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Abstract: In order to identify important variables that are involved in
making optimal treatment decision, Lu, Zhang and Zeng (2013) proposed a
penalized least squared regression framework for a fixed number of predic-
tors, which is robust against the misspecification of the conditional mean
model. Two problems arise: (i) in a world of explosively big data, effective
methods are needed to handle ultra-high dimensional data set, for exam-
ple, with the dimension of predictors is of the non-polynomial (NP) order of
the sample size; (ii) both the propensity score and conditional mean models
need to be estimated from data under NP dimensionality.

In this paper, we propose a robust procedure for estimating the opti-
mal treatment regime under NP dimensionality. In both steps, penalized
regressions are employed with the non-concave penalty function, where the
conditional mean model of the response given predictors may be misspec-
ified. The asymptotic properties, such as weak oracle properties, selection
consistency and oracle distributions, of the proposed estimators are inves-
tigated. In addition, we study the limiting distribution of the estimated
value function for the obtained optimal treatment regime. The empirical
performance of the proposed estimation method is evaluated by simulations
and an application to a depression dataset from the STAR*D study.

Keywords and phrases: Non-concave penalized likelihood, optimal treat-
ment strategy, oracle property, variable selection.
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1. Introduction

Personalized medicine, which has gained much attentions over the past few
years, is a medical paradigm that emphasizes systematic use of individual pa-
tient information to optimize that patient’s health care. In this paradigm, the
primary interest lies in identifying the optimal treatment strategy that assigns
the best treatment to a patient based on his/her observed covariates. Formally
speaking, a treatment regime is a function that maps the sample space of pa-
tient’s covariates to the treatments.

There is a growing literature for estimating the optimal individualized treat-
ment regimes. Existing literature can be casted into as model based methods
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and direct search methods. Popular model based methods include Q-learning
(Watkins and Dayan, 1992; Chakraborty, Murphy and Strecher, 2010) and
A-learning (Robins, Hernan and Brumback, 2000; Murphy, 2003), where Q-
learning models the conditional mean of the response given predictors and treat-
ment while A-learning models the interaction between treatment and predictors,
better known as the contrast function. The advantage of A-learning is robust-
ness against the misspecification of the baseline mean function, provided that
the propensity score model is correctly specified. Recently, Zhang et al. (2012)
proposed inverse propensity score weighted (IPSW) and augmented-IPSW es-
timators to directly maximize the mean potential outcome under a given treat-
ment regime, i.e. the value function. Moreover, Zhao et al. (2012) recast the
estimation of the value function from a classification perspective and use ma-
chine learning tools, to directly search for the optimal treatment regimes.

The rapid advances and breakthrough in technology and communication sys-
tems make it possible to gather an extraordinary large number of prognostic
factors for each individual. For example, in the Sequenced Treatment Alterna-
tive to Relieve Depression (STAR*D) study, over 305 covariates are collected
from each patient. With such data gathered at hand, it is of significant impor-
tance to organize and integrate information that is relevant to make optimal
individualized treatment decisions, which makes variable selection as an emerg-
ing need for implementing personalized medicine. There have been extensive
developments of variable selection methods for prediction, for example, LASSO
(Tibshirani, 1996), SCAD (Fan and Li, 2001), MCP (Zhang, 2010) and many
others in the context of penalized regression. Their associated inferential prop-
erties have been studied when the number of predictors is fixed, diverging with
the sample size and of the non-polynomial order of the sample size.

In contrast to the large amount of work on developing variable selection
methods for prediction, the variable selection tools for deriving optimal individ-
ualized treatment regimes have been less studied, especially when the number of
predictors is much larger than the sample size. Among those available, Gunter,
Zhu and Murphy (2011) proposed variable ranking methods for the marginal
qualitative interaction of predictors with treatment. Fan, Lu and Song (2015)
developed a sequential advantage selection method that extends the marginal
ranking methods by selecting important variables with qualitative interaction
in a sequential fashion. However, no theoretical justifications are provided for
these methods. Qian and Murphy (2011) proposed to estimate the conditional
mean response using a L1-penalized regression and studied the error bound
of the value function for the estimated treatment regime. However, the asso-
ciated variable selection properties, such as selection consistency, convergence
rate and oracle distribution, are not studied. Lu, Zhang and Zeng (2013) in-
troduced a new penalized least squared regression framework, which is robust
against the misspecification of the conditional mean function. However, they
only studied the case when the number of covariates is fixed and the propensity
score model is known as in randomized clinical trials. Song et al. (2015) pro-
posed penalized outcome weighted learning for the case with the fixed number
of predictors.
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In this paper, we study the penalized least squared regression framework
considered in Lu, Zhang and Zeng (2013) when the number of predictors is of
the non-polynomial (NP) order of the sample size. In addition, we consider a
more general situation where the propensity score model may depend on predic-
tors and needs to be estimated from data, as common in observational studies.
A two-step estimation procedure is developed. In the first step, penalized re-
gression models are fitted for the propensity score and the conditional mean of
the response given predictors. In the second step, the optimal treatment regime
is estimated using the penalized least squared regression with the estimated
propensity score and conditional mean models obtained in the first step. There
are several challenges in both numerical implementation and derivation of the-
oretical properties, such as weak oracle and oracle properties, for the proposed
estimation procedure. First, since the posited model for the conditional mean
of the response given predictors may be misspecified, the associated estimation
and variable selection properties under model misspecification with NP dimen-
sionality is not standard. Second, it is unknown how the asymptotic properties
of the estimators for the optimal treatment regime obtained in the second step
will depend on the estimated propensity score and conditional mean models
obtained in the first step under NP dimensionality. To our knowledge, these
two challenges have never been studied in the literature. Moreover, we estimate
the value function of the estimated optimal regime and study the estimator’s
theoretical properties.

The remainder of the paper is organized as follows. The proposed method for
estimating the optimal treatment regime is introduced in Section 2. Simulation
results are presented in Section 3. An application to a dataset from the STAR*D
study is illustrated in Section 4. Section 5 and 6 demonstrate the weak oracle
and oracle properties of the resulting estimators, respectively. The estimator for
the value function of the estimated optimal treatment regime is given in Section
7, followed by a Conclusion Section. All the technical proofs are given in the
Appendix.

2. Method

Let Y denote the response, A ∈ A denote the treatment received, where A is the
set of available treatment options, and X denote the baseline covariates includ-
ing constant one. For demonstration purpose, we focus on a binary treatment
regime, i.e., A = {0, 1}, with 0 for the standard treatment and 1 for the new
treatment. We consider the following semiparametric model:

Y = h0(X) +A(βT
0 X) + e, (2.1)

where h0(X) is the unspecified baseline function, β0 is the p-dimensional regres-
sion coefficients and e is an independent error with mean 0 and variance σ2.
Under the assumptions of stable unit treatment value (SUTVA) and no unmea-
sured confounders (Rubin, 1974), it can be shown that the optimal treatment
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regime dopt(x) for patients with baseline covariates X = x takes the form

I (E(Y |X = x,A = 1)− E(Y |X = x,A = 0) > 0) = I(βT
0 x > 0),

where I(·) is the indicator function.
Our primary interest is in estimating the regression coefficients β0 defining

the optimal treatment regime. Let π(x) = P (A = 1|X = x) be the propensity
score. We assume a logistic regression model for π(x):

π(x, α0) = exp(xTα0)/[1 + exp(xTα0)], (2.2)

with p-dimensional parameter α0. Here, we allow the propensity score to depend
on covariates, which is common in observational studies and the parameters α0

can be estimated from the data. For randomized clinical trials, π(x, α0) is a
constant. We assume the majority of elements in β0 and α0 are zero and refer
to the support supp(β0), supp(α0) as the true underlying sparse model of the
indices.

Consider a study with n subjects. AssumeX = (x1, . . . , xn)
T is deterministic.

The observed data consist of {(Yi, Ai, xi) : i = 1, · · · , n}. Define μ(x) = h0(x)+
π(x, α0)x

Tβ0, the conditional mean of the response given covariates X = x. We
propose the following two-step estimation procedure to estimate the optimal
treatment regime. In the first step, we posit a model Φ(x, θ) for the conditional
mean function μ(x), and consider the penalized estimation for the propensity
score and conditional mean models as follows.

Define

α̂ = argmin
α

1

n

n∑
i=1

[
log{1 + exp(xT

i α)} −Aix
T
i α

]
+

p∑
j=1

λ1nρ1(|αj |, λ1n), (2.3)

and

θ̂ = argmin
θ

1

n

n∑
i=1

{Yi − Φ(xi, θ)}2 +
q∑

j=1

λ2nρ2(|θj |, λ2n), (2.4)

where αj and θj refer to the jth element in α and θ, q is the dimension of θ, and
ρ1 and ρ2 are folded concave penalty functions with the tuning parameters λ1n

and λ2n, respectively. We allow p, q to be of NP order of n and assume log p =
O(n1−2dβ ) and log q = O(n1−2dθ ) for some dβ and dθ ∈ (0, 1

2 ), respectively. The
posited model Φ(x, θ) may be misspecified.

Define Φ̂i = Φ(xi, θ̂) and π̂i = π(xi, α̂). In the second step, we consider the
following penalized least square estimation:

β̂ = argmin
β

1

n

n∑
i=1

{Yi − Φ̂i − (Ai − π̂i)β
Txi}2 +

p∑
j=1

λ3nρ3(|βj |, λ3n), (2.5)

where ρ3 is a folded-concave penalty function with the tuning parameter λ3n.
Here the folded-concave penalty functions ρ1, ρ2 and ρ3 are assumed to satisfy
the following condition:
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Condition 2.1. ρ(t, λ) is increasing and concave in t ∈ [0,∞), and has a con-
tinuous derivative ρ′(t, λ) with ρ′(0+, λ) > 0. In addition, ρ′(t, λ) is increasing
in λ ∈ [0,∞) and ρ′(0+, λ) is independent of λ.

Popular penalties, such as LASSO, SCAD and MCP, satisfy Condition (2.1).
In our implementation, we use SCAD penalty. Here, we adopt a two-step estima-
tion procedure due to its computational simplicity. Alternatively, we can jointly
estimate the parameters θ in the conditional mean model and β in the contrast
function in a single penalized regression. However, this joint approach will re-
quire more computational effort since the tuning parameters for θ and β need
to be selected simultaneously. In contrast, our two-step method only requires
a single tuning parameter at each step and thus can be easily implemented by
existing softwares, for example, the R package ncvreg.

3. Numerical studies

In this section, we evaluate the numerical performance of the proposed esti-
mators in various settings. We generated the propensity score from the logistic
regression model (2.2), with only one important covariate with the coefficient
of 1.5. We chose three forms for the baseline function h0(x), including a simple
linear form, a quadratic form and a complex non-linear form,

• Model I: Y = 1+ θT0 X +A(βT
0 X̃) + ε,

• Model II: Y = 1+ 0.5(1 + θT0 X)2 +A(βT
0 X̃) + ε,

• Model III: Y = 1+ 1.5 sin(πθT0 X) +X2
1 +A(βT

0 X̃) + ε,

where X is a p-dimensional vector of covariates and X̃ = (1, XT )T . We set p =
1000. Covariates were generated independently from two distributions: standard
normal or s shifted exponential distribution with mean 0 and variance 1.

For each model, the first two covariates were chosen as important vari-
ables both in the baseline mean function and the contrast function with θ0 =
(−2,−1, 0, ..., 0)T and β0 = (0,−1.5, 1.5, 0, ..., 0)T . We considered two different
sample sizes, n = 300 and n = 500. For each scenario, we conducted 1000 repli-
cations. In our method, we fitted a linear model for Φ(X, θ) and used the SCAD
penalty for variable selection. The tuning parameter was chosen using 10-fold
cross-validation.

To evaluate the performance of the proposed estimator, we also compared our
method with the penalized Q-learning using the SCAD penalty. Specifically, we
fitted a linear model with baseline covariate effects and treatment-covariates
interaction. Note that it is correctly specified under model I but misspecified
under models II and III.

Let β̂ and β̃ denote our estimator and the penalized Q-learning estimator,
respectively. We report the L2 loss of β̂ and β̃, the number of missed impor-
tant variables (denoted as FN), the number of selected noisy variables (denoted
as FP) and the average percentage of making correct decisions (denoted as
PCD), which is defined as 1 −

∑n
i=1 |d(xi) − I(βT

0 xi > 0)|/n for treatment

rules d̂(x) = I(xT β̂ > 0) and d̃(x) = I(xT β̃ > 0). In addition, we estimated
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E{Y �(d̂)}, E{Y �(d̃)} and E{Y �(dopt)}, the value functions of the estimated op-
timal treatment regimes by our method and the penalized Q-learning method,
and of the true optimal regime, respectively, using Monte Carlo simulations. For
a given treatment rule d(x), we compute E{Y �(d)} by averaging the responses
for 20000 subjects generated from the true model with A being determined by
d(x). We report the averages of mean responses over 1000 replications as well
as their standard deviations.

Table 1 summarizes the results. The penalized Q-learning method performs
pretty well under Model I where the fitted linear model is correctly specified
and is more efficient than the proposed method as expected. For example, when
covariates are i.i.d normal and n = 300, the PCD is around 99.3% and the
estimated value function is very close to the true optimal, E{Y ∗(dopt)}. In
contrast, under this setting, the PCD of our proposed method is 97.5%, and the
estimated value function is slightly lower.

However, for Models II and III, the penalized Q-learning method could lead
to substantial bias and works much worse than the proposed method. Taking
the second model as an example, when covariates are normal and n = 300,
||β̃−β0||2 = 4.86, approximately third times as large as ||β̂−β0||2. The PCD of
the estimated treatment regime obtained by the penalized Q-learning is 55.0%,
only a little better than a random guess. In contrast, for this scenario, the
PCD of our proposed method is 73.4%. Moreover, when sample size increases,
the performance of the penalized Q-learning method is even worse. This is due
to the misspecification of the baseline mean function. For our method, there’s
a big increase in the PCD as the sample size gets larger. The L2 loss and
average number of missed important variables are also greatly reduced. This
demonstrates the robustness of the proposed method to the misspecification of
the baseline mean function.

4. Real data example

We applied our method to the data set from the STAR*D study for 4041 pa-
tients with nonpsychotic major depressive disorder (MDD). The aim of the
study was to determine the effectiveness of different treatments for those people
who have not responded to initial medication treatment. At Level 1, all patients
received citalopram (CIT), an selective serotonin reuptake inhibit (SSRI) medi-
cation. After 8-12 weeks, three more levels of treatments were offered to partic-
ipants whose previous treatment didn’t give an acceptable response. Available
treatments at Level 2 included sertraline (SER), venlafaxine (VEN), bupro-
pion (BUP) and cognitive therapy (CT) and augmenting CIT which combines
CIT with one more treatment. At Level 2A, switch options to VEN or BUP
treatment were provided for patients receiving CT but without sufficient im-
provement. Four treatments were available at Level 3 for participants without
anticipated response, including medication switch to mirtazapine (MIRT), nor-
triptyline (NTP), and medication augmentation with either lithium (Li) and
thyroid hormone (THY). Finally, treatment with tranylcypromine (TCP) or a
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Table 1

Simulation results for L2 loss, FN, FP, PCD and values.

Measures n Model I Model II Model III
Robust L2 loss 300 0.276 1.743 1.171
learning 500 0.189 1.453 0.700

FP 300 5.104 9.148 12.481
with 500 4.143 9.742 12.616

covariates FN 300 0.000 0.893 0.125
i.i.d 500 0.000 0.471 0.002

normal PCD 300 0.975 0.734 0.834
500 0.983 0.789 0.904

EY �(d̂) 300 1.842(0.021) 4.544(0.157) 2.716(0.089)
500 1.845(0.019) 4.643(0.116) 2.797(0.048)

EY �(dopt) 1.847 4.846 2.847
Penalized L2 loss 300 0.080 4.861 1.729
Q-learning 500 0.061 4.928 1.833

FP 300 0.001 8.191 7.745
with 500 0.000 4.438 7.972

covariates FN 300 0.000 0.050 0.757
i.i.d 500 0.000 0.006 0.553

normal PCD 300 0.993 0.550 0.714
500 0.994 0.538 0.690

EY �(d̃) 300 1.846(0.021) 4.117(0.165) 2.508(0.192)
500 1.846(0.020) 4.091(0.093) 2.457(0.204)

EY �(dopt) 1.847 4.846 2.847
Robust L2 loss 300 0.290 1.768 1.186
learning 500 0.199 1.495 0.730

FP 300 6.596 9.700 13.240
with 500 4.972 10.512 13.932

covariates FN 300 0.000 0.793 0.142
i.i.d 500 0.000 0.466 0.003

exponential PCD 300 0.958 0.724 0.809
500 0.971 0.761 0.871

EY �(d̂) 300 1.744(0.018) 4.500(0.179) 2.670(0.095)
500 1.747(0.018) 4.562(0.161) 2.736(0.041)

EY �(dopt) 1.751 4.751 2.783
Penalized L2 loss 300 0.264 2.580 2.225
Q-learning 500 0.121 3.236 2.408

FP 300 0.003 12.257 13.234
with 500 0.000 21.383 15.479

covariates FN 300 0.045 0.824 0.288
i.i.d 500 0.005 0.377 0.072

exponential PCD 300 0.954 0.610 0.609
500 0.978 0.595 0.584

EY �(d̃) 300 1.744(0.018) 4.500(0.179) 2.670(0.095)
500 1.743(0.037) 4.197(0.289) 2.201(0.224)

EY �(dopt) 1.751 4.751 2.783

combination of mirtazapine and venlafaxine (MIRT+VEN) were provided at
Level 4 for those without sufficient improvement at Level 3.

Here, we only focused on a subset of data for those patients receiving treat-
ment BUP (coded as 1) or SER (0) at Level 2. The outcome of interest was
the 16-item Quick Inventory of Depressive Symptomatology-Clinician-Ratings
(QIDS-C16), which indicated the severity of patient’s depressive symptom. The
maximum vale of QIDS-C16 was 24 and its distribution was highly skewed.
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Table 2

Estimated value functions and confidence intervals for the difference of the estimated values.

Treatment regime Estimated value function Diff 95% CI on Diff

Estimated optimal regime 3.10
BUP 2.55 0.55 [0.07, 1.13]
SER 2.80 0.30 [−0.08, 0.64]

Table 3

Number of patients receiving BUP or SER, according to the estimated optimal treatment
regime.

receives BUP receives SER total

assigns BUP 66 50 116
assigns SER 93 110 203

total 153 160 319

Hence, we considered the transformation Yi = log(25 − QIDS-C16) as our re-
sponse. Larger value of Yi indicates better response. All baseline variables at
Level 1 and intermediate outcomes at Level 2 were included as covariates in our
study, yielding 305 covariates in total for each patient. There are 383 patients
receiving treatment BUP or SER at Level 2, however, only 319 patients have
complete records of all 305 covariates and the response. Among them, 153 were
treated with BUP and 166 with SER. Our proposed method selected 14 vari-
ables that are important for treatment decision. We reestimate the coefficients
of these variable by solving A-learning estimating equations (Robins, 2004) and
obtained the resulting estimated optimal treatment regime.

To examine the performance of the estimated optimal treatment regime, we
compared it with the fixed treatment regimes by assigning all patients to either
BUP or SER, in terms of the estimated value functions obtained by the IPSW
method (Zhang et al., 2012). The results for the estimated value functions were
given in Table 2. In addition, we reported the 95% confidence intervals for the
difference between the estimated values of the obtained optimal regime and the
fixed regime based on 500 bootstrap samples. Our estimated optimal treatment
regime gave larger estimated values than those of the fixed regimes, BUP and
SER. The difference is significant when comparing to the BUP treatment at 5%
level, but is less significant when comparing to the SER treatment. One reason
is that our estimated optimal regime assigns the majority of patients (about
two-thirds) to the SER treatment. Please refer to Table 3 for the numbers of
patients receiving BUP or SER according to the estimated optimal regime.

In addition, as suggested by a referee, we examined the effects of missing data.
Specifically, we deleted one patient whose response was missing, and imputed all
the missing values in covariates using the R package missForrest available in
CRAN. This package uses a random forest trained based on the observe entries
in the design matrix to predict those missing values. The optimal treatment
regime obtained based on the imputed data was similar to the one based on the
complete-case analysis as shown above. It selected 14 variables among which 11
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variables were also included in the estimated optimal treatment regime without
imputation. In addition, the bootstrap results suggested that the estimated
value of the estimated optimal treatment regime is significantly larger than
those of the fixed treatment regimes, under 0.05 significance level. Since results
are similar, we omitted them here.

5. Non-asymptotic weak oracle properties

In this section we show that the proposed estimator enjoys the weak oracle
property, that is, α̂, β̂ and θ̂ defined in (2.3)-(2.5) are sign consistent with
probability tending to 1, and are consistent with respect to the L∞ norm. Weak
oracle properties of θ̂ are established in the sense that it converges to some least
false parameter θ� when the main effect model is misspecified.

Theorem 5.1 provides the main results. Some regularity conditions are dis-
cussed in subsections 5.1 and 5.2. A major technical challenge in deriving weak
oracle properties of β̂ is to analyze the deviation in (5.18), for which we de-
velop a general empirical process result in the supplementary article (Shi et al.,
2016). This result is important in its own right and can be used in analyzing
many other high-dimensional semiparametric models where the index param-
eter of an empirical process is a plug-in estimator. The following notation is
introduced to simplify our presentation.

Let 1 denote a vector of ones, E denote the identity matrix, O denote the
zero matrix consisting of all zeros. For any matrix Ψ, let P (Ψ) denote the
projection matrix Ψ(ΨTΨ)−1ΨT . ΨM the submatrix of Ψ formed by columns
in the subset M . For any vector a, b, let “◦” denote the Hadamard product:
a ◦ b = (a1b1, . . . , anbn)T , |a| = (|a1|, . . . , |an|)T , diag(a) as the diagonal matrix
with elements of vector a and aM the subvector of a formed by elements in M .
The jth element in a is denoted as aj . Let ‖ · ‖p be the Lp norm of vectors or
matrices. Let ||Y ||ψm be the Orlicz norm of a random variable Y ,

inf
u

{
u > 0 : E exp

(
|Y |
u

)m

≤ 2

}
,

for any m ≥ 1.
Let Mα = supp(α0), Mβ = supp(β0), Mθ� = supp(θ�), and M c

α, M
c
β , M

c
θ� be

their complements. Assume each xj , is standardized such that ||xj ||2 =
√
n. Let

Φ(θ) = [Φ(x1, θ), . . . ,Φ(xn, θ)]
T , φ(θ) = [φ1(θ), . . . , φq(θ)] denote its Jacobian

matrix. The derivatives are taken componentwise, i.e.,

φl(θ) =
(
φl(x1, θ), . . . , φ

l(xn, θ)
)
,

for all l = 1, . . . , q. We denote Φ(θ�) and φ(θ�) as Φ and φ when there’s no

confusion. We use a short-hand Φ̂, φ̂ for Φ(θ̂), φ(θ̂).

5.1. The misspecified function

We first define the least false parameter under the misspecification due to the
posited mean function Φ(x, θ). For regression models with fixed number of pre-
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dictors, the definition of the least false parameter under model misspecification
has been widely studied in the literature (e.g, White, 1982; Li and Duan, 1989).
However, for regression models with NP dimensionality, its definition is more
tricky. Here, we define our least false parameter as follows.

For each θ ∈ R
q, let dnθ = 1/2minj{|θj | : θj 	= 0}, Mθ be the support of θ,

μ = (μ(x1), . . . , μ(xn))
T and

Hθ =
{
δ ∈ R

d : δMc
θ
= 0, ||δMθ

− θMθ
||∞ ≤ dnθ

}
.

Consider the set

Θ =
{
θ : sup

δ∈Hθ

||φMc
θ
(δ)T [E − P{φMθ

(δ)}]{μ− Φ(θ)}||∞

≤ C0n
1−dθ

√
logn, |Mθ| ≤ s0

}
,

for some constant C0, and s0 
 n. We assume the set Θ to be nonempty and
define the least false parameter as

θ� = argmin
θ∈Θ

sup
δ∈Hθ

||{φMθ
(δ)TφMθ

(δ)}−1φT
Mθ

(δ){μ− Φ(θ)}||∞.

In addition, we assume

sup
δ∈Hθ�

||{φMθ�
(δ)TφMθ�

(δ)}−1φT
Mθ�

(δ)(μ− Φ)||∞ = O(n−γ0 logn), (5.1)

for some γ0 ≥ 0. By its definition, θ� satisfies

sup
δ∈Hθ�

||φMc
θ�
(δ)T [E − P{φMθ�

(δ)}](μ− Φ)||∞ = O(n1−dθ
√

logn), (5.2)

and |Mθ� | ≤ s0.

Remark 5.1. Conditions (5.1) and (5.2) are key assumptions determining the
degree of model misspecification. Condition (5.1) requires that the posited work-
ing model Φ can provide a good approximation for μ. In that case, the residual
μ − Φ will be orthogonal to the jacobian matrix φMθ�

and the left-hand side
of (5.1) will be small. In general, our assumptions are weaker than the weak
sparsity assumption imposed for Lasso (Bunea, Tsybakov and Wegkamp, 2007),
which assumes the L2 approximation error ||μ − Φ||2 converges to 0 at some
certain rate.

Condition 5.1. We assume the following conditions:

sup
δ∈Hθ�

||{φMθ�
(δ)TφMθ�

(δ)}−1||∞ = O(
bθ�

n
), (5.3)

sup
δ∈Hθ�

||φMc
θ�
(δ)TφMθ�

(δ){φMθ�
(δ)TφMθ�

(δ)}−1||∞ ≤min

{
C

ρ
′

3(0+)

ρ
′
3(dnθ)

, O(na3)

}
,

(5.4)
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q
max
l=1

||φl ◦ (1+ |Xβ0|)||2 = O(
√
n), (5.5)

q
max
l=1

∑
k∈Mθ�

sup
δ∈Hθ�

||∂φ
l(δ)

∂θk
◦ (1+ |Xβ0|)||2 = O(

n
1
2+γθ�

√
sθ� log n

), (5.6)

sup
δ1∈Hθ�

sup
δ2∈Hθ�

q
max
l=1

λmax

(
∂(|φl(δ1)|)TφMθ�

(δ2)

∂θMθ�

)
= O(n), (5.7)

for some constants 0 ≤ a3 ≤ 1/2, 0 ≤ γθ� ≤ γ0, sθ� = |Mθ� |. If the response is
unbounded, we require

q
max
l=1

(||φl||∞) = o(ndθ/
√
logn), (5.8)

and the right-hand side of (5.6) shall be modified to O(n
1
2+γθ� /

√
sθ� log2 n).

Remark 5.2. Conditions (5.6) and (5.7) put constraints on the derivatives of
φ, requiring the misspecified function to be smooth. The right-hand side order
in (5.6) is not too restrictive when nγθ� � sθ� logn.

Two common examples of the main-effect function Φ are provided below to
examine the validity of Condition 5.1.

Example 1. Set Φ = 0. Then, no model is needed for Φ. It is easy to check
that Condition 5.1 is satisfied.

Example 2. When a linear model is specified, i.e., Φ(x, θ) = xT θ, conditions
(5.6) and (5.7) are automatically satisfied since the second-order derivative of
Φ vanishes. In this example, θ� takes the form

θ�Mθ�
= (XT

Mθ�
XMθ�

)−1XT
Mθ�

μ,

and θ�Mc
θ�

= 0. Note that θ�Mθ�
is the regression coefficients between XMθ�

and

μ. Condition (5.1) holds automatically since

(XT
Mθ�

XMθ�
)−1XMθ�

(μ−Xθ�) = 0.

Condition (5.2) becomes

||XT
Mc

θ�
{I − P (XMθ�

)}μ||∞ = O(n1−dθ
√

logn). (5.9)

Each element in the left-hand side vector in (5.9) can be viewed as the inner
product of the residuals obtained by fitting XMθ�

on each noise variable in XMc
θ�

and those fitted by regressing XMθ�
on μ. When μ depends only on XMθ�

, (5.9)
holds for Gaussian linear model.

5.2. The covariates

Condition 5.2. Assume that

sup
δ∈Hθ�

||B−1
nβX

T
Mβ

W (δ)ΔXMαB
−1
nα ||∞ = O(

bαβ
n

), (5.10)
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sup
δ∈Hθ�

||XT
Mc

β
WβW (δ)XMαB

−1
nα ||∞ = min

{
o

(
λ2nρ

′

2(0+)

λ1nρ
′
1(dnβ)

)
, O(na2)

}
,

(5.11)
p

max
j=1

||W (θ�)xj ||2 = O(
√
n), (5.12)

p
max
j=1

∑
k∈Mα

||xk ◦ xj ◦ (Xβ0)||2 = O(
n1/2+γα

logn
), (5.13)

p
max
j=1

∑
k∈Mβ

||xj ◦ xk||2 = O(
n1/2+γβ

logn
), (5.14)

p
max
j=1

∑
l∈Mθ�

sup
δ∈Hθ�

||xj ◦ φl(δ)||2 = O(
n1/2+γθ�

√
sθ� log3 n

), (5.15)

sup
δ∈Hθ�

p
max
j=1

λmax[X
T
Mα

diag(|W (δ)xj |)XMα ] = O(n), (5.16)

p
max
j=1

λmax[X
T
Mα

diag|xj ◦ (Xβ0)|XMα ] = O(n), (5.17)

for some constants 0 ≤ γα, γβ , a2 ≤ 1/2, where

W (δ) = diag[μ− Φ(δ)], Bnα = XT
Mα

ΔXMα , Bnβ = XT
Mβ

ΔXMβ
,

Wβ = Δ−Δ
1
2P (Δ

1
2XMβ

)Δ
1
2 , Δ = diag(π(x1), . . . , π(xn)).

The sequence bαβ in (5.10) shall satisfy

bαβ = min
{
o(n

1
2−γβ

√
logn), o(n2γα−γβ/sα logn)

}
.

Remark 5.3. Conditions (5.10) and (5.11) control the impact of the deviation

of the estimated propensity score from its true value on β̂, thus are not needed
when the propensity scores are known. By the definition of W (δ), magnitudes of
the left-hand side in these two conditions depend on how accurate Φ models μ.
The sequence bαβ in (5.10) can converge to 0 when XMβ

and XMα are weakly
correlated. Each element in the left-hand side of (5.11) is the multiple regression
coefficient of the corresponding variable in XMc

β
on W (δ)XMα , using weighted

least squares with weights π ◦ (1−π), after adjusted by XMβ
, which characterize

their weak dependence given XMβ
. These two conditions are generally weaker

than those imposed by Fan and Lv (2011) (Condition 2), and are therefore more
likely to hold.

Remark 5.4. The right-hand side in (5.15) can be relaxed to O(n1/2+γθ� / logn)
when using the linear model. The additional term

√
sθ� is due to the penalty on

the complexity of the main effect model. This condition typically controls the
deviation

||ZT {Φ− Φ(θ̂)}||∞ = Op(
√

log p log n), (5.18)
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where Z = diag(A−π)X. A common approach to bound the deviation is to utilize
the classical Bernstein’s inequality. However this approach does not work here,
because the indexing parameter in the process Φ(·) in (5.18) is an estimator. To
handle this challenge, we bound the left-hand side in (5.18) by

sup
δ1,δ2∈Hθ�

||ZT {Φ(δ1)− Φ(δ2)}||∞.

A general theory that covers the above result is provided in Proposition C.1 in
the supplementary article.

Remark 5.5. Conditions (5.16) and (5.17) aim to control the L∞ norm of the
quadratic term of the Taylor series as a function of α̂, expanded at α0. Similar
to (5.10) and (5.11), the two conditions are not needed when α0 is known to us.

5.3. Weak oracle properties

Theorem 5.1 (Weak oracle property). Assume that conditions B.1 and B.3 in
the supplementary Appendix and conditions 5.1, 5.2 hold, and maxi ||ei||ψ1 <
∞, where ei is the residual for the ith patient in (2.1). Then there exist local

minimizers α̂, θ̂ and β̂ of the loss functions (2.3), (2.4), and (2.5) respectively,
such that with probability at least 1− c̄/(n+ p+ q):

(a) α̂Mc
α
= 0, β̂Mc

β
= 0, θ̂Mc

θ�
= 0,

(b) ||α̂Mα − α0Mα ||∞ = O(n−γα logn), ||β̂Mβ
− β0Mβ

||∞ = O(n−γβ logn),

||θ̂Mθ�
− θ�Mθ�

||∞ = O(n−γθ� logn),

for c̄ is some positive constant.

Remark 5.6. In Theorem 5.1, part (a) corresponds to the sparse recovery while
(b) gives the estimators’ convergence rates. Weak oracle property of α̂ directly
follows from Theorem 2 in Fan and Lv (2011). However, to prove this property

of β̂ requires further efforts, to account for the variability due to plugging in θ̂
and α̂. L∞ convergence rate of α̂Mα as well as the nonsparsity size sα, play an

important role in determining how fast β̂Mβ
converges.

Remark 5.7. The convergence rate of θ̂ will not affect that of β̂. This is because
we require the posed propensity score model to be correct, the estimation of β is
robust with respect to the model misspecification of the main effect parameters
θ. Simulation results also validate our theoretical findings.

6. Oracle properties

In this section we study the oracle property of the estimator β̂. We assume
that max(sα, sβ) 
 √

n and nγθ� � sθ� logn. The convergence rates of the
estimators are established in Section 6.1 and their asymptotic distributions are
provided in Section 6.2.
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6.1. Rates of convergence

Condition 6.1. In addition to (5.16) and (5.17) in Condition 5.2, assume that

the right-hand side of (5.15) is strengthened to O(n
1
2+γθ� /

√
sθ� log3 n), and the

following conditions hold,

sup
δ∈Hθ�

||B−1/2
nβ XT

Mβ
W (δ)ΔXMαB

−1/2
nα ||2 = O(1), (6.1)

sup
δ∈Hθ�

||XT
Mc

β
WβW (δ)XMα ||2,∞ = O(n), (6.2)

p
max
j=1

max
k∈Mβ

||xj ◦ xk||2 = O(
√
n), (6.3)

p
max
j=1

max
k∈Mα

||xj ◦ xk ◦ (Xβ0)||2 = O(
√
n), (6.4)

tr
[
XT

Mβ
W (θ�)ΔW (θ�)XMβ

]
= O(sβn). (6.5)

Remark 6.1. Similar to the interpretation of (5.10) and (5.11), (6.1) cor-
responds to a notion of weak dependence between variables in XMα and XMβ

while (6.2) require XMc
β
and XMα are weakly correlated after adjusted by XMβ

.

Besides, it can be verified that (6.3)-(6.5) hold with large probability when the
baseline covariates possesses subgaussian tail.

Theorem 6.1. Assume that conditions 2.1, 5.1 and 6.1 and conditions B.2 and
B.4 in the supplementary Appendix hold, and maxi ||ei||ψ1 < ∞. Constraints on
bθ� , dθ,dnθ and λ3n are same as in Theorem 5.1. Further assume max(l1, l2) <

1
2

with sα = O(nl1), sβ = O(nl2), and nγθ� � sθ� logn. Then there exists a strict

local minimizer β̂ of the loss function (2.5), α̂ of (2.3), such that α̂Mc
α
= 0,

β̂Mc
β

= 0 with probability tending to 1 as n → ∞, and ||α̂Mα − α0Mα ||2 =

O(
√
sαn

−1/2), ||β̂Mβ
− β0Mβ

||2 = O(
√
sα + sβn

−1/2).

Remark 6.2. We note that when establishing the oracle property of β̂, only
the weak oracle property of θ̂ is required. This is due to the robustness of the
A-learning methods and the fact that the propensity score is correctly specified.

Remark 6.3. Precision of β̂Mβ
is affected by that of α̂Mα , since ||β̂Mβ

−β0Mβ
||2

is at least the same order of magnitude as ||α̂Mα −α0Mα ||2. When the propensity

score is known, convergence rate of β̂Mβ
is improved to

√
sβ/n.

6.2. Asymptotic distributions

We define Σ12 and Σ22 as

Σ12 = 2B−1/2
nα XT

Mα
ΔWXMβ

B
−1/2
nβ ,

Σ22 = B
−1/2
nβ XT

Mβ
WΔ1/2(E − P

Δ
1
2 XMα

)Δ1/2WXMβ
B

−1/2
nβ ,

where W is a shorthand for W (θ�).
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To establish the weak convergence of the estimators, we introduce the follow-
ing conditions.

Condition 6.2. Assume that

λ1nρ̄1(dnα) = o(s−1/2
α n−1/2), λ2nρ̄2(dnβ) = o(s

−1/2
β n−1/2), (6.6)

n∑
i=1

(xT
MαiB

−1
nαxMαi)

3/2 → 0,

n∑
i=1

(xT
Mβi

B−1
nβ xMβi)

3/2 → 0, (6.7)

n∑
i=1

(xT
Mβi

B−1
nβ xMβi)

3/2|μi − Φi|3 → 0, (6.8)

λmax

(
B

−1/2
nβ XT

Mβ
W 2XMβ

B
−1/2
nβ

)
= O(1), (6.9)

sup
δ∈Hθ�

||B−1/2
nβ XT

Mβ
diag[Φ− Φ(δ)]ΔXMαB

−1/2
nα ||2 = o(1). (6.10)

where xMαi and xMβi stand for the ith row of the matrix XMα and XMβ
respec-

tively.

Remark 6.4. Conditions (6.7) and (6.8) are the Lyapunov conditions which

guarantee the normality of α̂Mα and β̂Mβ
. Condition (6.9) puts constraints on

the maximum eigenvalue of the variance-covariance matrix of XT
Mβ

diag(A −
π)(μ−Φ) by requiring it to be finite. Condition (6.10) holds when Φ(δ) converges
to Φ uniformly in terms of L∞ norm with δ in the region Hθ� . When ||μ−Φ||∞
is bounded, (6.8) and (6.9) are simultaneously satisfied.

Theorem 6.2 (Oracle property). Under conditions in Theorem 6.1 and Con-
dition 6.2, assume max(sα, sβ) = o(n1/3), the right-hand side of (5.15) is

strengthened to O(n
1
2+γθ� /

√
sβsθ� log3 n), as n → ∞. Then with probability

tending to 1, α̂ = (α̂T
Mα

, α̂T
2 )

T , β̂ = (β̂T
Mβ

, β̂T
2 )

T in Theorem 6.1 must satisfy

(a) α̂2 = 0, β̂2 = 0,

(b) [A1nB
1/2
nα (α̂Mα−α0Mα), A2nB

1/2
nβ (β̂Mβ

−β0Mβ
)] is asymptotically normally

distributed with mean 0, covariance matrix Ω, which is the limit of(
A1nA

T
1n A1nΣ12A

T
2n

A2nΣ21A
T
1n σ2A2nA

T
2n +A2nΣ22A

T
2n

)
,

where A1n is a q1 × sα matrix and A2n is a q2 × sβ matrix such that

λmax(A1nA
T
1n) = O(1), λmax(A2nA

T
2n) = O(1).

We note that conditions on the smoothness of the misspecified function (5.15)
is strengthened. To better understand the above theorem, we provide the fol-
lowing two corollaries. The first corollary gives the limiting distribution when
we specify both the propensity score and main-effect model while the second
one corresponds to case when the propensity score is known in advance.
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Corollary 6.1. Under conditions of Theorem 6.2, when we correctly specify the

main-effect model, i.e., μ = Φ, A1nB
1/2
nα (α̂Mα−α0Mα) and A2nB

1/2
nβ (β̂Mβ

−β0Mβ
)

are jointly asymptotically normally distributed, with the covariance matrix Ω′,
which is the limit of the following matrix,(

AT
1nA1n O
O σ2AT

2nA2n

)
.

Remark 6.5. Comparing the results in Corollary 6.1 and in Theorem 6.2, the
term AT

2nΣ22A2n accounts for the partial specification of model (2.1). In the

most extreme case where we correctly specify Φ, β̂Mβ
will achieve its minimum

variance and is independent of α̂Mα . In general, we can gain efficiency by posing
a good working model for Φ. Numerical studies also suggest that a linear model
such as Φ = Xθ is preferred compared to the constant model. This is in line to
our theoretical justification since W is a diagonal matrix with the ith diagonal
element μi − Φi.

Corollary 6.2. When the propensity score is known, under conditions of Theo-
rem 6.2 with all α̂’s replaced by α0, then with probability tending to 1 as n → ∞,

A2nB
1/2
nβ (β̂Mβ

− β0Mβ
) is asymptotically normally distributed with mean 0, co-

variance matrix Ω′′ which is the limit of

σ2AT
2nA2n +AT

2nΣ
′
22A2n,

where
Σ′

22 = B
−1/2
n2 XT

Mβ
WΔWXMβ

B
−1/2
n2 .

Remark 6.6. An interesting fact implied by Corollary 6.2 is that the asymptotic
variance of β̂Mβ

will be smaller than that of the same estimator had we known
the propensity score in advance. A similar result is given in the asymptotic
distribution of the mean response for the value function in the next section.
This is in line with the semiparametric theory in fixed p case where the variance
of augmented-IPWS estimator would be smaller when we estimate the parameter
in the coarsening probability model, even if we know what the true value is (see
Chapter 9 in Tsiatis, 2006). By doing so, we can actually borrow information
from the linear association between covariates in WXMβ

and those in XMα .

7. Evaluation of value function

In this section, we derive a non-parametric estimate for the mean response
under the optimal treatment regime. By (2.1), define our average population-
level response under a specific regime as

Vn(β) =
1

n

n∑
i=1

E[Yi|Ai = I(xT
i β > 0), Xi = xi]

=
1

n

n∑
i=1

[h0(xi) + xT
i β0I(x

T
i β > 0)],
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where the treatment decision for the ith patient is given as I(xT
i β > 0). The

mean response under the true optimal regime is denoted as Vn(β0) and it is easy
to verify that β0 is the maximizer of the function Vn.

Similarly as in Murphy (2003), we propose to estimate Vn(β0) using

V̂n =
1

n

n∑
i=1

[Yi + xT
i β̂{I(xT

i β̂ > 0)−Ai}]. (7.1)

This estimator is not doubly robust but offers protection against misspecification
of the baseline function and improved efficiency. It’s not doubly robust because
we require the propensity score model to be correctly specified to ensure the
oracle property of β̂. A key condition which guarantees asymptotic normality of
(7.1) is given as follows.

Condition 7.1. Assume there exists some constant C ′, such that for all ε > 0,

1

n

∑
i

I(|xT
i β0| < ε) ≤ C ′ε.

Remark 7.1. The above condition has similar interpretation as Condition (3.3)
in Qian and Murphy (2011), where random design were utilized. Condition 7.1
requires that the absolute value of the average contrast function can not be too
small, which together with the condition sβ = o(n1/4) ensures the following
stochastic approximation condition:

√
n

∑
i

xT
i β̂{I(xT

i β̂ > 0)− I(xT
i β0 > 0)} = op(1). (7.2)

Theorem 7.1. Assume that conditions in Theorem 6.2 hold. If Condition 7.1
holds and the nonsparsity size sβ satisfies sβ = o(n1/4), then with probability

going to 1,
√
n{V̂n−Vn(β0)} is asymptotically normally distributed with variance

ν20 , which is limit of

σ2 + σ2vTnXMβ
B−1

nβX
T
Mβ

vn + vTnXMβ
B

−1/2
nβ Σ22B

−1/2
nβ XT

Mβ
vn, (7.3)

where vn stands for the vector [I(xT
1 β0 > 0)−π(x1), . . . , I(x

T
nβ0 > 0)−π(xn)]

T /√
n, and Σ22 is defined in Theorem 6.2.

Remark 7.2. Note that we only need sβ = o(n1/2) to guarantee the weak or-

acle property of β̂ or O(
√
sβ/

√
n) convergence rate of ||β̂Mβ

− β0Mβ
||2. This

condition is strengthened to sβ = o(n1/3) to show the asymptotic normality of

β̂Mβ
. Theorem 7.1 further requires sβ = o(n1/4) as to ensure the approximation

condition (7.2).

Remark 7.3. When (7.2) is satisfied, the asymptotic normality of V̂n follows

immediately from the oracle property of the estimator β̂Mβ
. The first term σ2 in

(7.3) is due to variation of the error term ei while the last two terms correspond

to the asymptotic variance of β̂Mβ
.
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We provide a corollary here which corresponds to the case where the main-
effect model is correctly specified.

Corollary 7.1. In addition to the conditions in Theorem 7.1, if the main-effect
model is correct,

√
n{V̂n − Vn(β0)} is asymptotically normally distributed with

variance ν21 , which is defined as the limit of

σ2 + σ2vTnXMβ
B−1

nβX
T
Mβ

vn,

where vn is defined in Theorem 7.1.

Similar to the asymptotic distribution of β̂Mβ
, the following corollary suggests

that the proposed estimator is more efficient in the case when we estimate the
propensity score by fitting a penalized logistic regression.

Corollary 7.2. Assume the propensity score is known, and conditions in The-
orem 7.1 hold with all α̂’s replaced by α0, then with probability going to 1,√
n{V̂n−Vn(β0)} is asymptotically normally distributed with variance ν22 , which

is the limit of

σ2 + σ2vTnXMβ
B−1

nβX
T
Mβ

vn + vTnXMβ
B

−1/2
nβ Σ′

22B
−1/2
nβ XT

Mβ
vn,

with vn defined in Theorem 7.1, and Σ′
22 defined in Corollary 6.2.

By the definition of vn and the condition that λmax(X
T
Mβ

XMβ
) = O(n), the

asymptotic variance will reach its minimum when I(xT
i β0 > 0) is close to the

propensity score. We characterize this result in the following Corollary.

Corollary 7.3. Under the conditions in Theorem 7.1, if we further assume that

1

n

n∑
i=1

{I(XT
i β0 > 0)− π(xi)}2 = o(1),

then with probability going to 1,
√
n{V̂n − Vn(β0)} is asymptotically normally

distributed with the variance σ2.

Remark 7.4. Such a result is expected with the following intuition: in an obser-
vational study, if the clinician or the decision maker has a high chance to assign
the optimal treatment to an individual patient, i.e., the propensity score is close
to I(xT

i β0 > 0), the variation in estimating the value function will be decreased.
In other words, the more skillful the clinician or the decision maker is, the closer
the observed individual response Yi approaches the potential outcome under the
optimal treatment regime.

8. Conclusion

In this article, we propose a two-step estimator for estimating the optimal treat-
ment strategy, which selects variables and estimates parameters simultaneously



2912 C. Shi et al.

in both propensity score and outcome regression models using penalized re-
gression. Our methodology can handle data set whose dimensionality is allowed
to grow exponentially fast compared to the sample size. Oracle properties of
the estimators are given. Variable selection is also involved in the misspecified
model and new mathematical techniques are developed to study the estimator’s
properties in a general form of optimization. The estimator is shown to be more
efficient when the misspecified working model is “closer” to the conditional mean
of the response, although our approach does not require correct specification of
the baseline function. Numerical results demonstrate that the proposed estima-
tor enjoys model selection consistency and has overall satisfactory performance.

In the case when there are multiple local solutions of our objective functions
(2.5), (2.3) or (2.4), although our asymptotic theory only suggests the existence
of a local minimum possessing the oracle property, it is worth mentioning that
we can actually identify the desired oracle estimator using existing algorithms
(see Fan, Xue and Zou, 2014; Wang, Kim and Li, 2013). Theoretical properties
can be established in a similar fashion.

The proposed method requires to specify the propensity score model correctly.
In randomized studies, the propensity score is known in advance and thus the
assumption is automatically satisfied. However, for observational studies, there’s
no guarantee. In practice, some prior information on treatment decision mech-
anism used by physicians may be helpful for building a reasonable propensity
score. In addition, model diagnostic tests can be used to check the goodness-of-
fit of the posited propensity score model, such as a logistic regression model. In
general, this might be easier than checking the goodness-of-fit of the regression
model for the response. In addition, in our current work, we assume the design
matrix X to be deterministic mainly for technical convenience. To the best of
our knowledge, the penalized regression with the folded-concave penalties has
never been studied in random design settings with NP dimensionality. To con-
sider random design settings, we need to impose some tail conditions on X, and
the derivation of some technical results needs to be modified. This is beyond
the scope of our current paper and will be investigated elsewhere.

The current framework is focused on point treatment study. It will be inter-
esting and practically useful to extend our results to dynamic treatment regimes.
Significant efforts are needed to handle model misspecification in multiple stages.
This is an interesting research topic that needs further investigation.

Appendix

Here, we only give the proof of Theorem 5.1. More technical conditions and
proofs for Theorems 6.1, 6.2 and 7.1 are given in the supplementary Appendix.
To establish Theorem 5.1, we need the following lemmas. The proofs of these
lemmas are also given in the supplementary Appendix.

Lemma 1. Let z = (z1, . . . , zn)T be an n-dimensional independent random
response vector with mean 0 and a ∈ R

n.
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(a) If z1, . . . , zn are bounded in [c, d], then for any ε ∈ (0,∞),

Pr(|aT z| > ε) ≤ 2 exp

(
− ε2

2||a||22(d− c)2

)
.

(b) If z1, . . . , zn satisfy maxi ||zi||ψ1 ≤ ω, then for any ε ∈ (0,∞),

Pr(|aT z| > ε) ≤ 2 exp

(
−1

2

ε2

2||a||22ω2 + ||a||εω

)
.

Lemma 2. Define ε = ∪16
k=1εk, where εk is defined in Appendix G, under

conditions in Theorem 5.1, we have Pr(ε) ≥ 1− c̄/(n+ p+ q) for some c̄ > 0.

Notation. Let Z = diag(A− π)X, Ẑ = diag(A− π̂)X, and

ξ1 = ẐT e, ξ2 = ZT (μ− Φ), ξ3 = φT (e− Zβ0),

ξ4 = ZT diag(Xβ0)ΔXMα , ξ5 = XT [diag {(A− π) ◦ (A− π)} −Δ]XMβ
,

ξ6(δ) = ZT {Φ− Φ(δ)}, ξ7(δ) = {φ(δ)− φ}T (e− Zβ0),

and π = (π(x1), . . . , π(xn)). For a given matrix Ψ, the superscript Ψj is used to
refer to the vector which is the jth column of matrix Ψ while the subscript Ψi

stands for the ith row of Ψ. We will write Φ(θ), φ(θ) with θ = (θTMθ�
, 0T )T as

Φ(θMθ�
), φ(θMθ�

) for convenience.

Proof of Theorem 5.1

We break the proof into three steps. Based on Theorem 1 in Fan and Lv (2011),

it suffices to prove the existence of β̂Mβ
, θ̂Mθ�

inside the hypercube

ℵ =
{
(δTβ , δ

T
θ )

T : ||δβ − β0Mβ
||∞ = n−γβ logn, ||δθ − θ�Mθ�

||∞ = Kn−γθ� logn
}

with K a large constant, conditional on the event ε, satisfying

ẐT
Mβ

{Y − Φ(θ̂)− Ẑβ̂} = nλ2nρ̄2(β̂Mβ
), (A.1)

φ̂T
Mθ�

{Y − Φ(θ̂)} = nλ3nρ̄3(θ̂1), (A.2)

||ẐT
Mc

β
{Y − Φ(θ̂)− Ẑβ̂}||∞ < nλ2nρ

′

2(0+), (A.3)

||φ̂T
Mc

θ�
{Y − Φ(θ̂)}||∞ < nλ3nρ

′

3(0+), (A.4)

λmin(Ẑ
T
Mβ

ẐMβ
) > nλ2nκ(ρ2, β̂Mβ

), (A.5)

λmin(φ̂
T
Mθ�

φ̂Mθ�
) > nλ3nκ(ρ3, θ̂Mθ�

). (A.6)

Step 1. We first show the existence of a solution to equations (A.1) and
(A.2) inside ℵ for sufficiently large n. For any δ = (δ1, . . . , δsβ+sθ� )T ∈ ℵ, since
dnβ ≥ n−γβ logn, dnθ � n−γθ� logn, we have

sβ
min
j=1

|δj | ≥ min |βj
0| − dnβ = dnβ ,

sθ�

min
j=1

|δj+sβ | ≥ min |θ�j | − dnθ = dnθ
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and sgn(δβ) = sgn(β0Mβ
), sgn(δθ) = sgn(θ�Mθ�

). The monotonicity condition of

ρ
′

2(t), ρ
′

3(t) gives

||nλ2nρ̄2(δ)||∞ ≤ nλ2nρ
′

2(dnβ), ||nλ3nρ̄3(δ)||∞ ≤ nλ3nρ
′

3(dnθ). (A.7)

We write the left hand side of (A.1) as

ẐT
Mβ

{Y −Φ(δθ)− ẐMβ
δβ}= ξ1Mβ

+ ξ2Mβ
+(ẐMβ

−ZMβ
)T {μ− Φ(δθ)} (A.8)

+ ẐT
Mβ

ẐMβ
(β0Mβ

− δβ) + ẐT
Mβ

(ẐMβ
− ZMβ

)β0Mβ
− ZT

Mβ
{Φ(δθ)− Φ}.

Δ
= I1 + I2 + I3 + I4 + I5 + I6,

on the set ε3 ∪ ε5 ∪ ε13, we have

||I1||∞ + ||I2||∞ + ||I3||∞ = O(
√

n log n). (A.9)

Define

η1 = (Ẑ − Z)T {μ− Φ(δθ)}, η2 = (Ẑ − Z)T (ẐMβ
− ZMβ

)β0Mβ
.

Note that η1Mβ
= I3 in (A.8), which we represent here using a second order

Taylor expansion around α0Mα ,

I3 = XT
Mβ

W (δθ)ΔXMα(α0Mα − α̂Mα) +
1

2
rI3 , (A.10)

where rI3 in (A.10) corresponds to second order remainder, whose jth compo-
nent is given as

(α̂Mα − α0Mα)
TXT

Mα
W (δθ)Σ(α̃)diag(x

j)XMα(α̂Mα − α0Mα),

where Σ(α̃) is a diagonal matrix with the ith diagonal element π
′′
(xT

1αiα̃) with

α̃ lying in the line segment between α̂Mα and α0Mα . Since π
′′
(·) is a bounded

function, we can bound ||rI3 ||∞ by

max
j

(α̂Mα − α0Mα)
TXT

Mα
diag(|W (δθ)x

j |)XMα(α̂Mα − α0Mα), (A.11)

whose order of magnitude is O(sαn
1−2γα log2 n) by (5.16).

We decompose I4 in (A.8) as η2Mβ
+ ZT

Mβ
(ẐMβ

− ZMβ
)β0Mβ

. Using similar

arguments, on the set ε9, it follows from (5.17) that

||ZT
Mβ

(ẐMβ
− ZMβ

)β0Mβ
||∞

≤ max
j

(α̂Mα − α0Mα)
TXT

Mα
diag(|xj ◦Xβ0|)XMα(α̂Mα − α0Mα)

+ ||ξ4Mβ
||∞ = O(

√
n logn+ sαn

1−2γα log2 n). (A.12)

Using Taylor expansion, it is immediate to see that

||η2Mβ
||∞ ≤ max

j
(α̂Mα − α0Mα)

TXT
Mα

diag(|xj ◦Xβ0|)XMα(α̂Mα − α0Mα)
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= O(sαn
1−2γα log2 n), (A.13)

by (5.17). Combining (A.12) and (A.13) gives

||ẐT
Mβ

(ẐMβ
− ZMβ

)β0Mβ
||∞ = O(

√
n log n) +O(sαn

1−2γα log2 n). (A.14)

So far, we have

||I1 + I2 + I3 + I5 + I6 −XT
Mβ

W (δθ)ΔXMα(α0Mα − α̂Mα)||∞ (A.15)

= O(
√
n log n) +O(sαn

1−2γα log2 n) +O(sβn
1−2γβ log2 n),

by (A.9), (A.10), (A.11) and (A.14). Now we approximate I4 byXT
Mβ

ΔXMβ
(δβ−

β0Mβ
) and bound the magnitude of error ||ωMβ

||∞ where ω = (ẐT ẐMβ
−

XTΔXMβ
)(δβ − β0Mβ

). We present it as

ωMβ
= (ẐT

Mβ
ẐMβ

−XT
Mβ

ΔXMβ
)(δβ − β0Mβ

) = ẐT
Mβ

(ẐMβ
− ZMβ

)(δβ − β0Mβ
)

+ (ẐMβ
− ZMβ

)TZMβ
(δβ − β0Mβ

) + (ZT
Mβ

ZMβ
−XT

Mβ
ΔXMβ

)(δβ − β0Mβ
)

Δ
= ω1Mβ

+ ω2Mβ
+ ξ5Mβ

(δβ − β0Mβ
). (A.16)

It follows from first-order Taylor expansion that the jth element in ω1Mβ
can

be presented as

[(A− π̂) ◦ xj ◦ {Δ(α̃Mα)XMα(α̂Mα − α0Mα)}]TXMβ
(δβ − β0Mβ

), (A.17)

where Δ(α̃Mα) is a diagonal matrix with the ith diagonal component
π(xi, α̃Mα)(1 − π(xi, α̃Mα)), where α̃Mα lies between the line segment of α̂Mα

and α0Mα . We decompose xj as the Hadamard product of two vectors, denoted
by x̄j ◦ x̃j , where

x̄j =

(√
|xj

1|, . . . ,
√
|xj

n|
)
,

x̃j =

(
sgn(xj

1)

√
|xj

1|, . . . , sgn(xj
n)

√
|xj

n|
)
.

Let ϕ = (A− π̂) ◦ x̃j ◦ {Δ(α̃Mα)XMα(α̂Mα − α0Mα)}, we have

||[(A− π̂) ◦ x̃j ◦ {Δ(α̃Mα)XMα(α̂Mα − α0Mα)}]TXMβ
||2||δβ − β0Mβ

||2 (A.18)

=
√
ϕTdiag(x̄j)XMβ

XT
Mβ

diag(x̄j)ϕ||δβ − β0Mβ
||2

≤
√
λmax(XT

Mβ
diag(|xj |)XMβ

)||δβ − β0Mβ
||2||ϕ||2.

Since ||A− π̂||∞ ≤ 1, elements in Δ(α̃Mα) are bounded, we have

||ϕ||2 ≤ ||diag(x̃j)XMα(α̂Mα − α0Mα)||2 (A.19)

≤
√
λmax{XT

Mα
diag(|xj |)XMα}||α̂Mα − α0Mα ||2.
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Combining (A.18) with (A.19) gives

||ω1Mβ
||∞ ≤ p

max
j=1

√
λmax{XT

Mα
diag(|xj |)XMα}||α̂Mα − α0Mα ||22 (A.20)

p
max
j=1

√
λmax{XT

Mβ
diag(|xj |)XMβ

}||β̂Mβ
− β0Mβ

||22,

which is O(
√
sαsβn

1−γα−γβ log2 n) by (B.4) and (B.5).
By the same argument, we can verify that ||ω2Mβ

||∞ is of the same order.
Note that on the set ε11,

||ξ5Mβ
(δ − β0Mβ

)||∞ ≤ ||ξ5Mβ
||∞||δ − β0Mβ

||∞ = O(sβn
1−2γβ log2 n),

these together with (A.20), yields

||ωMβ
||∞ = O(sαn

1−2γα log2 n) +O(sβn
1−2γβ log2 n). (A.21)

Define vector-valued function

Ψ1(δβ , δθ) = B−1
nβ [Ẑ

T
Mβ

{y − Φ(δθ)− ẐMβ
δβ} − nλ2nρ̄2(δβ)]

= B−1
nβ {I1 + I2 + I3 + I4 + I5 + I6 − nλ2nρ̄2(δβ)}

= δβ − β0Mβ
+B−1

nβ {I1 + I2 + I3 + ωMβ
+ I5 + I6 − nλ2nρ̄2(δβ)}

Δ
= δβ − β0Mβ

+ uβ , (A.22)

then equation (A.1) is equivalent to Ψ1(δβ , δθ) = 0. It follows from (A.7), (A.15)
and (A.21) that

||uβ ||∞ ≤ sup
δ∈Hθ�

||B−1
nβX

T
Mβ

W (δ)ΔXMα(α̂Mα − α0Mα)||∞ + ||B−1
nβ ||∞

{O(sαn
1−2γα log2 n) +O(sβn

1−2γβ log2 n) +O(
√
n log n) + nλ2nρ

′
(dnβ)}.

By similar arguments in the proof of Theorem 2 in Fan and Lv (2011), we
have

||Bnα(α̂Mα − α0Mα)||∞ = O(sαn
1−2γα log2 n) +O(

√
n log n) (A.23)

+nλ1nρ
′

1(dnα),

on the set ε1 ∪ ε2. Thus by (5.10), (B.1), (B.14) and (B.15), we have

||uβ ||∞ ≤ O[bαβ{sαn−2γα log2 n+
√
logn/n+ λ1nρ

′

1(dnα)}]
+O[bβ{sαn−2γα log2 n+ sβn

−2γβ log2 n+
√
log n/n+ λ2nρ

′

2(dnβ)}].

Therefore by (A.20), for sufficiently large n, if (δβ − β0Mβ
)j = n−γβ logn,

Ψj
1(δβ , δθ) > 0, (A.24)

and if (δ − β0Mβ
)j = −n−γβ log n,

Ψj
1(δβ , δθ) < 0. (A.25)
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Similarly we write the left-hand side of (A.2) as

(φ̂Mθ�
− φMθ�

)T (e− Zβ0) + ξ3M ′
θ
+ φ̂T

Mθ�
(μ− Φ)− φ̂T

Mθ�
(Φ̂− Φ). (A.26)

It is immediately to see that

||ξ3Mθ�
||∞ = O(

√
n log n), (A.27)

on the set ε5. The L∞ norm of the first term in (A.26) is bounded by

sup
δ∈Hθ�

||ξ7Mβ
(δ)||∞ = O(

√
n log n), (A.28)

on the set ε15.
Using second-order Taylor expansion, we approximate the last term in (A.26)

by its first-order term φ̂T
Mθ�

φ̂Mθ�
(δθ − θ�Mθ�

). It follows from (5.7) that the L∞
norm of the remainder term is bounded from above by

sθ�
max
l=1

λmax

{
∂(|φl(δθ)|)TφMθ�

(δ̃θ)

∂θMθ�

}
||δθ − θ�Mθ�

||22 = O(sθ�n1−2γθ� log2 n),

(A.29)

where δ̃θ lies between the line segment of θ�Mθ�
and δθ.

Define Ψ2(δβ , δθ) = {φMθ�
(δθ)

TφMθ�
(δθ)}−1[φMθ�

(δθ)
T {Y − Φ(δθ)} −

nλ3nρ̄3(δθ)], equation (A.2) is equivalent to Ψ2(δβ , δθ) = 0. Similarly to
Ψ1(δβ , δθ), we now show Ψ2(δβ , δθ) is mainly dominated by δθ − θ�Mθ�

. Define
uθ = Ψ2(δβ , δθ)− δθ + θ�Mθ�

, it follows from (5.1), (5.3), (B.13), (A.26), (A.27),
(A.28) and (A.29) that

||uθ||∞ ≤ ||Ψ2(δβ , δθ)− δθ + θ�Mθ�
||∞ ≤ ||{φMθ�

(δθ)
TφMθ�

(δθ)}−1||∞{||ξ3M ′
θ
||∞

+ ||ξ7M ′
θ
(δθ)||∞ + ||Φ(δθ)− Φ− φ(δθ)

T (δθ − θ�Mθ�
)||∞ + nλ3nρ

′

3(dnθ)}
+ ||{φMθ�

(δθ)
TφMθ�

(δθ)}−1φMθ�
(δθ)

T (μ− Φ)||∞
= o(n−γθ� log n) +O(n−γθ� logn). (A.30)

Therefore, we can find a large constant K < ∞, for n large enough such that
if (δθ − θ�Mθ�

)j = Kn−γθ� logn,

Ψj
2(δβ , δθ) > 0, (A.31)

and if (δθ − θ�Mθ�
)j = −Kn−γθ� logn,

Ψj
2(δβ , δθ) < 0. (A.32)

Combining (A.24), (A.25) with (A.31) and (A.32), an application of Mi-
randa’s existence theorem shows equations (A.1), (A.2) have a solution

(β̂Mβ
, θ̂Mθ�

) in ℵ.
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Step 2. Let (β̂T , θ̂T )T be a solution to equations (A.1) and (A.2) with β̂Mc
β
= 0

and θ̂Mc
β
= 0. We show that (β̂T , θ̂T )T satisfies inequalities (A.3) and (A.4).

Decompose (A.3) as the sum of the following terms,

ẐT
Mc

β
(Y − Φ̂− ẐT

Mβ
β̂Mβ

)

= ξ1Mc
β
+ ξ2Mc

β
+ ZT

Mβ
(ẐMβ

− ZMβ
)β0Mβ

+ ξ5Mc
β
(β̂Mβ

− β0Mβ
) + ω1Mc

β

+ ω2Mc
β
+ η1Mc

β
+XT

Mc
β
ΔXMβ

(β̂Mβ
− β0Mβ

) + η2Mc
β
− ZMβ

(Φ̂− Φ).

(A.33)

On the set ε4 ∪ ε6 ∪ ε10 ∪ ε12, it is immediately to see that

||ξ1Mc
β
||∞ + ||ξ2Mc

β
||∞ + ||ξ5Mc

β
(β̂Mβ

− β0Mβ
)||∞ + ||ZT

Mβ
(Φ̂− Φ)||∞ (A.34)

= O(n1−dβ
√
log n).

By (B.4), (B.5) and (A.20), a first-order Taylor expansion gives

||ω1Mc
β
||∞ + ||ω2Mc

β
||∞ = O(sαn

1−2γα log2 n) +O(sβn
1−2γβ log2 n). (A.35)

Similarly, it follows from (5.17) and (A.13) that

||η2Mβ
||∞ = O(sαn

1−2γα log2 n). (A.36)

On the set ε10, by (5.17) and (A.12), we have

||ZT
Mβ

(ẐMβ
− ZMβ

)β||∞ = O(n1−dβ
√
logn) +O(sαn

1−2γα log2 n). (A.37)

Approximating η1Mc
β
by XT

Mc
β
W (δθ)ΔXMα(α0Mα − α̂Mα), the L∞ norm of

remainder error term is bounded from above by

(α̂Mα − α0Mα)
TXT

Mα
diag(|W (δθ)x

j |)XMα(α̂Mα − α0Mα) = O(sαn
1−γθ� log2 n),

(A.38)

by (5.16). Let u′
β = ẐT

Mc
β
(Y − Φ̂ − ẐT

1 β̂Mβ
) − XT

Mc
β
ΔXMβ

(β̂Mβ
− β0Mβ

) −
XT

Mc
β
W (θ̂1)ΔXMα(α0Mα − α̂Mα), it follows from (A.33)–(A.38) that

||u′
β ||∞ = O(n1−dβ

√
log n+ sαn

1−2γα log2 n+ sβn
1−2γβ log2 n). (A.39)

Since β̂Mβ
solves (A.1), we have

β̂Mβ
− β0Mβ

= −uβ , (A.40)

where uβ is defined as Ψ1(β̂Mβ
, θ̂Mθ�

) + β0Mβ
− β̂Mβ

. Combining (A.40) with
(A.23) and (A.39) gives

|| 1

nλ2n
ẐT
Mc

β
(Y − Φ̂− ẐT

Mβ
β̂Mβ

)||∞
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≤ 1

nλ2n
[||u′

β ||∞ + ||XT
Mc

β
ΔXMβ

(XT
Mβ

ΔXMβ
)−1||∞

{uβ −XT
Mβ

W (θ̂Mθ�
)ΔXMα(α0Mα − α̂Mα)}

+ ||XT
Mc

β
WβW (θ̂1)XMα(X

T
Mα

ΔXMα)
−1||∞

{nλ1nρ
′

1(dnα) +O(
√

n logn) +O(sαn
1−2γα log2 n)}]

≤ o(1) + Cρ
′

2(0+),

by (5.11), (B.3), (B.16) and (B.19). Since C < 1, for sufficiently large n, (A.3)
is satisfied.

Now we verify (A.4), decomposing φ̂T
Mc

θ�
(Y − Φ̂) as the sums of

(φ̂Mc
θ�

− φMc
θ�
)T (e− Zβ0) + ξ3Mc

θ
+ φ̂T

Mc
θ�
(μ− Φ) + φ̂T

Mc
θ�
(Φ− Φ̂), (A.41)

on the set ε8 ∪ ε16, we have

||ξ3M ′c
θ
||∞ + ||(φ̂Mc

θ�
− φMc

θ�
)T (e− Zβ0)||∞ = O(n1−dθ

√
logn). (A.42)

Similar to (A.29), a second-order Taylor expansion gives

||φ̂T
Mc

θ�
(Φ̂− Φ)− φ̂T

Mc
θ�
φ̂Mθ�

(θ̂Mθ�
− θ�Mθ�

)||∞ = O(sθ�n1−2γθ� log2 n), (A.43)

by (5.7). Since (β̂Mβ
, θ̂Mθ�

) is the solution to Ψ2(δβ , δθ) = 0, it follows from
(A.30) that

||φ̂T
Mc

θ�
φ̂Mθ�

(θ̂Mθ�
− θ�Mθ�

)− φ̂T
Mc

θ�
φ̂Mθ�

(φ̂T
Mθ�

φ̂Mθ�
)−1(μ− Φ)||∞ (A.44)

= ||φ̂T
Mc

θ�
φ̂Mθ�

(φ̂T
Mθ�

φ̂Mθ�
)−1||∞

{O(
√

n logn+ sθ�n1−2γθ� log2 n) + nλ3nρ
′

3(dnθ)}.

By (A.41)–(A.44) and conditions in (5.2), (5.4), (B.15) and (B.20), the left-
hand side of (A.4) can be bounded by

1

nλ3n
{O(n1−dθ

√
logn) +O(sθ�n1−2γθ� log2 n)}

+
1

nλ3n
||φ̂T

Mc
θ�
φ̂Mθ�

(φ̂T
Mθ�

φ̂Mθ�
)−1||∞

{O(
√

n log n) +O(sθ�n1−2γθ� log2 n) + nλ3nρ
′

3(dnθ)}+
1

nλ3n

||φ̂T
Mc

θ�
{I − PφMθ�

(θ̂1)}(μ− Φ)||∞ = o(1) + Cρ
′

3(0+),

for C < 1. Therefore (A.4) is satisfied.

Step 3. Now we show the second order conditions (A.5) and (A.6) hold. Be-
cause (A.6) is directly implied by (B.17), it suffices to show that λmin(Ẑ

T
Mβ

ẐMβ
)≥
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λmin(X
T
Mβ

ΔXMβ
) for sufficiently large n. Since (ẐMβ

− ZMβ
)T (ẐMβ

− ZMβ
) is

positive semi-definite, we have

λmin(Ẑ
T
Mβ

ẐMβ
) ≥ λmin(X

T
Mβ

ΔXMβ
) (A.45)

+λmin{(ẐMβ
− ZMβ

)TZMβ
+ ZT

Mβ
(ẐMβ

− ZMβ
) + ξ5Mβ

}.

Since any symmetric matrix Ψ, the absolute value of minimum eigenvalue
can be bounded by

|λmin(Ψ)| ≤
√
λmax(Ψ2) ≤

√
||Ψ||∞||Ψ||1 = ||Ψ||∞,

(A.5) follows if we can show ||ξ5Mβ
+(ẐMβ

−ZMβ
)TZMβ

+ZT
Mβ

(ẐMβ
−ZMβ

)||∞ =

o(n). But this is immediate to see because

||ξ5Mβ
||∞ = O(n1/2+γβ/

√
logn) = o(n),

on the set ε11. Similar to (A.20), ||(ẐMβ
− ZMβ

)TZMβ
+ ZT

Mβ
(ẐMβ

− ZMβ
)||∞

can be bounded from above by

2max
j

√
sβλmax{XT

Mβ
diag(|xj)XMβ

}λmax{XT
Mα

diag(|xj |)XMα}||α̂Mα −α0Mα ||22,
(A.46)

which is O(
√
sαsβn

1−γα logn) = o(n) implied by the constrain max(l1, l2) < γα.
This completes the proof.

Supplementary Material

Supplement to “Robust Learning for Optimal Treatment Decision
with NP-Dimensionality”
(doi: 10.1214/16-EJS1178SUPP; .pdf).
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