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Abstract: This paper concerns the robust regression model when the
number of predictors and the number of observations grow in a similar
rate. Theory for M-estimators in this regime has been recently developed
by several authors (El Karoui et al., 2013; Bean et al., 2013; Donoho and
Montanari, 2013). Motivated by the inability of M-estimators to success-
fully estimate the Euclidean norm of the coefficient vector, we consider a
Bayesian framework for this model. We suggest a two-component mixture
of normals prior for the coefficients and develop a Gibbs sampler proce-
dure for sampling from relevant posterior distributions, while utilizing a
scale mixture of normal representation for the error distribution. Unlike
M-estimators, the proposed Bayes estimator is consistent in the Euclidean
norm sense. Simulation results demonstrate the superiority of the Bayes
estimator over traditional estimation methods.
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1. Introduction

When fitting a linear regression model to data, estimators robust to outliers
are often desired. One popular approach to achieve robustness to outliers is to
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use M-estimators under a penalty function other than the quadratic one. This
methodology is often termed as “robust regression”. Classical results for robust
regression are that the M-estimator of the coefficients vector is consistent and
normally distributed (see Huber, 2011, Chap. 7). These results were obtained for
the case p, the number of predictors, is fixed or grows slowly with the number of
observations, n. The case where p grows faster than n have been drawing a lot
of a attention. In that scenario, a popular approach is to consider penalization
based estimation methods, e.g., the Lasso (Tibshirani, 1996).

We consider a different scenario. Assume that p < n, yet p grows at the same
rate as n. That is, p/n → κ for some positive constant κ < 1. This scenario was
first recognized as an interesting one by Huber (1973). It is, however, only with
the emergence of “big data” that researchers have begun to investigate the ro-
bust regression model under this regime. Asymptotic distribution and variance
calculations were recently developed for M-estimators in this regime (El Karoui
et al., 2013; El Karoui, 2013; Donoho and Montanari, 2013). Arguably the main
result is that while the obtained estimator is normally distributed, its variance
differs from Huber’s classical results. Bean et al. (2013) have further shown
that, unlike the classical p � n scenario, the optimal M-estimator, in terms
of efficiency, is not obtained by maximizing the log density of the errors. One
more striking result is that for Double-Exponential errors, for κ larger than ap-
proximately 0.3, least squares regression is superior to least absolute deviations
regression.

We argue in the current paper that M-estimation might be the wrong ap-
proach to the robust regression model in the p/n → κ, 0 < κ < 1 regime. Our
main motivation is as follows. When using M-estimators, the estimation error of
a single coefficient is in the usual order of n−1/2 (El Karoui et al., 2013). How-
ever, the error accumulated over the coefficient vector does not vanish when
n → ∞. We will further argue that when the signal and the noise are of the
same asymptotic order, only a few of the true coefficient values can be larger
(in their absolute value) than n−1/2. Putting it together, the estimation error
of small coefficients, which are the majority, is larger than their actual value (in
absolute value) when using M-estimators. Thus, apparent large effects can be
actually microscopic.

Recognizing this characteristic of the problem, shrinkage methods may be a
better fit in this robust regression model. Shrinkage can be achieved by using
either the aforementioned regularization methods or by using a Bayesian ap-
proach with appropriate scaling of the prior hyperparameters. In this paper we
consider the latter option.

It is well known that shrinkage can be achieved using a Bayesian methodology.
Most of the discussion is centered in the normal error model. The James-Stein
estimator, (James and Stein, 1961), is an empirical Bayes estimator (Efron and
Morris, 1973); Ridge regression estimator is identical to what we get if assuming
the regression coefficients are iid with normal prior, and a maximum a posteri-
ori (MAP) estimator is used; and if we replace the normal prior with Laplace
distribution prior we get the Lasso. The Laplace prior for the coefficients is ac-
tively researched. An efficient Gibbs sampler was suggested by Park and Casella
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(2008). However, the Lasso attracts criticism from a Bayesian point of view, since
the full posterior distribution of the coefficients vector does not attain the same
risk rate as the posterior mode (Castillo, Schmidt-Hieber and Van der Vaart,
2015). Another, more recent, prior proposal is the horseshoe prior (Carvalho,
Polson and Scott, 2009, 2010), which has some appealing properties, at least
when the design matrix is the identity (van der Pas, Kleijn and van der Vaart,
2014).

One way to incorporate the intuition stemming form our earlier descriptions
in a modeling framework is to assume that the coefficients can be separated to
two groups: small-value and large-value coefficients (in their absolute size). This
perspective aligns with existing Bayesian variable selection literature, where pri-
ors are assigned hierarchically. First, coefficients are separated into two groups,
and then a prior distribution is determined according to the group assignment.
Often, though not necessarily, one of the priors is the degenerate distribution
at zero. A leading example for this framework is SVSS, Stochastic Search Vari-
able Selection (George and McCulloch, 1993, 1997). An alternative approach is
to have a prior distribution on the number of non-zero coefficients, to choose
these coefficients uniformly, and then to have a prior on the non-zero coefficients
(Castillo et al., 2012),

In this paper we suggest a full Bayesian approach for the robust regression
model when p/n → κ, 0 < κ < 1. We choose the prior distributions and
hyperparameters such that our prior knowledge on the design is taken into
account. We then utilize a scale mixture of normal representation of the error
distribution to construct a reasonably fast Gibbs Sampler.

The rest of the paper is organized as follows. In Section 2, we present notation
and model assumptions, and claim that M-estimation should not be used in this
p-close-to-n regime. In Section 3, we introduce an hierarchical Bayesian model
and then, in Section 4, we present a Gibbs sampler for parameter estimation.
Detailed example is given in Section 5 where we also present simulation results.
Section 6 offers conclusion remarks. Proofs are given in Section 7.

2. Achilles heel of M-estimators when p/n → κ ∈ (0, 1)

We start with notations. We use ‖ · ‖, ‖ · ‖1 and ‖ · ‖∞ for the Euclidean norm,
the �1 norm and the maximum norm of a vector, respectively. Throughout the
paper we consider the model

Y (n) = X(n)β(n) + ε(n), (1)

where ε(n) is a vector of i.i.d random variables with a known density function
fε(·; θ) characterized by θ, an unknown parameter, X(n) is a matrix of random
predictors, β(n) is an unknown parameter vector we wish to estimate. To improve
clarity, we henceforth omit the superscript indicating that all model components
given in (1) depends on n (θ excluded). We denote XT

i for the ith row of X. X
and ε are assumed to be independent. We denote β0 for the true value of β. For
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a given penalty function ρ, the M-estimator of β, β̂ρ, is defined as

β̂ρ = argmin
β

n∑
i=1

ρ(Yi −XT
i β). (2)

If ρ is convex, one could alternatively solve the equation

n∑
i=1

XT
i ψ(Yi −XT

i β) = 0, ψ(·) := ρ′(·).

Huber’s classical result (1973) is that if p2/n → 0, then
√
n(β̂ρ − β0) is asymp-

totically normal with a covariance matrix

E(ψ2(ε1))

E2(ψ′(ε1))
lim
n→∞

(XTX)−1.

If it is further assumed that E(ε1) = 0, then by using general M-estimation
theory it can be shown that this result holds for p/n → 0. Portnoy (1984, 1985)
derived consistency and asymptotic normality of M-estimators in the robust
regression model under weaker assumptions. See also Maronna and Yohai (1981).

We now claim that in the model described above, a robust regression model
where the number of predictors and the number of observations are similar,
M-estimators have undesirable properties. But first, we present our model as-
sumptions:

(M1) lim
n→∞

p
n = κ ∈ (0, 1).

(M2) The rows of X are i.i.d N(0,Σ) for a covariance matrix sequence Σ = Σp.
Furthermore, assume the eigenvalues of Σ are bounded away from zero,
for all p.

(M3) εi, i = 1, 2, ..., n are i.i.d mean zero random variables with a density func-
tion fε. �ε = log fε is concave, bounded from above and has three bounded
derivatives, such that sup|t|<M �′′ε (t) < 0 for any M < ∞.

(M4) fε is symmetric and for the function gε(u) = fε(
√
u) we have, for u > 0

and k = 1, 2, . . . , (
− d

du

)k

g(u) ≥ 0.

Assumption (M4) would be exploited when we will consider the Bayesian for-
mulation of the problem. We note in passing that this assumption is fulfilled
by rich family of distributions, such as Student’s T distribution, the Laplace
distribution, and the more inclusive Exponential power family (Andrews and
Mallows, 1974; West, 1987).

We now take the frequentist point of view, which we will later, in the next
section, replace in a Bayesian perspective. When estimating a multidimensional
parameter, a loss function is needed to aggregate over the different components.
A natural loss function is the �2 of the estimation errors. The following proposi-
tion motivates our discussion. It is based on the result of El Karoui et al. (2013)
which is stated without a clear statement of the conditions.



On Bayesian robust regression 3049

Proposition 1. Let assumptions (M1)–(M3) and assume Result 1 in El Karoui

et al. (2013) holds. Let β̂ρ be the M-estimator defined in (2) with respect to a

non-linear convex function ρ. Then ‖β̂ρ − β0‖ = Op(1)

A proof using the results of El Karoui et al. (2013) is given in Section 7.
Proposition 1 implies that the so-called �2−consistency cannot be achieved by
M-estimators under this regime.

However, we now claim M-estimators might be the wrong approach here.
Consider specifically the problem arising when the signal and the noise are
of the same asymptotic order, i.e, when XT

i β
0 = Op(1). For a moment, let

Σ = I. Then, XT
i β

0 = Op(1) implies ‖β0‖ = Op(1). If Σ 	= I, then since

Σ is known, the last statement holds if taking X̃i = XiΣ
−1/2 instead of Xi.

Informally, having the number of predictors in the same scale as the number of
observations while considering a finite signal-to-noise ratio, that does not vanish
as n grows, implies additional assumptions on β0 structure. For example, not
too many components of β0 can be much larger than n−1/2 (in their absolute
value), otherwise the signal would be stronger than assumed. On the other hand,
if β0 is concentrated very close to zero for all n, then the signal is too week as
XT

i β
0 is too small.

M-estimation is invariant to translation of β0, but some β0 values are less
expected then others, as we argued in the preceding paragraph. Therefore, an-
other approach, which exploits that knowledge on the parameter vector β0 is
desirable. Since we know that many of the true coefficients are smaller than
n−1/2 (in their absolute value) we could potentially gain better estimates if
we shrink some coefficients towards zero. This can be done using regularization
based methods, or alternatively, using a Bayesian approach in a way that shrink-
age is encouraged by the specified prior distribution. In this paper, we choose
to take the latter option, and in the next section we develop such a Bayesian
hierarchical model.

3. A Bayesian model

A Bayesian model for the robust regression involves at least one more level of
parameters. Assume model (1) holds with a density function fε that depends on
a parameter θ, and obeys assumptions (M3)-(M4). We start with a prior for β.
As we argued in the previous section, we expect many of its components to be
small, while some are considerably larger. To accommodate for this, we present
a mixture prior for each βj , j = 1, .., p, with two normal mixture components.
Denote T = (t1, ..., tp) ∈ {1, 2}p for the vector that indicates for each component
j if βj has a large variance (tj = 1) or a small one (tj = 2). We also denote

φ = E(
p∑

j=1

1{tj = 1}) for the number of “large” components in T . Finally, let

δ2k, k = 1, 2 be the variance in each of the mixture components. Putting all
together, the following assumptions depict our prior distributions.
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(P1) The prior for β is of an iid mixture of two zero-mean normal variables

(tj − 1)|φ ∼ Ber(φ/p) βj |tj , δ1, δ2 ∼ N(0, δ2tj )

(P2) φ = op(n/ log n).
(P3) δ21 is Op(φ

−1) and δ22 is Op(1/n
ξ), for some fixed ξ > 1.

Assumption (P2) implies that φ grows with n, but yet it is much smaller than
p. Note that under assumptions (P1)–(P3) we have

E(‖β‖2|δ1, δ2, φ) = φδ21 + (p− φ)δ22 = Op(1),

so together with the Assumption (M2) we get that XT
i β = Op(1).

Working prior distributions can be taken for φ, δ1 and δ2, adding another
level of hierarchy to the model. In practice, the parameters of these prior distri-
butions are chosen such that assumptions (P2) and (P3) are fulfilled. In Section
5, we present such an example. Alternatively, φ, δ1 and δ2 may be taken as
known values that obeys Assumptions (P1)–(P3). The prior distribution for β
as specified in Assumptions (P1)–(P3) reflects our knowledge on β when we
assume the signal and the noise in our model are of the same order. This prior
implies that only a small part of the coefficients can be larger than the n−1/2

threshold. This can be stated formally using Chebyshev’s inequality; See Lemma
1 in Section 7. Of course, one can think of other prior distributions for β having
this property.

As for θ, we assume a prior distribution q(θ), where with some abuse of
notation, q always denotes a density, and the particular relevant density would
be clear from its argument. Unlike other model parameters, this prior does not
change with n.

Before moving to the estimation procedure, we present a theoretical re-
sult showing that unlike M-estimators, a Bayes estimator for β can achieve
�2−consistency. As stated before, M-estimators in our regime are consistent
when considering each coordinate of the vector separately, but not when con-
sidering the parameter vector as a whole. The following theorem shows that
Bayesian estimator in the discussed model is consistent (in the Euclidean norm
sense) for the parameter vector.

Theorem 1. Consider the model (1) and assume (M1)–(M3) and (P1)–(P3).

Let β0 be the true value of β. Let β̂∗ be a Bayes estimator with respect to the
posterior distribution q(β|Y,X) and a loss function L of the form L(β, β0) =

L(‖β − β0‖), for a bounded L. Then ‖β̂∗ − β0‖ p→ 0 as n → ∞,

where
p−→ denotes convergence in probability. The proof is given in Section 7.

4. Sampling from the posterior distribution

Modern Bayesian statistics relies on the ability to sample from the posterior
distribution. This may pose a challenge especially if the parameter space is
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high dimensional. Assumption (M4) aids us in construction of a Gibbs sampler
(Geman and Geman, 1984), with block sampling available for the full conditional
of β. Under the condition in Assumption (M4), we can write fε as a scale mixture
of normal distribution, Andrews and Mallows (1974),

fε(t; θ) =

∫ ∞

0

1

σ
ϕ

(
t

σ

)
q(σ2|θ)dσ2 (3)

where ϕ is the density function of a standard normal random variable. This
implies that while q(Y |X,β, θ) is

∏n
i=1 fε(Yi − XT

i β; θ), q(Y |X,β, σ2) is the
density of independent normally distributed random variables with mean zero
and variance σ2

i . The mixing distribution q(σ2|θ) can be identified in some cases
(Andrews and Mallows, 1974; West, 1987). If fε is the density of a Laplace distri-
bution, as in the example we present in Section 5, then q(σ2|θ) ∝ exp(−θ2σ2/2).
This representation adds n parameters as an individual σ2

i is artificially intro-
duced to the model for each observation i. However, it allows for direct sampling
from all the full conditionals of all the parameters, and a Gibbs sampler can be
used. This Gibbs sampler resembles the one suggested for the Bayesian Lasso
(Park and Casella, 2008), especially for the case presented in our example in
Section 5 when the errors have a Laplace distribution. Note however that in
their case the scale mixture of normals representation is taken for the prior β
and the errors are normally distributed, where here we apply this representation
to the errors, and the prior for β is a mixture of two normal distributions.

We now present the Gibbs sampler when Φ, δ1 and δ2 are known hyperparam-
eters. In Section 5, we demonstrate how standard conjugate priors can be used
for these parameters in a concrete example. The Gibbs sampler iterates between
the full conditionals of θ, σ2

1 , ..., σ
2
n, t1, ..., tp and β. Starting with θ, one can sam-

ple from q(θ|σ2
1 ..., σ

2
n) ∝ q(θ)

∏n
i=1 q(σ

2
i |θ). The mixing distribution q(σ2

i |θ) is
determined by the error distribution fε(t; θ), and depending on the prior q(θ),
we may have a conjugate family (as in our Section 5 example). Alternatively,
we may use Metropolis-Hastings step for θ only. Since θ is one dimensional,
we expect such a step to marginally affect the computation time of the Bayes
estimator.

Moving to each σ2
i , we have

q(σ2
i |Yi, Xi, β, θ) ∝

1

σ
ϕ

(
Yi −XT

i β

σi

)
q(σ2

i |θ) (4)

and depending on the mixture distribution this may be a known distribution to
sample from (see again Section 5).

Next, let Γ = diag(σ2
1 , σ

2
2 , . . . , σ

2
n) and let V = diag(δ2t1 , δ

2
t2 , . . . , δ

2
tp). The

full conditional of β is a multivariate normal with mean μ and variance A−1

where A = XTΓ−1X +V −1 and μ = A−1XTΓ−1Y . This is the main advantage
of the scale mixture of normals representation for fε; block sampling of β can
be used. Finally, denote pk = P (tj = k|βj , φ, δ1, δ2) for the full conditional of
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each tj . We have

[p1 p2] ∝
[
1

δ1
ϕ

(
βj

δ1

)
φ

p

1

δ2
ϕ

(
βj

δ2

)
p− φ

p

]
.

We now comment on alternative posterior sampling strategies, all involve the
Gibbs sampler described above. When the mixing distribution q(σ2|θ) results
in a full conditional q(σ2

i |Yi, Xi, β, θ) with no available direct sampling, the
proposed Gibbs sampler must use other MCMC procedures for sampling from
the full conditionals of σ2

i . Moreover, if Assumption (M4) does not hold, then
the scale mixture of normal representation (3) cannot be used. Then, sampling
from

q(θ|Y,X, β) ∝ q(θ)

n∏
i=1

fε(Yi −Xiβ; θ)

cannot necessarily be done in a direct sampling manner, but additional MCMC
procedure, such as Metropoils-Hastings should be used. This is not, however,
where most of the problem lies. Block sampling for β would have been based
upon high-dimensional full conditional of β

q(β|Y,X, T, δ1, δ2) ∝
p∏

j=1

δ−1
tj ϕ(βj/δtj )

n∏
i=1

fε(Yi −Xiβ; θ).

but since p is large, this could be a too ambitious approach, when using Metropo-
lis-Hastings or other MCMC procedures. So as a last resort, one could use
a Gibbs sampler that uses q(βj |Y,X, T, δ1, δ2, β−j), where β−j is the β vector
without its j–th component. Both the approaches we just described are expected
to be more computationally heavy than the procedure we suggested before. We
remark that sampling from each q(σ2

i |Yi, Xi, β, θ) can be parallelized, to shorten
computation time since the σ2

i ’s are independent given θ and β.

5. Example

We present in this section a specific example. First we describe the model with
more detail, then we move to the estimation procedure and then we present sim-
ulation results with concrete numerical values. We assume a Laplace distribution
for the errors, that is,

fε(t; θ) =
θ

2
exp(−θ|t|).

This implies that the mixing probability is Exponential, with q(σ2|θ) ∝
exp(−θ2σ2/2) (Andrews and Mallows, 1974). We take an Exponential prior
distribution for θ2 (a Gamma prior distribution would also work). The resulting
posterior for θ2 is a Gamma distribution with a shape parameter of n/2+1 and a

scale parameter 1+ (
n∑

i=1

σ2
i )/2. Moving to δ1 and δ2. Let Nk =

∑p
j=1 1{tj = k}.

Then given a prior distribution q(δk), the full conditional for δk is simplified to
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q(δk|β, T ) ∝ (δ2k)
−Nk

2 exp

⎛
⎝ 1

2δ2k

∑
1{tj=k}

β2
j

⎞
⎠ q(δk).

We take here a conjugate Inverse-Gamma prior distribution for δk with a shape
parameter αk and a scale parameter γk. The resulting posterior is Inverse-
Gamma with parameters α′

k = αk +Nk/2 and γ′
k = γk +

∑
1{tj=k}

β2
j /2. An alter-

native prior distribution here would be the Jeffreys improper prior q(δ2k) ∝ 1/δ2k.
Next, a standard Beta(αφ, γφ) prior is taken for φ/p so the resulting posterior is
Beta(αφ+N1, γφ+N2). We note here that the values taken for α1, α2, αφ, γ1, γ2
and γφ should be on the background of Assumptions (P2)–(P3). These are work-
ing priors that reflect our assumptions on β. The dimension of β grows with n,
while its �2 norm is assumed to be constant. Therefore, φ, δ21 and δ22 must change
with n. This results in working priors that also change with n.

Sampling from the full conditionals of β and T remains the same as described
in Section 3, and is generally the same regardless of fε, as long as the scale
mixture of normal distributions representation (3) is used. The same property
holds for the sampling from the full conditionals of δ1, δ2 and φ as described
above.

Moving to σ2
i , substituting q(σ2|θ) ∝ exp(−θ2σ2/2) in (4), we have

q(σ2
i |Yi, Xi, β, θ) ∝ σ−1 exp

(
− (Yi −XT

i β)
2 + θ2σ4

i

2σ2
i

)
.

Similarly to Park and Casella (2008), this implies an Inverse-Gaussian distri-
bution for σ−2

i with parameters a = θ2 and b = θ/|Yi − XT
i β|, where the

Inverse-Gaussian distribution defined as having the density

f(t) =

√
a

2π
t−3/2 exp

[
−a(t− b)2

2b2t

]
1{t > 0}

Chhikara (1988). The full conditionals we just described are used in the proposed
Gibbs sampler. We now turn to the presentation of simulation study results.

5.1. Simulation study

We present simulation results for various κ values and for n = 500, 2500. We
used 500 and 1000 iterations for the Gibbs sampler described above. Data were
simulated in the following way. First, X was simulated under Σ = I, i.e., each
of the iid rows of X was simulated as Np(0, I). Then, we simulated φ, δ1 and δ2
according to the prior distributions described above. That is, a Beta distribution
for φ/p, and an inverse-Gamma distribution for δ21 and δ22 . We took the follow-
ing hyper-hyperparameter values: {αφ = 30, γφ = 30(3κ log(n) − 1)}, {α1 =
2, γ1 = log(n)/n} and {α2 = 2, γ2 = n−1.5}. These values were chosen so
E(φ) = n/(3 log(n)), E(δ21) = log(n)/n,E(δ22) = n−1.5 and also to have prior
distributions that are not too concentrated around their means. Given φ, T was
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simulated as iid Ber(φ/p). Then, we simulated β as independent normally dis-
tributed variables where the prior variance of each βj is δ2tj . Next, we simulate
θ from an Exponential prior q(θ) = exp(−θ)1{θ > 0}, and simulate ε as iid
random variables that follow Laplace distribution with parameter θ. Finally,
the observed data is {X,Y }, with Y = Xβ + ε.

We used ‖β̂ − β‖2 as a performance measure of the different estimators.
We therefore considered the a posteriori mean as the Bayesian estimator. We
compared this estimator to the classical M-estimators, namely least squares and
least absolute deviations estimators. We also considered standard regularization-
based estimators. Let the objective function to be minimized written as

f(β) =

n∑
i=1

ρ(Yi −XT
i β) + Pλ(β)

where Pλ is a regularization function and λ is a tuning constant chosen here
by cross-validation. We considered the following four estimators, defined by
the choice of ρ and Pλ: Least squares Lasso (ρ(x) = x2, Pλ(β) = ‖β‖1), least
squares Ridge regression (ρ(x) = x2, Pλ(β) = ‖β‖2), least absolute deviation
Lasso (ρ(x) = |x|, Pλ(β) = ‖β‖1) and least absolute deviation Ridge regression
(ρ(x) = |x|, Pλ(β) = ‖β‖2). The first two estimators were obtained using the
algorithm described in Friedman, Hastie and Tibshirani (2010) and the latter
two estimators were calculated using the algorithm described in Yi and Huang
(2015) (hqreg package in R).

Table 1 presents medians of ‖β̂−β‖2 across 1000 simulations for the estima-
tors we just described. We report the medians and not the means due to a small
number of outliers, observed mainly for the regularization based methods. For
each method, the �2 error grew with κ (or with p) for a fixed n, as one may have
expected. The superiority of the proposed Bayes estimator is clearly shown. For
n = 500 taking 1000 iterations of the Gibbs sampler resulted only in minor gain
comparing to using the Gibbs sampler with 500 iterations. For n = 2500, taking
1000 iterations was essential to improve this estimator’s performance. In Table
1 of the supplementary materials (Nevo and Ritov, 2016), we compared these

estimators using ‖β̂ − β‖1 as our criteria. The a posteriori mean and the Lasso
were comparable, and preferable over the other estimators. We comment that if
the goal is to minimize the ‖ · ‖1 loss function, the a posteriori median should
be used.

Considering Proposition 1, the relatively poor performance of the non regu-
larized M-estimators was expected. As expected, for κ > 0.3 the least absolute
deviations (LAD) estimator was preferable over the least squares (LS) estimator.
Among the regularization based methods, however, taking the least absolute de-
viation as a penalty function remained superior for all κ values, both for Lasso
and Ridge regression. Comparing the Lasso and Ridge regression, the former
showed better performance for a fixed penalty function.

To explore the robustness of the proposed Bayesian estimator, we performed
an additional study where the hyperparamters φ, δ21 , δ

2
2 and θ were fixed in the

data creation mechanism and did not follow the assumed priors. The results,
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Table 1

Medians values of ‖β̂ − β‖2 across 1000 simulations for the proposed Bayes estimator using
500 and 1000 iterations of the Gibbs sampler (Bayes500 and Bayes1000), the Lasso with
square (LASLS) and absolute (LASLAD) deviations penalty functions, Ridge regression

with square (RIDLS) and absolute (RIDLAD) deviations penalty functions and the standard
least squares (LS) and least absolute deviations (LAD) estimators

n = 500
κ Bayes500 Bayes1000 LASLS LASLAD RIDLS RIDLAD LS LAD
0.1 0.080 0.083 0.119 0.103 0.115 0.099 0.328 0.252
0.2 0.104 0.095 0.127 0.115 0.136 0.128 0.643 0.584
0.3 0.118 0.111 0.145 0.130 0.163 0.154 1.192 1.216
0.4 0.129 0.129 0.165 0.150 0.175 0.168 1.955 2.193
0.5 0.141 0.137 0.173 0.161 0.195 0.187 2.877 3.367
0.6 0.139 0.148 0.178 0.166 0.197 0.188 4.572 5.449
0.7 0.151 0.147 0.181 0.166 0.199 0.194 7.319 9.139
0.8 0.154 0.155 0.191 0.178 0.213 0.207 11.830 16.177
0.9 0.162 0.155 0.192 0.177 0.211 0.206 24.849 31.944
0.95 0.169 0.168 0.203 0.190 0.228 0.222 58.334 73.344

n = 2500
κ Bayes500 Bayes1000 LASLS LASLAD RIDLS RIDLAD LS LAD
0.1 0.077 0.073 0.098 0.081 0.100 0.087 0.301 0.231
0.2 0.099 0.097 0.124 0.108 0.141 0.129 0.722 0.647
0.3 0.120 0.104 0.128 0.112 0.157 0.146 1.154 1.165
0.4 0.127 0.120 0.145 0.128 0.171 0.163 1.985 2.119
0.5 0.143 0.119 0.139 0.126 0.167 0.161 3.056 3.569
0.6 0.152 0.132 0.152 0.141 0.183 0.178 4.245 5.142
0.7 0.155 0.138 0.155 0.142 0.184 0.178 6.737 8.396
0.8 0.172 0.146 0.162 0.149 0.193 0.191 12.157 15.799
0.9 0.166 0.150 0.165 0.153 0.195 0.188 26.930 35.734
0.95 0.180 0.157 0.171 0.156 0.208 0.204 58.033 72.705

presented in Table 2 of the supplementary materials, show that the Bayesian
estimator remains favorable in this scenario, even though the Gibbs sampler
assumes the aforementioned prior distributions.

Bayesian methods are often time consuming, especially when the target pa-
rameter is high dimensional and sampling from full conditionals is performed.
The Gibbs sampler presented in this section involve direct sampling for all the
parameters, with block sampling for β, without using additional MCMC steps.
Table 2 compares median computation time in minutes between the different
methods. Regularized least squares penalty function methods were considerably
faster that the alternatives (excluding simple LS and LAD). However, as Table
1 suggests, they were also inferior to the other methods. The suggested Bayesian
Gibbs sampler was comparable, and often preferable, in terms of computation
time to the regularized least absolute deviations estimators.

6. Discussion

This paper provided a Bayesian alternative to frequentist robust regression when
the number of predictors and the sample size are of the same order. Standard
M-estimators are inconsistent when considering the error accumulated over the
vector. If it is further assumed that the signal and the noise are of the same
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Table 2

Medians computation times (minutes) across 1000 simulations for the proposed Bayes
estimator using 1000 iterations of the Gibbs sampler (Bayes1000), the Lasso with square
(LASLS) and absolute (LASLAD) deviations penalty functions, Ridge regression with

square (RIDLS) and absolute deviations (RIDLAD) penalty functions and the standard least
squares (LS) and least absolute deviation estimators (LAD)

n = 500
κ Bayes1000 LASLS LASLAD RIDLS RIDLAD LS LAD
0.2 1.4 0.0 0.6 0.0 0.7 0.0 0.0
0.4 2.2 0.0 3.7 0.0 4.5 0.0 0.0
0.6 2.8 0.0 6.9 0.0 6.7 0.0 0.0
0.8 5.9 0.1 20.7 0.1 18.7 0.0 0.0
0.9 7.6 0.2 28.2 0.1 22.8 0.0 0.0
0.95 8.5 0.1 34.2 0.1 26.7 0.0 0.0

n = 2500
κ Bayes1000 LASLS LASLAD RIDLS RIDLAD LS LAD
0.2 12.2 0.2 9.2 0.3 11.0 0.0 0.6
0.4 74.6 0.7 73.8 0.9 91.8 0.1 3.0
0.6 39.7 0.5 56.4 0.5 65.3 0.1 2.5
0.8 98.2 1.5 141.2 1.0 156.2 0.2 3.9
0.9 137.8 3.0 190.9 1.2 205.9 0.2 4.2
0.95 396.6 2.6 353.4 1.4 385.8 0.6 4.6

asymptotic order, then shrinkage of many coefficients is desirable. We presented
an hierarchical prior for model parameters and constructed a Bayes estimator
suitable for the problem. A scale mixture of normal distribution representation
for the errors’ distribution allowed us to build an efficient Gibbs sampler with
block sampling for the coefficients. Theorem 1 shows that under appropriate
conditions, the Bayes estimator in this problem is consistent in the �2 sense.
This property does not hold for M-estimators in this design.

The Bayesian estimator also outperforms regularization based methods. Al-
though these methods, at least for the quadratic penalty function, can be com-
puted much faster, they provide point estimate only, where the Gibbs sampler
provides the entire posterior distribution that can be used to inference. This
issue was also pointed out in Park and Casella (2008). It was previously shown
that the asymptotic distribution of M-estimators in this design is nontrivial
(El Karoui et al., 2013; Donoho and Montanari, 2013; El Karoui, 2013). In
El Karoui (2013), the distribution of the M-estimator was studied as the limit
of a Ridge regularized estimators. As standard asymptotic theory does not apply
here, the asymptotic distribution of the Bayes estimator in this regime remains
as a future challenge.

7. Proofs

7.1. Proof of Proposition 1

First, by Lemma 1 in El Karoui et al. (2013) we can write

β̂ρ − β0 D
= ‖β̂ρ,simp‖Σ−1/2u
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where
D
= denotes equality in distribution, and where u is a p-length vector dis-

tributed uniformly on the sphere of radius one and where

β̂ρ,simp = argmin
β

n∑
i=1

ρ(εi − X̃T
i β).

with X̃T
i = Σ−1/2Xi being a mean zero multivariate normal vector with the

identity matrix as its variance. Their lemma also asserts that ‖β̂ρ,simp‖ and

u are independent. By Result 1 in El Karoui et al. (2013), ‖β̂ρ,simp‖ has a
deterministic limit denoted here (and there) by rρ(κ). They further show how
rρ(κ) can be found. Next, by a multivariate central limit theorem, for large
enough p,

√
pΣ−1/2u is approximately Np(0,Σ

−1). Thus, for large enough n we
have

‖
√
n(β̂ρ − β0)‖ D

= r2ρ(κ)κ
−1‖x‖2 + op(1) (5)

where x ∼ Np(0,Σ
−1). Let Σ = TΛTT be the spectral decomposition of Σ. For

v ∼ Np(0, I) and v
D
= v∗, we have

‖x‖2 = vTTΛ−1TT v = (v∗)TΛ−1v∗ ≥st. λ−1
minχ

2
p

where ≥st. symbolizes larger in the stochastic sense, λmin is the minimal eigen-
value of Σ, and χ2

p is a Chi-squared random variable with p degrees of freedom.
Therefore, the right hand side of (5) is Op(n) and we are done.

7.2. Lemma 1: Presentation and proof

Denote BC,η
n := 1

p

∑
j 1

{
|βj | > Cn−η/2

}
for the proportion of coordinates of β

that are of order larger than Cn−η/2. The following lemma ensures us that if the
prior distribution of β admits Assumptions (P1)-(P3) then BC,η

n is not far from
φ/p, and consequently, BC,η

n = Op(φ/p) = op(log(n)
−1). Thus, the proportion

of “large” coefficient values out of the total number of coefficients goes to zero
with probability that goes to one as n grows.

Lemma 1. Let assumptions (M1), (P1) and (P2) hold. Assume (P3) holds
with some ξ. Then, for all 1 ≤ η < ξ, for all ζ > 0 and for any constant C we
have

lim
n→∞

P
(∣∣∣BC,η

n − φ

p

∣∣∣ > φ

p
ζ
)
= 0

Proof. First note that BC,η
n is a mean of p independent Bernoulli random vari-

ables with success probability of

νC,η
n =

φ

p
2

[
Φ
(
− C√

nηδ21

)
+Φ

(
− C√

nηδ22

)]
+ 2Φ

(
− C√

nηδ22

)

=
φ

p
2Φ

(
− C√

nηδ21

)
+ o

(φ
p

)
.
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with Φ being the CDF of a standard normal random variable. The second equal-
ity results from nηδ22 = nη−ξ (Assumption (P3)) and since η < ξ. Now, this
problem is symmetric, so it is suffice to show

lim
n→∞

P
(
BC,η

n >
φ

p
(1 + ζ)

)
= 0.

By Chebyshev’s inequality we have

P
(
BC,η

n >
φ

p
(1 + ζ)) ≤ P

(
|BC,η

n − νC,η
n | > φ

p
(1 + ζ)− νC,η

n

)

≤ νC,η
n

p(φp (1 + ζ)− νC,η
n )2

=

φ
p 2Φ

(
− C√

nηδ21

)
+ o

(
φ
p

)
φ2

p

(
1 + ζ − 2Φ

(
− C√

nηδ21

))2

+ o
(

φ2

p

)
and the last expression goes to zero as n → ∞.

7.3. Proof of Theorem 1

For the simplicity of the proof we will assume that Σ = I.
Let β̂MAP = argmaxβ q(β|Y,X) be the MAP estimator. First we will show

that ‖β̂MAP − β0‖ = op(1), and then that ‖β̂MAP − β̂
‖ = op(1). We

Starting with β̂MAP , will first show the weaker result ‖β̂MAP −β0‖ = Op(1).
We will then build on this result to strengthen the conclusion. For any vector β,
we partition β to two subvectors βM and βMc , were M is the subset of relatively
large coefficients. We will then use the fact that ‖β̂MAP

M −β0
M‖ = Op(1) to argue

that ‖β̂MAP
Mc −β0

Mc‖ = op(1), and the latter to argue that ‖β̂MAP
M −β0

M‖ = op(1).
Now, for the details.

By Taylor expansion, the log-posterior of β can be written as

log q(β|Y,X)

=

n∑
i=1

�ε(Yi −XT
i β) +

p∑
j=1

log(q
(
βj)

)

=

n∑
i=1

�ε
(
εi −XT

i (β − β0)
)
+

p∑
j=1

log(q
(
βj)

)
(6)

=

n∑
i=1

�ε(εi) +

p∑
j=1

log(q
(
βj)

)
− (β − β0)T

n∑
i=1

Xi�
′
ε (εi)

+
1

2
(β − β0)T

n∑
i=1

�′′ε
(
εi + aβX

T
i (β − β0))

)
XiX

T
i (β − β0),

(7)

for some αβ ∈ [0, 1].
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Since the empirical distribution function converges to the cumulative distri-
bution function there are M < ∞ and γ < 1 such that

P (
∑

1(|εi| > M) < γn) → 1. (8)

Next we want to argue that we also have

P
(∑

1(|εi −XT
i (β̂

MAP − β0)| > M) < γn
)
→ 1. (9)

Let Un ≈ Vn if Un = Op(Vn) and Vn = Op(Un). Now

E|�(ε)− �(0)| = 2

∫ ∞

0

∣∣�(x)− �(0)
∣∣e�(x)dx

= 2

∫ ∞

0

x
∣∣�′(αxx)

∣∣e�(x)dx
≤ 2

∫ ∞

0

x
∣∣�′(x)∣∣e�(x)dx

= 2

∫ ∞

0

e�(x)dx = 2.

(10)

Hence n−1
∑n

i=1 �(εi)
p→ E�(ε) > −∞. Thus,

∑
�(εi) ≈ n. Since β̂MAP is the

maximizer we have that q(β̂MAP |Y,X)−q(β0|Y,X) > 0. Consider this difference
and recall also line (6). Consider first the difference in the prior contributions.
If tj = 2 (see Assumption (P1)) then the contribution of the prior can be made
larger by making βj smaller, but then |βj − β0

j | = Op(n
−ξ/2). If tj = 1 we

can increase the prior contribution, but there are only Op(n/ log n) such terms.

Thus, |
∑p

j=1 log(q
(
βMAP
j )

)
−

∑p
j=1 log(q

(
β0
j )
)
| = Op(n/ logn). Since β̂MAP

is improving over β0 and
∑n

i �(εi) ≈ n we must have that for some A > 0,∑
�(εi −XT

i (β̂
MAP − β0)) > −An with high probability. Since limx→∞ = −∞,

we can choose a finite M such that both (8) and (9) hold. Let

A = {i : |εi| < M and |εi −XT
i (β̂

MAP − β0)| < M}.

We conclude from (8) and (9) that for large enough M , |A| is the same order
as n. Hence

n∑
i=1

�′′ε
(
εi + αβ̂MAP X

T
i (β̂

MAP − β0))
)
XiX

T
i ≤ sup

|t|<M

�′′ε (t)
∑
A

XiX
T
i (11)

in the partial order of positive semi-definite matrices. We conclude from the
prior, (7), and we can verify by (11) that

‖β̂MAP − β0‖ = Op(
√
p/n) = Op(1). (12)

We now build on this result to strengthen the conclusion. Let M ⊆ {1, . . . , p}
be the set of indices such that |β0

j | > n−ξ logn. Denote by β0
M and β̂MAP

M the
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subvectors with indices in M of β0 and β̂MAP , respectively. Let Mc the comple-
mentary set and define the corresponding subvectors and submatrix similarly.

We start with estimation error of β̂MAP
Mc . Let R = {β : ‖βMc − β0

Mc‖ =

n−γ and βM = β̂MAP
M }, where 0 < γ < ξ − 1 and consider

W = max
β∈R

log q(β|Y,X)− log q(β0,MAP |Y,X), (13)

where β0,MAP equals to β0 on Mc and to β̂MAP on M. Substituting (7) in
(13), the second term on the RHS of (7) contributes to W −nξn−2γ , the third
term is at most Op(n

−γ+1), while the last term is by (11) and (12) at most

Op(n
−2γ+1) + Op(n

−γ+1). Thus W < 0, and since β̂MAP
Mc is the maximizer,

‖β̂MAP
Mc − β0

Mc‖ = op(1).
This means that the error in estimation βMc has negligible contribution.

The estimating equation for βM with only the t = 1 part of the prior is a
ridge regression with |M| = op(n) variables with negligible ridge penalty, thus

standard mean calculations and Assumption (M1) would show that ‖β̂MAP
M −

β0
M‖ = op(1). By Assumptions (P1)–(P3) the t = 2 part has a relative peak

at 0 of height of the ratio of the two standard deviations (Assumption (P3))
and the ratio of the mixing probabilities (Assumption (P1)). It contributes the
log of the product of these two terms, O(log n), but only for components which
are in an O(n−ξ/2) of 0. But the curvature of the likelihood is Op(n) and the
corresponding components of β0 areOp

(
φ−1/2

)
, thus the gain in the prior cannot

balance the loss in the likelihood which is of order nφ−1 per component which
is this neighborhood of 0.

Having established that the MAP estimator is in o(1) neighborhood of the

truth, we consider now β̂∗. Again, consider the partition to βM and βMc . The
log-prior of any βj is

log
(c1/21 φ3/2

p
e−c1φβ

2
j + c

1/2
2 nξ/2e−c2n

ξβ2
j

)
,

where c1, c2 = O(1). Thus, for |β̂MAP
j | < Lnn

−ξ/2, for Ln → ∞ slowly, the
central component of the prior dominates, and the a posteriori mass of this ball
is negligible. For β̂MAP

j ≈ φ−1/2, we argued that the peak at 0 is much smaller

than the value at β̂MAP
j . Since the radius of this peak is of order n−ξ. It can

be ignored. Ignoring this neighborhood of 0, the a posteriori is strictly concave
with maximum at β̂MAP

j , and curvature of order n and hence β̂∗
j − β̂MAP

j =

Op(n
−1/2).
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