSBM. As mentioned before, we consider
RMLSBM as a restricted version of MLSBM, and the MLE of RMLSBM can be
viewed as a RMLE of MLSBM under the restrictions. Given a class assignment

z, the RMLE π̂
(m)R
zizj = {π̂(z)ql, β̂(z)m} is the maximizer of lR(A; z, πR), the
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multi-layer block model log likelihood within the restricted parameter space.
Substituting the estimated parameters in the likelihood function gives lR(A; z),
the maximum of the likelihood function within the restricted parameter space.
However, no closed form solution exists for the RMLE. Instead we have the
following M +K(K + 1)/2 estimating equations:

∂

∂βm
:=
∑
i<j

(
A

(m)
ij −

exp(π̂zizj + β̂m)

1 + exp(π̂zizj + β̂m)

)
, (3.10)

∂

∂πzizj

:=
∑
i<j

∑
m

(
A

(m)
ij −

exp(π̂zizj + β̂m)

1 + exp(π̂zizj + β̂m)

)
. (3.11)

One of the equations is redundant since if we add the equations in (3.10), the
resulting equation is identical to the sum of the equations in (3.11).

Now we use the transformation defined by φ in Equation (3.1). The likelihood
with respect to the new parameters can be represented as

lR(A; z, φ) =

M∑
m=1

∑
i<j

{A(m)
ij log φ

(m)
zizj + (1−A

(m)
ij )log (1− φ

(m)
zizj )}, (3.12)

and the estimating equations in (3.10) and (3.11) can be written as

1

N(N + 1)/2

∑
q≤l

nqlφ̂
(m)
(z)ql =

1

N(N + 1)/2

∑
q≤l

∑
i<j

A
(m)
ij 1{zi = q, zj = l}

=
1

N(N + 1)/2

∑
i<j

A
(m)
ij , m = 1, . . . ,M, (3.13)

1

M

∑
m

φ̂
(m)
(z)ql =

1

Mnql

∑
m

∑
i<j

A
(m)
ij 1{zi = q, zj = l}, q ≤ l ∈ {1, . . . ,K}. (3.14)

Together the right hand sides of these equations are the complete and suffi-
cient statistics for the model. Hence we have K(K + 1)/2+M − 1 independent
equations which will together determine the MLE of K(K + 1)/2 +M − 1 free
parameters in the set πR

(z). Here it is understood that the estimation procedure
ensures that the finiteness condition of πql and βm are respected possibly by re-
stricting πql, βm ∈ (−C log(MN2), C log(MN2)). By the functional invariance

property of the MLE, φ̂
(m)
(z)ql =

exp(π̂ql+β̂m)

1+exp(π̂ql+β̂m)
is the MLE of φ

(m)
(z)ql. Note that the

minimum value any φ̂
(m)
(z)ql can take due to the imposed boundedness constraint

is 1/MN2. This value is sufficiently small so that none of the partial sums in
the left hand side of Equations (3.13) and (3.14) exceeds 1.

As before we define expectations of φ̂z as φ̄z and that of lR(A; z, φ) as l̄RP (z, φ)

under the independent Bernoulli(P
(m)
ij ) model. Then,

l̄RP (z, φ) =

M∑
m=1

∑
i<j

{P (m)
ij log(φ̄(m)

zizj ) + (1− P
(m)
ij ) log(1− φ̄(m)

zizj )}. (3.15)
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For a given class assignment z, φ̂z and φ̄z are the maximizers of the functions
lR(A; z, φ) and l̄RP (z, φ) respectively, and we let lR(A; z) and l̄RP (z) denote the
corresponding maximum values. The difference between the maximized values
of the observed and expected likelihood can be decomposed in two parts similar
to Equation (3.8) as follows

lR(A; z)− l̄RP (z) =
∑
m

∑
q≤l

nqlD
(
φ̂
(m)
(z)ql || φ̄

(m)
(z)ql

)
+X − E(X), (3.16)

where as before,

X =

M∑
m=1

∑
i<j

A
(m)
ij log

(
φ̄
(m)
zizj

1− φ̄
(m)
zizj

)
. (3.17)

A proof of this result can be found in Appendix B. Since the maximum of
unrestricted likelihood would be at least as large as the maximum of restricted
likelihood, we have l(A; z) ≥ lR(A; z) and l̄P (z) ≥ l̄RP (z) for all z.

Now let z̄ denote the true partition. Further let ẑ and ẑR denote the MLEs
of z̄ under the two models MLSBM and RMLSBM respectively, i.e.,

ẑ = argmax
z

l(A, z). (3.18)

ẑR = argmax
z

lR(A, z). (3.19)

3.2. Main results

We give several theorems in this section as we develop towards our main result.
These theorems provide insights into the conditions required under the three
asymptotic regimes discussed in the beginning of Section 3, which in turn pro-
vide comparison between the asymptotic behavior of MLEs in the two models
MLSBM and RMLSBM. All the proofs are given in Appendix B.

The first three theorems bound the difference in the maximized log likelihood
and its expected value for both MLSBM and RMLSBM as defined in Equations
(3.8) and (3.16).

Theorem 1. Suppose a MLSBM and a RMLSBM, both with K classes and

M layers, are fitted to the graph with adjacency matrix {Aij}i<j = {A(1)
ij , . . . ,

A
(M)
ij }i<j, i, j = 1, . . . , N , where A

(m)
ij are independent Bernoulli(P

(m)
ij ) tri-

als. For any class assignment z, suppose the estimate π̂(z) = {π̂(m)
(z)ql; q, l ∈

{1, . . . ,K}, m ∈ {1, . . . ,M}} maximizes the multi-layer block model likelihood

l(A; z, π) and the estimate π̂R
(z) = {(π̂(z)ql, β̂(z)m); q ≤ l, q, l ∈ {1, . . . ,K}, m ∈

{1, . . . ,M}} maximizes the likelihood from the model with the restricted parame-

ter space defined by ΠR. Let φ̂(z) = {φ̂(m)
(z)ql; q, l ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}}

be defined from π̂R
(z) according to Equation (3.1). Then for any ε > 0,
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P

⎛
⎝max

z

∑
q≤l

nql

∑
m

D
(
π̂
(m)
(z)ql || π̄

(m)
(z)ql

)
≥ ε

⎞
⎠ (3.20)

≤ exp

(
N logK +M(K2 +K) log

(
N

K
+ 1

)
− ε

)
,

P

(
max

z

{∑
m

N(N + 1)

2
D

⎛
⎝∑q≤l nqlφ̂

(m)
(z)ql

N(N + 1)/2

∣∣∣∣∣∣
∑

q≤l nqlφ̄
(m)
(z)ql

N(N + 1)/2

⎞
⎠} ≥ ε

)

(3.21)

≤ exp

(
N logK +(K2 +K) log

(
NM1/2

K
+1

)
+M log

(
N(N +1)

2
+1

)
− ε

)
,

P

(
max

z

{∑
q≤l

MnqlD

(
1

M

∑
m

φ̂
(m)
ql

∣∣∣∣∣∣ 1

M

∑
m

φ̄
(m)
ql

)}
≥ ε

)
(3.22)

≤ exp

(
N logK +(K2 +K) log

(
NM1/2

K
+1

)
+M log

(
N(N +1)

2
+1

)
− ε

)
.

The first result (3.20) provides a bound for the first part of the right hand side
of Equation (3.8) for MLSBM. The results (3.21) and (3.22) provide a bound
that will be used in Theorem 3 to bound the first part of the corresponding
likelihood decomposition for RMLSBM in Equation (3.16). In the proofs of the
next two theorems, we first bound the second part of Equations (3.8) and (3.16),
and then combine the results to provide a bound for the difference between the
log likelihood and its expected value under any arbitrary partition z for MLSBM
and RMLSBM respectively.

Theorem 2. Suppose a MLSBM with K classes and M layers is fitted to the

graph whose edges A
(m)
ij are independent Bernoulli(P

(m)
ij ) trials. If we further

assume that (i) 1
MN2 ≤ P

(m)
ij ≤ 1 − 1

MN2 for all i < j, (ii) K = O(N1/2),
and (iii) the total expected number of edges of the entire multi-layer graph L =∑
m

∑
i<j

E(A
(m)
ij ) is ω(MN(logN)3+δ) for some δ > 0 as both M and N grow, then

max
z

|l(A; z)− l̄P (z)| = oP (L).

The result of this theorem holds under the given conditions irrespective of the
relationship between the growth rates of M and N . We state the result under
the first asymptotic regime mentioned at the beginning of Section 3 since we do
not get any relaxation in the assumption regarding the total expected number
of edges if we assume certain relations between the growth rates of M and N .

The next theorem states that the restricted likelihood in RMLSBM is also
asymptotically well behaved under five independent sets of conditions corre-
sponding to the three asymptotic regimes discussed at the beginning of Section
3. The first two sets of conditions correspond to regime 1, the third set of con-
ditions corresponds to regime 2, and the last two sets of conditions correspond
to regime 3.
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Theorem 3. Assume that a RMLSBM with K classes and M layers is fitted

to the graph whose edges A
(m)
ij are independent Bernoulli(P

(m)
ij ) trials. If we

further assume any of the following five sets of conditions with respect to the
growth of the properties of the model under different asymptotic settings:

(i) both M and N grow, K = O(N1/2), 1
MN2 ≤ P

(m)
ij ≤ C logN

N(logM)2+δ for

all i < j, where C is a constant, and the total expected number of edges of the
entire multi-layer graph L = ω(MN(logN)3+δ) for some δ > 0;

(ii) both M and N grow but M = O(N), K = O((MN)1/2−ε) for some ε > 0,
1

MN2 ≤ P
(m)
ij ≤ C logN

N(logM)2+δ for all i < j, where C is a constant, and the total

expected number of edges of the entire multi-layer graph L = ω(MN(logN)3+δ)
for some δ > 0;

(iii) M is either a constant or grows slower than N , i.e., M = o(N), K =

O(N1/2), 1
MN2 ≤ P

(m)
ij ≤ C logN

MN(logM)2+δ for all i < j, where C is a con-

stant, and the total expected number of edges of the entire multi-layer graph L
is ω(N(logN)3+δ) for some δ > 0;

(iv) M grows and N is either a constant or grows slower than M , i.e., M =

ω(N), K = O( N
logN logM ), 1

MN2 ≤ P
(m)
ij ≤ C 1

N logN(logM)2+δ for all i < j, where

C is a constant, and the total expected number of edges of the entire multi-layer
graph L = ω(MN(logN)1+δ) for some δ > 0;

(v) M grows and N is either a constant or grows slower than M , i.e., M =

ω(N), K = O(N1/2), 1
MN2 ≤ P

(m)
ij ≤ min

(
C 1

N2 logN , C 1
N logN(logM)2+δ

)
for

all i < j, where C is a constant, and the total expected number of edges of the en-
tire multi-layer graph L is larger than the the smaller of M(logM)2+δ(logN)1+δ

and MN(logN)1+δ for some δ > 0;
then,

max
z

|lR(A; z)− l̄RP (z)| = oP (L).

It is clear from Theorem 2 and Theorem 3 that in RMLSBM, the bound on
the likelihood can be established both for relatively milder conditions on the
expected total number of edges and relatively faster growth conditions on the
number of communities. As we will see in Theorem 5 and the discussion following
it, this enables RMLSBM to be a more attractive model for community detection
either when the number of communities is large or when we have relatively
sparser graphs.

Now we are ready to state our main results which show that when the true
data generating process is a K-class MLSBM, the fraction of nodes misclus-
tered by the MLEs and the RMLEs converge to zero under different asymptotic
regimes. We define the number of “misclustered” nodes Ne(ẑ) as the number
of incorrect class assignments under ẑ, counted for every node whose true class
under z̄ is not in the majority within its estimated class under ẑ [8].

The previous results (Theorems 1, 2, 3) hold for any P
(m)
ij whenever they

are bounded as described in the theorems. Now we assume further structure on
the probabilities, namely a MLSBM. Denote the true partition as z̄, and under
the true partition, let the true block model parameter array be π̄. Hence, under
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MLSBM we have

P
(m)
ij = π̄

(m)
z̄iz̄j .

Consequently, l̄P (z̄, π) from Equation (3.7) is maximized by the true model
parameter π̄, and we have the maximized expected likelihood as

l̄P (z̄) =

M∑
m=1

∑
q≤l

nql{π̄(m)
ql log π̄

(m)
ql + (1− π̄

(m)
ql ) log(1− π̄

(m)
ql )}. (3.23)

On the other hand, the expected restricted likelihood is maximized by the
parameter array π̄R under the restricted parameter space of RMLSBM. Note
that this is different from the true model parameter array π̄ due to the restric-
tions imposed on the parameter space. Using the transformation introduced in
Equation (3.1), the maximized expected restricted likelihood is

l̄RP (z̄) =
M∑

m=1

∑
i<j

{P (m)
ij log φ̄

(m)
z̄iz̄j + (1− P

(m)
ij ) log(1− φ̄

(m)
z̄iz̄j )}

=
M∑

m=1

∑
i<j

{π̄(m)
z̄iz̄j log φ̄

(m)
z̄iz̄j + (1− π̄

(m)
z̄iz̄j ) log(1− φ̄

(m)
z̄iz̄j )}

=

M∑
m=1

∑
q≤l

nql{π̄(m)
ql log φ̄

(m)
ql + (1− π̄

(m)
ql ) log(1− φ̄

(m)
ql )}. (3.24)

The next theorem relates the difference between observed and true likelihood
with the fraction of misclustered nodes Ne(ẑ) and the expected total number of
edges L to establish a bound for the misclustering rate.

Theorem 4. Suppose the data are generated according to a K-class MLSBM
with membership vector z̄ and parameter array π̄, the conclusion of Theorem
2 holds, and the following conditions hold with respect to the model sequence:
for all blockmodel classes q = 1, . . . ,K, class size Nq grows as s = min

q
{Nq} =

Ω(N/K), and over all distinct class pairs (q, l) and all classes c 	= {q, l},

min
q,l

min
m

max
c

{
D

(
π̄(m)
qc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)
+D

(
π̄
(m)
lc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)}

= Ω

(
LK

MN2

)
, (3.25)

then

Ne(ẑ) = oP (N). (3.26)

Note that condition (3.25) is very similar to condition (ii) of Theorem 3
in Choi, Wolfe and Airoldi [8] with the total number of edges for the single
layer case being replaced by the average number of edges L/M in each layer
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for the multi-graph. This ensures that any two rows in any of the layer ma-
trices π̄(m) of π̄ differ in at least one entry by at least a constant times LK

MN2 .
Also, when we take into account the asymptotic conditions required on the
growth of K and L for the result of Theorem 2 to hold, i.e., K = O(N1/2) and
L = ω(MN(logN)3+δ) with M and N both growing, then we have LK

MN2 =

ω
(

(logN)3+δ

N1/2

)
. As argued in Choi, Wolfe and Airoldi [8], if L is close to its

least possible rate of growth, LK
MN2 goes to 0 for large N and the condition

is not too prohibitive. For example, if L = MN(logN)β with β > 4, then
(logN)β = o(N1/2), so LK

MN2 goes to 0 and the condition is not overly restric-
tive.

We state the corresponding conclusion for the restricted likelihood estima-
tion (for RMLSBM) in the next theorem, i.e., the class membership assignment
vector estimated through the maximum likelihood estimation in the restricted
model RMLSBM is consistent under data generated from the MLSBM.

Theorem 5. Suppose the data are generated according to a K-class MLSBM
with membership vector z̄ and parameter array π̄, the conclusion of Lemma 3
holds, and the following conditions hold with respect to the model sequence: for
all blockmodel classes q = 1, . . . ,K, class size Nq grows as s = min

q
{Nq} =

Ω(N/K), and over all distinct class pairs (q, l) and all classes c 	= {q, l},

min
q,l

min
m

max
c

{
D

(
π̄(m)
qc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)
+D

(
π̄
(m)
lc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)}
= Ω(g),

(3.27)
then under any of the five sets of growth conditions in Theorem 3, we have

Ne(ẑ
R) = oP (h). (3.28)

Here g in condition (3.27) and the growth rate h depend on the asymptotic
conditions imposed on K and L. The growth rate h can be determined from
g by the relationship h = KL

MNg . In particular, (i) when K = O(N1/2), L =

ω(MN(logN)3+δ) with M and N both growing arbitrarily, then we have g =
LK
MN2 = ω

(
(logN)3+δ

N1/2

)
and h = N ; (ii) when K = O((MN)1/2−ε), L =

ω(MN(logN)3+δ) with M and N both growing so that M = O(N), then we

have g = LK
MN2 = ω

(
(MN )1/2

)
and h = N ; (iii) when K = O(N1/2), L =

ω(N(logN)3+δ) and M = o(N), then we have g = LK
N2 = ω

(
(logN)3+δ

N1/2

)
and

h = N/M ; (iv) when K = O(N1−ε/ logM), L = ω(MN(logN)1+δ and M =

ω(N), then we have g = LK
MN2 = ω

(
1

logM

)
and h = N ; (v) when K = O(N1/2),

L is ω(MN(logN)1+δ) if N < (logM)2+δ or ω(M(logM)2+δ(logN)1+δ) if

N > (logM)2+δ and M = ω(N), then we have g = LK
MN2 = ω

(
(logN)1+δ

N1/2

)
or

g = LK
MN2 = ω

(
(logM)2+δ(logN)1+δ

N3/2

)
and h = N .
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Note that in Theorem 5, we have used generic notations g and h to denote
functions of the network properties such as N , K and L. The functions g and
h vary across asymptotic setups. This is so because the regularity condition
(3.27) on the difference among the elements of block model probability matrices
should be as less prohibitive as possible. Note that in our results, we have
chosen g in such a way that if L is close to its least possible rate of growth,
then g asymptotically decays to 0 under the assumed asymptotic setup. This
ensures that our condition (3.27) is not overly restrictive. It also enables us to
understand and contrast the asymptotic behavior of the RMLE from a unified
point of view.

3.3. Sparse networks

The results of all previous theorems imply that for sparse multi-layer networks,
consistency can be achieved with a large number of relatively sparser graphs
as long as they together satisfy the edge density requirement. In the case when
M grows slower than N , in MLSBM we do not get any relaxation in the re-
quired growth condition on the total expected number of edges from all the
graph layers combined, and it remains ω(MN(logN)3+δ) for K = O(N1/2).
However in RMLSBM we only require the total expected number of edges from
all layers to be ω(N(logN)3+δ) for K = O(N1/2) (Condition (iii) of Theorem
3). This implies that we only require the expected number of edges per layer
to be ω(N(logN)3+δ/M) on average. For perspective, if M grows faster than
(logN)3+δ, then the average number of edges per layer needs to grow only
at O(N), which is the sparse bounded degree regime. This case is extremely
challenging for single layer networks. However, the sufficient condition for con-
sistency of the MLE in MLSBM requires the average expected number of edges
per layer to be ω(N(logN)3+δ) [8] and hence the average degree per layer must
grow at least as (logN)3+δ. Thus consistency in RMLSBM can be achieved with
a large number of relatively sparse layers. This is particularly important as most
modern applications of community detection in multi-layer graph fall under this
asymptotic scenario.

3.4. A Large number of communities

Under MLSBM, consistent community detection is possible when the num-
ber of communities grows as K = O(N1/2) and the total expected number
of edges is ω(MN(logN)3+δ) as both M and N grow. However, if we assume
K = O((MN)1/2−ε) for some ε > 0, then we require the total expected num-
ber of edges to be ω(M2N(logN)3+δ) which is unrealistically dense. On the
other hand, under RMLSBM consistent estimation is possible with compara-
ble edge density even when the number of communities grows faster, either
as K = O((MN)1/2−ε) when both M and N grow but M = O(N), or as
K = O( N

logM logN ) when N grows slower than M (Conditions (ii) and (iv) of

Theorem 3).
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4. Baseline procedures

We define three intuitively simple baseline procedures for community detection
in multi-layer networks. The first two are based on aggregating the layers of the
graph and the third one is an ensemble of results from single layer community
detection through majority voting.

The first aggregate procedure, which we call “agg-mean” creates a binary
network on the nodes by adding an edge between two nodes if they are connected
in more than half of the layers. Hence an edge between two nodes, Aagg−mean

ij

is a Bernoulli random variable with probability

P agg−mean
ij = P (

∑
m

A
(m)
ij > M/2). (4.1)

However, this method of collapsing a multi-layer graph into a single layer graph
is not very useful for the sparse graph regimes we are interested in, because

the probability that
∑

m A
(m)
ij > 1 asymptotically vanishes. This can be seen as

follows: the random variable
∑

m A
(m)
ij is a sum of M Bernoulli random variables

with different probabilities P
(m)
ij . Hence

∑
m A

(m)
ij follows a Poisson-binomial

distribution and

P (
∑
m

A
(m)
ij > 1) = 1− {P (

∑
m

A
(m)
ij = 0) + P (

∑
m

A
(m)
ij = 1)}

= 1− {
∏
m

(1− P
(m)
ij ) +

∑
m

P
(m)
ij

∏
k �=m

(1− P
(k)
ij )} → 0,

if P
(m)
ij → 0 as N → ∞ with M remaining fixed. Hence the new graph created

by this procedure will have asymptotically few edges.
A more appropriate aggregate measure is to create a network by adding

edges if
∑

m A
(m)
ij > 0. We call this procedure “agg-sparse”. Note that in this

case the edge between two nodes Aagg−sparse
ij is a Bernoulli random variable

with probability

P agg−sparse
ij = P (

∑
m

A
(m)
ij > 0) = 1− P (

∑
m

A
(m)
ij = 0) = 1−

∏
m

(1− P
(m)
ij )


 1− exp(−
∑
m

P
(m)
ij ) 


∑
m

P
(m)
ij , (4.2)

since P
(m)
ij → 0 as N → ∞. Clearly this network is also generated by a SBM

with the same community assignment vector as the original multi-layer network.
The probability of an edge, given the block assignments, can also be written in
terms of those of the original network as

P agg−sparse
ij |(zi = q, zj = l) ≈

∑
m

π
(m)
ql .
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Hence from known results on single layer SBM, a maximum likelihood procedure
will be able to recover the node assignments consistently [8]. From now on
“aggregate SBM” will refer to this sparse model. We compare this baseline
aggregate SBM with the multi-layer models, MLSBM and RMLSBM in terms
of minimax rates [43, 13] and consistency thresholds [29, 1, 16] in the next
section.

The third baseline procedure is performing community assignment through
a scheme by which a node is assigned to a cluster if it belongs to that cluster in
majority of the cluster assignments through MLEs in the individual layers. The
cluster labels obtained from different single layer MLEs are aligned with each
other by solving the linear sum assignment problem.

5. Minimax rates and consistency thresholds

In this section we derive the minimax rates of misclassification error and thresh-
olds for consistency of community detection in MLSBM and the aggregate SBM.
Note that in this section we will concern ourselves only with the problem of com-
munity detection and not with the problem of estimating the entire MLSBM
graphon [12], since we want to compare MLSBM with its collapsed version, the
aggregate SBM in terms of estimating the underlying common community struc-
ture. In particular we assume certain information about the block parameters
of MLSBM are known, while the community labels are fully unknown.

For this analysis, we further assume that all the layers are informative of the
underlying community assignments even though the quality of that information
in terms of “signal to noise ratio” can vary, i.e., either all layers have more intra-
community edges compared to inter-community edges or vice-versa. Formally,

π
(m)
qq ≥ π

(m)
ql for all q, l,m, or π

(m)
qq ≤ π

(m)
ql for all q, l,m. To align notations and

settings with Zhang and Zhou [43], we slightly modify the growth condition on
class sizes of Theorems 4 and 5 as Nq ∈ [ N

sK , sN
K ] with s ≥ 1 and redefine the

parameter space of our undirected symmetric MLSBM with no self loops as

ΘML(N,K,M,a,b, β) =

{
(z, {P (m)

ij }) : Nq ∈
[
N

sK
,
sN

K

]
, ∀q, P (m)

ij ≥ a(m)

N

if zi = zj and P
(m)
ij ≤ b(m)

N
if zi 	= zj , ∀m

}
, (5.1)

with P, z,Nq, s,N,K,M as defined previously. Note that the parameters a(m)

and b(m) represent the lowest intra-community probability and the highest inter-
community probability for layer m respectively. As per assumption, a(m) > b(m)

within a layer m, however there is no assumption among the relationships of the
parameters across layers. We define I(m) as the Renyi divergence [42] of order

1/2 between two Bernoulli distributions Bern(a
(m)

N ) and Bern( b
(m)

N ), i.e.,

I(m) = −2 log

(√
a(m)

N

b(m)

N
+

√
1− a(m)

N

√
1− b(m)

N

)
. (5.2)
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Let z̄ denote the true community labels of the MLSBM and ẑ be an estimate of it.
Then we define the mis-clustering rate of ẑ with respect to z̄ up to permutations
as

r(z̄, ẑ) = inf
δ
dH(z̄, δ(ẑ))/N,

where δ(·) is a permutation of the community labels and dH(·) is the Hamming
distance. Then we have the following result for MLSBM (proved in Appendix
B).

Theorem 6. Under the assumption that
N
∑

m I(m)

K logK → ∞, then

inf
ẑ

sup
ΘML

E[r(z̄, ẑ)] =

{
exp(−(1 + εN )

N
∑

m I(m)

2 ), K = 2,

exp(−(1 + εN )
N
∑

m I(m)

sK ), K ≥ 3,
(5.3)

for any s ∈ [1,
√
5/3] and some sequence εN = o(1). Moreover, if

N
∑

m I(m)

K =
O(1), then inf ẑ supΘML E[r(z̄, ẑ)] ≥ c for some constant c, i.e., at least a con-
stant fraction of nodes are mis-clustered.

The above theorem implies that for MLSBM, minimax risk of error decays

exponentially and if
N
∑

m I(m)

K logK → ∞, the rate goes to 0 asymptotically, i.e., exact
recovery of community labels is possible. Moreover from the proof of Theorem 6
in Appendix B, there exists a procedure which achieves this rate. On the other

hand if
N
∑

m I(m)

K = O(1), then the minimax risk of error is lower bounded by
a constant (see the part on lower bound in the proof in Appendix B) implying
that consistent recovery is not possible in such situations.

Since the model “agg-sparse” is itself a single layer SBM and
∑

m P
(m)
ij ≥∑

m
a(m)

N if zi = zj and
∑

m P
(m)
ij ≤

∑
m

b(m)

N if zi 	= zj , then defining Iagg as

Iagg = −2 log

(√∑
m a(m)

N

∑
m b(m)

N
+

√
1−

∑
m a(m)

N

√
1−

∑
m b(m)

N

)
,

(5.4)
we have the following result using Theorem 1.1 of Zhang and Zhou [43].

Theorem 7. If NIagg

K logK → ∞, then

inf
ẑ

sup
Θagg

E[r(z̄, ẑ)] =

{
exp(−(1 + εN )NIagg

2 ), K = 2,

exp(−(1 + εN )NIagg

sK ), K ≥ 3,
(5.5)

for any s ∈ [1,
√
5/3] and some sequence εN = o(1). In addition, if NIagg

K =
O(1), then inf ẑ supΘagg E[r(z̄, ẑ)] ≥ c for some constant c, i.e., at least a con-
stant fraction of nodes are mis-clustered.

The previous two theorems state results about the fundamental properties of
the two models which allow us to compare the models without going into the
specifics of the method used to compute the class assignments in practice.
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Since the Renyi divergence I(m) ≥ 0 for all m, we have
∑

m I(m) ≥ I(m) for
all m. Hence the minimax rate for MLSBM is lower than all individual single
layer SBMs. Moreover, since Renyi divergence is convex, we have 1

M

∑
m I(m) ≥

1
M Iagg asymptotically. This can be shown using Jensen’s inequality with the con-

cave functions log(x) and
√
x =

√
b(m)

a(m) (see Theorem 11 of Van Erven and Har-

remoës [42] for a proof), and then noting that asymptotically I(m) 
 (a(m)−b(m))2

a(m)N
[43]. Hence the minimax rate of MLSBM is at most that of the aggregate graph.
Note that equality in the above inequality is achieved if and only if all the I(m)s

are equal and b(m)

a(m) is equal for all m. We recognize the quantities b(m)

a(m) and I(m)

as signal to noise ratios in the mth layer. Hence the MLSBM has lower minimax
rate compared to the aggregate SBM as long as the signal quality in different
layers varies.

This result will be intuitively apparent if we note from the proof of the above
theorems that, given the parameters are known or accurately estimated, the
penalized maximum likelihood (ML) decision rule, which attains the minimax
rate of error in MLSBM, weights the edges from different layers by c(m) before
adding. The penalty terms also get weighted by k(m) before being added. The

quantity c(m) = log a(m)(1−b(m)/N)
b(m)(1−a(m)/N)

can be thought of as a measure of the signal

to noise ratio. Hence, layers with high signal to noise ratio, i.e., high quality in-
formation for the purpose of community detection, get more weight. In contrast,
the penalized ML decision rule in aggregate graph SBM by construction adds
layers without weighting. Hence intuitively the result on minimax rates makes
sense, since if all layers contain the same amount of information, then it is im-
material if the decision rule weights the graphs by information content or not,
but in all other cases giving more weight to the more informative layer pays off.

Moreover, while it is clear that MLSBM has lower minimax rate than indi-
vidual layer SBMs, it is not true trivially for the aggregate graph. Since I(m) can

be written in terms of signal to noise ratio as I(m) 
 (a(m)−b(m))2

a(m)N
, consequently

for Iagg to be large, the sum of the probabilities
∑

m a(m) and
∑

m b(m) must
be well separated. This is not always guaranteed as large a(m)’s and b(m)’s with
relatively low difference can overshadow a large difference in smaller a(m)’s and
b(m)’s while adding. We will take this point up again in the next section where
we discuss thresholds for consistency.

We note that the model RMLSBM is a MLSBM with a restricted parameter
space ΠR. Hence Theorem 6 will give the minimax rate under the restricted pa-

rameter space with the divergence in the mth layer being I(m) 
 (φ(m)
a −φ

(m)
b )2

φ
(m)
a N

,

where φ is the transformation of the parameters in RMLSBM as defined before.

In particular, we have logit(φ
(m)
a ) = a + βm. The rate for the aggregate SBM

under RMLSBM can similarly be obtained using Theorem 7 with Iagg being

Iagg 
 (
∑

m φ(m)
a −

∑
m φ

(m)
b )2∑

m φ
(m)
a N

. This implies that (a) if RMLSBM is the true data

generating model then it has lower minimax rate compared to each of the indi-
vidual layers, and (b) by the earlier discussion it also has lower minimax rate
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compared to the aggregate SBM constructed from a RMLSBM graph, since

neither I(m) nor the ratio
φ(m)
a

φ
(m)
b

= 1 + exp(a−b)−1
1+exp(a+βm) is equal for all m.

5.1. Consistency thresholds

We derive thresholds for strong and weak consistency for community detection
[29, 1] in MLSBM and the aggregate SBM under two scenarios: sparse graph
with average degree per layer o(logn) and ultra-sparse graph with average degree
per layer o(1).

In the first case, let a(m) = α
(m)
1 logN and b(m) = α

(m)
2 logN with α

(m)
1 ≥

α
(m)
2 > 0 for all m. Then Corollary 4.1 of Zhang and Zhou [43] gives that

assuming K = No(1), the threshold for the existence of a strongly consistent

estimator for the mth layer SBM is

√
α

(m)
1 −

√
α

(m)
2√

K
> 1. Hence for the aggregate

SBM this threshold is

√∑
m α

(m)
1 −

√∑
m α

(m)
2√

K
> 1. Clearly, if the threshold is met

in each of the layers, then it will be met in the aggregate SBM as well. However
in a more realistic case where this threshold is not met in all the layers, whether
the aggregate SBM will have a strongly consistent estimator or not will depend
on whether the sum of probabilities meets the threshold of well separation or
not, which in turn will depend on the relatively denser layers. To see this, note

that this threshold can be written as
∑

m α
(m)
1 −

∑
m α

(m)
2√∑

m α
(m)
1 +

√∑
m α

(m)
2

>
√
K. For aggregate

graph, the denominator of this quantity is dominated by the dense layers, and
hence the difference in a and b must be large in dense layers for the aggregate
to be consistent. In other words, strong signals in sparse layers will get ignored
if the signal in dense layers are not strong.

On the other hand, for MLSBM, strong consistency is achieved if any of
NI(m)

K → ∞ or their sum goes to infinity. This implies that the threshold is∑
m

√
α

(m)
1 −

√
α

(m)
2√

K
> 1, which is achieved if at least one of the layers achieves

consistency threshold or the layers together achieve the threshold. By the ar-
gument before, this threshold consists of sum of normalized signal to noise
ratios, hence all layers, dense or sparse, get equal weightage in determining
the threshold. The consistency threshold for RMLSBM using Theorem 6 is∑

m

√
α

(m)
1,φ −

√
α

(m)
2,φ√

K
> 1, where φ

(m)
a = α

(m)
1,φ logN and φ

(m)
b = α

(m)
2,φ logN with

α
(m)
1,φ ≥ α

(m)
2,φ > 0 for all m. The corresponding threshold for aggregate SBM

generated from a RMLSBM is

√∑
α

(m)
1,φ −

√∑
α

(m)
2,φ√

K
> 1. Here we note that the

threshold for RMLSBM is also the sum of normalized signal to noise ratios.
However since the parameter space is restricted, the difference between inter
and intra community parameters are uniform across layers, and variations in
the aforementioned sum only come from the normalizing factor due to the layer
specific sparsity parameter.
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Qualitatively, the minimax rate and consequently the threshold in MLSBM
take into account variations in both signal quality and sparsity while adding
contributions from different layers. RMLSBM tries to estimate the signal to noise
ratio in each layer by two parameters, one global parameter which signifies the
aggregate signal quality, and the other layer specific parameter which signifies
sparsity. Hence although RMLSBM ignores the variation in signal quality, it
attempts to reduce the undue influence of dense layers by taking into account
the variation in sparsity. The aggregate SBM, on the other hand, does not
take into account either the signal quality or the sparsity, and hence is heavily
influence by dense layers irrespective of signal quality. Hence both RMLSBM
and aggregate SBM would perform well if all the layers have similar signal
strength and similar density. If the layers do not have similar density but the
signal strength across layers can somewhat be well approximated by an average
signal strength, RMLSBM will still be able to detect it through the noise and
perform well. Clearly, RMLSBM and aggregate graph will not perform well if
both signal strength and sparsity of layers vary widely, and we need to resort
to MLSBM in such cases.

In the bounded degree case, while consistent recovery is not possible in each
of the layers since the graph is not fully connected (only detection is possi-
ble), a consistent recovery is still possible in the multi-layer models. The con-
dition for consistent recovery in MLSBM with a(m) = o(1) and b(m) = o(1) is∑

m
a(m)−b(m)

(
√
a(m)+

√
b(m))K

→ ∞. Note that the condition for detection or weak recov-

ery defined as finding a partition correlated with the true community structure
for two communities is a−b√

a+b
> 2 [27, 28].

6. Estimation using mixture model approach

Simultaneous maximum likelihood estimation of parameters and class assign-
ments in the stochastic blockmodel is a difficult problem [34, 8, 37]. The same
difficulties remain in the MLSBM and its restricted version. The MLE and
RMLE obtained in Section 3 by maximizing the profile likelihood is not com-
putationally feasible. Consequently, to obtain an estimation algorithm here, we
view the MLSBM as a mixture model with discrete latent variables Z. In this
case, Zi is a latent random variable that follows a multinomial distribution with
K parameters: Zi ∼ Mult(1, α = (α1, α2, . . . , αK)). We follow the framework
laid out by Daudin, Picard and Robin [10] to simultaneously estimate the block
parameters and the class assignments with variational EM technique. We de-
scribe the technique briefly here. See Matias and Robin [26] for a comprehensive
review of the technique. Note that the data log likelihood can be written as

l(A,α, π) = l(A,Z, α, π)− l(Z|A,α, π),

where l(A,Z, α, π) is the complete data log-likelihood. The likelihood of the
observed data can be obtained by summing the complete data likelihood over
all possible values of the unobserved missing class assignment labels Z. However,
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note that the number of all possible assignments grows exponentially as KN ,
and the sum quickly becomes computationally intractable even for moderate
N . Hence instead we use the EM algorithm for mixture models. However one
needs to compute the conditional distribution P (Z|A). Unfortunately, as argued
by Daudin, Picard and Robin [10], P (Z|A) is itself intractable and can not
be factorized since the probability of the latent class assignments of a node
depends not only on the observed edges connected to that node, but also on the
connectivity pattern of the whole network.

The variational approximation solves this problem by approximating this
conditional distribution with a distribution from a suitable class of distributions
that can be factorized easily. In particular, we concentrate our search to the
class of multinomial distributions R(·). Taking expectation with respect to the
variational approximating distribution for Z gives

l(A,α, π) = ER[l(A,Z, α, π)] +H(R) +KL(R||P (Z|A))
≥ ER[l(A,Z, α, π)] +H(R) = JR, (6.1)

where H(R) is the entropy of R [26] and KL(R||P (Z|A)) is the Kullback-Liebler
(KL) divergence between the distributions R and P (Z||A). The inequality fol-
lows since the KL divergence is always non-negative. The data likelihood is
approximated in the variational inference framework by maximizing JR with
respect to the approximating family of distributions R. If the approximation
to the distribution coincides with the distribution, then the KL divergence is
zero and the variational approximation is the same as the regular EM. Here we
constraint R to have the following form of the product of multinomial densities

R(Z) =
∏
i

∏
q

τ
Ziq

iq ,

where the parameters τiq are known as variational parameters.
The derivation of update rules for MLSBM are straightforward extensions of

the corresponding formula in Daudin, Picard and Robin [10] and are omitted in
this paper, while the update rules for RMLSBM have been derived in Appendix
A. The update steps for MLSBM and RMLSBM are also provided in Appendix
A under Algorithm 1 and Algorithm 2 respectively.

7. Hypothesis testing for multi-layer network modeling

The discussions in this paper have so far assumed the existence of an underlying
community structure and different layers of a multi-layer network are different
manifestation of the structure. Hence all the layers share some commonality
in community structure giving justification to multi-layer network modeling.
However, one question that still remains is how one determines in practice if a
multi-layer network has enough commonality in community structure so that it
should be modeled with a multi-layer model as opposed to modeling each of the
network layers independently. To answer this question we develop a hypothesis
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testing framework with a likelihood ratio based test statistic. Let us consider
independent modeling through SBM in each layer, where each layer has a latent
random variable Z(m), m = 1, . . . ,M , associated with it that indicates the com-
munity structure prevalent in that layer. Then the hypotheses we are testing
are

H0 : Z(1), . . . , Z(M) are independent, versus

HA : Z(1) = · · · = Z(M).

From the previous section, the data log likelihood is approximated in the vari-
ational inference framework by the function JR. Maximizing JR within the class
of distributions R then approximately maximizes the data log likelihood. Hence,
in this framework the log-likelihood ratio test statistic can also be approximated
as

Λ =
∑
m

sup
Z(m)

l(A(m), α(m), π(m))− sup
Z

l(A(1), . . . , A(M), α, π(1), . . . , π(M))

≈
∑
m

sup
R(m)

J ′
R(m) − sup

R
JR,

where JR is defined in (6.1) and J ′
R(m) has the same expression as (6.1) for single

layer SBM. We circumvent the difficulty of deriving asymptotic distribution of
the statistic through parametric bootstrap. For this purpose we fit H0 to the
multi-layer network, which under the null hypothesis implies that we fit a SBM
to each layer independently through variational EM. Then we use the fitted
SBMs to generate the M layers of a multi-layer network and calculate the test
statistic Λ. By generating a large number of such multi-layer networks, we have
multiple values of the test statistic which give us an empirical estimate of the
distribution of Λ under the null hypothesis. Comparing our observed value of
the test statistic against this empirical distribution gives us a p-value for the
test.

8. Simulation results

In this section we numerically test the asymptotic results and compare the per-
formance of the methods through a simulation study. We generate data from
the more general model, MLSBM. We then compare the relative performance
of the two multi-layer methods described here (MLE and RMLE) with single
layer methods, a competing method called spectral clustering on the mean ad-
jacency matrix (Spectral mean) due to Han, Xu and Airoldi [17], and baseline
methods such as majority voting and MLE in aggregate SBM. Note that the
Spectral mean algorithm applies spectral clustering to the weighted adjacency
matrix obtained by taking the mean of the adjacency matrices from all layers
and there is no binarization involved. The comparison is done under various set-
tings on the number of nodes N , the number of communities K, the number of
types of relations M , and the expected total number of edges L. Note that in the
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theoretical analysis we could prove that the MLEs in MLSBM and RMLSBM
are consistent under varying sufficient conditions. Therefore we conjectured that
it is of some advantage to use RMLSBM over MLSBM in situations where K is
large or the average degree of nodes across the layers is low. Here we validate the
conjecture by designing simulation studies that closely resemble the asymptotic
conditions.

Since the true class labels of the nodes are known in simulated data, we
compare the class assignments from different methods with the true labels. We
use correct clustering rate (CCR) and normalized mutual information (NMI)
as measures of similarity between partitions. The CCR counts the fraction of
nodes whose cluster assignment matches the true class label (as determined
by the true class label of the majority of nodes in that cluster). The higher
the CCR, the better the performance of the clustering method. The NMI is
an information theoretic measure of the mutual dependence or similarity of two
random variables. The NMI takes values in the range of 0 to 1, with 0 indicating
random cluster assignment with respect to the true class labels, and 1 indicating
perfect match between the true and assigned clusters. If NMI is 0, it means even
though the cluster assignment was not completely random and done according
to some algorithm, the solution presents no information regarding the true class
labels. Since the results in terms of CCR are very similar to that of NMI, we
omit those results here to save space.

In all the simulation studies we repeat the experiments 40 times and take the
average of our measures across them. We first generate the node labels inde-
pendently from a multinomial distribution with probabilities P (Zi = k) = αk.
Then we generate the data using the node labels and M different connectivity
matrices, all of which give larger probability to connections within groups in
comparison to the connections between groups. However, we vary the “signal to
noise ratio” (SNR) from layer to layer by varying the ratio of the diagonal and
off diagonal elements of the parameter matrix.

We consider two scenarios: (i) all layers are sparse and have strong SNR, (ii)
the layers are mixed in terms of sparsity and signal strength in the following
way: two layers are sparse and have strong signal, two layers are dense and have
weak signal, and one layer is dense with strong signal. While the first scenario is
a rather idealistic scenario where all layers are “similar” in the sense that they
are sparse and strongly informative about the underlying community structure,
the second scenario (also considered in Papalexakis, Akoglu and Ience [35]) is
more realistic in applications. For the first scenario, the SNR is kept at 3–4 and
sparsity is varied slightly from layer to layer in such a way that variational EM
algorithm for community detection on each of the layer individually gives very
similar performance. The connectivity matrix parameters are then sampled from
a uniform distribution within a small range so as to maintain SNR requirement
while having different values for each of the entries of the matrix. For the second
scenario, the informative strong signal layers have a SNR of 3 while the non-
informative weak signal layers have a SNR only marginally greater than 1. We
again sample the actual values of the parameters from a uniform distribution
within a small range.
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The initial guess for the variational algorithm in both MLE and RMLE is
obtained by a two step procedure. On a randomly selected layer we first run
spectral clustering to generate an initial guess and then we use this to run a
variational EM algorithm on that layer. We use the class assignment and fitted
SBM parameters from that layer as our initial guess for the MLSBM parameters.
In our simulation results described below, the final solution of class assignments
for both the MLE and the RMLE mostly turns out to be an improved estimate
of the true class assignments irrespective of which layer we choose to initialize
the method.

8.1. Fixed K and M while N increases

In this simulation, we take M = 5 types of edges or network layers, each with
a separate connectivity matrix inducing a different network according to the
schemes described above. We keep the number of communities K fixed at 10
and vary the number of nodes N from 100 to 600. The aim of this study is to
compare the methods in terms of the number of nodes required to achieve a
consistent estimation of community assignment with moderately low number of
communities. Figures 2(a) and (b) display the results from this study for the
two scenarios respectively. Clearly the MLE in MLSBM and RMLSBM reach
NMI of close to 1 faster than the single layer ones as well as majority voting
as the number of nodes increases. The MLE in RMLSBM performs better than
the MLE in MLSBM in both scenarios, when the number of nodes is small and
consequently the graph is sparse. The MLE in aggregate SBM performs simi-
larly to that in MLSBM and RMLSBM for the first (all strong signal) scenario
(Figure 2(a)), however it performs poorly for the second (mixed signals) scenario
(Figure 2(b)). This shows that aggregating edges across layers works fine if the
information quality is similar across layers, but it is not robust if the information
content changes across layers. The performance of spectral clustering on mean
adjacency matrix also corroborates that. While its small sample performance
is generally better than MLSBM or RMLSBM, its performance with increasing
number of nodes becomes unsatisfactory, especially in the mixed signal quality
case. Also note that spectral clustering on mean adjacency matrix is expected to
perform better in general than the MLE of aggregate SBM as some information
has been lost due to the conversion of the mean adjacency matrix into a binary
graph as discussed earlier. The accuracy of majority voting behaves similarly to
the single layer ones.

8.2. Fixed N and M while K increases

In this simulation, we test the performance of the multi-layer methods against
the single layer and baseline methods with increasing number of communities.
We fix the number of nodes N and the number of layers M at 400 and 5
respectively, while we let K increase from 3 to 18 in steps of 3. The results
from this simulation study are displayed in Figures 2(c) and (d). Whereas the
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Fig 2. Comparison of the performance of various methods for three simulation settings under
two scenarios: all layers are sparse and have strong SNR (left column: (a)(c)(e)), and the
layers are mixed in terms of sparsity and SNR (right column: (b)(d)(f)). (a, b) fixed K = 10
and M = 5 while N increases from 100 to 600; (c, d) fixed N = 400 and M = 5 while K
increases from 3 to 18; (e, f) fixed N = 300 and K = 15 while M increases from 3 to 12.
The legend in Figure (b) is common to all figures. SBM best indicates the result from the best
performing MLE in the single layer SBMs.

accuracy of community detection in all the single layer methods and the majority
voting decreases rapidly with increasing number of communities, the multi-layer
methods explored here, especially the RMLSBM, perform well even with a large
number of communities. Between RMLSBM and MLSBM, RMLSBM clearly
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outperforms MLSBM in Figure 2(c) as the number of communities grows. This
simulation also serves as a test of robustness of RMLSBM for small number of
communities. We notice that in both scenarios, RMLSBM behaves similarly to
MLSBM and does not break down for small number of communities. Although
the Spectral mean algorithm also appears to perform quite well with increasing
number of communities in both scenarios, we notice that its performance with
small number of communities is not satisfactory and worse than even the MLE
in single layer SBM. This observation can also be expected from our theoretical
comparison of MLSBM with an aggregate model in terms of minimax rates.
With small number of communities there is enough data to estimate the MLE
in both MLSBM and RMLSBM quite well, and the two proposed multi-layer
methods outperform methods based on aggregating, especially when the density
and signal quality in the layers are heterogeneous. The MLE in aggregate SBM
does not have the same flaws as Spectral mean in the case of small number
of communities perhaps due to the sparse binarization, but its accuracy also
quickly drops as K increases (Figure 2(c)). In the mixed signal scenario, the
MLE in aggregate SBM performs much worse compared not only to MLSBM
and RMLSBM, but also to majority voting and the best performing MLE among
the individual layers.

8.3. Fixed N and K while M increases

In this simulation, we keep the number of nodes N and the number of communi-
ties K fixed at 300 and 15 respectively, while we increase the number of layersM
gradually from 3 to 12. For this simulation, each layer of the multi-layer network
was generated from a K-class SBM with a simple connectivity matrix given by
PK×K = λIK+ε1K×K−εIK . In the first scenario, where all layers are sparse and
have strong signals, the parameters are ε = 0.10 + U(−0.02, 0.02) and λ = 3ε.
In the second scenario we let both sparsity and signal strength vary across the
layers, and consequently have two types of layers. For the strong sparse layers
the parameters are ε = 0.08 + U(−0.03, 0.03) and λ = U(3, 4)ε, while for the
dense weak signal layers we have the parameters as ε = 0.22 + U(−0.03, 0.03)
and λ = U(1.3, 1.8)ε. Here U(a, b) is a random number generated from the
uniform distribution between a and b. Note that this second scenario would be
a good test of the robustness of different multi-layer methods.

We compare the performance of MLE in MLSBM and RMLSBM with ma-
jority voting, aggregate SBM, and spectral clustering on the mean adjacency
matrix in terms of the accuracy of community detection in Figures 2(e) and
(f). The curves for majority votes in both figures remain almost flat with in-
creasing number of layers, indicating that the accuracy of community detection
does not improve with more layers. The MLE of aggregate SBM performs well
initially, but its accuracy quickly falls with increasing number of layers as the

model assumption that
∑

m A
(m)
ij > 1 with vanishing probability breaks down.

However the Spectral mean algorithm does not have any such assumption and
its accuracy continues to rise. While in the first scenario of all strong signal
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layers Spectral mean performs the best among the competing procedures, its
relatively weaker performance in the second scenario shows it is not very ro-
bust against the presence of noisy layers. For MLSBM, the accuracy increases
initially, however the improvement slows down and both curves in Figures 2(e)
and (f) flatten with increasing layers. This is because the number of parameters
to be estimated also keeps on increasing fast with increasing number of layers,
which contributes to less efficiency. For RMLSBM the accuracy of community
detection in the all strong scenario generally increases with increasing number
of layers and it outperforms MLSBM. However, in the mixed signals case the
performance of the two methods are comparable.

The three studies clearly point out the advantages of the multi-layer methods
over the single layer ones and the baseline ones, as well as the relative advantage
of RMLSBM over MLSBM within the scope of the simulations.

8.4. Computing time

We have also compared the computing time of each of the algorithms in one of
our simulations, namely the scenario where all the layers are sparse and have
strong signals, with fixed K = 10 and M = 5, while N increases from 100 to
600. A box plot of the computing times in seconds from several repetitions of
the simulation is displayed in Figure 3. This experiment was performed in the
software R with repetitions computed in parallel using 8 cores of a 2.5 GHz,
16-core, x-86 64 linux machine. The average computing time for variational
MLE of individual layer SBMs fluctuates but most of the time increases with

Fig 3. Comparison of the computing time of various methods for increasing number of nodes
under the scenario that all layers are sparse and have strong SNR with fixed K = 10 and
M = 5 while N increases from 100 to 600.
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increasing N as expected. Surprisingly, the computing time of MLSBM some-
times decreases with the number of nodes while that of RMLSBM and spectral
clustering generally increases. This is probably due to two reasons. First, most
of the computational complexity of variational MLE in MLSBM stems from
the iterations in the EM step, which converge faster with increasing number of
nodes, even though each of those steps takes more time to compute. Another
factor contributing to faster convergence is improved initial guesses supplied by
the variational MLEs in the individual layer SBMs. While the improved initial
guesses and faster convergence are also true for RMLSBM, another significant
source of complexity for RMLSBM is the gradient descent algorithm in the M
step, whose complexity increases with increasing number of nodes. The Spec-
tral mean algorithm is the fastest in small samples, however its computing time
steadily grows with increasing N as expected. The computing time for aggregate
SBM behaves similarly to the average computing time in individual layers, but
with even larger fluctuations. We also note that all the computing times are
under a minute in our experiment.

9. Twitter UK politics dataset

In this section we test our methods on a real dataset on interactions between
British Members of Parliament (MPs) in the social networking site Twitter cu-
rated by Greene and Cunningham [15]. Although the original dataset consists
of 419 nodes, we only considered the largest subset that is connected across
all layers for our analysis. Hence our multi-layer network consists of 381 nodes.
The different layers of network we have correspond to three direct relations:
“mentions”, “follows” and “retweets”, and three derived relations: “mentioned
by the same person (co-mentions)”, “followed by the same person (co-follows)”,
and “retweeted by the same person (co-retweets)”. All relations are assumed
to be binary by assigning one if the relation is true for at least one case (e.g.,
if at least one person follows both MP i and MP j, then the relation “co-
follows” between the two MPs is true). All the relations individually can be
represented as graphs. For the graphs with direct relations, “mentions”, “fol-
lows” and “retweets”, a directed edge from node i to node j implies that MP
i mentioned, followed or retweeted respectively MP j at least once in his/her
tweets. We converted all directed edges into undirected edges for this analysis.
Average degrees of nodes in different network layers are presented in Table 1.
Note that among the direct layers, “follows” is relatively dense compared to
“mentions” and “retweets”, while the derived networks are overall much denser
compared to the direct ones.

The goal here is to cluster the MPs into communities based on the information
about their twitter activities. The ground truth communities are known to be

Table 1

Average degrees of nodes in different network layers for Twitter UK politics data

Mentions Follows Retweets Co-Mentions Co-Follows Co-Retweets
58.48 98.34 31.88 361.51 297.21 147.56
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Fig 4. The parametric bootstrap distribution (based on 800 samples) of the log likelihood ratio
test statistic. The observed value of the statistic is marked.

consisting of five communities corresponding to the political affiliations of the
MPs: 152 Conservative, 178 Labour, 39 Liberal Democrat, 5 SNP and 7 Other
MPs. The clustering quality is assessed through NMI and CCR as before.

Although we have argued earlier in the introduction justifying the use of
multi-layer model with common community structure for modeling this net-
work, here we augment the argument quantitatively by applying the parametric
bootstrap based hypothesis testing procedure developed in Section 7 to this
dataset. The value of the log likelihood ratio test statistics is −12201.12. The
distribution of the test statistic obtained through parametric bootstrap is pre-
sented in Figure 4. The observed value of the statistic clearly falls outside the
range of the simulated values from the parametric bootstrap. Hence the empir-
ical p-value is 0 and we reject the null hypothesis of independent community
assignments in each layer. Consequently we conclude that the network needs to
be modeled with multi-layer models.

Part (a) of Table 2 reports the performance of the algorithm for the six
individual layers considered. Note that the performance of the derived networks
is worse compared to the direct ones despite being denser. Clearly the signal
in favor of the ground truth is stronger in the “direct networks” compared to
the “derived networks”. The performance of majority vote, MLEs in aggregate
SBM, MLSBM and RMLSBM on multi-layer networks constructed from the
three direct layers and all layers together are given in part (b) of Table 2. In both
cases the multi-layer methods outperform the baseline methods, and between
the two multi-layer methods, RMLE outperforms MLE. From the results for
direct networks, we note that the performance of multi-layer methods is not
affected by inclusion of relatively sparse layers (“mentions”, “retweets”) and
multi-layer methods perform better than the densest layer (“follows”), as long as
all the signal strength is high. However the performance deteriorates as the signal
quality becomes bad with the inclusion of poor performing derived networks.



Multi-layer stochastic blockmodel 3839

Table 2

The NMI and CCR for Twitter UK politics data

Measure Mentions Follows Retweets Co-Mentions Co-Follows Co-Retweets
NMI 0.4522 0.5992 0.4610 0.3449 0.2520 0.4009
CCR 0.8182 0.9022 0.7926 0.7565 0.7053 0.8136

(a) Individual network layers

NMI CCR
Majority Aggregate MLSBM RMLSBM Majority Aggregate MLSBM RMLSBM

SBM SBM
Direct 0.5213 0.5819 0.6764 0.6821 0.8477 0.8871 0.9527 0.9553
All 0.3825 0.3326 0.5428 0.6250 0.7217 0.7506 0.8393 0.9107

(b) Combined network layers

Fig 5. The adjacency matrices of the three layers: (a) mentions, (b) follows and (c) retweets,
sorted according to the common community labels obtained from maximum likelihood estima-
tion in RMLSBM. The colored grid lines indicate community partitions.

RMLSBM is more robust towards such layers with poor signal compared to
MLSBM. The MLE in aggregate SBM performs poorly in the full network due
to the number of layers in that network being too large.

A sparsity pattern plot of the adjacency matrices of each of the three lay-
ers from the network, sorted according to the common community assignment
obtained from the MLE in RMLSBM, is presented in Figure 5. The red grid
lines indicate the community partitions for the five communities. It can be easily
seen from the figure that the intra-community connections represented in the
diagonal (from bottom left corner to top right corner) are denser as compared
to inter-community connections in each of the three layers.

10. Discussions

In this paper we extended the stochastic block model to the multi-layer set-
tings with two related models, MLSBM and its restricted version RMLSBM.
The community assignments through maximum likelihood estimation in both
models are shown to be consistent under data generated from the more general
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model MLSBM with suitable conditions on the growth rate of the number of
communities, the number of types of layers, and the total number of edges of
the multi-layer graph. We also derived minimax rates of error and thresholds
for consistency of community detection in MLSBM, RMLSBM and a baseline
model, the SBM obtained by aggregating the layers. We compared the pro-
posed methods with the MLEs in single layer networks, spectral clustering on
the mean adjacency matrix, as well as two baseline methods, MLE in the aggre-
gate SBM and majority voting, through results on asymptotic consistency and
simulation.

We demonstrate advantages of the MLE in RMLSBM over the MLEs from
single-layer SBMs as well as the majority voting and the MLE in MLSBM,
through a combination of asymptotic consistency analysis and simulation stud-
ies, when either the number of communities is large or the graph layers are rel-
atively sparse. This includes the case when the individual layers have bounded
average degree, which is an extremely challenging case for single layer networks.
We would like to emphasize that handling the bounded degree case would not
be possible with the usual MLSBM extension. Both the baseline methods suf-
fer from deficiencies that limit their abilities to detect communities in multi-
layer networks effectively. While the aggregation of graphs performs poorly
if the community structure information contained in different layers are het-
erogeneous, the majority voting fails to infer community structure correctly
from a large number of layers with weak signals. The observations of this pa-
per are in line with previous work in regression settings where a parsimonious
model with similar accuracy is preferred over a model with a large number of
parameters. The RMLSBM approximates the MLSBM quite well with fewer
parameters for most multi-layer networks which are sparse or have a large
number of communities. Hence in such cases the RMLSBM outperforms the
MLSBM.

Appendix A

A.1. Derivation of variational inference for RMLSBM

We derive the update rules for RMLSBM. Note that for the restricted model,
the complete data log likelihood is given by

l(A,Z) = l(A|Z) + l(Z)

=
∑
i

∑
q

Ziqαq +
1

2

∑
i �=j

∑
q,l

∑
m

ZiqZjl{A(m)
ij (π̂ql + β̂m)

− log(1 + exp(π̂ql + β̂m)}.

In the E step of the following variational EM algorithm, we compute the
variational approximation estimates of the probabilities of class assignments for
each node. Given the model parameters α, π, β, the variational parameters τ
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Algorithm 1: Variational EM algorithm for MLSBM

while either convergence criterion on parameters not met or t < tmax do
// E-step: Compute variational estimates τ = {τiq}
while either convergence criteria on τ are not met or s < smax do

for i ← {1, 2, . . . , N} do
for q ← {1, 2, . . . ,K} do

τ̂
(s+1)
iq = exp[α̂

(t)
q
∑
i<j

∑
l

∑
m
τ̂
(s)
jl {A(m)

ij π̂
(t)
qlm + (1−A

(m)
ij )(1− π̂

(t)
qlm)}]

s = s+ 1
end

end

end

τ̂
(t+1)
iq = τ̂

(t+1)
iq /

K∑
q=1

τ̂
(t+1)
iq

// M-step: Estimate the parameters

for q ← 1 to K do

α̂
(t+1)
q = 1

N

N∑
i=1

τ̂
(t+1)
iq

for m ← 1 to M do
for l ← 1 to K do

π̂
(t+1)
qlm =

∑
i<j

τ̂
(t+1)
iq τ̂

(t+1)
jl

A
(m)
ij∑

i<j
τ̂
(t+1)
iq τ̂

(t+1)
jl

end

end

end
t = t+ 1

end

can be computed by maximizing the function

JR =
∑
i

∑
q

τiq log(αq) +
1

2

∑
i �=j

∑
q,l

∑
m

ZiqZjl{A(m)
ij (π̂ql + β̂m) (A.1)

− log(1 + exp(π̂ql + β̂m)} −
∑
i

∑
q

τiq log(τiq)

with the constraint that
∑

q τiq = 1 for all i. The solution for the (t+ 1)th EM
step can be readily obtained as

τ̂
(t+1)
iq = exp

[
α̂(t)
q

∑
i<j

∑
l

∑
m

τ̂
(t)
jl {A(m)

ij (π̂
(t)
ql + β̂(t)

m ) log(1 + exp(π̂
(t)
ql + β̂(t)

m ))}
]
.

In the M step we estimate the parameters of the model by maximizing the
conditional expectation of the complete likelihood with respect to the parame-
ters. Since we do not have a closed form solution for the parameters π and β,
we use a gradient descent algorithm (BFGS optimization algorithm) to simulta-
neously optimize the objective function with respect to all the parameters. The
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Algorithm 2: Variational EM algorithm for RMLSBM

while either convergence criteria on parameters are not met or t < tmax do
// E-Step: Compute variational estimates τ = {τiq}
while either convergence criteria on τ are not met or s < smax do

for i ← {1, 2, . . . , N} do
for q ← {1, 2, . . . ,K} do

τ̂
(s+1)
iq =

exp[α̂
(t)
q
∑
i<j

∑
l

∑
m
τ̂
(s)
jl {A(m)

ij (π̂
(t)
ql + β̂

(t)
m )− log(1 + exp(π̂

(t)
ql + β̂

(t)
m ))}]

s = s+ 1
end

end

end
// Normalize the variational estimates so that they sum to 1 for each i

τ̂
(t+1)
iq = τ̂

(t+1)
iq /

K∑
q=1

τ̂
(t+1)
iq

// M-step: Estimate the parameters

for q ← 1 to K do

α̂
(t+1)
q = 1

N

N∑
i=1

τ̂
(t+1)
iq

end
// Use BFGS optimization method to find the parameters

(π̂(t+1), β̂(t+1)) = argmax
π,β

J(π, β)

t = t+ 1
end

gradients of the objective function with respect to π and β are

∂

∂β
(t)
m

:=
∑
i �=j

∑
q,l

τ̂
(t)
iq τ̂

(t)
jl

(
A

(m)
ij −

exp(π̂
(t)
ql + β̂

(t)
m )

1 + exp(π̂
(t)
ql + β̂

(t)
m )

)
, (A.2)

∂

∂π
(t)
ql

:=
∑
i �=j

∑
m

τ̂
(t)
iq τ̂

(t)
jl

(
A

(m)
ij −

exp(π̂
(t)
ql + β̂

(t)
m )

1 + exp(π̂
(t)
ql + β̂

(t)
m )

)
. (A.3)

The two algorithms corresponding to the two models are described in Algorithm
1 and Algorithm 2 respectively.

Appendix B

B.1. Proof of Equation (3.16)

lR(A; z)− l̄RP (z)

=
∑
m

∑
i<j

{
A

(m)
ij log

(
φ̂
(m)
zizj

φ̄
(m)
zizj

)
+ (1−A

(m)
ij ) log

(
1− φ̂

(m)
zizj

1− φ̄
(m)
zizj

)}
+X − E(X)
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=
∑
m

∑
i<j

{
A

(m)
ij (π̂ql + β̂m − π̄ql − β̄m)− log

(
1+ exp(π̂ql + β̂m

1+ exp(π̄ql + β̄m)

)}
+X −E(X)

=
∑
q≤l

(π̂ql − π̄ql)
∑
m

∑
i<j

A
(m)
ij 1{zi = q, zj = l}+

∑
m

(β̂m − β̄m)
∑
i<j

A
(m)
ij

−
∑
m

∑
q≤l

nql log

(
1 + exp(π̂ql + β̂m

1 + exp(π̄ql + β̄m)

)
+X − E(X)

=
∑
q≤l

(π̂ql − π̄ql)nql

∑
m

φ̂
(m)
(z)ql +

∑
m

(β̂m − β̄m)
∑
q≤l

nqlφ̂
(m)
(z)ql

−
∑
m

∑
q≤l

nql log

(
1 + exp(π̂ql + β̂m)

1 + exp(π̄ql + β̄m)

)
+X − E(X)

=
∑
m

∑
q≤l

nql

{
φ̂
(m)
(z)ql log

⎛
⎝ φ̂

(m)
(z)ql

φ̄
(m)
(z)ql

⎞
⎠+(1− φ̂m

(z)ql) log

⎛
⎝1− φ̂

(m)
(z)ql

1− φ̄
(m)
(z)ql

⎞
⎠}+X −E(X)

=
∑
m

∑
q≤l

nqlD
(
φ̂
(m)
(z)ql || φ̄

(m)
(z)ql

)
+X − E(X), (B.1)

B.2. Proofs of consistency results

Before we describe the proves of Theorems 1 and 2, we need the following lemma.

Lemma 1. For a fixed z, let π̂(z) = {π̂(m)
(z)ql; q, l ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}}

denote the MLE of the parameters of MLSBM, and let π̂R
(z) = {(π̂(z)ql, β̂(z)m);

q ≤ l, q, l ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}} be the MLE of the parameters of
RMLSBM. Then for any z, we have the size of the set of all possible values that
π̂(z) can take as

|Π̂(z)| ≤
(
N

K
+ 1

)MK(K+1)

,

and that π̂R
(z) can take as

|Π̂R
(z)| ≤

(
M1/2

(
N

K
+ 1

))K2+K (
N(N + 1)

2
+ 1

)M

,

where Π̂(z) and Π̂R
(z) denote the range of π̂(z) and π̂R

(z) respectively for a fixed z.

Proof. We first determine the size of the set of all possible values that the MLE
of the parameter array π can take in the MLSBM. Notice that from Equation
(3.5) the estimate π̂(m) of the parameter matrix for any layer m can take any
of the

∏
q≤l(nql + 1) values, since its K(K + 1)/2 upper diagonal components

(π̂
(m)
ql , q ≤ l, q, l ∈ {1, . . . ,K}) can take any of the nql + 1 values in the set

{0, 1/nql, . . . , 1} independently. However this is subject to the constraint that
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∑
q≤l

nql =
(
N
2

)
. This implies that |Π̂| is a product of

(
K+1
2

)
positive terms whose

sum is fixed. So |Π̂| is maximized when the terms are all equal, i.e., nql =(
N
2

)
/
(
K+1
2

)
uniformly across all m. Hence we have the following inequality

|Π̂| ≤
((

N

2

)
/

(
K + 1

2

)
+ 1

)MK(K+1)/2

<

(
N2

K2
+ 1

)MK(K+1)/2

<

(
N

K
+ 1

)MK(K+1)

.

Now we turn our attention to the set of values the MLE of the parameter
array in RMLSBM can take. Note that Equations (3.13) and (3.14) together
represent K(K + 1)/2+M equations involving partial sums of the MLEs of the
K(K + 1)/2+M elements in the parameter array πR (although the equations are
written in terms of the transformation φ for convenience, they actually represent
the same equations as Equations (3.10) and (3.11). The right hand side of the
equations together are the sufficient statistics under the RMLSBM. Note that
due to the identifiablility constraint, we have only K(K + 1)/2 + M − 1 free
parameters. On the other hand, one of the equations in the set of equations is also
redundant, since adding together the first M equations represented by Equation
(3.13) and adding the remaining K(K+1)/2 equations represented by Equation
(3.14) yield the same equation and hence there is one linear dependence. This set
of equations determines the MLE of πR. Hence the size of the set of all distinct
solutions π̂R is at most the number of possible sets of system of equations. To
determine the later, we notice that the right hand side of each of the first set ofM
equations can take N(N + 1)/2+1 values from the set {0, 2/[N(N+1)], . . . , 1},
while the right hand side of each of the next set of K(K + 1)/2 equations can
take Mnql +1 values from the set {0, 1/(Mnql), . . . , 1}. So the size of the set of
possible values the estimated parameter array π̂R can take is

|Π̂R| ≤
∏
q≤l

(Mnql + 1)

M∏
m=1

(
N(N + 1)

2
+ 1

)
.

The first term is maximized as before when all the nql’s are equal, i.e., nql =(
N
2

)
/
(
K+1
2

)
. The second term is a fixed quantity. So we have

|Π̂R| ≤
(
M

(
N

2

)
/

(
K + 1

2

)
+ 1

)K(K+1)/2(
N(N + 1)

2
+ 1

)M

≤
(
M

N2

K2
+ 1

)K(K+1)/2(
N(N + 1)

2
+ 1

)M

≤
(
M1/2N

K
+ 1

)K(K+1)(
N(N + 1)

2
+ 1

)M

.

Lastly notice that the transformation defined by Equation (3.1) is an onto func-
tion but not necessarily one-to-one, so one or more parameter arrays πR map to
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one φ. Hence for every estimate φ̂ there exists a corresponding estimate array
π̂R. Therefore we have

|Φ̂| ≤ |Π̂R| ≤
(
M1/2N

K
+ 1

)K(K+1)(
N(N + 1)

2
+ 1

)M

.

For brevity of notation henceforth we remove the subscript (z) from π(z),
πR
(z) and φ(z), denoting the set of parameters of MLSBM, RMLSBM and the

transformation of the set of parameters of RMLSBM respectively for a fixed z.
We also remove the subscript (z) from Π̂(z) and Π̂R

(z).

Proof of Theorem 1

The proof for the unrestricted case follows the structure of the proof of Theorem
1 in Choi, Wolfe and Airoldi [8]. Following the arguments in the aforementioned

paper, we first notice that for a fixed z, each estimate π̂
(m)
ql is a sum of nql

independent Bernoulli random variables with mean π̄
(m)
ql . Hence the probability

that π̂
(m)
ql = ν, where ν ∈ {0, 1/nql, . . . , 1} can be bounded as

P (π̂
(m)
ql = ν) ≤ exp

(
−nqlD(ν || π̄(m)

ql )
)
,

and by the independence of A
(m)
ij , the bound on the probability of any realization

π̂ is

P (π̂) ≤ exp

⎛
⎝−

∑
q≤l

nql

∑
m

D(π̂
(m)
ql || π̄(m)

ql )

⎞
⎠ .

Recall Π̂ denotes the set of values the estimate array π̂ can take for a fixed
class assignment z. In Lemma 1, we have bounded the size of this set as |Π̂| ≤(
N
K + 1

)MK(K+1)
. Now we consider the event that

∑
q≤l nql

∑
m D(π̂

(m)
ql || π̄(m)

ql )
is at least as large as some ε > 0, and derive an upper bound for its probability
of occurrence:

P (Π̂ε) = P

⎛
⎝π̂ ∈ Π̂;

∑
q≤l

nql

∑
m

D(π̂
(m)
ql || π̄(m)

ql ) ≥ ε

⎞
⎠ =

∑
π̂∈Π̂ε

P (π̂)

≤
∑
π̂∈Π̂ε

exp

⎛
⎝−

∑
q≤l

nql

∑
m

D(π̂
(m)
ql || π̄(m)

ql )

⎞
⎠ ≤

∑
π̂∈Π̂ε

exp(−ε)

= |Π̂ε| exp(−ε) ≤ |Π̂| exp(−ε) ≤
(
N

K
+ 1

)MK(K+1)

exp(−ε)

Hence for all ε > 0, we have over all KN possible class assignments z,

P

⎛
⎝max

z

∑
q≤l

nql

∑
m

D(π̂
(m)
ql || π̄(m)

ql ) ≥ ε

⎞
⎠
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≤ P

⎛
⎝⋃

z

⎧⎨
⎩
∑
q≤l

nql

∑
m

D(π̂
(m)
ql || π̄(m)

ql ) ≥ ε

⎫⎬
⎭
⎞
⎠

≤ KN exp

(
MK(K + 1) log

(
N

K
+ 1

)
− ε

)

≤ exp

(
N logK +M(K2 +K) log

(
N

K
+ 1

)
− ε

)
.

The proof for the restricted case, although follows the same structure as
before, is more involved as we need to deal with estimating equations instead
of closed form solutions. Note that for a fixed z, the left hand side of each of

the M estimating equations in (3.13) is 1
N(N+1)/2

∑
q≤l nqlφ̂

(m)
ql , which is a sum

of N(N + 1)/2 independent Bernoulli random variables with mean 1
N(N+1)/2∑

q≤l nqlφ̄
(m)
ql respectively. Hence the probability that 1

N(N+1)/2

∑
q≤l nqlφ̂

(m)
ql =

νm, where νm ∈ {0, 2/[N(N + 1)], . . . , 1} can be bounded as

P

(∑
q≤l nqlφ̂

(m)
ql

N(N + 1)/2
= νm

)
≤ exp

(
−N(N + 1)

2
D

(
νm

∣∣∣∣∣∣
∑

q≤l nqlφ̄
(m)
ql

N(N + 1)/2

))
,

for m ∈ {1, . . . ,M}.
Similarly the left hand side of each of the K(K + 1)/2 estimating equations

in (3.14) is 1
M

∑
m φ̂

(m)
ql , which is a sum of Mnql independent Bernoulli random

variables with mean 1
M

∑
m φ̄

(m)
ql . Hence the probability that 1

M

∑
m φ̂

(m)
ql = νql,

where νql ∈ {0, 1/(Mnql), . . . , 1} can be bounded as

P

(
1

M

∑
m

φ̂
(m)
ql = νql

)
≤ exp

(
−MnqlD

(
νql

∣∣∣∣∣∣ 1

M

∑
m

φ̄
(m)
ql

))
,

for q ≤ l, q, l ∈ {1, . . . ,K}.
Now since these K(K + 1)/2 + M estimating equations together determine

the MLE π̂R of RMLSBM, the probability of any realization of π̂R is bounded
by the joint probability of the occurrence of the estimating equations. Note that
although the equations within the two sets (3.13) and (3.14) are independent of
each other, the two sets of equations are not independent of each other. Hence
because of the inequalities that P (A ∩ B) ≤ P (A) and P (A ∩ B) ≤ P (B), we
have

P (π̂R) ≤
∏
m

P

⎛
⎝ 1

N(N + 1)/2

∑
q≤l

nqlφ̂
(m)
ql

⎞
⎠

≤ exp

(
−
∑
m

N(N + 1)

2
D

(∑
q≤l nqlφ̂

(m)
ql

N(N + 1)/2

∣∣∣∣∣∣
∑

q≤l nqlφ̄
(m)
ql

N(N + 1)/2

))
, (B.2)
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and

P (π̂R) ≤
∏
q≤l

P

(
1

M

∑
m

φ̂
(m)
ql

)

≤ exp

⎛
⎝−

∑
q≤l

MnqlD

(
1

M

∑
m

φ̂
(m)
ql

∣∣∣∣∣∣ 1

M

∑
m

φ̄
(m)
ql

)⎞⎠ . (B.3)

For brevity, we call the right hand sides of Equations (B.2) and (B.3) as
exp(−E1) and exp(−E2) respectively. From Lemma 1, we have the size of set
of all possible values π̂R can take

|Π̂R| ≤
(
M1/2N

K
+ 1

)K(K+1)(
N(N + 1)

2
+ 1

)M

.

Now we consider the event that Ei is at least as large as some ε > 0 for i = 1, 2
respectively.

P (Π̂R
ε ) = P (π̂R ∈ Π̂R;Ei ≥ ε) =

∑
π̂R∈Π̂R

ε

P (π̂R) ≤
∑

π̂R∈Π̂R
ε

exp(−Ei)

≤ |Π̂R| exp(−ε) ≤
(
M1/2N

K
+ 1

)K(K+1)(
N(N + 1)

2
+ 1

)M

exp(−ε).

Hence for all ε > 0, we have over all KN possible class assignments z,

P

(
max

z

{∑
m

N(N + 1)

2
D

(∑
q≤l nqlφ̂

(m)
ql

N(N + 1)/2

∣∣∣∣∣∣
∑

q≤l nqlφ̄
(m)
ql

N(N + 1)/2

)}
≥ ε

)

≤ exp

(
N logK +(K2 +K) log

(
M1/2N

K
+1

)
+M log

(
N(N +1)

2
+1

)
− ε

)
,

and

P

(
max

z

{∑
q≤l

MnqlD

(
1

M

∑
m

φ̂
(m)
ql

∣∣∣∣∣∣ 1

M

∑
m

φ̄
(m)
ql

)}
≥ ε

)

≤ exp

(
N logK +(K2 +K) log

(
M1/2N

K
+1

)
+M log

(
N(N +1)

2
+1

)
− ε

)
.

Proof of Theorem 2

First we note that X, as defined in Equation (3.9), is a sum of bounded inde-

pendent random variables, because each element X
(m)
ij in the sum is bounded by

C = 2 log(
√
MN) in absolute value. So we can use a Bernstein type inequality

for sums of bounded independent random variables [9] to obtain
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P (|X − E(X)| > ε) ≤ exp

⎛
⎜⎝− ε2

2
∑
m

∑
i<j

E[X
(m)2
ij ] + 2

3εC

⎞
⎟⎠

≤ exp

(
− ε2

8L log2(
√
MN) + 4

3ε log(
√
MN)

)
,

since
∑
m

∑
i<j

E[X
(m)2
ij ] =

∑
m

∑
i<j

P
(m)
ij log2(π̄

(m)
ql /(1 − π̄

(m)
ql )) < 4L log2(

√
MN).

Combining this inequality with the result in Theorem 1, we have over all possible
KN class assignments z,

max
z

P (|l(A; z)− l̄P (z)| > 2εL)

≤ max
z

⎛
⎝P

⎛
⎝∑

q≤l

nql

∑
m

D(π̂
(m)
ql || π̄(m)

ql ) > εL

⎞
⎠+ P (|X − E(X)| > εL)

⎞
⎠

≤ exp

(
N logK +M(K2 +K)log

(
N

K
+ 1

)
− εL

)

+ exp

(
N logK − ε2L

8 log2(
√
MN) + 4

3ε log(
√
MN)

)
,

which goes to zero asymptotically as N grows under the growth conditions
mentioned on K and L. So we have

max
z

|l(A; z)− l̄P (z)| = oP (L).

Proof of Theorem 3

The proof for the RMLSBM will be a slight modification of the earlier proof for
MLSBM. As before we need to bound the two terms in the decomposition of
the difference between maximized likelihood and its expected value defined in
Equation (3.16). For that we write the first part in the right hand side of (3.16),
which we call E3 here for brevity, in terms of the quantities we have already
bounded in Theorem 1. We begin by noticing that, since the Kullback-Liebler
divergence D(a||b) is convex, we can use a reverse of Jensen’s inequality [38, 6]
to write∑

q≤l

nqlD
(
φ̂
(m)
ql || φ̄(m)

ql

)

≤ N(N + 1)

2
D

(∑
q≤l nqlφ̂

(m)
ql

N(N + 1)/2

∣∣∣∣∣∣
∑

q≤l nqlφ̄
(m)
ql

N(N + 1)/2

)
+ log(MN2),

and

∑
m

nqlD
(
φ̂
(m)
ql || φ̄(m)

ql

)
≤ MnqlD

(
1

M

∑
m

φ̂
(m)
ql

∣∣∣∣∣∣ 1

M

∑
m

φ̄
(m)
ql

)
+ log(MN2).



Multi-layer stochastic blockmodel 3849

To derive the inequality, we used − log(φ̂
(m)
ql /φ̄

(m)
ql ) as our convex function of

φ̂
(m)
ql /φ̄

(m)
ql on the interval [1/(MN2), 1 − 1/(MN2)] to obtain a reverse of the

“log-sum inequality”. Summing the two inequalities over m and q, l respectively,
we have

E3 ≤ 2
∑
m

N(N + 1)

2
D

(∑
q≤l nqlφ̂

(m)
ql

N(N + 1)/2

∣∣∣∣∣∣
∑

q≤l nqlφ̄
(m)
ql

N(N + 1)/2

)

+ o(M(log(
√
MN))1+δ),

and

E3 ≤ 2
∑
q≤l

MnqlD

(
1

M

∑
m

φ̂
(m)
ql

∣∣∣∣∣∣ 1

M

∑
m

φ̄
(m)
ql

)
+ o(K2(log(

√
MN))1+δ).

Hence E3 is bounded by the minimum of the above two upper bounds. Since
the first part in the right hand side of the above two inequalities is bounded
by the same quantity, we will take the inequality for which the second part is
smaller. Under the conditions on the growth of L in the theorem, the minimum
of the two second parts is o(L). Consequently,

max
z

P (|lR(A; z)− l̄RP (z)| > 2εL)

≤ exp

(
N logK +(K2 +K) log

(
M1/2N

K
+1

)
+M log

(
N(N +1)

2
+1

)
− εL

)

+ exp

(
N logK − ε2L

8 log2(
√
MN) + 4

3ε logN

)
,

so under the growth conditions mentioned under different asymptotic settings,

max
z

|lR(A; z)− l̄RP (z)| = oP (L).

Proof of Theorem 4

For MLSBM, if the conclusion max
z

|l(A; z)− l̄P (z)| = oP (L) of Theorem 2 holds,

the data are generated according to a K-class blockmodel with membership vec-
tor z̄ and probability matrix π̄, and the maximum-likelihoodK-class blockmodel
class assignment estimator is ẑ, then it is easy to see

l̄P (z̄)− l̄P (ẑ) ≤ l̄P (z̄)− l̄P (ẑ) + l(A, ẑ)− l(A, z̄) (B.4)

≤ |l̄P (z̄)− l(A, z̄)|+ |l̄P (ẑ)− l(A, ẑ)| = oP (L).

Note that the terms l̄P (z̄)− l̄P (ẑ) and l(A, ẑ)− l(A, z̄) are positive quantities as
mentioned earlier.

The rest of the proof requires the concepts of partition and refinement as
laid out in Choi, Wolfe and Airoldi [8]. We briefly review the concepts here and
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apply them to MLSBM and its regularized version RMLSBM. Let [N ] denote
the set of integers {1, 2, . . . , N}. Any multi-layer blockmodel induces a partition
of the M upper triangular probability matrices. Formally we define a partition

of {P (m)
ij }i<j into U subsets {S1, . . . , SU} by the following mapping

Θ : (i, j)i∈[N ], j∈[N ], i<j → [U ].

Note that the partitions induced on all M probability matrices are the same,
since the partition is a function only of the indices and not of the type of edges.
There exists a bijection between the set [U ] and the upper triangular part of
the parameter matrices of MLSBM, so we can write πΘ(i,j) = πzizj .

In MLSBM, for a general partition, we define Su = {(i, j) : Θ(i, j) = u, i <

j} and π̄u = |Su|−1
∑
m

∑
Θ(i,j)=u,i<j

P
(m)
ij , so that we can define the log likelihood

under this partition as

l̄∗P (Θ) =

M∑
m=1

∑
i<j

{P (m)
ij log π̄

(m)
Θ(i,j) + (1− P

(m)
ij )log (1− π̄

(m)
Θ(i,j))}.

It is easy to see that l̄∗P (Θ
z) = l̄P (z), where Θz is the partition corresponding

to block model assignment z. A refinement Θ′ of partition Θ further subdivides
the partitions in Θ into subgroups or sub-partitions so that Θ

′
(i1, j1)i1<j1 =

Θ
′
(i2, j2)i2<j2 ⇒ Θ(i1, j1)i1<j1 = Θ(i2, j2)i2<j2 . From Lemma A2 of Choi, Wolfe

and Airoldi [8], it can be easily obtained

l̄∗P (Θ) ≤ l̄∗P (Θ
′).

One such refinement is constructed in the following way [8]. We consider a
K class MLSBM with membership vector z̄ and let Θz denote a partition of

{P (m)
ij }i<j for any z. Now, for a given membership class under z, partition the

corresponding set of nodes into subclasses according to the true class assignment
z̄ of each node. Then remove one node from each of the two largest subclasses
so obtained, and group them together as a pair; continue this pairing process
until no more than one nonempty subclass remains. If pair (i, j) is chosen from
the above procedure, then zi = zj and z̄i 	= z̄j . Define C1 as the number of (i, j)
pairs selected by the above method. Since at least one of i or j is misclustered,
we have Ne(z)/2 ≤ C1 ≤ Ne(z).

Next, for each C1 pairs find all other distinct indices k for which condition
(3.26) of the theorem is satisfied. Let C2 denote the total number of distinct
triples that can be formed in this manner. For each of the C2 such triples
(i, j, k), we remove Pik and Pjk from their previous subset assignment under Θz

and place them in a new distinct two element subset. This partition so created
is a refinement of the original partition Θz, and we call this refined partition
Θ

′z. The condition (3.26) of the theorem implies that for each pair of classes
(q, l), there exists at least one class c that satisfies,

D

(
π̄(m)
qc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)
+D

(
π̄
(m)
lc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)
≥ LK

MN2
. (B.5)
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Consequently for any of the C1 pairs of nodes under the true partition, we
obtain triples at least as large as the cardinality of the smallest class. Hence C2

is at least as large as C1s, where s the size of the smallest class. Now as per
assumption, s = Ω(N/K). Hence we can bound the difference in the likelihood:

l̄P (z̄)− l̄∗P (Θ
′z) =

∑
m

∑
i<j

D
(
P

(m)
ij || π(m)

Θ′z(i,j)

)
= C2MΩ

(
LK

MN2

)

= C1MΩ

(
N

K

LK

MN2

)
=

Ne(z)

2
Ω(L)

MNKL

KLMN2
=

Ne(z)

N
Ω(L).

Since the above procedure is valid for any class assignment vector z, we
can apply it for the maximum likelihood estimate ẑ as well. Note that ẑ in-

duces partition Θẑ of the probability matrices {P (m)
ij }i<j, m={1,...,M} and its

refinement Θ
′ẑ increases the likelihood, i.e., l̄∗P (Θ

ẑ) ≤ l̄∗P (Θ
′ẑ). Also we have

l̄∗P (Θ
ẑ) = l̄P (ẑ). Consequently we have

l̄P (z̄)− l̄P (ẑ) ≥ l̄P (z̄)− l̄∗P (Θ
′ẑ) =

Ne(ẑ)

N
Ω(L).

Combining this with the result from Equation (3.25), we have

Ne(ẑ) = oP (N).

Proof of Theorem 5

Before we proceed with the proof we need two lemmas. The first lemma bounds
the difference between the maximized expected likelihoods from the unrestricted
and the restricted models under the true partition. The second lemma uses this
result along with the result of Theorem 3 to bound the difference between the
maximized expected likelihood for the restricted model under the RMLE and
the maximized expected likelihood for the unrestricted model under the true
partition.

Lemma 2. Under the true partition z̄, if any of the five sets of conditions
in Theorem 3 on the growth of multi-layer blockmodel parameters holds, then
l̄P (z̄) − l̄RP (z̄) = oP (L), where L is the expected number of edges in the multi-
layer graph under the corresponding set of conditions.

Proof. For large N , subtracting Equation (3.24) from Equation (3.23) we have

l̄P (z̄)− l̄RP (z̄)

=
∑
q≤l

nql

∑
m

D(π̄
(m)
ql ||φ̄(m)

ql )

≤|EQ| log(MN2) +

(
MN(N + 1)

2
− |EQ|

)
C1

L′

MN2(logM)1+δ(logN)2+δ

log

(
C1L

′/(MN2(logM)1+δ(logN)2+δ)

1/MN2

)
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=oP (L
′) +

C1L
′

(logM)1+δ(logN)2+δ
log

(
C1L

′

(logM)1+δ(logN)2+δ

)

=oP (L
′) + oP (L

′) log

(
C1L

′

(logM)1+δ(logN)2+δ

)/
[(logM)1+δ(logN)1+δ]

=oP (L
′) + oP (L

′)R

=oP (L),

where C1 is a constant and R = log
(

C1L
′

(logM)1+δ(logN)2+δ

)/
[(logM logN)1+δ].

The inequality in step 2 comes from the upper bound on D(p||q) which can be
derived as follows. Without loss of generality, we can assume that p > q and
D(p||q) ≤ p log p

q ≤ pmax log
pmax

qmin
. Next we replace pmax and qmin by the assump-

tion on the lower and upper bounds of the restricted block model probabilities
given in Equation (3.3).

Now to complete the proof, we only need to verify that under the five sets of
conditions in Theorem 3, the term R in the right hand side of the above deriva-
tion is o(1). Under the first two sets of conditions, L′ = MN(logN)3+δ and con-

sequently R = log(MN logN/(logM)1+δ)
(logM logN)1+δ = o(1). Under the third set of conditions,

L′ = N(logN)3+δ and hence R = log(N logN/(logM)1+δ)
(logM logN)1+δ = o(1). Finally under the

last two sets of conditions, if L′ = MN(logN)1+δ then R = log(MN/(logM)1+δ)
(logM logN)1+δ =

o(1), and if L′ = M(logM)2+δ(logN)1+δ then R = log(M(logM)1+δ)
(logM logN)1+δ = o(1).

Lemma 3. Under the true partition z̄ and the RMLE of the partition ẑR (i.e.,
the MLE in the restricted model RMLSBM), we have l̄P (z̄) − l̄RP (ẑ

R) = oP (L)
whenever the conclusion of Theorem 3 holds.

Proof. Note that l̄P (ẑ
R) ≥ l̄RP (ẑ

R) since the maximum of the unrestricted like-
lihood l̄P (z) is uniformly larger than or equal to the maximum of the restricted
likelihood l̄RP (z) for all z. Moreover, z̄ maximizes l̄P (·) and hence l̄P (z̄)−l̄RP (ẑ

R) ≥
0. Notice that lR(A, ẑR)− lR(A, z̄) is positive since the observed restricted like-
lihood is maximized at ẑR. So we have

l̄P (z̄)− l̄RP (ẑ
R) ≤ l̄P (z̄)− l̄RP (ẑ

R) + lR(A, ẑR)− lR(A, z̄)

≤ |l̄P (z̄)− lR(A, z̄)|+ |l̄RP (ẑR)− lR(A, ẑR)|
≤ |l̄P (z̄)− l̄RP (z̄)|+ |l̄RP (z̄)− lR(A, z̄)|+ |l̄RP (ẑR)− lR(A; ẑR)|
= oP (L),

by Lemma 2 and Theorem 3.

Now we are ready to show that the class membership assignment vector es-
timated through the maximum likelihood estimation in the restricted model
RMLSBM is consistent under data generated from the MLSBM. We define reg-

ularized partition ΘR of the matrices of probabilities between nodes P
(m)
ij , com-

puted according to the restricted model RMLSBM and its refinement Θ
′R in
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exactly the same way. We further define the corresponding restricted log likeli-
hood associated with this partition ΘR as l̄∗RP (ΘR). For convenience we again
resort to the transformation defined by Equation (3.1)

l̄∗RP (ΘR) =

M∑
m=1

∑
i<j

{P (m)
ij log φ̄

(m)

ΘR(i,j)
+ (1− P

(m)
ij ) log(1− φ̄

(m)

ΘR(i,j)
)}.

For any membership assignment zR from the RMLSBM, let l̄∗RP (ΘR
zR) be the

corresponding partition of P
(m)
ij . It follows from this definition that l̄∗RP (ΘR

zR) =

l̄RP (z
R). Hence we have

l̄P (z̄)− l̄∗RP (ΘR
zR) =

∑
m

∑
i<j

D

(
P

(m)
ij || φ̄(m)

Θ
′R
zR

(i,j)

)
= C2MΩ(g) = C1MΩ

(
N

K
g

)

=
Ne(z

R)

2
Ω(L)

MN

KL
g =

Ne(z
R)

h
Ω(L).

Now we specialize to ẑR. Since Θ
′R is a refinement of ΘR, it increases the

restricted likelihood, i.e., l̄∗RP (Θ
′R
ẑR) ≥ l̄∗RP (ΘR

ẑR). Using this and the fact that
l̄∗RP (ΘR

ẑR) = l̄RP (ẑ
R), we have

l̄P (z̄)− l̄RP (ẑ
R) ≥ l̄P (z̄)− l̄∗RP (Θ

′R
ẑR) =

Ne(ẑ
R)

h
Ω(L).

The left hand side is o(L) by Lemma 3, and hence,

Ne(ẑ
R) = oP (h).

B.3. Proofs of minimax and threshold results

Proof of Theorem 6

For brevity we mention here only the results and proofs that differ from the
proof contained in Zhang and Zhou [43] and refer the reader to the aforemen-
tioned paper for a complete description of the techniques involved. We define
the homogeneous/symmetric multi layer stochastic blockmodel as the MLSBM
with the parameter space ΘML

1 that has all intra-block connection probabilities
equal to each other as well as all inter-block connection probabilities equal to
each other for each layer. As before, we assume no relation among the connec-
tion probabilities of one layer with that of another layer. The parameter space
can be written as

ΘML
1 (z,N,K,M,a,b)

=

{
(z, {P (m)

ij })∈ΘML : P
(m)
ij =

a(m)

N
if zi = zj and P

(m)
ij =

b(m)

N
if zi 	= zj , ∀m

}
.

(B.6)
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Note that this model space is homogeneous and uniquely determined by z, i.e.,
given the community assignments z, the block model parameters are uniquely
determined. This model space is also closed under permutations, in the sense
that the model obtained through permuting the class labels also belong to ΘML

1 .
We further define a submodel of this where the block sizes are all (almost) the
same as

ΘML
0 (z,N,K,M,a,b)

=

{
(z, {P (m)

ij })∈ΘML
1 (z,N,K,M,a,b) : Nq =(1 + o(1))

N

K
, ∀q
}
, (B.7)

and yet another submodel space of ΘML
0 where the communities are of only 3

sizes,
⌊
N
K

⌋
,
⌊
N
K

⌋
− 1 and

⌊
N
K

⌋
+1. This submodel space, denoted as ΘML

L is the
least favorable case for community detection in terms of the size of communities
(See Section 5.1 of Zhang and Zhou [43]). The parameter space can be written
as

ΘML
L (z,N,K,M,a,b,S)

=

{
(z, {P (m)

ij }) ∈ ΘML
0 (z,N,K,M,a,b) :

∣∣∣q : Nq =

⌊
N

K

⌋ ∣∣∣ = S1,

∣∣∣q : Nq =

⌊
N

K

⌋
+ 1
∣∣∣ = S2,

∣∣∣q : Nq =

⌊
N

K

⌋
− 1
∣∣∣ = S3, S1 + S2 + S3 = K

}
.

(B.8)

The submodel spaces ΘML
0 and ΘML

L are also homogeneous and closed under
permutation. Let ẑ be the class assignment obtained from some procedure under
consideration. We break the proof up into two parts, the first one proves a lower
bound for the minimax risk and the second one shows that there exists an
algorithm which attains the lower bound.

Lower bound

It was argued in Section 5.1 of Zhang and Zhou [43] that ΘML
1 is the least fa-

vorable subspace of ΘML using the property of being closed under permutation.
Hence, a lower bound on the minimax rates established on ΘML

1 will also be
a good lower bound for the larger parameter space ΘML. Since the supremum
over a larger space is always greater than the supremum over any of its sub-
spaces, the lower bound on ΘML

1 is a lower bound for the larger space trivially,
but being a least favorable subspace makes it match the rate. Throughout this
section (proof of lower bound) we assume K ≥ 3. The proof for the case K = 2
follows from Zhang and Zhou [43] with the same modifications described below
for the K ≥ 3 case.

We start with a couple of lemmas. The next lemma, due to Zhang and Zhou
[43], shows that for any homogeneous parameter space which is closed under
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permutation (e.g., ΘML
1 and all its submodels defined above), the minimum

global Bayesian risk of ẑ under the uniform prior is the same as the minimum
of the local Bayesian risk for the first node. The local Bayesian risk for one
node needs to be computed under an appropriate local loss function. Zhang
and Zhou [43] defined such a local loss function as the average over all possible
permutations of ẑ that minimizes the distance from the true class assignment.
Let Sz(ẑ) = {ẑ′

= δ(ẑ) : dH(z, ẑ
′
) = infδ dH(z, δ(ẑ))}. Then the local loss

function is defined as

r(zi, ẑi) =
1

|Sz(ẑ)|
∑

ẑ′∈Sz(ẑ)

dH(zi, ẑ
′
i). (B.9)

Lemma 4. (Lemma 2.1 of Zhang and Zhou [43]) Let Λ be any homogeneous
parameter space which is closed under permutation and τ be a uniform prior over
the elements of Λ. Defining the global Bayesian risk as Bτ (ẑ) =
1
|Λ|
∑

z∈Λ E[r(z, ẑ)] and local Bayesian risk for the first node (under the local

loss function) as Bτ (ẑ1) =
1
|Λ|
∑

z∈Λ E[r(z1, ẑ1)], we have

inf
ẑ
Bτ (ẑ) = inf

ẑ
Bτ (ẑ1).

Now we have the following lemma on the Bayesian local risk for the first node
in the parameter space ΘML

L under a uniform prior.

Lemma 5. Let ẑ be an estimated class assignment from some procedure in the
block model defined by (B.8). Let τ be a uniform prior over all elements in ΘML

L .
For the first node, the local Bayesian risk Bτ (ẑ1) =

1
|ΘML

L |
∑

z∈ΘML
L

E[r(z1, ẑ1)]

is lower bounded as

Bτ (ẑ1) ≥ εP

⎛
⎜⎝∑

m

c(m)

�N
K �∑
i=1

X
(m)
i ≥

∑
m

c(m)

�N
K �∑
i=1

Y
(m)
i

⎞
⎟⎠ , (B.10)

where ε > 0 is a constant, c(m) = log

(
a(m)(1− b(m)

N )

b(m)(1− a(m)

N )

)
, and X

(m)
i ∼ Bern( b

(m)

N )

and Y
(m)
i ∼ Bern(a

(m)

N ) are independent random variables for all i = {1, . . . ,⌊
N
K

⌋
}. Moreover if N

∑
I(m)

K → ∞, then the right hand side of Equation (B.10)
is greater than or equal to

exp(−(1 + o(1))N
∑
m

I(m)/K),

while if N
∑

I(m)

K = O(1), then the right hand side of Equation (B.10) is O(1).

Proof. We follow the proof of Lemma 5.1 in Section 6.2 of Zhang and Zhou
[43]. Define ΘML

L1
as a subset of the parameter space of ΘML

L such that the

class to which the first node belongs to is always of size
⌊
N
K

⌋
+ 1, i.e., ΘML

L1
=
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{(z, P (m)
ij ) ∈ ΘML

L : Nz1 =
⌊
N
K

⌋
+ 1}. Letting x2 = (

⌊
N
K

⌋
+ 1)S2, it was shown

in Section 6.2 of Zhang and Zhou [43] that the ratio of the cardinality of the
set ΘML

L1
to that of ΘML

L is a constant, i.e., |ΘML
L1

|/|ΘML
L | = x2/N ≥ ε for some

ε > 0. Consequently,

Bτ (ẑ1) ≥
1

|ΘML
L |

∑
z∈ΘML

L1

E[r(z1, ẑ1)] ≥
ε

|ΘML
L1

|
∑

z∈ΘML
L1

E[r(z1, ẑ1)].

For each z′ ∈ ΘML
L1

, we define k′(z′) = z′1 as the class to which the first node

belongs to. Let k(z′) be the set of indices of the communities of size
⌊
N
K

⌋
. Since

the first community is of size
⌊
N
K

⌋
+ 1, k′(z′) does not belong to k(z′). Now we

define a new assignment z(z′) based on z′ as follows

z(z′)1 =

{
min{k ∈ k(z′) : k > k′(z′)} if max k(z′) > k′(z′)

min k(z′) if max k(z′) < k′(z′),
(B.11)

and z(z′)i = z′i for all i ≥ 2. Clearly z(z′) ∈ ΘML
L1

differs from z′ only in the first
node and by definition has a distance 1 from it. Moreover for any two distinct
class assignments z′, z′′ ∈ ΘML

L1
, z′ 	= z′′, the new assignments based on them

z(z′) and z(z′′) are also different [43]. This implies that ΘML
L1

= {z(z′) : z′ ∈
ΘML

L1
}. Consequently,

Bτ (ẑ1) ≥
ε

2|ΘML
L1

|
∑

z′∈ΘML
L1

(E[r(z′1, ẑ1)] + E[r(z(z′)1, ẑ1)]).

Next we will derive a lower bound for the Bayes risk, inf ẑ Bτ (ẑ1). Conditional
on z′ or z(z′), the distribution of A in MLSBM involves a collection of M
adjacency matrices. We define two sets J0 and J1 as follows

J0 = {i ∈ {1, . . . , N}\{1} : z′i = z′1},
J1 = {i ∈ {1, . . . , N}\{1} : z′i = z(z′)1}.

Hence,

P (A|z′) =
∏
m

{ ∏
i∈J0

(
a(m)

N

)A
(m)
1i
(
1− a(m)

N

)1−A
(m)
1i ∏

i∈J1

(
b(m)

N

)A
(m)
1i

(
1− b(m)

N

)1−A
(m)
1i
}
f(AC), (B.12)

and

P (A|z(z′)) =
∏
m

{ ∏
i∈J1

(
a(m)

N

)A
(m)
1i
(
1− a(m)

N

)1−A
(m)
1i ∏

i∈J0

(
b(m)

N

)A
(m)
1i
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(
1− b(m)

N

)1−A
(m)
1i
}
f(AC), (B.13)

where the function f(AC) is a function involving connections from node 1 to
nodes not in J0∪J1 and all connections not involving node 1. Let ẑB attains the
infimum of the local Bayes risk. Since dH(z′, z(z′)) = 1, the loss with respect to
the local loss function defined in Equation (B.9) is r(z′1, ẑ

B
1 ) = dH(z′1, ẑ

B
1 ) which

is a 0-1 loss. Then ẑB1 is the Bayes estimator with respect to the local 0-1 loss
function and consequently ẑB1 would be the mode of the posterior distribution,
i.e.,

ẑB1 =

{
z′1, if

∑
m

∑
i∈J0

c(m)A
(m)
1i ≥

∑
m

∑
i∈J1

c(m)A
(m)
1i

z(z′)1, if
∑

m

∑
i∈J0

c(m)A
(m)
1i <

∑
m

∑
i∈J1

c(m)A
(m)
1i .

(B.14)

Hence we have

inf
ẑ
Bτ (ẑ1) ≥ εP

⎛
⎜⎝∑

m

c(m)

�N
K �∑
i=1

X
(m)
i ≥

∑
m

c(m)

�N
K �∑
i=1

Y
(m)
i

⎞
⎟⎠ . (B.15)

To derive the probability in the above lower bound, let Zi =
∑

m Z
(m)
i :=∑

m c(m)(X
(m)
i − Y

(m)
i ). Hence the moment generating function (MGF) of Zi

is,

MZi(t) =
∏
m

M
Z

(m)
i

(t) =
∏
m

E(etc
(m)Xi)E(e−tc(m)Yi)

=
∏
m

(
etc

(m) b(m)

N
+ 1− b(m)

N

)(
e−tc(m) a(m)

N
+ 1− a(m)

N

)
.

The MGF, MZi(t) is minimized at t∗ = 1
2 and the minimum value is

MZi(t
∗) =

∏
m

M
Z

(m)
i

(t∗) =
∏
m

(√
a(m)

N

b(m)

N
+

√
(1− a(m)

N
)(1− b(m)

N
)

)2

.

(B.16)

This implies − log(MZi(t
∗)) =

∑
m I(m). Denoting SN ′ =

∑N ′

i=1

∑
m Z

(m)
i for

N ′ =
⌊
N
K

⌋
, we obtain for any δ > 0,

P (SN ′ ≥ 0) ≥
∑

N ′δ>SN′≥0

N ′∏
i=1

M∏
m=1

p(z
(m)
i )

≥ (MZi(t
∗))N

′

exp(N ′t∗δ)

∑
N ′δ>SN′≥0

N ′∏
i=1

M∏
m=1

exp(t∗z
(m)
i )p(z

(m)
i )

M
Z

(m)
i

(t∗)
.
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Now denoting qm(w) = exp(t∗w)p(w)
M

Z
(m)
i

(t∗) for all m, we have

P (SN ′ ≥ 0) ≥ exp(−N ′
∑
m

I(m)) exp(−N ′t∗δ)
∑

N ′δ>SN′≥0

N ′∏
i=1

M∏
m=1

qm(z
(m)
i ).

We note that qm(w) is a probability mass function for all m ∈ {1, . . .M}.
Let {W (m)

i }, i ∈ {1, . . . , N ′}, be i.i.d random variables with probability mass
function qm(w). Then we have

P (SN ′ ≥ 0) ≥ exp(−N ′
∑
m

I(m)) exp(−N ′t∗δ)P (δ >
1

N ′

N ′∑
i=1

(
∑
m

W
(m)
i ) ≥ 0).

(B.17)

Clearly W
(m)
i = c(m)(X

(m)
i − Y

(m)
i ) can take 3 values, ±c(m) and 0. The first

two values correspond to the cases when X
(m)
i = 1, Y

(m)
i = 0 and Y

(m)
i =

1, X
(m)
i = 0 respectively. We compute the first probability as qm(W

(m)
i =

c(m)) = exp(c(m)/2)
(

b(m)

N

)(
1− a(m)

N

)
/M

Z
(m)
i

(1/2). The second one follows

similarly. Hence we have

W
(m)
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c(m) w.p

√
a(m)

N
b(m)

N (1− a(m)

N )(1− b(m)

N )/M
Z

(m)
i

(1/2)

−c(m) w.p
√

a(m)

N
b(m)

N (1− a(m)

N )(1− b(m)

N )/M
Z

(m)
i

(1/2)

0 w.p 1− P (W
(m)
i = c(m))− P (W

(m)
i = −c(m)).

Hence E(W
(m)
i ) = 0 and

V ar(W
(m)
i ) = 2(c(m))2

√
a(m)

N

b(m)

N
(1− a(m)

N
)(1− b(m)

N
)/M

Z
(m)
i

(1/2).

Hence denoting
∑

m W
(m)
i as Wi, we have E( 1

N ′
∑N ′

i=1 Wi) = 0. Also by inde-

pendence we the have variance of 1
N ′
∑N ′

i=1 Wi as V =
∑

m V ar(W
(m)
i )/N ′ =∑

m V (m) where V (m) = V ar(W
(m)
i )/N ′.

We now prove that
∑

m I(m)/
√
V → ∞. First we consider the case when

a(m) 
 b(m). Then we have I(m) 
 1
N

(a(m)−b(m))2

a(m) [43]. On the other hand re-

placing N ′ by N/K we have V (m) 
 (c(m))2a(m)

N /(N/K) 
 (a(m)−b(m))2K
a(m)N2 since

c(m) 
 a(m)−b(m)

a(m) and M
Z

(m)
i

(t∗) = exp(−I(m)) = O(1). Consequently,
√
V 


√
K
N

√∑
m

(a(m)−b(m))2

a(m) . Clearly
∑

m I(m)/
√
V 
 1√

K

√∑
m

(a(m)−b(m))2

a(m) 
√
N
∑

m I(m)

K → ∞. Next consider the other case b(m) = o(a(m)). Then
∑

m I(m) 
∑
m a(m)

N and c(m) 
 log(a(m)/b(m)). Consequently, V (m) 
 a(m)

N

(
log
(

a(m)

b(m)

))2
√

b(m)

a(m) /
N
K . Hence

√
V = o(

√∑
m a(m)K/N). This implies

∑
m I(m)/

√
V =
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ω(
√∑

m a(m)/K). Since
∑

m a(m)/K 
 N
∑

m I(m)/K → ∞, we have∑
m I(m)/

√
V → ∞.

Then we choose δ = (
∑

m I(m)
√∑

m V (m))1/2 so that δ = o(
∑

m I(m)) and
√
V =

√
(
∑

m V (m)) = o(δ). Since the ratio of δ to the square root of variance

goes to infinity as N goes to infinity, by the central limit theorem we have

P (δ > 1
N ′
∑N ′

i=1

∑
m W

(m)
i ≥ 0) → 1/2. Consequently from Equation (B.17),

P (SN ′ > 0) ≥ exp(−(1 + o(1))N ′
∑
m

I(m))

⇒P

⎛
⎜⎝∑

m

c(m)

�N
K �∑
i=1

X
(m)
i ≥

∑
m

c(m)

�N
K �∑
i=1

Y
(m)
i

⎞
⎟⎠ ≥ exp(−(1 + o(1))

N
∑

m I(m)

K
),

provided N
∑

m I(m)/K → ∞. The last inequality is obtained by replacing N ′

by
⌊
N
K

⌋
. If however, N

∑
m I(m)/K = O(1), we can choose a δ so that Nδ/K is

also a constant. Then considering the cases a(m) 
 b(m) and b(m) = o(a(m)) sep-

arately, from the earlier argument we have
∑

m I(m)/
√
V 


√
N
∑

m I(m)/K =

O(1) in both cases. So we have δ√
V


 K
N

√
V


 K
N
∑

m I(m) = O(1). Hence all

the terms in the right hand side of Equation (B.17) are O(1) and consequently,
P (SN ′ > 0) is O(1).

Now we combine the results of these two lemmas to prove a lower bound on
ΘML

0 .

Lemma 6. Under the assumption that
N
∑

m I(m)

K → ∞,

inf
ẑ

sup
z∈ΘML

0

E[r(z, ẑ)] ≥ exp

(
−(1 + εN )

N
∑

m I(m)

K

)
(B.18)

for some sequence εN = o(1). Moreover, if
N
∑

m I(m)

K = O(1), then inf ẑ supΘML
0

E[r(z, ẑ)] ≥ c for some constant c > 0.

Proof. Since ΘML
L ⊂ ΘML

0 , the minimax risk of ΘML
0 is lower bounded by the

minimax risk of ΘML
L . Due to the fact that Bayes risk lower bounds the global

risk, we also have inf ẑ supz∈ΘML
L

E[r(z, ẑ)] ≥ inf ẑ supz∈ΘML
L

Bτ (ẑ). Hence we
have from Lemma 5,

inf
ẑ

sup
z∈ΘML

0

E[r(z, ẑ)] ≥ inf
ẑ

sup
z∈ΘML

L

E[r(z, ẑ)]

≥ inf
ẑ

sup
z∈ΘML

L

Bτ (ẑ) = inf
ẑ

sup
z∈ΘML

L

Bτ (ẑ1).

Now we need to obtain the minimax lower bound for the larger parameter
space ΘML in the next lemma which concludes the proof for lower bound.
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Lemma 7. (Lower bound) Under the assumption that
N
∑

m I(m)

K → ∞,

inf
ẑ

sup
ΘML

E[r(z, ẑ)] ≥

⎧⎨
⎩
exp
(
−(1 + εN )

N
∑

m I(m)

2

)
K = 2

exp
(
−(1 + εN )

N
∑

m I(m)

sK

)
K ≥ 3

(B.19)

for some sequence εN = o(1) and some s > 0. Moreover, if
N
∑

m I(m)

K = O(1),
then inf ẑ supΘML

0
E[r(z, ẑ)] ≥ c for some constant c > 0.

Proof. By the argument of Zhang and Zhou [43], for K = 2, ΘML
0 is the least

favorable case for ΘML. Hence we can keep the same lower bound for ΘML

(obviously the lower bound holds since ΘML
0 is a subspace of ΘML). However

for K ≥ 3, this is not the case and we can improve the lower bound. The
least favorable case consists of the case where at least a constant proportion
of communities are of the size N

sK . Define ΘML
L to contain all z ∈ ΘML such

that a constant proportion of communities have size
⌊
N
K

⌋
, and another constant

proportion of communities have size
⌈
N
K

⌉
and all other communities are much

larger in size. Then using identical arguments as Lemmas 4 and 5 we have

inf
ẑ

sup
z∈ΘML

E[r(z̄, ẑ)] ≥ inf
ẑ

sup
z∈ΘML

L

Bτ (ẑ1)

≥ εP (
∑
m

c(m)

� N
sK �∑
i=1

X
(m)
i ≥

∑
m

c(m)

� N
sK �∑
i=1

Y
(m)
i )

≥ exp(−(1 + εN )
N
∑

m I(m)

sK
).

Combining these two cases we have the result for the entire parameter space
ΘML.

Upper bound

To prove the upper bound, we develop a penalized likelihood type algorithm
similar to Zhang and Zhou [43] and show that its risk is upper bounded by the
lower bound obtained in the previous step. We note that in the homogeneous
MLSBM case (ΘML

0 and ΘML
1 ), i.e., when all the intra-community connection

probabilities are a(m)/N and all the inter-community connection probabilities
are b(m)/N for layer m, the log likelihood function is

l(z;A) =
∑
m

{
log(

a(m)

N
)
∑
i<j

A
(m)
ij 1{zi = zj}

+ log(1− a(m)

N
)
∑
i<j

(1−A
(m)
ij )1{zi = zj}

+ log(
b(m)

N
)
∑
i<j

A
(m)
ij 1{zi 	= zj}
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+ log(1− b(m)

N
)
∑
i<j

(1−A
(m)
ij )1{zi 	= zj}

}
.

The maximum likelihood estimator ẑMLE is given by,

ẑMLE = argmax
z

T (z), (B.20)

where T (z) is given by

T (z) =
∑
m

{
log

(
a(m)(1− b(m)/N)

b(m)(1− a(m)/N)

)∑
i<j

A
(m)
ij 1{zi = zj}

− log

(
1− b(m)/N

1− a(m)/N

)
1{zi = zj}

}

=
∑
m

{c(m)A
(m)
ij 1{zi = zj} − k(m)1{zi = zj}}, (B.21)

with c(m) > 0 is defined in Lemma 5 and k(m) = log
(

1−b(m)/N
1−a(m)/N

)
. However in

general the parameter space will not be homogeneous. Under the more general
parameter space ΘML, we still define an identical form of the penalized likeli-
hood estimator as ẑMLE . Let z̄ be the true class assignment and ẑ ∈ ΘML

0 be
an arbitrary class assignment satisfying r(z̄, ẑ) = R/N , where 0 < R < N is a
positive integer. Then note that

T (ẑ)− T (z̄) = (
∑
m

c(m)A
(m)
ij 1{ẑi = ẑj} −

∑
m

c(m)A
(m)
ij 1{z̄i = z̄j})

− (
∑
m

k(m)1{ẑi = ẑj} −
∑
m

k(m)1{z̄i = z̄j})

= (
∑
m

c(m)A
(m)
ij 1{(i, j) ∈ γ(ẑ, z̄)}−

∑
m

c(m)A
(m)
ij 1{(i, j) ∈ α(ẑ, z̄)})

−
∑
m

k(m)(|γ(ẑ, z̄)| − |α(ẑ, z̄)|), (B.22)

where α(ẑ, z̄) = {(i, j) : i < j, z̄i = z̄j , ẑi 	= ẑj} and γ(ẑ, z̄) = {(i, j) : i < j, z̄i 	=
z̄j , ẑi = ẑj}. Henceforth we will use shorthands α and γ respectively to denote
the sets.

Let PR = P (ẑ ∈ ΘML
0 : r(z̄, ẑ) = R/N, T (ẑ) ≥ T (z̄)). We want to bound Pm

which is the probability that an arbitrary class assignment ẑ which does not
agree with the truth z̄ in exactly R places (after permutations) can maximize
T (z), i.e., P (T (ẑ) ≥ T (z̄)). We start with the following lemma.

Lemma 8. Let ẑ be an arbitrary class assignment satisfying r(z̄, ẑ) = R/N ,
where 0 < R < N is a positive integer. Then there exists a sequence ε → 0,
independent of ẑ, such that

P (T (ẑ) ≥ T (z̄)) ≤

⎧⎨
⎩
exp
(
− (1−ε)NR

∑
m I(m)

K +R2
∑

m I(m)
)
, if R ≤ N

2K ,

exp
(
−2(1−ε)NR

∑
m I(m)

9K

)
, if R > N

2K .



3862 S. Paul and Y. Chen

Proof. Let U (m) = {U (m)
l ∼ Bern(p

(m)
l )}, V (m) = {V (m)

l ∼ Bern(q
(m)
l )},

X(m) = {X(m)
l ∼ Bern(q(m))} and Y (m) = {Y (m)

l ∼ Bern(p(m))} be sets of

independent Bernoulli random variables for arbitrary l. Further let min p
(m)
l ≥

p(m) and max q
(m)
l ≤ q(m). Then we can define two sets of random variables

{A(m)
l ∼ Bern(p

(m)

p
(m)
l

)} and {B(m)
l ∼ Bern(

q
(m)
l

q(m) )} independent of U and V . Now

we define i.i.d copies {X(m)′} of {X(m)} and {Y (m)′} of {Y (m)} as Y
(m)′

l =

U
(m)
l A

(m)
l and V

(m)
l = X

(m)′

l B
(m)
l . Clearly, Y

(m)′

l = U
(m)
l A

(m)
l ≤ U

(m)
l and

V
(m)
l = X

(m)′

l B
(m)
l ≤ X

(m)′

l . Hence we have for any real number s and se-
quence of positive constants {c(m)},

if s+
∑
m

c(m)

|α|∑
l=1

U
(m)
l ≤

∑
m

c(m)

|γ|∑
l=1

V
(m)
l

then s+
∑
m

c(m)

|α|∑
l=1

Y
(m)
l ≤

∑
m

c(m)

|γ|∑
l=1

X
(m)
l . (B.23)

Now we replace U
(m)
l and V

(m)
l with A

(m)
ij 1{(i, j) ∈ α(ẑ, z̄)} and A

(m)
ij 1{(i, j) ∈

γ(ẑ, z̄)} respectively, p(m)
l and q

(m)
l with π

(m)
zizi/N and π

(m)
zizj/N respectively (recall

π(m) was previously defined in the main article as the matrix of block connec-
tion probabilities in the MLSBM’s mth layer), p(m) and q(m) with a(m)/N and
b(m)/N respectively and s with

∑
m k(m)(|γ|−|α|). Then we get using the result

in Equation (B.23) and Equation (B.22),

P (T (ẑ) ≥ T (z̄))

≤ P

⎛
⎝∑

m

c(m)

|γ|∑
l=1

X
(m)
i −

∑
m

c(m)

|α|∑
l=1

Y
(m)
i ≥

∑
m

k(m)(|γ| − |α|)

⎞
⎠

= P

⎛
⎝exp

⎛
⎝t
∑
m

c(m)

|γ|∑
l=1

X
(m)
i − t

∑
m

c(m)

|α|∑
l=1

Y
(m)
i

⎞
⎠

≥ exp

(
t
∑
m

k(m)(|γ| − |α|)
))

≤ exp

(
−t
∑
m

k(m)(|γ| − |α|)
)(

E[et
∑

m c(m)X
(m)
1 ]
)|γ| (

E[e−t
∑

m c(m)Y
(m)
1 ]
)|α|

,

where the last inequality follows from Markov inequality. Now we choose t =
t∗ = 1/2. Then we have

E[et
∗∑

m c(m)X
(m)
1 ]

=
∏
m

(
1− b(m)/N

1− a(m)/N

)1/2(
(a(m)b(m))1/2

N
+ (1− a(m)

N
)1/2(1− b(m)

N
)1/2
)
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= exp(
∑

k(m)/2) exp(−
∑
m

I(m)/2)

and E[e−t
∑

m c(m)Y
(m)
1 ] = exp(−

∑
k(m)/2) exp(−

∑
m I(m)/2). Consequently,

we have

P (T (ẑ) ≥ T (z̄)) ≤ e−
|γ|+|α|

2

∑
m I(m)

. (B.24)

A lower bound on the size of the sets α and γ was given in Lemma 5.3 of Zhang
and Zhou [43]. We use the results directly here: for an arbitrary assignment
ẑ ∈ ΘML

0 satisfying r(z̄, ẑ) = R/N , where 0 < R < N is a positive integer, we
have

min(|α(ẑ, z̄)|, |γ(ẑ, z̄)|) ≥
{

(1−ε)NR
K −R2, if R ≤ N

2K ,
2(1−ε)NR

9K , if R > N
2K .

(B.25)

Using this lower bound for both |α| and |γ| immediately yields the result.

Let Γ(z) denotes an equivalent class for z consisting of all permutations of z.
In order to use an union bound for PR, we need to count the cardinality of the
set of Γs which have distance R from z̄. Next we use Proposition 5.2 in Zhang
and Zhou [43] which states that

|{Γ : ∃ẑ ∈ Γ s.t r(z̄, ẑ) = R/N}| ≤ min{(eNK

R
)R,KN},

to conclude through a union bound that

PR = P (ẑ ∈ ΘML
0 : r(z̄, ẑ) = R/N, T (ẑ) ≥ T (z̄))

≤ |{Γ : ∃ẑ ∈ Γ s.t r(z̄, ẑ) = R/N}| max
z,r(z̄,ẑ)=R/N

P (T (ẑ) ≥ T (z̄)).

The next result uses the above results to establish the upper bound.

Lemma 9. (Upper bound) Under the assumption that
N
∑

m I(m)

K logK → ∞, for the

penalized maximum likelihood estimator ẑ defined in Equation (B.21), we have

sup
z̄∈ΘML

E[r(z̄, ẑ)] ≤
{
exp(−(1 + εN )

N
∑

m I(m)

2 ), K = 2,

exp(−(1 + εN )
N
∑

m I(m)

sK ), K ≥ 3,
(B.26)

for some sequence εN = o(1) and s ∈ [1, 5/
√
3].

Proof. The proof technique is similar to Zhang and Zhou [43]; we only modify
the proof in places to suit our objective while keeping the approach the same.
We first prove the result for the subspace ΘML

0 and then extend it for ΘML.

We first consider the case K → ∞, break the assumption
N
∑

m I(m)

K logK → ∞ into

3 parts and verify that in each case E[r(z̄, ẑ)] is bounded by a term of the form
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exp(−(1 + o(1))
N
∑

m I(m)

sK ). Let η = o(1) be a universal sequence independent
of N that converges to 0. We note that

NE[r(z̄, ẑ)] ≤
N∑

R=1

RPR.

(1) If lim infN→∞
N
∑

m I(m)

K logN > 1, there exists a small constant ε > 0 such

that
(1−2η)N

∑
m I(m)

K logN > 1 + ε. Let η decay slowly such that both
ηN

∑
m I(m)

K logK

and ηN
K go to infinity. Let B = N exp(−(1 − 3η)N

∑
m I(m)/K). Clearly, P1 =

eNK exp(−( (1−η)N
K −1)

∑
m I(m)) ≤ B. This follows by replacing both log(eK)

and
∑

m I(m) by a bigger term, ηN
∑

m I(m)/K.
We will show that E[r(z̄, ẑMLE)] is bounded by O(B/N). First let R ∈

[2, εN
3K ]. Then,

PR ≤
(
eNK

2
exp

(
− (1− η)N

∑
m I(m)

K
+R

∑
m

I(m)

))R

=

(
eNK

2
exp

(
− (1− η)N

∑
m I(m)

K

))
(
eNK

2
exp

(
− (1− η)N

∑
m I(m)

K
+ (R+

R

R− 1
)
∑
m

I(m)

))R−1

≤ N exp

(
−(1− η)N

∑
m

I(m)/K + log(eK)

)
(
N exp

(
− (1− η)N

∑
m I(m)

K
+ 2

εN

3K

∑
m

I(m) + log(eK)

))R−1

≤
(
N exp

(
−(1− 2η)N

∑
m

I(m)/K

))

×
(
N exp

(
−(1 + ε) logN +

2ε(1 + ε) logN

3(1− 2η)

))R−1

≤ BN (1−(1+ε)(1−3ε/4))(R−1)

≤ BN−ε(R−1)/6.

The penultimate step follows by replacing 1−2η by 8/9 and the last step follows
since ε/4− 3ε2/4 ≥ ε/6 for large N and small η and ε respectively. Hence

NE[r(z̄, ẑ)] = P1 +

εN/3K∑
R=2

RPR ≤ P1 +

∞∑
R=2

RBN−ε(R−1)/6

= P1 +B
N ε/6

(N ε/6 − 1)2
= O(B). (B.27)
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The infinite sum in the last step can be obtained by differentiation the infinite
series sum

∑∞
R=1 N

−ε(R)/6 with respect to N .

Next we show that the same conclusion holds for R ∈ [ εN3K , N ]. First, note that

for any N
2K ≥ R ≥ εN

3K , we have
2(1−η)N

∑
m I(m)

9K ≤ (1−η)N
∑

m I(m)

K −R
∑

m I(m).
Hence,

PR ≤
(

eNK

εN/3K
exp(−2(1− η)N

∑
m I(m)

9K

)R

≤
(
exp(− (1− 2η)N

∑
m I(m)

9K
− N

∑
m I(m)

9K
+ log(

3eK2

ε
)

)9

(
3eK2

ε
exp(−2(1− η)N

∑
m I(m)

9K

)R−9

≤ exp

(
−(1− 2η)N

∑
m

I(m)/K

)

exp

(
−2(1− 2η)N

∑
m I(m)

9K
− 2

ηN
∑

m I(m)

9K
+ log(

3eK2

ε
)

)R−9

≤ B exp

(
−2(1− 2η)N

∑
m I(m)

9K

)R−9

≤ B exp(−2

9
(1 + ε) logN)R−9

≤ BN−2(1+ε)(R−9)/9 ≤ BN−2(R−9)/9.

By the same reasoning as above,
∑N

R=εN/3K RPR ≤
∑∞

R=1 RPR is o(B). Hence

combining this result with Equation (B.27), we have NE[r(z̄, ẑ)] = O(B).

For the remaining two cases, (2) lim sup
N
∑

m I(m)

K logN < 1 and (3)
N
∑

m I(m)

K logN =

1+ o(1), the proof follows from the corresponding cases in Zhang and Zhou [43]
(Proof of Theorem 3.2). Hence we omit the details and only write the results.

(2) If lim supN→∞
N
∑

m I(m)

K logN < 1, then there exists a small constant ε >

0 such that
(1−η)N

∑
m I(m)

K logN > 1 − ε. Define R0 = N exp(−(1 − K−ε/2)(1 −
η)N

∑
m I(m)/K) and R′ = N/K1+ε. We have

PR ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( eNK
R0

exp(− (1−η)N
∑

m I(m)

K +R′∑
m I(m)))R ≤ exp(− (1−η)NR

∑
m I(m)

2K1+ε/2 ),

R0 ≤ R ≤ R′,

( eNK
R′ exp(−2(1−η)N

∑
m I(m)

9K ))R ≤ exp(−NR
∑

m I(m)

9K ),

R′ < R ≤ N,

and hence from the proof in Zhang and Zhou [43] E[r(z̄, ẑ)] =

exp(− (1−o(1))N
∑

m I(m)

K ).
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(3) If
N
∑

m I(m)

K logN = 1 + o(1), then there exists a positive sequence w = o(1)

such that |N
∑

m I(m)

K logN − 1| � w and 1√
logN

≤ w. defining R0 = N exp(−(1 −
w)N

∑
m I(m)/K) and R′ = w2N/K we have

PR ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( eNK
R0

exp(− (1−η)N
∑

m I(m)

K +R′∑
m I(m)))R ≤ exp(

w(1−η)NR
∑

m I(m)

4K ),

R0 < R ≤ R′,

( eNK
R′ exp(−2(1−η)N

∑
m I(m)

9K ))R ≤ exp(−NR
∑

m I(m)

9K ),

R′ < R ≤ N,

and hence from the proof in Zhang and Zhou [43] E[r(z̄, ẑ)] =

exp(− (1−o(1))N
∑

m I(m)

K ).
The proof for finite K is similar and hence omitted.
Now we prove the upper bound result for the entire parameter space ΘML.

The proof for the case K ≥ 3 is similar to the proof for ΘML
0 with the result

in (B.25) being replaced by Lemma A.1. of Zhang and Zhou [43]. However, for
K = 2, we proceed as in Section A.2. of Zhang and Zhou [43] and assume without
loss of generality that N

2 = �N
2 �. Let r(z̄, ẑ) = R/N and define the sets α and γ

as before. Note that R ≤ N/2 since distance between the two class assignments
d(z̄, ẑ) = min(dH(z̄, ẑ), N − dH(z̄, ẑ)). We also have |α| + |γ| = R(N − R) if
r(z̄, ẑ) = R/N [43]. Hence from Equation (B.24) we have

P (T (ẑ) ≥ T (z̄)) ≤ exp

(
−R(N −R)

∑
m I(m)

2

)
. (B.28)

The proof is similar to the one for ΘML
0 and we only specify the specific

results here omitting the technicalities. Let 0 ≤ ε ≤ 1/8 and recall that our

assumption for K = 2 case is that
N
∑

m I(m)

2 → ∞. We have the following 3
cases in parallel to the 3 cases earlier,

(1) If
N
∑

m I(m)

2 logN > (1+ε), defining B = N exp(−(N−1)
∑

m I(m)/2) we have

P1 ≤ B. The for 1 < R ≤ εN/2 we have

PR ≤ (eN)R exp(−R(N −R)
∑

m I(m)

2
) ≤ ((eN) exp(− (N − εN/2)

∑
m I(m)

2
)R

≤ (eN exp(−(1− ε/2)(1 + ε) logN))R ≤ BN−εR/4,

and for εN/2 < R ≤ N/2 we have

PR ≤ (
2eN

eN
)R exp(−NR

∑
m I(m)

4
) ≤ B exp(−N(R− 4)

∑
m I(m)

8
).

and hence E[r(z̄, ẑ)] = (1 + o(1))B/N .

(2) If
N
∑

m I(m)

2 logN < (1− ε), defining

R0 = N exp(−(1− e−εN
∑

m I(m)/2)N
∑
m

I(m)/2)
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and

R′ = N exp(−N
∑
m

I(m)/8)

we have,

PR ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( 2eNR0
)R exp(−R(N−R′)

∑
m I(m)

2 ) ≤ exp(−e−εN
∑

m I(m)/2NR
∑

m I(m)

4 ),

R0 < R ≤ R′,

( 2eNR′ )R exp(−NR
∑

m I(m)

4 ) ≤ exp(−N(R−4)
∑

m I(m)

16 ),

R′ < R ≤ N/2,

and hence E[r(z̄, ẑ)] = (1 + o(1))R0/N .

(3) If
N
∑

m I(m)

2 logN = 1 + o(1), then there exists a positive sequence w = o(1)

such that |N
∑

m I(m)

2 logN − 1| � w and 1√
logN

≤ w. Defining R0 = N exp(−(1 −
w)N

∑
m I(m)/2) and R′ = w2N we have,

PR ≤
{
( 2eNR0

)R exp(−R(N−R′)
∑

m I(m)

2 ) ≤ exp(−wNR
∑

m I(m)

4 ), R0 < R ≤ R′,

( 2eNR′ )R exp(−NR
∑

m I(m)

4 ) ≤ exp(−N(R−4)
∑

m I(m)

8 ), R′ < R ≤ N/2,

and hence E[r(z̄, ẑ)] = (1 + o(1))R0/N .
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