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Abstract: In this article, we consider an imputation method to handle
missing response values based on semiparametric quantile regression es-
timation. In the proposed method, the missing response values are gener-
ated using the semiparametrically estimated conditional quantile regression
function at given values of covariates. Then the imputed values are used to
estimate a parameter defined as the expected value of a function involving
the response and covariate variables. We derive the asymptotic distribution
of our estimator constructed with the imputed data and provide a variance
estimator. In simulation, we compare our semiparametric quantile regres-
sion imputation method to fully parametric and nonparametric alternatives
and evaluate the variance estimator based on the asymptotic distribution.
We also discuss an extension for estimating a parameter defined through
an estimation equation.

Keywords and phrases: GMM, imputation, semiparametric quantile re-
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1. Introduction

Missing data is frequently encountered in many disciplines. If the variables that
explain the missing data are related to the response of interest, an inference
based on ignoring missing undermines efficiency and often leads to biases and
misleading conclusions. Missing data adjustments include weighting and impu-
tation as two broad classes. In weighting, weights are derived through calibra-
tion or propensity score estimation. However, weighting is poorly suited to item
nonresponse since for a given unit the weight should be the same for all items.
Imputation provides a complete data set by replacing missing response variables
with imputed values. In the presence of item nonresponse, imputation simplifies
analyses because standard analytical tools can be applied to any imputed data
set and the resulting point estimates are consistent across different users.

Many different imputation approaches have been developed in the litera-
ture and some prominent examples are included here. The pioneer work of Ru-
bin (1987) discussed multiple imputation (MI) based on Bayesian methods to
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generate pseudo values from the posterior predictive distribution and impute
multiple data sets. Despite its simple form, however, the variance estimator
of MI will have convergence problems if the congeniality and self-sufficiency
conditions are not met (Meng (1994)). Fractional imputation was proposed to
retain both estimation efficiency of multiple imputation and consistency of the
Rao-Shao variance estimator (Rao and Shao (1992)). In fractional imputation,
multiple values are imputed for each missing cell with assigned weights. Kim
(2011) proposed parametric fractional imputation (PFI) with inspirations from
importance sampling and calibration weighting to reduce the computation bur-
den. Noticeably, both PFI and MI assume a parametric regression model, and
therefore may suffer from model misspecification. While MI and PFI resort to
the creation of artificial responses, hot-deck imputation (HDI) replaces missing
units with observed data through matching methods. By using covariate infor-
mation, the matching method could be classifying donors and recipients into
similar categorical classes (Brick and Kalton (1996); Kim and Fuller (2004)), or
creating metrics to match donors and recipients (Rubin (1987); Little (1988)).
More examples are documented in Andridge and Little (2010). In a recent work
by Wang and Chen (2009), multiple imputed values are independently drawn
from observed respondents with probabilities proportional to kernel distances
between missing cells and donors. Both HDI and Wang and Chen (2009) are
purely nonparametric, so the stability and accuracy of the estimators depend
on the dimensionality and the sample size concerned.

To leverage the advantages of both parametric and nonparametric methods
and avoid the limitation of a pure or exclusive approach, we propose an imputa-
tion method based on semiparametric quantile regression, which has the follow-
ing set up. Define f(y|x) as the conditional density where y is the response sub-
ject to missing and x is the covariate always observed, and qτ (x) as the τ -th con-
ditional quantile function, which is the inverse conditional distribution function
F−1(τ |x). Instead of estimating f(y|x) parametrically or non-parametrically,
we estimate qτ (x) semiparametrically using observed data under the missing at
random (MAR) assumption, in the sense intended by Rubin (1976). Then mul-
tiple imputed values y∗j (j = 1, · · · , J) are obtained via y∗j |x = q̂τj (x), where τj
is independently drawn from Uniform[0, 1]. The semiparametric quantile regres-
sion imputation (hereafter called SQRI) is expected to have appealing features.
Firstly, the entire conditional distribution function is used to draw imputed val-
ues, hence preserving the conditional density of the filled-in response values.
Secondly, because different conditional quantiles instead of conditional means
or actual observations are used in imputation, the method is less sensitive to
outliers, as quantiles are known to be less affected by extremes. Thirdly, it does
not require strong model assumptions as in a fully parametric solution, and
therefore is robust against model violations. Lastly, imputed values can be eas-
ily created through random numbers generated from Uniform[0, 1] once q̂τ (x) is
estimated.

We are not the first to use quantile regression for imputation. Papers pertain-
ing to quantile regression imputation include Munoz and Rueda (2009), Wei,
Ma, and Caroll (2012) and Yoon (2013). Our paper is distinctive from these
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papers in terms of objective, type of imputation and theory. (i) For objective,
Wei, Ma, and Caroll (2012) and Yoon (2013) aimed to estimate quantile regres-
sion coefficients, while we are interested in estimating more general parameters,
e.g. parameters defined through a smooth estimation equation. It is also worth
noting that the setting in Wei, Ma, and Caroll (2012) is different since they
dealt with missing covariates, not missing responses. (ii) For type, Wei, Ma,
and Caroll (2012) imputed multiple data sets, and Munoz and Rueda (2009)
proposed a single and deterministic imputation. Our method utilizes fractional
imputation because the variance estimator used in multiple imputation is not
consistent for some estimated parameters. For examples, see Wang and Robins
(1998) and Kim, Brick, Fuller, and Kalton (2006). (iii) For theory, Wei, Ma,
and Caroll (2012) and Yoon (2013) assumed a linear quantile regression model,
while we rely on a semiparametric approach incorporating penalty for model
complexity. And the key idea used to arrive at the asymptotic normality in our
proof is substantially different from that of Wei, Ma, and Caroll (2012) and
Yoon (2013).

We demonstrate the theoretical validity and applicability of our SQRI estima-
tors in this paper. The rest of paper is organized as follows. Section 2 introduces
the SQRI algorithm and the estimator constructed using the imputed values.
Section 3 presents large sample theories and a variance estimator. Section 4 dis-
cusses an extension for estimating a parameter defined through an estimation
equation. Section 5 demonstrates the properties of SQRI estimators through
simulations. Section 6 concludes with some remarks. Appendix outlines proofs
of the theorems appearing in the main text.

2. Semiparametric quantile regression imputation (SQRI)

We consider (xi, yi)
T (i = 1, · · · , n) to be a set of i.i.d. observations of random

variables (X, Y ), where Y is the response variable subject to missing, and X is
a dx-dimension variable always observed. Each dimension of X has a compact
support set on [0, 1]. Let qτ (x) be the unknown conditional 100τ% quantile of
response Y given X = x. For a given τ ∈ (0, 1), the conditional quantile function
qτ (x) is defined as a function satisfying,

P (Y < qτ (x)|X = x) = τ. (2.1)

When τ = 0.5, qτ (x) is the conditional median of Y . It is easy to show that
qτ (x) satisfies

qτ (x) = argmin
h(x)

E{ρτ (Y − h(x))|X = x}, (2.2)

where ρτ (u) = u(τ − I(u < 0)) is the check function proposed in Koenker and
Bassett (1978). The true parameter of interest, θ0, is a dθ-dimensional vector
defined as,

θ0 = E{r(yi,xi)}, (2.3)
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where r(yi,xi) is a dθ-dimensional function. If the full sample is observed, we
can estimate θ0 in (2.3) by,

θ̂full =
1

n

n∑
i=1

r(yi,xi). (2.4)

Because yi is unobserved for missing units, θ̂full is not available. In Section 2.2,
we outline a procedure to obtain an imputed version of (2.4) by using semipara-
metric quantile regression.

Let δi = 1 be the response indicator, defined by δi = 1 if yi is observed
and δi = 0 if yi is missing. Assume δi ∼ Bernoulli(pi), where the response
probability pi is defined as,

pi = p(xi) = P (δi = 1|yi,xi). (2.5)

Assume that the response mechanism satisfies the condition of missing at ran-
dom (MAR) by Rubin (1976). MAR asserts that the response variable yi is
conditionally independent of the indicator δi and can be expressed in terms of
the response probability as,

P (δi = 1|yi,xi) = P (δi = 1|xi) = pi, (2.6)

or in terms of the conditional distribution of yi given xi as,

fy|x(yi|xi, δi) = fy|x(yi|xi). (2.7)

2.1. SQRI using penalized B-splines

Many papers have studied the estimation of qτ (x) based on parametric methods,
and a summary of relevant literature can be found in Koenker (2005). Paramet-
ric model assumptions may not hold sometimes, giving rise to nonparametric
methods. Nonparametric quantile regression, including the kernel quantile re-
gression in Yu and Jones (1994) and the smoothing spline method in Koenker,
Ng, and Portnoy (1994), has also been intensively studied. Among many find-
ings is the well-known trade-off between computational cost and smoothness. In
other words, spline smoothing methods demand massive computation, and the
unpenalized spline tends to give wiggly curves despite its cheap computational
cost. There are some recent work on nonparametric quantile regression (thanks
to a referee for drawing our attention). Belloni, Chetverikov, and Fernandez-
Val (2016) developed the nonparametric quantile regression series framework in
which the conditional quantile function is approximated by a linear combination
of series terms. They showed that this framework can cover many models as a
special case. Chao, Volgushev, and Cheng (2016) established weak convergence
for the quantile regression estimator in a general series approximation frame-
work, and studied a partial linear model which is included as a special case
of such framework and might be a solution to the curse of dimensionality in a
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nonparametric approach. In this paper, we employ a semiparametric quantile
regression method based on penalized B-splines, as suggested in Yoshida (2013),
that features a relatively smoothed quantile function at reduced computational
burden.

Without loss of generality, we consider X as an univariate variable with a
distribution function Fx(x) on [0, 1] to simplify notations in theories. We discuss
how to deal with multivariate X in the simulation study of Section 5. Let Kn−1
be the number of knots within the range (0, 1), and p be the degree of B-splines.
In order to construct the p-th degree B-spline basis, we define equidistantly
located knots as κk = K−1

n k, (k = −p+ 1, · · · ,Kn + p). Note there are Kn − 1
knots located in (0, 1). The p-th B-spline basis is

B(x) = (B
[p]
−p+1(x), B

[p]
−p(x), · · · , B

[p]
Kn

(x))T ,

where B
[p]
k (x)(k = −p+ 1, · · · ,Kn) are defined recursively as,

• For s = 0:

B
[0]
k (x) =

{
1, κk−1 < x ≤ κk,
0, otherwise,

where k = −p+ 1, · · · ,Kn + p;

• For s = 1, 2, · · · , p:

B
[s]
k (x) =

x− κk−1

κk+s−1 − κk−1
B

[s−1]
k (x) +

κk+s − x

κk+s − κk
B

[s−1]
k+1 (x),

where k = −p+ 1, ...,Kn + p− s.

Readers can refer to de Boor (2001) for more details and properties of the
B-spline functions. The estimated conditional quantile regression function is

q̂τ (x) = BT (x)b̂(τ), (2.8)

where b̂(τ) is a (Kn + p)× 1 vector obtained by,

b̂(τ) = argmin
b(τ)

n∑
i=1

δiρτ [yi −BT (xi)b(τ)] +
λn

2
bT (τ)DT

mDmb(τ). (2.9)

Here λn(> 0) is the smoothing parameter, and Dm is the m-th difference matrix
and is (Kn + p−m)× (Kn + p) dimensional with its element defined as

dij =

⎧⎨⎩ (−1)|i−j|
(

m
|i− j|

)
0 ≤ j − i ≤ m

0 o.w.
,

where the notation
(
m
k

)
is the choose function given by (k!(m−k)!)−1m! and m

is the order of penalty. As discussed in Yoshida (2013), the difference penalty
bT (τ)DT

mDmb(τ) is used to remove computational difficulty occurring when the
penalty term is defined through an integral, and it controls the smoothness of the
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estimated quantile regression function. When m = 2, Dm has an interpretation
related to the integral of the square of the second derivative of the function
defined by the B-spline. Because the second derivative of a straight line is zero,
the use of Dm for m = 2 shrinks the estimated quantile regression function
toward a straight line. The asymptotic property of q̂τ (x) is given in Section 3.
Section 5 discusses about how we choose the tuning parameters (λn,m,Kn, p)
in practice.

2.2. Parameter estimation through SQRI

Suppose the parameter of interest is θ0 = E{r(yi,xi)}. Cheng (1994) showed
that n−1

∑n
i=1[δir(yi,xi) + (1 − δi)Ey|x{r(yi,xi)}] is a consistent estimator of

θ0 under MAR. By the probability integral transformation, τ = Fy|x(y|x),
Ey|x{r(yi,xi)} =

∫ 1

0
r(qτ (xi),xi)dτ . Therefore an estimator of Ey|x{r(yi,xi)}

is
∫ 1

0
r(q̂τ (xi),xi)dτ where q̂τ (xi) = BT (xi)b̂(τ), and an estimator of θ0 can be

obtained as,

θ̃ =
1

n

n∑
i=1

[δir(yi,xi) + (1− δi)

∫ 1

0

r(q̂τ (xi),xi)dτ ]. (2.10)

The integral in (2.10) can be approximated by J−1
∑J

j=1 r(q̂τj (xi),xi), where
τj (j = 1, · · · , J) are J independent values generated from Uniform[0, 1]. This
suggests the following SQRI imputation procedure. When yi is missing, we gen-
erate J imputed values {y∗ij}Jj=1 by,

1. Simulate τj ∼ Uniform(0,1) independently for j = 1, 2, · · · , J ;
2. For each j = 1, 2, ..., J , b̂(τj) is calculated as,

b̂(τj) = argmin
b(τ)

n∑
i=1

δiρτj [yi −BT (xi)b(τ)] +
λn

2
bT (τ)DT

mDmb(τ);

3. For the missing unit i, J independent values are generated as,

y∗ij |xi = q̂τj (xi) = BT (xi)b̂(τj), j = 1, 2, · · · , J.

Repeat step 3 for every missing unit in the data set. Then an imputed version
of θ̂full in (2.4) is defined as,

θ̂ =
1

n

n∑
i=1

[δir(yi,xi) + (1− δi)
1

J

J∑
j=1

r(y∗ij , xi)]. (2.11)

For some parametric imputation methods, imputation and estimation steps
are entwined, in that updating parameters and re-imputing based on most re-
cently updated parameters are iteratively done. This might require heavy com-
puting time. In the SQRI described above, imputation and estimation steps are
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totally separate, making general purpose parameter estimation possible. Also in
SQRI, standard analytical tools can be directly applied to imputed data with-
out re-imputation. The PFI by Kim (2011) avoids re-imputation by adjusting
weights of imputed values based on iteratively updated parameters. However,
any parametric imputation method, including PFI and MI, might suffer from
model misspecification. Nonparametric imputation, such as HDI or the method
proposed in Wang and Chen (2009) using kernel distance, assumes no paramet-
ric model, but the stability and accuracy of nonparametric estimators depend
on sample size and dimensionality of the problem. The SQRI provides a useful
compromise between a fully parametric approach and a purely nonparametric
approach.

3. Large sample theories and variance estimation

In this section, we demonstrate the theoretical validity of θ̂ constructed with
the imputed values generated from the SQRI procedure described in Section 2,
provide a variance estimator for θ̂, and also introduce an alternative SQRI
estimator using fixed τj ’s.

3.1. Asymptotic normality of θ̂

The derivation of the asymptotic distribution of θ̂ proceeds in two steps. In
Lemma 1, we give the asymptotic distribution of the estimated quantile funtion
q̂τ (x), which leads to the Bahadur representation of the estimated quantile re-

gression coefficients b̂(τ). In Theorem 1, we provide the asymptotic distribution

of θ̂. The Bahadur representation of b̂(τ) is crucial to the proof of Theorem 1.
Assuming the quantile function qτ (x) is a function with p + 1 continuous

derivatives, Kn = O(n
1

2p+3 ) and λn = O(nv) for v ≤ (2p + 3)−1(p + m + 1),
Barrow and Smith (1978) showed that there exists b∗(τ) satisfying,

sup
x∈(0,1)

|qτ (x) + baτ (x)−BT (x)b∗(τ)| = o(K−(p+1)
n ), (3.1)

where BT (x)b∗(τ) is the best L∞ approximation for qτ (x), and baτ (x) is the ap-

proximation error for the true quantile function satisfying, baτ (x) = O(K
−(p+1)
n ).

For the detailed form of baτ (x), see Appendix A. We now state Lemma 1.

Lemma 1. Under the conditions given in Appendix, and assuming qτ (x) ∈
Cp+1, Kn = O(n

1
2p+3 ), and λn = O(nv) for v ≤ (2p+3)−1(p+m+1), we have

(i) √
n

Kn
[q̂τ (x)−BT (x)b∗(τ) + bλτ (x)] →d N(0, Vτ (x)),

(ii) √
n

Kn
[q̂τ (x)− qτ (x) + baτ (x) + bλτ (x)] →d N(0, Vτ (x)),
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for a given x ∈ (0, 1) and τ ∈ (0, 1), where

bλτ (x) =
λn

n
BT (x)

(
Φ(τ) +

λn

n
DT

mDm

)−1

DT
mDmb∗(τ),

Vτ (x) = lim
n→∞

τ(1− τ)

Kn
BT (x)H−1

n (τ)ΦH−1
n (τ)B(x),

Hn(τ) = Φ(τ) +
λn

n
DT

mDm,

Φ =

∫ 1

0

p(x)B(x)BT (x)dFx(x),

Φ(τ) =

∫ 1

0

p(x)fy|x(x, qτ (x))B(x)BT (x)dFx(x).

Here fy|x(x, y) is the conditional density of Y given X = x. There exist
two sources of asymptotic biases in q̂τ (x). One is baτ (x) which is the model
bias between the true function qτ (x) and the spline model used, see equation
(3.1). Another source of bias bλτ (x) is introduced by adding the penalty term
into the quantile regression. When there is no penalty term (λn = 0), this bias

vanishes. Both of these two bias terms have an order of O(n− p+1
2p+3 ). By the

proof of Lemma 1, the estimator of the quantile regression coefficient b̂(τ) has
the following Bahadur representation,√

n
Kn

(b̂(τ)− b∗(τ) + λn

n H−1
n (τ)DT

mDmb∗(τ))

=
√

n
Kn

H−1
n (τ) 1n

∑n
i=1 δiB(xi)ψτ (ei(τ)) + op(1),

(3.2)

where ψτ (u) = τ − 1u<0 and ei(τ) = yi −BT (xi)b
∗(τ). The property in (3.2) is

extensively used in the derivation of Theorem 1 which regards the asymptotic
normality of θ̂. We now state Theorem 1.

Theorem 1. Under the conditions given in the Appendix, and assuming qτ (x) ∈
Cp+1, Kn = O(n

1
2p+3 ), and λn = O(nv) for v ≤ (2p+3)−1(p+m+1), as n → ∞

and J → ∞ we have

√
n(θ̂ − θ0) →d N(0,Σ(θ0)), (3.3)

where

Σ(θ0) = Var(ξi,r(θ0)),

ξi,r(θ0) = r(yi, xi)− θ0 + (1− δi)
[
μr|x(xi)− r(yi, xi)

]
+ δiCphr(yi, xi)B(xi),

hr(yi, xi) =

∫ +∞

−∞

∫ 1

0

ṙy(qτ (x), x)B
T (x)H−1

n (τ)ψτ (ei(τ))dτdFx(x), (3.4)

and ṙy(y, x) = ∂r(y, x)/∂y, μr|x(x) = Ey|x{r(y, x)}, and Cp = E{1− p(x)}.
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Remark 1: When there is no missing, ξi,r(θ0) in equation (3.4) coincides with
r(yi, xi)− θ0.

The key step in the proof for Theorem 1 is to show that n−1
∑n

i=1 ξi,r(θ0) is

an asymptotic equivalence for θ̂ − θ0, i.e.

θ̂ − θ0 =
1

n

n∑
i=1

ξi,r(θ0) + op(
1√
n
). (3.5)

Appendix A gives the proof of Lemma 1, and Appendix B outlines the proof of
Theorem 1.

3.2. Variance estimator for θ̂

We use the asymptotic matrix Σ(θ0) = Var(ξi,r(θ0)) in (3.4) to estimate the

variance of θ̂. Let an estimator of ξi,r(θ0) be ξ̂i,r(θ̂), where

ξ̂i,r(θ̂) = r(yi, xi)− θ̂ + (1− δi)
{
μ̂r|x(xi)− r(yi, xi)

}
+ δiĈpĥr(yi, xi)B(xi),

ĥr(yi, xi) =
1

n

1

J

n∑
k=1

J∑
j=1

ṙy(q̂τj (xk), xk)B
T (xk)Ĥ

−1
n (τj)ψτj (êi(τj)),

Ĥn(τj) = Φ̂(τj) +
λn

n
DT

mDm,

Φ̂(τj) =
1

n

n∑
i=1

δif̂y|x(xi, q̂τj (xi))B(xi)B
T (xi), (3.6)

μ̂r|x(xi) = J−1
∑J

j=1 r(q̂τj (xi), xi), êi(τj) = yi − BT (xi)b̂(τj) and Ĉp =

n−1
∑n

i=1(1− δi). We use kernel density estimation to estimate fy|x(x, y) as,

f̂y|x(x, y) =
(nab)−1

∑n
i=1 δiK(y−yi

a )K(x−xi

b )

(na)−1
∑n

i=1 δiK(x−xi

a )
, (3.7)

where K(·) is a Normal kernel and a (or b) is the bandwidth for x (or y).

Then the variance estimator of θ̂ is V̂ (θ̂) = n−1Σ̂(θ̂), where

Σ̂(θ̂) =
1

n− 1

n∑
i=1

{
ξ̂i,r(θ̂)−

1

n

n∑
i=1

ξ̂i,r(θ̂)

}{
ξ̂i,r(θ̂)−

1

n

n∑
i=1

ξ̂i,r(θ̂)

}T

. (3.8)

3.3. Alternative SQRI estimator using fixed τj’s

When using random τj ’s generated from Uniform[0, 1] to impute y∗ij , it is possi-
ble to get some τj ’s that are very close to zero or one. This might cause instability
in variance estimation due to extreme quantiles. To avoid this potential trouble,
we propose an alternative SQRI estimator that uses fixed τj ’s.
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The estimator θ̃ defined in (2.10) is a consistent estimator for θ0 =

E{r(yi, xi)}. Instead of approximating the integral
∫ 1

0
r(q̂τ (xi),xi)dτ in θ̃ using

J random τ ’s generated from Uniform[0, 1], we can use a midpoint approxima-
tion approach (e.g. Nusser, Carriquiry, Dodd, and Fuller (1996)) which entails
dividing the interval [0, 1] into J sub-intervals and evaluating the function at
the midpoints of the J sub-intervals. An estimator using the fixed midpoints
can be defined as,

θ̂fixed =
1

n

n∑
i=1

[δir(yi,xi) + (1− δi)
1

J

J∑
j=1

r(q̂τj (xi), xi)], (3.9)

where τj (j = 1, · · · , J) are the fixed sequence of the midpoints of J evenly
spaced sub-intervals of [0, 1] with 0 < τ1 < τ2 < · · · < τJ < 1, and q̂τj (xi) =

BT (xi)b̂(τj).

By the proof given in Appendix C, the SQRI estimator θ̂fixed has the following
asymptotic order,

θ̂fixed − θ0 =
1

n

n∑
i=1

ξi,r(θ0) + op(
1√
n
) +Op(

1

J
). (3.10)

Under the same conditions given in Theorem 1 and assuming further that
J = O(nα) for α > 1/2, the two SQRI estimators θ̂fixed and θ̂ have the same
asymptotic equivalence n−1

∑n
i=1 ξi,r(θ0), i.e.

θ̂fixed − θ0 =
1

n

n∑
i=1

ξi,r(θ0) + op(
1√
n
). (3.11)

Therefore the asymptotic normality and the variance estimator of θ̂fixed can be

derived similarly as those for θ̂ in Sections 3.1 and 3.2. To see whether there
are any finite sample differences between the SQRI estimator using random τj ’s
and the SQRI estimator using fixed τj ’s, both of the estimators are calculated
and reported in the simulation studies of Section 5.

4. Estimating a parameter defined by an estimation equation
through SQRI

In this section, we discuss how to use the SQRI to estimate more general pa-
rameters defined through an estimation equation. If the true parameter θ0 is
defined as an unique solution to,

E{g(Y,X;θ)} = 0, (4.1)

where g(Y,X;θ) is a vector of dg estimation functions for dg ≥ dθ. We consider
the generalized method of moment (GMM) to estimate θ0. The GMM estimator
is obtained as,

θ̂gmm = arg min
θ∈Θ

GT
n (θ)Gn(θ), (4.2)
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where

Gn(θ) =
1

n

n∑
i=1

{δig(yi, xi;θ) + (1− δi)
1

J

J∑
j=1

g(y∗ij , xi;θ)}, (4.3)

and y∗ij are J imputed values generated through the SQRI procedure either using
random τj ’s from Uniform[0, 1] or using the fixed sequence of the midpoints of
J equally spaced subintervals on [0, 1].

The asymptotic normality of θ̂gmm is very similar to Theorem 1, and is stated
as follows, √

n(θ̂gmm − θ0) →d N(0,Σg(θ0)), (4.4)

where

Σg(θ0) =
{
ΓT (θ0)Γ(θ0)

}−1
ΓT (θ0)Var{ξi,g(θ0)}Γ(θ0)

{
ΓT (θ0)Γ(θ0)

}−1
,

Γ(θ0) = E{∂g(Y,X;θ0)

∂θ
},

ξi,g(θ0) = g(yi, xi;θ0) + (1− δi)
[
μg|x(xi;θ0)− g(yi, xi;θ0)

]
+ δiCphg(yi, xi;θ0)B(xi),

hg(yi, xi;θ0) =

∫ +∞

−∞

∫ 1

0

ġy(qτ (x), x;θ0)B
T (x)H−1

n (τ)ψτ (ei(τ))dτdFX(x),

(4.5)

ġy(y, x;θ0) = ∂g(y, x;θ0)/∂y, μg|x(xi;θ0) = Ey|x{g(yi, xi;θ0)}, and the other
notations are defined the same way as before.

The variance estimator for Var{ξi,g(θ0)} can be obtained by estimating
ξi,g(θ0) similarly as estimating ξi,r(θ0) in Section 3.2. For example, see equation

(3.6), where r(yi, xi) can be replaced by g(yi, xi; θ̂gmm) and ṙy(q̂τj (xk), xk) can

be replaced by ġy(q̂τj (xk), xk; θ̂gmm). The additional gradient matrix Γ(θ0) can
be estimated by,

Γ̂(θ̂gmm) =
1

n

n∑
i=1

⎧⎨⎩δi
∂g(yi, xi; θ̂gmm)

∂θ
+ (1− δi)

1

J

J∑
j=1

∂g(y∗ij , xi; θ̂gmm)

∂θ

⎫⎬⎭ .

(4.6)

The proof of the asymptotic normality of θ̂gmm requires additional regularity
conditions regarding to the functional form of g(yi, xi;θ), and is similar to the
proof in Theorem 1. To conserve space, we defer the details of this proof to the
supplement.

5. Simulation studies

The main objectives of the simulation studies are to compare SQRI to fully
parametric and nonparametric alternatives, and to evaluate the performance of
the variance estimator for SQRI. In addition, we also want to see if there are
any differences in finite sample performances between the two SQRI estimators.
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We specify the simulation set-up as follows. The response yi is generated
from a model yi = m(xi) + εi, where m(xi) is the mean function and εi are
iid N(0, 0.12). We consider the following four different mean functions drawing
from the design of simulation studies in Breidt, Opsomer, and Johnson (2007)
to cover a range of correct and incorrect model specification.

linear : m(xi) = 1 + 2(xi − 0.5),
bump: m(xi) = 1 + 2(xi − 0.5) + exp{−30(xi − 0.5)2},
cycle: m(xi) = 0.5 + 2xi + sin(3πxi),

bivariate: m(x1i, x2i) = 1 + 2(x1i − 0.5) + 2 exp{−10(x2i − 0.4)2}.

The covariate xi for the first three univariate models (or x1i and x2i for the
last bivariate model) are all independently and identically simulated from a
truncated normal distribution N(0.5, 0.32) on interval [0, 1].

The response indicator, δi, is simulated from Bernoulli(pi), where

logit(pi) = 1 + 0.5xi for the linear, bump, cycle models,
or logit(pi) = 0.2 + x1i + 0.5x2i for the bivariate model.

(5.1)
The missing rates in all scenarios are about 20%.

We are interested in estimating three parameters, the marginal mean of the
response variable μy = E(Y ), the marginal standard deviation of the response

variable σy =
√

Var(Y ) and the correlation between the response and covariate
variables ρ = corr(X,Y ). So θ = (μy, σy, ρ) and the corresponding estimation
equation is defined as

g(yi, xi;μx, μy, σx, σy, ρ) =

⎛⎜⎜⎜⎜⎝
xi − μx

yi − μy

(xi − μx)
2 − σ2

x

(yi − μy)
2 − σ2

y

(xi − μx)(yi − μy)− ρσxσy

⎞⎟⎟⎟⎟⎠ .

For bivariate model, θ = (μy, σy, ρ1, ρ2), where ρ1 = corr(X1, Y ) and ρ2 =
corr(X2, Y ) and the estimation equation is defined in an analogous way. Note
that μx and σ2

x are the mean and variance of the covariate and are treated as
nuisance parameters.

For each model, 1000 Monte Carlo (MC) samples of size n = 200 are created.
In order to focus on comparing different imputation methods, all of the following
estimators are calculated using the GMM method once the missing values are
filled in using the specified imputation approaches.

• Full: The GMM estimator using full observations.
• Resp: The GMM estimator using respondents only (where “Resp” comes

from the word “respondents”).
• SQRI: Our proposed estimator defined in (4.2), using random τj ’s from

Uniform[0, 1]. Using the GMM estimator constructed with SQRI imputed
values facilitates the joint estimation of μy, σy and ρ’s, and their variance
estimation.
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• SQRI-fixed: The proposed estimator defined in (4.2), but using the fixed
midpoints of J evenly spaced sub-intervals of [0, 1] as τj in step 1 of the
SQRI procedure.

• MI: The multiple imputation method proposed in Rubin (1987). The R
package ‘mi’ by Gelman, Hill, Su, Ya, and Pittau (2013) is employed to ob-
tain J multiple imputed data sets. Then the GMM estimator is calculated
for each imputed data set, and the MI estimator is obatined by taking an
average of the GMM estimators across multiple imputed data sets.

• PFI: The parametric fractional imputation method proposed in Kim (2011).
Under PFI, multiple imputed values y∗ij(j = 1, · · · , J) are generated from a

proposed conditional density f̃(y|x) and their associated fractional weights
w∗

ij are computed using f̃(y|x) and the assumed conditional density

f(y|x; η̂0), where η̂0 is the given initial value for η in the conditional den-
sity formula. By maximizing the score function of the density f(yi|xi; η)
using the imputed values and their weights, η̂ is updated, and the frac-
tional weights w∗

ij are re-calculated iteratively until η̂ converges. The PFI
estimator is calculated using the GMM method, with the estimation equa-
tion for a missing unit i replaced by

∑J
j=1 w

∗
ijg(y

∗
ij , xi;θ).

• NPI: The non-parametric imputation method proposed in Wang and
Chen (2009). In NPI, multiple imputed values y∗ij(j = 1, · · · , J) are inde-
pendently drawn from the respondent group (δi = 1) with the probability
of selecting ys with δs = 1 being

P (y∗ij = ys) =
K{(xs − xi)/h}∑n

m=1 δmK{(xm − xi)/h}
,

where K(·) is a dx-dimensional kernel function and h is a smoothing band-
width. In our simulations, the Gaussian kernel is used with h prescribed
by a cross-validation method. The NPI estimator is obtained using the
GMM method with the estimation equation for a missing unit i replaced
by J−1

∑J
j=1 g(y

∗
ij , xi;θ).

• HDFI: A hot-deck fractional imputation estimator. Under HDFI, mul-
tiple imputed values y∗ij(j = 1, · · · , J) are independently drawn from
a donor pool consisting of 20 nearest neighbors identified through the
Euclidean distance. The HDFI estimator is calculated using the GMM
method with the estimation equation for a missing unit i replaced by
J−1

∑J
j=1 g(y

∗
ij , xi;θ).

The Full and the Resp estimators are included in order to help us gauge how
far away our proposed estimators are from the ideal case and from the case of
simply ignoring missing. Estimators NPI and HDFI are based on nonparamet-
ric imputation methods, while estimators MI and PFI are based on parametric
imputation methods, where yi is assumed to satisfy Y |X = x ∼ N(βTx, σ2)
for some σ > 0. Our SQRI estimators are semiparametric as we use penal-
ized B-spline to estimate conditional quantile regression. For penalized B-spline
quantile estimators, typically the degree of B-spline p and the degree of the dif-
ference matrix m are fixed at low values, for example p ≤ 3 and m ≤ 2. We set
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p = 3 and m = 2, a popular choice in practice as suggested in Yoshida (2013).
For a given Kn (where Kn = number of knots + 1), the smoothing parame-
ter λn is prescribed via the generalized approximation cross-validation (GACV)
method discussed by Yuan (2006). We obtain results for a variety of choices
of Kn and conclude Kn = 5 suffices in our examples. In the bivariate model,
the same specifications are used to obtain bases B(x1) and B(x2) on x1 and x2

respectively, then B(x) is defined as, B(x) = (BT (x1),B
T (x2))

T .
We discuss how to choose the number of imputed values, J , practically. Like

all other imputation methods, the theoretical proofs of the SQRI estimators
require J to go to infinity to ensure the consistency. But a finite number (J)
imputation is necessary in practice. A midpoint approximation approach used
for SQRI-fixed estimator sheds some light on our choice of J in practice. By the
property of (3.10), we see that θ̂fixed and θ̂ have the same asymptotic equivalence
when J = O(nα) for α > 1/2. We can use an integer which is close to n1/2 as an
initial choice of J . For example, in our simulation studies, n1/2 with the sample
size n = 200 equals 14.14. So J = 10 seems to be a reasonable choice and is
used in the imputation. The simulation results with J = 100 are also provided
in the paper for comparisons.

Tables 1–4 present the relative MC biases and the MC variances of all esti-
mators with both J = 10 and J = 100 for the four models respectively. The
relative MC bias is defined as the ratio of the MC bias to the true parameter
value. The relative biases of the proposed SQRI estimators are less than 1% in
all cases (Tables 1–4). In general, the proposed SQRI estimators have smaller
relative biases and variances as compared with the Resp estimator because the
SQRI estimators incorporate additional covariate information of the missing
units while the Resp estimator totally ignores missing units.

We compare the SQRI estimators with the two parametric imputation alter-
natives, MI and PFI. When the linear model is correctly specified, the SQRI es-
timators have relative biases comparable to those in the MI and PFI estimators.
When the model is misspecified (bump, cycle, bivariate), the SQRI estimators
generally have significantly smaller biases than the MI and PFI estimators. The
reduction in biases of the SQRI estimators in the bump, cycle, and bivariate
models, relative to the MI and PFI, results because the SQRI procedure relies
on fewer model assumptions. In terms of variances (Tables 1–4), the proposed
SQRI estimators have variances comparable to those in the two parametric ones
under the correct linear model, but have slightly smaller variances under the
incorrect models.

We compare the SQRI estimators with the two nonparametric imputation
alternatives, NPI and HDFI. The SQRI estimators have considerably smaller
biases than NPI and HDFI estimators in most of the cases. The variances of
the SQRI estimators are generally in line with those of the NPI and HDFI
estimators (Table 1–4).

When comparing the SQRI estimator using random τ ’s with the SQRI-fixed
estimator using fixed τ ’s, we don’t see any consistent superiority of one over
another in relative biases. And the variances of the two SQRI estimators are
similar. The simulation studies show that J = 10 is sufficient for the proposed
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Table 1

The relative MC biases and MC variances of all estimators for the linear model:
m(x) = 1 + 2(x− 0.5). The number of replicates in the Monte Carlo is 1000 and the sample

size is 200. J is the number of imputed values. The table entries are the MC results
multiplied by 100.

μy σy ρ
RBias Var RBias Var RBias Var
(×100) (×100) (×100) (×100) (×100) (×100)

Full -0.109 0.119 -0.137 0.038 -0.013 0.001
Resp 2.961 0.166 -0.563 0.054 -0.032 0.001
SQRI -0.123 0.120 -0.556 0.041 0.005 0.001

SQRI-fixed -0.110 0.120 -0.383 0.041 -0.047 0.001
J=10 MI -0.119 0.121 -0.414 0.040 -0.035 0.001

PFI -0.116 0.120 -0.426 0.040 -0.036 0.001
NPI -0.032 0.122 -0.758 0.041 -0.340 0.001

HDFI 0.181 0.126 -2.044 0.045 -0.670 0.002
SQRI -0.123 0.121 -0.398 0.040 -0.043 0.001

SQRI-fixed -0.171 0.127 -0.370 0.041 -0.046 0.001
J=100 MI -0.116 0.121 -0.423 0.040 -0.036 0.001

PFI -0.118 0.120 -0.422 0.040 -0.037 0.001
NPI -0.032 0.121 -0.738 0.041 -0.344 0.001

HDFI 0.173 0.125 -2.044 0.045 -0.680 0.002

Table 2

The relative MC biases and MC variances of all estimators for the bump model:
m(x) = 1+ 2(x− 0.5) + exp{−30(x− 0.5)2}. The number of replicates in the Monte Carlo is
1000 and the sample size is 200. J is the number of imputed values. The table entries are

the MC results multiplied by 100.

μy σy ρ
RBias Var RBias Var RBias Var
(×100) (×100) (×100) (×100) (×100) (×100)

Full 0.101 0.184 -0.158 0.075 -0.128 0.054
Resp 7.480 0.235 -3.338 0.117 -2.149 0.091
SQRI 0.025 0.184 -0.365 0.082 -0.080 0.057

SQRI-fixed 0.048 0.184 -0.212 0.082 -0.233 0.059
J=10 MI 1.072 0.215 -3.277 0.102 -1.980 0.080

PFI 1.023 0.213 -3.255 0.102 -1.871 0.077
NPI 0.535 0.187 -0.759 0.080 -0.705 0.058

HDFI 0.557 0.188 -1.066 0.084 -0.533 0.058
SQRI 0.017 0.184 -0.229 0.082 -0.212 0.058

SQRI-fixed 0.016 0.192 -0.207 0.084 -0.219 0.059
J=100 MI 1.050 0.210 -3.237 0.100 -1.968 0.078

PFI 1.008 0.212 -3.278 0.100 -1.885 0.077
NPI 0.546 0.187 -0.748 0.080 -0.722 0.057

HDFI 0.577 0.189 -1.089 0.083 -0.526 0.058

SQRI estimators to accurately estimate parameters in these simulation examples
when n = 200.

We evaluate the performance of variance estimation for both of the SQRI
estimators using random τ ’s and fixed τ ’s. Tables 5 and 6 contain the coverage
probabilities and the half interval widths of the 95% C.I.’s using the two SQRI
estimators for both J = 10 and J = 100. The 95% C.I.’s are calculated based on
the asymptotic normality and a bootstrapping method. For the SQRI estimator
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Table 3

The relative MC biases and MC variances of all estimators for the cycle model:
m(x) = 0.5 + 2x+ sin(3πx). The number of replicates in the Monte Carlo is 1000 and the
sample size is 200. J is the number of imputed values. The table entries are the MC results

multiplied by 100.

μy σy ρ
RBias Var RBias Var RBias Var
(×100) (×100) (×100) (×100) (×100) (×100)

Full -0.026 0.370 -0.041 0.106 -0.156 0.206
Resp 1.883 0.506 2.095 0.142 4.670 0.249
SQRI -0.018 0.369 -0.331 0.109 -0.160 0.210

SQRI-fixed -0.015 0.369 -0.275 0.109 -0.219 0.211
J=10 MI -0.257 0.453 1.989 0.155 4.665 0.263

PFI -0.222 0.455 1.905 0.151 4.814 0.260
NPI -0.013 0.379 -0.312 0.115 -0.824 0.223

HDFI 0.217 0.375 -0.322 0.114 -1.629 0.229
SQRI -0.017 0.368 -0.280 0.109 -0.212 0.211

SQRI-fixed -0.018 0.376 -0.282 0.110 -0.204 0.211
J=100 MI -0.256 0.450 2.041 0.150 4.679 0.259

PFI -0.249 0.445 1.935 0.151 4.842 0.259
NPI -0.013 0.377 -0.317 0.115 -0.847 0.223

HDFI 0.226 0.376 -0.328 0.114 -1.644 0.227

Table 4

The relative MC biases and MC variances of all estimators for the bivariate model:
m(x) = 1 + 2(x1 − 0.5) + 2 exp{−10(x2 − 0.4)2}. The number of replicates in the Monte
Carlo is 1000 and the sample size is 200. J is the number of imputed values. The table

entries are the MC results multiplied by 100.

μy σy ρ1 ρ2
RBias Var RBias Var RBias Var RBias Var
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

Full 0.067 0.295 -0.001 0.119 -0.063 0.173 0.682 0.455
Resp 0.839 0.394 0.250 0.149 -0.532 0.217 4.910 0.565
SQRI 0.064 0.297 -0.214 0.121 -0.038 0.175 0.653 0.456

SQRI-fixed 0.069 0.296 -0.259 0.121 -0.007 0.174 0.719 0.457
J=10 MI 0.124 0.340 0.103 0.138 -0.705 0.206 4.393 0.520

PFI 0.125 0.340 0.029 0.138 -0.511 0.209 4.629 0.518
NPI 0.477 0.309 -1.010 0.131 -2.132 0.191 1.907 0.476

HDFI 0.715 0.313 -1.538 0.134 -2.267 0.197 3.926 0.491
SQRI 0.073 0.296 -0.215 0.121 -0.051 0.174 0.668 0.456

SQRI-fixed 0.069 0.296 -0.218 0.121 -0.045 0.174 0.676 0.456
J=100 MI 0.122 0.333 0.151 0.136 -0.668 0.204 4.355 0.514

PFI 0.126 0.336 0.009 0.137 -0.519 0.204 4.568 0.515
NPI 0.479 0.308 -0.988 0.129 -2.129 0.189 1.899 0.470

HDFI 0.718 0.312 -1.551 0.134 -2.269 0.197 3.975 0.488

using random τ ’s, the coverage probabilities based on normality are close to
the nominal level of 0.95 except for ρ under the linear and cycle models, and
(σy, ρ1) under the bivariate model. The normality approximation of the SQRI
estimator has undercoverage for ρ in the linear and cycle models and for σy

in the bivariate model, but overestimates the coverage for ρ1 in the bivariate
model. When using the SQRI-fixed estimator, the coverage probabilities based
on normality slightly improve in general, though the coverage probabilities for
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Table 5

The coverage probabilities and the half interval widths of the 95% C.I. of the SQRI
estimators under the three univariate models. The number of replicates in the Monte Carlo

is 1000 and the sample size is 200. J is the number of imputed values.

(a). Model linear : m(x) = 1 + 2(x− 0.5)

C.I. Coverage Probabilities J=10 J=100
μy σy ρ μy σy ρ

SQRI Normality 0.934 0.937 0.817 0.931 0.938 0.856
Bootstrapping 0.928 0.953 0.933 0.932 0.953 0.967

SQRI-fixed Normality 0.949 0.930 0.853 0.951 0.930 0.851
Bootstrapping 0.951 0.947 0.916 0.949 0.947 0.925

C.I. Half Interval Widths J=10 J=100
μy σy ρ μy σy ρ

SQRI Normality 0.067 0.038 0.005 0.067 0.038 0.005
Bootstrapping 0.069 0.045 0.015 0.067 0.044 0.015

SQRI-fixed Normality 0.067 0.038 0.005 0.067 0.038 0.005
Bootstrapping 0.067 0.043 0.013 0.067 0.043 0.014

(b). Model bump: m(x) = 1 + 2(x− 0.5) + exp{−30(x− 0.5)2}

C.I. Coverage Probabilities J=10 J=100
μy σy ρ μy σy ρ

SQRI Normality 0.930 0.940 0.940 0.947 0.942 0.942
Bootstrapping 0.944 0.949 0.950 0.937 0.946 0.949

SQRI-fixed Normality 0.953 0.938 0.939 0.953 0.938 0.941
Bootstrapping 0.949 0.947 0.942 0.948 0.950 0.939

C.I. Half Interval Widths J=10 J=100
μy σy ρ μy σy ρ

SQRI Normality 0.084 0.054 0.045 0.084 0.054 0.044
Bootstrapping 0.085 0.062 0.050 0.084 0.062 0.049

SQRI-fixed Normality 0.084 0.054 0.044 0.084 0.054 0.044
Bootstrapping 0.084 0.062 0.049 0.084 0.063 0.049

(c). Model cycle: m(x) = 0.5 + 2x+ sin(3πx)

C.I. Coverage Probabilities J=10 J=100
μy σy ρ μy σy ρ

SQRI Normality 0.944 0.939 0.913 0.943 0.941 0.915
Bootstrapping 0.943 0.947 0.941 0.932 0.947 0.943

SQRI-fixed Normality 0.943 0.939 0.925 0.944 0.938 0.925
Bootstrapping 0.940 0.933 0.941 0.939 0.930 0.943

C.I. Half Interval Widths J=10 J=100
μy σy ρ μy σy ρ

SQRI Normality 0.119 0.063 0.081 0.119 0.063 0.081
Bootstrapping 0.118 0.065 0.088 0.117 0.065 0.088

SQRI-fixed Normality 0.119 0.063 0.080 0.119 0.063 0.080
Bootstrapping 0.118 0.065 0.088 0.118 0.065 0.088
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Table 6

The coverage probabilities and the half interval widths of the 95% C.I. of the SQRI
estimators under the bivariate model: m(x) = 1 + 2(x1 − 0.5) + 2 exp{−10(x2 − 0.4)2}. The
number of replicates in the Monte Carlo is 1000 and the sample size is 200. J is the number

of imputed values.

C.I. Coverage Probabilities J=10 J=100
μy σy ρ1 ρ2 μy σy ρ1 ρ2

SQRI Normality 0.953 0.923 0.972 0.939 0.953 0.928 0.977 0.942
Bootstrapping 0.953 0.945 0.963 0.950 0.948 0.944 0.958 0.947

SQRI-fixed Normality 0.942 0.939 0.945 0.950 0.943 0.940 0.952 0.950
Bootstrapping 0.936 0.950 0.950 0.947 0.938 0.951 0.948 0.946

C.I. Half Interval Widths J=10 J=100
μy σy ρ1 ρ2 μy σy ρ1 ρ2

SQRI Normality 0.071 0.041 0.028 0.149 0.071 0.041 0.027 0.148
Bootstrapping 0.071 0.048 0.024 0.138 0.071 0.047 0.024 0.138

SQRI-fixed Normality 0.071 0.041 0.027 0.148 0.071 0.041 0.027 0.148
Bootstrapping 0.070 0.047 0.024 0.138 0.070 0.047 0.024 0.138

ρ in the linear and cycle models are still low (about 85.3% and 92.5%). The
confidence interval lengths of the two SQRI estimators based on normality are
comparable. A bootstrapping method then is conducted as a remedy to obtain
the confidence intervals. The bootstrapping algorithm is described as follows.

1. Draw a simple random sample χ∗
n with replacement from the original

sample χn = (xi, yi, δi)
n
i=1;

2. Implement semiparametric quantile regression to impute values for the
missing cells in χ∗

n;

3. Estimate θ̂ using the SQRI and SQRI-fixed estimators in equation (4.2).

4. Repeat step 1 ∼ 3 for B times, then we have θ̂
[1]
, θ̂

[2]
, · · · , θ̂[B]

.

The 2.5-th and 97.5-th percentiles of {θ̂[b]}Bb=1 give the lower and upper bounds
of the 95% confidence interval. We use B = 400 in our simulation. In general,
the bootstrapping method has a slightly better performance over normal ap-
proximation method, offering satisfactory coverage probabilities close to 0.95
even when J is small.

In summary, the simulation study results confirm that the SQRI estimators
can be used as effective alternatives in imputation. Both SQRI and SQRI-fixed
estimators perform similarly in point estimates and variance estimation. How-
ever, if one has a concern about having extreme imputed values, the SQRI-fixed
estimator might be preferable because using fixed τ ’s can prevent it from hap-
pening.

6. Future work

There will be some future work along this line. In this paper, we propose quantile
regression imputation method for missing response cases. Wei, Ma, and Caroll
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(2012) used multiple imputation with the goal of estimating the quantile regres-
sion coefficients of y on x when covariates are subject to missing. Combining
their method with ours, we can propose a quantile regression imputation method
to handle data with both missing covariates and missing responses. Another lim-
itation of the current approach is that we focus on low dimensional covariates.
It is important to extend the proposed method to high dimensional covariates.
Model selection for high dimensional data has been intensively studied in the
area of quantile regression. One of the popular model selection methods is the
Least Absolute Shrinkage and Selection Operator (LASSO) method. We can
use LASSO quantile regression to reduce the dimension first, then a conditional
quantile regression can be estimated based on the selected model. We will in-
vestigate on these topics in our future work.

Appendix

The notation of |·| represents the norm of a matrix, defined as |A|=
√
trace(A′A).

We first give the assumptions.

Conditions:

(a) There exists γ > 0 such that E[|y|2+γ ] < ∞.

(b) The order of the difference matrix Dm is m < p.

(c) limn→∞ n−1
∑n

i=1 p(xi)B(xi)B
T (xi) exists and converges toΦ whereΦ =∫ 1

0
B(x)BT (x)p(x)dFx(x).

(d) limn→∞ n−1
∑n

i=1 p(xi)fy|x(x, qτ (x)) B(xi)B
T (xi) exists and converges

to Φ(τ), where Φ(τ) =
∫ 1

0
B(x)BT (x)p(x) fy|x(x, qτ (x))dFx(x).

(f) r(y, x) has a bounded second derivative function with respect to y.

A. Proof of Lemma 1

Assume the number of knots Kn − 1 and the smoothing parameter λn depend
on n. By Barrow and Smith (1978), there exists b∗(τ) that satisfies

sup
x∈(0,1)

|qτ (x) + baτ (x)−BT (x)b∗(τ)| = o(K−(p+1)
n ), (A.1)

where baτ (x) is an approximation error defined as

baτ (x) =
q
(p+1)
τ (x)

(p+ 1)!Kp+1
n

Brp(
x− κk−1

K−1
n

) if κk−1 ≤ x < κk,

and q
(p+1)
τ (x) is the (p+1)-th derivative of qτ (x) with respect to x. Here Brp(·) is

the p-th Bernoulli polynomial inductively defined as Br0(x) = 1, and Brp(x) =∫ x

0
pBp−1(z)dz + bp, where bp = −p

∫ 1

0

∫ x

0
Brp−1(z)dzdx is the p-th Bernoulli

number (Barrow and Smith (1978) and Yoshida (2013)).
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Proof : The following proof needs the Knight’s identity,

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

I(u ≤ s)− I(u ≤ 0)ds, (A.2)

where ψτ (x) = τ − I(x < 0).
Define

Un(Δ) =

n∑
i=1

δi[ρτ (ei(τ)−
√

Kn

n
BT (xi)Δ)− ρτ (ei(τ))]

+
λn

2

[
b∗(τ) +

√
Kn

n
Δ

]T
DT

mDm

[
b∗(τ) +

√
Kn

n
Δ

]

− λn

2
b∗(τ)TDT

mDmb∗(τ), (A.3)

where ei(τ) = yi − BT (xi)b
∗(τ). It is easy to see that Δ̂n(τ) =

√
n
Kn

[
b̂(τ) −

b∗(τ)
]
is the minimizer of Un(Δ). Un(Δ) can be decomposed as

Un(Δ) =

{
−

n∑
i=1

δi

√
Kn

n
BT (xi)ψτ (ei(τ)) + λn

√
Kn

n
b∗(τ)TDT

mDm

}
Δ

+
n∑

i=1

δi

∫ √
Kn
n BT (xi)Δ

0

[I(ei(τ) ≤ s)− I(ei(τ) < 0)]ds

+
λn

2

Kn

n
ΔTDT

mDmΔ. (A.4)

Similar to Lemma 3 in Yoshida (2013), we can show that

n∑
i=1

δi

∫ √
Kn
n BT (xi)Δ

0

[I(ei(τ) ≤ s)− I(ei(τ) < 0)]ds

=
1

2
KnΔ

TΦ(τ)Δ[1 +Op(K
−(p+1)
n )], (A.5)

where Φ(τ) =
∫ 1

0
p(xi)B

T (xi)B(xi)fY |X(qτ (xi)|xi)dFx(xi). Thus, by equation
(A.4) and (A.5), we have

Un(Δ) =

{
−

n∑
i=1

δi

√
Kn

n
BT (xi)ψτ (ei(τ)) + λn

√
Kn

n
b∗(τ)TDT

mDm

}
Δ

+
1

2
ΔTKn

[
λn

n
DT

mDm +Φ(τ)(1 +Op(K
−(p+1)
n ))

]
Δ. (A.6)

We can see that Un(Δ) is convex with respect toΔ, so it has a unique minimizer

Δ̂n(τ) as
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Δ̂n(τ) = (Hn(τ) +Φ(τ)Op(K
−(p+1)
n ))−1

{
n∑

i=1

δi

√
1

nKn
BT (xi)ψτ (ei(τ))

− λn

√
1

nKn
DT

mDmb∗(τ)

}
, (A.7)

where Hn(τ) =
λn

n DT
mDm +Φ(τ). Therefore, we have

√
n
Kn

{
b̂(τ)− b∗(τ) +H−1

n (τ)
[
λn

n DT
mDmb∗(τ)

]}
= H−1

n (τ)
{√

1
Kn

[ 1√
n

∑n
i=1 δiB

T (xi)ψτ (ei(τ))]
}

−
√

1
Kn

H−1
n (τ)Φ(τ){I + λn√

n
DT

mDmb∗(τ)}H−1
n (τ)Op(K

−(p+1)
n )

= H−1
n (τ)

{√
1

Kn
[ 1√

n

∑n
i=1 δiB

T (xi)ψτ (ei(τ))]
}
+ op(1).

(A.8)
The last equality holds in (A.8) because of Fact 1 and 2 in the Appendix of the
supplement. We can show that

Wn =
1√
n

n∑
i=1

δiB
T (xi)ψτ (ei(τ)) ∼d N(0, Vw),

where Vw = τ(1− τ)Φ and Φ =
∫
p(xi)B

T (xi)B(xi)dFX(xi).

Let q̂τ (x) = BT (x)b̂(τ) and bλτ (x) =
λn

n Hn(τ)
−1BT (x)DT

mDmb∗(τ), so

√
n

Kn

[
q̂τ (x)−BT (x)b∗(τ) + bλτ (x)

]
= BT (x)H−1

n (τ)

√
1

Kn
WT

n . (A.9)

By equation (A.1), we have

√
n

Kn
[q̂τ (x)− qτ (x) + bλτ (x) + baτ (x)] →p BT (x)H−1

n (τ)

√
1

Kn
WT

n . (A.10)

The results in (i) and (ii) of Lemma 1 follow immediately.

B. Proof of Theorem 1

To save space, we sketch the proof of Theorem 1. For details, readers are referred
to the supplement which provides the detailed derivation for the asymptotic
normality of the GMM estimator θ̂gmm defined in Section 4. Note that the

estimator θ̂ in Theorem 1 is a special case of the GMM estimator when defining
g(yi, xi;θ) = r(yi, xi)− θ. So the proofs are very similar.
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Proof : We can decompose
√
n(θ̂ − θ0) into three terms as follows,

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

[r(yi, xi)− θ0]︸ ︷︷ ︸
:=B1

+
1√
n

n∑
i=1

[(1− δi)(μr|x(xi)− r(yi, xi)]︸ ︷︷ ︸
:=B2

+
1√
n

n∑
i=1

[(1− δi)(μ̂r|x(xi)− μr|x(xi)]︸ ︷︷ ︸
:=B3

.

(B.1)

Terms of B1 and B2 are easy since they are sums of i.i.d. random variables.
The key idea in our proof is to replace B3 by B̃3 = E(B3|AR) where AR =
{δi, (yi, xi)|δi = 1; i = 1, · · · , n}, and to show the following two results:

(1) B̃3 = n−1/2
∑n

i=1 δiCphr(xi, yi)B(xi) + op(1), and

(2) B̃3 −B3 = op(1).

(1) To show B̃3 = n−1/2
∑n

i=1 δiCphr(xi, yi)B(xi) + op(1): We further decom-

pose B̃3 into two terms,

B̃3 =
1√
n

n∑
i=1

E

⎧⎨⎩(1− δi)
1

J

J∑
j=1

[r(q̂τj (xi), xi)− r(qτj (xi), xi)]|AR

⎫⎬⎭︸ ︷︷ ︸
:=B̃31

+
1√
n

n∑
i=1

E

⎧⎨⎩(1− δi)
1

J

J∑
j=1

[r(qτj (xi), xi)− μr|x(xi)]|AR

⎫⎬⎭︸ ︷︷ ︸
:=B̃32

.

(B.2)
It is obvious that B̃32 = 0 because Eτ |x [r(qτ (x), x)] = Ey|x [r(y, x)] = μr|x(x)

for any x. For B̃31, assuming that r(xi, yi) is twice differentiable with respect
to y, then we have

r(q̂τ (xi), xi)− r(qτ (xi), xi)
= ṙy(qτ (xi), xi)[q̂τ (xi)− qτ (xi)] + r̈y(q̃τ (xi), xi)[q̂τ (xi)− qτ (xi)]

2,
(B.3)

for q̃τj (xi) lying between qτj (xi) and q̂τj (xi). By equation (B.3), we have
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B̃31 =
nm√
n
E

⎧⎨⎩ 1

J

J∑
j=1

ṙy(qτj (x), x)[q̂τj (x)− qτj (x)]|AR

⎫⎬⎭
+
nm√
n
E

⎧⎨⎩ 1

J

J∑
j=1

r̈y(q̃τj (x), x)[q̂τj (x)− qτj (x)]
2|AR

⎫⎬⎭ ,

where nm = n−
∑n

i=1 δi and x ⊥ AR. By Fact 3 of the supplement, we have

E

⎧⎨⎩ 1

J

J∑
j=1

r̈y(q̃τj (x), x)[q̂τj (x)− qτj (x)]
2|AR

⎫⎬⎭ = O(
Kn

n
). (B.4)

By Lemma 1, we have

√
n (q̂τ (x)− qτ (x)) = 1√

n
BT (x)H−1

n (τ)
∑n

i=1 δiB(xi)ψτ (ei(τ))

− λn√
n
B(x)H−1

n (τ)Cn(τ)−
√
nbaτ (x) + op(1),

(B.5)

where Cn(τ) = DT
mDmb∗(τ). Then B̃31 can be written as

B̃31 =
Cp√
n

n∑
i=1

δihr(xi, yi)B(xi)−
√
nCpC1n −

√
nCpC2n + op(1), (B.6)

where hr(xi, yi) and Cp are defined in Theorem 1. The asymptotic orders of C1n

and C2n are

C1n =
λn

n
Ex,τ

{
ṙy(qτ (x), x)B

T (x)H−1
n (τ)Cn(τ)

}
= O(K−(p+2)

n ),

by Fact 2 of the supplement, and

C2n = E[ṙy(qτ (x), x)b
a
τ (x)] = O(K−(p+2)

n ).

Thus we have B̃31 = 1√
n

∑n
i=1 δiCphr(xi, yi)B(xi) + op(1).

(2) To show B̃3−B3 = op(1): By Chebychev’s inequality, we only need to show

that E[B̃3 − B3]
⊗2 ≤ E{[μ̂r|x(xi) − μr|x(xi)]

⊗2} = o(1). First of all, we can
decompose μ̂r|x(xi)− μr|x(xi) into two terms,

μ̂r|x(xi)− μr|x(xi)

=
1

J

J∑
j=1

[r(q̂τj (x), x)− r(qτj (x), x)]︸ ︷︷ ︸
:=Sn

+
1

J

J∑
j=1

[r(qτj (x), x)− μr|x(xi)]︸ ︷︷ ︸
:=Qn

.

It is equivalent to show that E[Q⊗2
n ] = o(1), E[QnS

T
n ] = o(1) and E[S⊗2

n ] = o(1).
Details to show these orders can be found in the supplement.
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Combining step (1) & (2), together with equation (B.1), we can write

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

[r(yi, xi)− θ0] +
1√
n

n∑
i=1

[(1− δi)(μr|x(xi)− r(yi, xi)]

+
1√
n

n∑
i=1

δiCphr(xi, yi)B(xi) + op(1),

=
1√
n

n∑
i

ξi,r(θ0) + op(1),

where ξi,r(θ0) is defined in (3.4). Then by the central limit theorem, we have

[V {ξi,r(θ0)}]−1/2n−1/2
n∑

i=1

ξi,r(θ0) ∼d N(0, Idθ×dθ
),

where

V (ξi,r(θ0))
.
= σ2

r|x(x)− E[(1− p(x))σ2
r|x(x)]

+ C2
pE{p(xi)hr(xi, yi)B(xi)B

T (xi)h
T
r (xi, yi)}

+ 2CpE{δihr(xi, yi)B(xi)r
T (yi, xi)},

and σ2
r|x(x) = Vy|x{r(y, x)}.

C. Proof of property (3.10)

We can decompose θ̂fixed − θ0 into three terms as follows,

θ̂fixed − θ0 =
1

n

n∑
i=1

[δir(yi, xi) + (1− δi)

∫ 1

0

r(qτ (xi), xi)dτ ]− θ0︸ ︷︷ ︸
:=C1

+
1

n

n∑
i=1

(1− δi)[
1

J

J∑
j=1

r(qτ (xi), xi)−
∫ 1

0

r(qτ (xi), xi)dτ ]︸ ︷︷ ︸
:=C2

+
1

n

n∑
i=1

(1− δi)
1

J

J∑
j=1

[r(q̂τ (xi), xi)− r(qτ (xi), xi)]︸ ︷︷ ︸
:=C3

.

(C.1)
It is easy to see

C1 =
1

n

n∑
i=1

[r(yi, xi)− θ0 + (1− δi)μr|x(xi)]. (C.2)
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For term C2, we show that

1

J

J∑
j=1

r(qτ (xi), xi)−
∫ 1

0

r(qτ (xi), xi)dτ

=

J∑
j=1

[
1

J
r(qτ (xi), xi)−

∫ τj

j−1
J

r(qτ (xi), xi)dτ −
∫ j

J

τj

r(qτ (xi), xi)dτ ]

=

J∑
j=1

[
1

J
r(qτ (xi), xi)

−
∫ τj

j−1
J

{r(qτj (xi), xi) + ṙy(qτ1j (xi), xi)
∂qτ1j (xi)

∂τ
(τ − τj)}dτ

−
∫ j

J

τj

{r(qτj (xi), xi) + ṙy(qτ2j (xi), xi)
∂qτ2j (xi)

∂τ
(τ − τj)}dτ ]

=

J∑
j=1

[ṙy(qτ1j (xi), xi)
∂qτ1j (xi)

∂τ

−8

J2
+ ry(qτ2j (xi), xi)

∂qτ2j (xi)

∂τ

8

J2
]

= O(
1

J
), (C.3)

where τj ’s are the fixed sequence of the midpoints of J evenly spaced subin-
tervals on [0, 1], and τ1j and τ2j are some values between [ j−1

J , τj ] and [τj ,
j
J ]

respectively. The last equality in (C.3) holds because of condition (f) and that
qτ (x) ∈ Cp+1.

By the proof of Theorem 1 in Appendix B, similary we can show that

C3 =
1

n

n∑
i=1

(1− δi)
1

J

J∑
j=1

[r(q̂τ (xi), xi)− r(qτ (xi), xi)

=
1

n

n∑
i=1

(1− δi)
1

J

J∑
j=1

[ṙy(qτ (xi), xi)[q̂τ (xi)− qτ (xi)]

+ r̈y(q̃τ (xi), xi)[q̂τ (xi)− qτ (xi)]
2]

=
1

n

n∑
i=1

Cpδihr(xi, yi)B(xi) + op(
1√
n
). (C.4)

Combining equations (C.1) to (C.4), we have showed that

θ̂fixed − θ0 =
1

n

n∑
i=1

ξi,r(θ0) + op(
1√
n
) +Op(

1

J
).
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Supplementary Material

Supplement to “Parameter estimation through semiparametric quan-
tile regression imputation”
(doi: 10.1214/16-EJS1208SUPP; .pdf). In this supplement, we provide very de-
tailed proofs needed for the theories.
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