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Modal’X, Université Paris Ouest Nanterre la Défense,
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Abstract: The main objective of this paper is to establish bootstrap uni-
form functional central limit theorem for Harris recurrent Markov chains
over uniformly bounded classes of functions. We show that the result can
be generalized also to the unbounded case. To avoid some complicated
mixing conditions, we make use of the well-known regeneration properties
of Markov chains. We show that in the atomic case the proof of the boot-
strap uniform central limit theorem for Markov chains for functions dom-
inated by a function in L2 space proposed by Radulović (2004) can be
significantly simplified. Finally, we prove bootstrap uniform central limit
theorems for Fréchet differentiable functionals in a Markovian setting.
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1. Introduction

The naive bootstrap for indentically distributed and independent random vari-
ables introduced by Efron (1979) has gradually evolved and new types of boot-
strap schemes in both i.i.d. and dependent setting were established. A detailed
review of various bootstrap methods such as moving block bootstrap (MBB),
nonoverlapping block bootstrap (NBB) or cilcular block bootstrap (SBB) for
dependent data can be found in Lahiri (2003). The main idea of block boot-
strap procedures is to resample blocks of observations in order to capture the
dependence structure of the original sample. However, as indicated by many
authors, these procedures struggle with many problems. For instance, popu-
lar MBB method requires the stationarity for observations that usually results
in failure of this method in non-stationary setting (see Lahiri (2003) for more de-
tails). Furthermore, the asymptotic behaviour of MBB method is highly depen-
dent on the estimation of the bias and of the asymptotic variance of the statistic
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of interest that is a significant drawback when considering practical applications.
Finally, it is noteworthy, that the rate of convergence of the MBB distribution
is slower than that’s of bootstrap distribution in the i.i.d. setting. Moreover, all
mentioned block bootstrap procedures struggle with the problem of the choice
of the length of the blocks of data in order to reflect the dependence structure
of the original sample.

It is rather surprising that the bootstrap theory for Markov chains has been
paid relatively limited attention given the extensive investigation and devel-
opment of various bootstrap methods for both i.i.d. and dependent data. One
of the first bootstrap results for Markov chains were obtained by Athreya and
Fuh (1992, 1993). The proposed methods rely on the renewal properties of
Markov chains when a (recurrent) state is visited infinitely often. The idea
behind such procedures is to resample a deterministic number of data blocks
which are corresponding to regeneration cycles. Athreya and Fuh (1992, 1993)
have shown that the distribution of the naive bootstrap of the pivot

√
n(P̂n−P ),

where P̂n is the maximum likelihood estimator of a transition probablity matrix
P, approximates that of the pivot as n → ∞. The approach relies on a consid-
eration of a double array of Markov chains for which a central limit theorem is
established. Datta and McCormick (1995) consider bootstrapping the distribu-
tion of the sample mean of a fixed real function of a Markov chain. However,
the proposed method is not second-order correct. Bertail and Clémençon (2007)
have proposed the modification of this procedure which gives the second-order
correctness in the stationary case, but fails in the nonstationary setting. Bertail
and Clémençon (2006a) have proposed two effective methods for bootstrapping
Markov chains: the Regenerative block bootstrap (RBB) method for atomic
chains and Approximate block bootstrap method (ARBB) for general Harris
recurrent Markov chains. The main idea behind these procedures is to mim-
ick the renewal (pseudo-renewal in general Harris case) structure of the chain
by drawing regeneration data blocks, until the length of the reconstructed boot-
strap sample is larger than the length of the original data. Blocks before the first
and after the last regeneration times are discarded in order to avoid large bias. In
the atomic setting, the RBB method has the uniform rate of convergence of or-
der OP(n

−1) which is the optimal rate of convergence in the i.i.d. case. Bertail
and Clémençon (2006b) have proved the second-order correctness of the ARBB
procedure in the unstudentized stationary case, the rate of convergence is close
to that in the i.i.d. case. It is noteworthy that for both methods, the division of
the data into blocks is completely data-driven what is a significant advantage in
comparison to block bootstrap methods. It is worthy of mention, that in parallel
to the paper of Bertail and Clémençon (2006a), the Markov chains bootstrap
CLT for the mean under no additional assumptions was proposed by Radulović
(2004).

Bootstrap results for Markov chains established by Radulović (2004) and
Bertail and Clémençon (2006a) allow naturally to extend the bootstrap theory
to empirical processes indexed by classes of functions in a Markovian setting.
Radulović (2004) has proved the bootstrap uniform functional central limit
theorem over uniformly bounded classes of functions F . In mentioned paper,
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Radulović considers countable regenerative Markov chains and indicates that
with additional uniform entropy condition the bootstrap result can be extended
to the uncountable case. Gorst-Rasmussen and Bøgsted (2009) have proved
the bootstrap uniform central limit theorem over classes of functions whose en-
velope is in L2. They have considered regenerative case which was motivated
by their study of queuing systems with abandonment.

This paper generalizes the Radulović’s (2004) bootstrap result for empiri-
cal processes for Markov chains. We establish the bootstrap uniform functional
central limit theorem over a permissible uniformly bounded classes of functions
in general Harris case. We also show that by arguments of Tsai (1998), the con-
dition of the uniform boundedness of F can be weakened and it is sufficient
to require only that F has an envelope F in L2. The proof of the bootstrap uni-
form CLT for Harris recurrent Markov chains is closely related to the uniform
CLT for countable atomic Markov chains proposed by Radulović. Similarly as
in his paper, the main struggle is the random number of pseudo-regeneration
blocks. However, using regeneration properties of Markov chains, it is possi-
ble to replace the random number of blocks with its deterministic equivalent
what simplifies the analysis of asymptotic properties of the studied empirical
process. The arguments from the proof of main theorem of this paper can be
also applied directly to the proof of bootstrap uniform CLT for atomic Markov
chains proposed by Radulović (2004). Thus, we can significantly simplify the
proof of the Radulović’s result and apply standard probability inequalities for
i.i.d. blocks of data to show the asymptotic stochastic equicontinuity of the
bootstrap version of original empirical process indexed by uniformly bounded
class of function.

Regenerative properties of Markov chains can be applied in order to extend
some concepts in robust statistics from i.i.d. to a Markovian setting. Martin and
Yohai (1986) have shown that, generally, proving that statistics are robust in de-
pendent case is a challanging task. Bertail and Clémençon (2006b) have defined
an influence function and Fréchet differentiability on the torus what allowed to
extend the notion of robustness from single observations to the blocks of data
instead. As shown in Bertail and Clémençon (2015), this approach leads directly
to central limit theorems (and their bootstrap versions) for Fréchet differentiable
functionals in a Markovian setting. In our framework, we use the bootstrap
asymptotic results for empirical processes indexed by classes of functions to
derive bootstrap uniform central limit theorems for Fréchet differentiable func-
tionals in a Markovian case. Interestingly, there is no need to consider blocks
of data as in Bertail and Clémençon (2015). We show that the theorems work
when classes of functions are permissible and uniformly bounded, however, it is
easy to weaken the last assumption and impose that F has an envelope in L2.

The paper is organized as follows. In section 2, we introduce the notation
and preliminary assumptions for Markov chains. In section 3, we recall briefly
some bootstrap methods for Harris recurrent Markov chains and formulate fur-
ther necessary assumptions for the considered Markov chains. In section 4, we
establish the bootstrap uniform central limit theorem for Markov chains. We
give a proof for uniformly bounded classes of functions and show how the theory
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can be easily extended to the unbounded case. We indicate that using regener-
ation properties of Markov chains, the proof of uniform bootstrap central limit
theorem for countable chains proposed by Radulović can be simplified. In sec-
tion 5, the bootstrap uniform central limit theorems for Fréchet differentiable
functionals in a Markovian setting are established. We prove that the central
limit theorem holds when classes of functions are uniformly bounded. Next, we
generalize the theory to the unbounded case demanding that F has an envelope
in L2. In the last section, we enclose small appendix with a proof of the inter-
esting property used in the proofs of main asymptotic theorems in the previous
section.

2. Preliminaries

We begin by introducing some notations and recall the key concepts of the Mar-
kov chains theory (see Meyn and Tweedie (2009) for a detailed review and refer-
ences). For the reader’s convenience we keep our notations in agreement with no-
tations set in Bertail and Clémençon (2006b). All along this section IA is the
indicator function of the event A.

Let X = (Xn)n∈N be a homogeneous Markov chain on a countably generated
state space (E, E) with transition probability Π and initial probability ν. Note
that for any B ∈ E and n ∈ N, we have

X0 ∼ ν and P(Xn+1 ∈ B|X0, · · · , Xn) = Π(Xn, B) a.s.

In our framework, Px (resp. Pν) denotes the probability measure such that
X0 = x andX0 ∈ E (resp. X0 ∼ ν), and Ex (·) is the Px-expectation (resp. Eν (·)
is the Pν-expectation). In the following, we assume that X is ψ -irreducible and
aperiodic, unless it is specified otherwise.

We are particularly interested in the atomic structure of Markov chains. It
is shown by Nummelin (1978) that any chain that possesses some recurrent
properties can be extended to a chain which has an atom (see Meyn and Tweedie
(2009) for more details).

In our framework, we are interested in the asymptotic behaviour of positive
recurrent Harris Markov chains. We say that X is Harris recurrent if starting
from any point x ∈ E and any set such that ψ(A) > 0, we have Px(τA < +∞) =
1, where τA is the first entrance time to the set A. Observe that the property
of Harris recurrence ensures that X visits set A infinitely often a.s.. It follows
directly from the strong Markov property, that given any initial law ν, the
sample paths can be divided into i.i.d. blocks corresponding to the consecutive
visitis of the chain to atom A. The segments of data are of the form:

Bj = (X1+τA(j), · · · , XτA(j+1)), j ≥ 1

and take values in the torus ∪∞
k=1E

k.
We define the sequence of regeneration times (τA(j))j≥1. The sequence con-

sists of the successive points of time when the chain forgets its past. Let

τA = τA(1) = inf{n ≥ 1 : Xn ∈ A}
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be the first time when the chain hits the regeneration set A and

τA(j) = inf{n > τA(j − 1), Xn ∈ A} for j ≥ 2.

We introduce few more pieces of notation: throughout the paper we write ln =∑n
i=1 I{Xi ∈ A} for the total number of consecutive visits of the chain to the

atom A, thus we observe ln+1 data blocks. We make the convention that B
(n)
ln

=
∅ when τA(ln) = n. Furthermore, we denote by l(Bj) = τA(j+1)−τA(j), j ≥ 1,
the length of regeneration blocks. Let μ be the stationary distribution ofX. Note
that by the Kac’s theorem we have that E(l(Bj)) = EA(τA) = 1

μ(A) . Consider

μ− integrable function f : E → R. By un(f) = 1
τA(ln)−τA(1)

∑n
i=1 f(Xi) we

denote the estimator of the unknown asymptotic mean Eμ(f(X1)).

Remark 2.1. In order to avoid large bias of the estimators based on the re-
generative blocks we discard the data before the first and after the last pseudo-
regeneration times (for more details refer to Bertail and Clémençon (2006a),
page 693).

2.1. General Harris Markov chains and the splitting technique

In this subsection, we recall the so-called splitting technique introduced in Num-
melin (1978). The technique allows to extend the probabilistic structure of any
Harris chain in order to artificially construct a regeneration set. In the following,
unless specified otherwise, X is a general, aperiodic, ψ-irreducible chain with
transition kernel Π.

Definition 2.1. We say that a set S ∈ E is small if there exists a parameter
δ > 0, a positive probability measure Φ supported by S and an integer m ∈ N∗

such that
∀x ∈ S, A ∈ E Πm(x,A) ≥ δ Φ(A), (2.1)

where Πm denotes the m-th iterate of the transition probability Π.

We expand the sample space in order to define a sequence (Yn)n∈N of inde-
pendent r.v.’s with parameter δ. We define a joint distribution Pν,M of XM =
(Xn, Yn)n∈N . The construction relies on the mixture representation of Π on

S, namely Π(x,A) = δΦ(A) + (1 − δ)Π(x,A)−δΦ(A)
1−δ . It can be retrieved by the

following randomization of the transition probability Π each time the chain X
visits the set S. If Xn ∈ S and

• if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then Xn+1 is dis-
tributed according to the probability measure Φ,

• if Yn = 0 (that happens with probability 1− δ), then Xn+1 is distributed
according to the probability measure (1− δ)−1(Π(Xn, ·)− δΦ(·)).

This bivariate Markov chainXM is called the split chain. It takes its values in
E×{0, 1} and possesses an atom, namely S×{1}. The split chain XM inherits
all the stability and communication properties of the chain X. The regenerative
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blocks of the split chain are i.i.d. (in case m = 1 in (2.1)). If the chain X satisfies
M(m,S, δ,Φ) for m > 1, then the blocks of data are 1-dependent, however, it is
easy to adapt the theory from the case when m = 1 (see for instance Levental
(1988)).

2.2. Regenerative blocks for dominated families

Throughout the rest of the paper, the minorization condition M is fulfilled
with m = 1, unless specified otherwise. We assume that the family of the con-
ditional distributions {Π(x, dy)}x∈E and the initial distribution ν are domi-
nated by a σ-finite measure λ of reference, so that ν(dy) = f(y)λ(dy) and
Π(x, dy) = p(x, y)λ(dy), for all x ∈ E. The minorization condition requests
that Φ is absolutely continuous with respect to λ and that p(x, y) ≥ δφ(y),
λ(dy) a.s. for any x ∈ S, with Φ(dy) = φ(y)dy. Consider the binary random
sequence Y constructed via the Nummelin’s technique from the parameters
inherited from condition M. We want to approximate the Nummelin’s con-
struction. Note that the distribution of Y (n) = (Y1, ..., Yn) conditionally to
X(n+1) = (x1, ..., xn+1) is the tensor product of Bernoulli distributions given
by: for all β(n) = (β1, ..., βn) ∈ {0, 1}n , x(n+1) = (x1, ..., xn+1) ∈ En+1,

Pν

(
Y (n) = β(n) | X(n+1) = x(n+1)

)
=

n∏
i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1),

with, for 1 � i � n,

• if xi /∈ S, Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δ,
• if xi ∈ S, Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δφ(xi+1)/p(xi, xi+1).

Observe that conditioned on X(n+1), from i = 1 to n, Yi is distributed ac-
cording to the Bernoulli distribution with parameter δ, unless X has hit the
small set S at time i: then, Yi is drawn from the Bernoulli distribution with pa-
rameter δφ(Xi+1)/p(Xi, Xi+1). We denote by L(n)(p, S, δ, φ, x(n+1)) this prob-
ability distribution. If we were able to generate Y1, ..., Yn, so that XM(n) =
((X1, Y1), ..., (Xn, Yn)) be a realization of the split chain XM, then we would
be able to do the block decomposition of the sample path XM(n) leading
to asymptotically i.i.d. blocks. Note, that in the above procedure the knowl-
edge about the transition density p(x, y) is required in order to generate ran-
dom variables (Y1, · · · , Yn). To deal with this problem in practice, Bertail and
Clémençon (2006a) proposed the approximating construction of the above proce-
dure. We proceed as follows. We construct an estimator pn(x, y) of p(x, y) based
on X(n+1) (and pn(x, y) satisfies pn(x, y) ≥ δφ(y), λ(dy)−a.s. and pn(x, y) >

0, 1 ≤ i ≤ n). Next, we generate random vector Ŷn = (Ŷ1, · · · , Ŷn) condition-
ally to X(n+1) from distribution L(n)(pn, S, δ, γ,X

(n+1)) which is an approx-
imation of the conditional distribution L(n)(p, S, δ, γ,X(n+1)) of (Y1, · · · , Yn)
for given X(n+1).

In this setting, we define the successive hitting times of AM = S × {1}
as τ̂AM(i), i = 1, · · · , l̂n, where l̂n =

∑n
i=1 I{Xi ∈ S, Ŷi = 1} is the total



Bootstrap uniform CLTs for Harris recurrent Markov chains 2163

number of visits of the split chain to AM up to time n. The approximated
blocks are of the form:

B̂0 = (X1, · · · , Xτ̂AM (1)), · · · , B̂j = (Xτ̂AM (j)+1, · · · , Xτ̂AM (j+1)), · · · ,

B̂l̂n−1 = (Xτ̂AM (l̂n−1)+1, · · · , Xτ̂AM (l̂n)
), B̂(n)

l̂n
= (Xτ̂AM (l̂n)+1, · · · , Xn+1).

Moreover, we denote by n̂AM = τ̂AM(l̂n)−τ̂AM(1) =
∑l̂n−1

i=1 l(B̂j) the total num-
ber of observations after the first and before the last pseudo-regeneration times.
Let

σ2
f =

1

EAM(τAM)
EAM

(τAM∑
i=1

{f(Xi)− μ(f)}2
)

be the asymptotic variance. Furthermore, we set that

μ̂n(f) =
1

n̂AM

l̂n−1∑
i=1

f(B̂j), where f(B̂j) =

τ̂AM (j+1)∑
i=1+τ̂AM (j)

f(Xi)

and

σ̂2
n(f) =

1

n̂AM

l̂n−1∑
i=1

{
f(B̂i)− μ̂n(f)l(B̂i)

}2

.

We only briefly indicate that there exists a connection between α- mixing
coefficients and regeneration times for Harris recurrent Markov chains. Let α(k)
be a strong mixing coefficient related to a sequence of random variables (see
Doukhan (1994) for definition and details). By Theorem 2 from Bolthausen
(1982), we know that for stationary Harris chains if for some λ ≥ 0 the sum∑

m mλα(m) < ∞, then for all B ∈ E such that μ(B) > 0 we have Eμ(τ
1+λ
B ) <

∞, where τB = inf{n ≥ 1 : Xn ∈ B}. This result guarantees that the rate
of decay of strong mixing coefficients is polynomial. This is a weaker condition,
because usually the exponential rate of decay is assumed.

3. Bootstrap methods for Harris recurrent Markov chains

In this section we recall shortly some bootstrap methods for Harris recurrent
Markov chains which are essential to establish our bootstrap versions of uniform
central limit theorems for Markov chains. We formulate necessary assumptions
which must be satisfied by the chain in order to our theory could work.

3.1. ARBB method

In this subsection we recall the Approximate block bootstrap algorithm (ARBB)
introduced by Bertail and Clémençon (2006a). The algorithm allows to compute
the estimate of the sample distribution of some statistic Tn = T (B̂1, · · · , B̂l̂n−1)

with standarization Sn = S(B̂1, · · · , B̂l̂n−1). It proceeds as follows:
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Algorithm 3.1 (ARBB procedure).

1. Draw sequentially bootstrap data blocks B∗
1 , · · · , B∗

k (we denote the length
of the blocks by l(B∗

j ), j = 1, · · · , k) independently from the empirical
distribution function

L̂n =
1

l̂n − 1

l̂n−1∑
i=1

δB̂i
,

where B̂i, i = 1, · · · , l̂n − 1 are initial pseudo-regeneration blocks. We
generate the bootstrap blocks until the joint length of the bootstrap blocks
l∗(k) =

∑k
i=1 l(B

∗
i ) exceeds n. We set l∗n = inf{k : l∗(k) > n}.

2. Bind the bootstrap blocks from the step 1 and construct the ARBB bootstrap
sample X∗(n) = (X∗

1 , · · · , X∗
l∗n−1).

3. Compute the ARBB statistic and its ARBB distribution, namely T ∗
n =

T (X∗(n)) = T (B∗
1 , · · · , B∗

l∗n−1) and its standarization S∗
n = S(X∗(n)) =

S(B∗
1 , · · · , B∗

l∗n−1).
4. The ARBB distribution is given by

HARBB(x) = P
∗(S∗−1

n (T ∗
n − Tn) ≤ x),

where P
∗ is the conditional probability given the data.

We introduce few more pieces of notation. We denote by

n∗
AM =

l∗n−1∑
i=1

l(B∗
j )

the length of the bootstrap sample,

μ∗
n(f) =

1

n∗
AM

l∗n−1∑
i=1

f(B∗
i ) and σ∗2

n (f) =
1

n∗
AM

l∗n−1∑
i=1

{f(B∗
i )− μ∗

n(f)l(B
∗
j )}2.

3.2. Preliminary bootstrap results for Markov chains

Let (Xn) be a positive recurrent Harris Markov chain and (αn)n∈N be a se-
quence of nonnegative numbers that converges to zero. We impose the following
assumptions on the chain (compare with Bertail and Clémençon (2006a), page
700):

1. S is chosen so that infx∈S φ(x) > 0.
2. Transition density p is estimated by pn at the rate αn (usually we consider

αn = log(n)
n ) for the mean squared error (MSE) when error is measured

by the L∞ loss over S2.

Moreover, we assume the following conditions (for a comprehensive treatment
on these assumptions the interested reader may refer to Bertail and Clémençon
(2006a)). Let k ≥ 2 be a real number.
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H1(f, k, ν). The small set S is such that

sup
x∈S

Ex

⎡
⎣(

τS∑
i=1

|f(Xi)|
)k

⎤
⎦ < ∞ and Eν

⎡
⎣(

τS∑
i=1

|f(Xi)|
)k

⎤
⎦ < ∞.

H2(k, ν). The set S is such supx∈S Ex(τ
k
S) < ∞ and Eν(τ

k
S) < ∞.

H3. p(x, y) is estimated by pn(x, y) at the rate αn for the MSE when error is
measured by the L∞ loss over S × S:

Eν

(
sup

(x,y)∈S×S

|pn(x, y)− p(x, y)|2
)

= O(αn), as n → ∞.

H4. The density φ is such that infx∈S φ(x) > 0.
H5. The transition density p(x, y) and its estimate pn(x, y) are bounded by a

constant R < ∞ over S2.

In our framework we metrize weak convergence of empirical processes by
the bounded Lipschitz metric on the space l∞(F). Denote by BL1(F) the set
of all 1-Lipschitz bounded functions on l∞(F). We define the bounded Lipschitz
metric on l∞(F) as

dBL1(X,Y ) = sup
b∈BL1(l∞(F))

|Eb(X)− Eb(Y )|; X,Y ∈ l∞(F).

Convergence in bounded Lipschitz metric is correspondent to weak convergence.
Expectations of nonmeasurable elements are understood as outer expectations.

Definition 3.2. We say that Z
∗
n is weakly consistent if dBL1(Z

∗
n,Zn)

P−→ 0.

Analogously, Z∗
n is strongly consistent if dBL1(Z

∗
n,Zn)

a.s.−−−→ 0.

In the following, the convergence Xn
P∗
−−→ X in Pν−probability (Pν -a.s.)

along the sample is understood as

P
∗(|Xn −X| > ε|X(n+1))

n→∞−−−−→ 0 in Pν − probability (Pν -a.s.).

4. Uniform bootstrap central limit theorems for Markov chains

To establish the uniform bootstrap CLT over permissible, uniformly bounded
classes of functions F , we need to be sure that the size of F is not too large (it is
typical requirement when considering uniform asymptotic results for empirical
processes indexed by classes of functions). To control the size of F , we require
the finiteness of its covering number Np(ε,Q,F) which is interpreted as the
minimal number of balls with radius ε needed to cover F in the norm Lp(Q)
and Q is a measure on E with finite support. Moreover, we impose the finiteness
of the uniform entropy integral of F , namely∫ ∞

0

√
logN2(ε,F)dε < ∞, where N2(ε,F) = sup

Q
N2(ε,Q,F).
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For the sake of completeness we recall below Theorem 5.9 from Levental
(1988) which is crucial to establish uniform bootstrap CLT in general Harris
case.

Theorem 4.1. Let (Xn) be a positive recurrent Harris chain taking values
in (E, E). Let μ be the invariant probability measure for (Xn). Assume further
that F is a uniformly bounded class of measurable functions on E and∫ ∞

0

√
logN2(ε,F)dε < ∞.

If supx∈A Ex(τA)
2+γ < ∞ (γ > 0 fixed), where A is atomic set for the chain,

then the empirical process Zn(f) = n1/2(μn − μ)(f) converges weakly as a ran-
dom element of l∞(F) to a gaussian process G indexed by F whose sample paths
are bounded and uniformly continuous with respect to the metric L2(μ).

4.1. Main asymptotic results

In this subsection we establish the bootstrap uniform central limit theorem
over permissible, uniformly bounded classes of functions which satisfy the uni-
form entropy condition.

Theorem 4.2. Suppose that (Xn) is positive recurrent Harris Markov chain.
Assume that the conditions [1] and [2] are satisfied by the chain and H1(f, ρ, ν),
H2(ρ, ν) with ρ ≥ 4, H3,H4 and H5 hold. Suppose further that F is a permissi-
ble, uniformly bounded class of functions and the following uniformity condition
holds ∫ ∞

0

√
logN2(ε,F)dε < ∞. (4.1)

Then the process

Z
∗
n = n

∗1/2
AM

⎡
⎣ 1

n∗
AM

l∗n−1∑
i=1

f(B∗
i )−

1

n̂AM

l̂n−1∑
i=1

f(B̂i)

⎤
⎦ (4.2)

converges in probability under Pν to a gaussian process G indexed by F whose
sample paths are bounded and uniformly continuous with respect to the met-
ric L2(μ).

Proof. The proof is based on the bootstrap central limit theorem introduced
by Giné and Zinn (1990). To prove the weak convergence of the process Z∗

n we
need to show

1. Finite dimensional convergence of distributions of Z∗
n to G.

2. Stochastic asymptotic equicontinuity in probability under Pν with respect
to the totally bounded semimetric ρ on F .

Firstly, we prove that (Z∗
n(fi1), · · · ,Z∗

n(fik)) converges weakly in probability
to (G(fi1), · · · , G(fik)) for every fixed finite collection of functions {fi1, · · · ,
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fik} ⊂ F . Denote by
L−→ the weak convergence in law in the sense of Hoffmann-

Jørgensen. We want to show that for any fixed collection (a1, · · · , ak) ∈ R we
have

k∑
j=1

ajZ
∗
n(fij)

L−→ N (0, γ2) in probability under Pν ,

where

γ2 =

k∑
j=1

a2jV ar(Zn(fij)) +
∑
s �=r

aiajCov(Zn(fis),Zn(fir)).

Let h =
∑k

j=1 ajfij . By linearity of h and Theorem 4.1 we conclude that

Zn(h)
L−→ G(h). (4.3)

The above convergence of Zn(h) coupled with Theorems 3.2 and 3.3 from Bertail

and Clémençon (2006a) guarantee that Z∗
n(h)

L−→ G(h) in probability under Pν .
Thus, the finite dimensional convergence for the Z

∗
n(f), f ∈ F is established.

To verify [2] we need to check if for every ε > 0

lim
δ→0

lim sup
n→∞

P
∗(‖Z∗

n‖Fδ
> ε) = 0 in probability under Pν , (4.4)

where ‖R‖Fδ
:= sup{|R(f) − R(g)| : ρ(f, g) < δ} and R ∈ l∞(F). Moreover,

F must be totally bounded in L2(μ). In fact, the latter was shown by Levental
(1988). For the reader’s convenience we repeat the reasoning from the mentioned
paper.

Consider class of functions H = {|f − g| : f, g ∈ F}. Denote by Qn the n-th
empirical measure of an i.i.d. process whose law is μ. Using basic properties

of covering numbers we obtain that N1(ε,G, Qn) ≤
(
N2

(
ε
2 ,F

))2
< ∞ and thus

by the SLLN for Qn (see Theorem 3.6 in Levental (1988)) we have that

sup
h∈H

|(Qn − μ)(h)| → 0 a.s.(μ).

Since F is totally bounded in L1(Q) for every measure Q with finite support it
follows that is totally bounded in L1(μ). Moreover, one can show that if an en-
velope of F is in L2(μ), then F is totally bounded in L2(μ).

In order to show (4.4), firstly, we replace the random numbers n∗
AM

and l∗n
by their deterministic equivalents. By the same arguments as in the proof of The-
orem 3.3 from Bertail and Clémençon (2006a) (see page 710 therein for details)
we have the following convergences

l(B∗
j )

n

P∗
−−→ 0 and

n∗
AM

n

P∗
−−→ 1

in Pν−probability along the sample path as n → ∞ and

l∗n
n

− EAM(τAM)−1 P∗
−−→ 0
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in Pν−probability along the sample path as n → ∞. Thus, we conclude that

Z
∗
n(f) =

√
n∗
AM

⎡
⎣ 1

n∗
AM

l∗n−1∑
i=1

f(B∗
i )−

1

n̂AM

l̂n−1∑
i=1

f(B̂i)

⎤
⎦

=
1√
n∗
AM

⎡
⎣l∗n−1∑

i=1

{f(B∗
i )− μ̂n(f)l(B

∗
i )}

⎤
⎦

=
1√
n

⎡
⎢⎢⎢⎣
1+

⌊
n

EAM (τA)

⌋
∑
i=1

{f(B∗
i )− μ̂n(f)l(B

∗
i )}

⎤
⎥⎥⎥⎦ + oP∗(1),

where � x � is an integer part of x ∈ R. The preceding reasoning allows us to
switch to the process

U
∗
n(f) =

1√
n

⎡
⎢⎢⎢⎣
1+

⌊
n

EAM (τA)

⌋
∑
i=1

{f(B∗
i )− μ̂n(f)l(B

∗
i )}

⎤
⎥⎥⎥⎦ .

Observe, that {f(B∗
i ) − μ̂n(f)l(B

∗
i )}i≥1 forms the sequence of i.i.d. random

variables.
Next, take h = f − g. Denote by w(n) = 1 +

⌊
n

EAM (τA)

⌋
and Yi = h(B∗

i ) −
μ̂n(f)l(B

∗
i ). Then, we consider

P
∗(‖Y1 + · · ·+ Yw(n)‖Fδ

>
√
nε)

≤ P
∗
(
‖h(B∗

1) + · · ·+ h(B∗
w(n))‖Fδ

>
ε
√
n

2

)

+ P
∗
(
‖l(B∗

1)μ̂n,h + · · ·+ l(B∗
w(n))μ̂n,h‖Fδ

>
ε
√
n

2

)
= I + II. (4.5)

To control term I from above inequality, notice that by Markov’s inequality we
have

P
∗
(
‖h(B∗

1) + · · ·+ h(B∗
w(n))‖Fδ

>
ε
√
n

2

)
≤

4E∗(‖h(B∗
1) + · · ·+ h(B∗

w(n))‖Fδ
)2

n

=
4w(n)E∗(‖h(B1)‖Fδ

)2

n

by the fact that h(B∗
i ), i ≥ 1 are i.i.d. Next, notice

E
∗(‖h(B∗

1)‖Fδ
)2 =

1

w(n)

w(n)∑
i=1

‖h(B1)‖2Fδ
→ EAM(‖h(B1)‖Fδ

)2 a.s.
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We deduce further that

EAM(‖h(B1)‖Fδ
)2

= EAM(‖
τAM∑
i=1

h(Xi)‖Fδ
)2

= EAM(‖
τAM∑
i=1

h2(Xi)‖Fδ
) + 2EAM

⎛
⎝τAM∑

i=1

∑
i �=j

‖h(Xi)h(Xj)‖Fδ

⎞
⎠

≤ δ2EAM(τAM) + 2δ2(EAM(τAM))2 → 0 (4.6)

in Pν−probability as δ → 0. Thus,

P
∗
(
‖h(B∗

1) + · · ·+ h(B∗
w(n))‖Fδ

>
ε
√
n

2

)
→ 0 in Pν − probability

by (4.6) and the fact that w(n)/n ≤ 1.
Next, we investigate the asymptotic behaviour of II in (4.5). By Markov’s

inequality, we have

P
∗
(
‖l(B∗

1)μ̂n,h + · · ·+ l(B∗
w(n))μ̂n,h‖Fδ

>
ε
√
n

2

)

≤
4E∗(|l(B∗

1)|‖μ̂n,h‖Fδ
+ · · ·+ |l(B∗

w(n))|‖μ̂n,h‖Fδ
)

n

=
4w(n)E∗(|l(B∗

1)|)2‖μ̂n,h‖2Fδ

n
. (4.7)

We know that w(n)
n ≤ 1 and ‖μ̂n,h‖Fδ

→ 0 in Pν−probability because of the
stochastic equicontinuity of the original process Zn. Moreover, it is proven
in Bertail and Clémençon (2006a) that

E
∗
(
l(B∗

1)
2|X(n+1)

)
→ EAM(τ2AM) < ∞

in Pν−probability along the sample as n → ∞. Thus,

P
∗
(
‖l(B∗

1)μ̂n,h + · · ·+ l(B∗
w(n))μ̂n,h‖Fδ

>
ε
√
n

2

)
→ 0

in Pν−probability along the sample as n → ∞.
The above reasoning implies that (4.4) holds. We have checked that both

conditions [1] and [2] are satisfied by Z
∗
n. Thus, we can apply the bootstrap

CLT proposed by Giné and Zinn (1990) which yields the desired result.

Remark 4.1. Theorem 4.2 is a generalization of Theorem 2.2 from Radulović
(2004) for countable Markov chains. Note that the reasoning from the proof
of the above theorem can be directly applied to the proof of Radulović’s result.
The part concerning the proof of the asymptotic stochastic equicontinuity of the
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bootstrap version of the empirical process indexed by uniformly bounded class of
functions F can be significantly simplified. As shown in the proof of Theorem 4.2,
we can switch from the process Z

∗
n(f)f∈F :=

√
n∗{μn∗(f) − μnA

(f)}, where
nA = τA(ln)− τA to the process

U
∗
n(f) =

1√
n

⎡
⎢⎣
1+

⌊
n

EA(τA)

⌋∑
i=1

{f(B∗
i )− μnA

(f)l(B∗
i )}

⎤
⎥⎦

and the standard probability inequalities applied to the i.i.d. blocks of data yield
the result.

In the following, we show that we can weaken the assumption of uniform
boundedness imposed on the class F . By the results of Tsai (1998), it is sufficient
that F has an envelope in L2(μ), then the uniform bootstrap central limit
theorem holds.

Theorem 4.3. Suppose that (Xn) is positive recurrent Harris Markov chain.
Suppose that the conditions [1] and [2] are satisfied by the chain and H1(f, ρ, ν),
H2(ρ, ν) with ρ ≥ 4, H3,H4 and H5 hold. Assume further that F is a permissible
class of functions and such that the envelope F satisfies

EAM

⎡
⎣ ∑
τAM<j≤τAM (2)

F (Xj)

⎤
⎦
2+γ

< ∞, γ > 0 (fixed). (4.8)

Suppose, that the following uniformity condition holds∫ ∞

0

√
logN2(ε,F)dε < ∞. (4.9)

Then the process

Z
∗
n = n

∗1/2
AM

⎡
⎣ 1

n∗
AM

l∗n−1∑
i=1

f(B∗
i )−

1

n̂AM

l̂n−1∑
i=1

f(B̂i)

⎤
⎦ (4.10)

converges in probability under Pν to a gaussian process G indexed by F whose
sample paths are bounded and uniformly continuous with respect to the met-
ric L2(μ).

Proof. The proof of Theorem 4.3 goes analogously to the proof of Theorem 4.2
with few natural modifications. We indicate the critical points where the changes
are necessary. The notation remains in the agreement with the previous theorem.

• Theorem 4.3 from Tsai (1998) establishes the weak convergence

Zn(h)
L−→ G(h).
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• According to Bertail and Clémençon (2006a), Theorem 3.3 from this paper
is also true when f is unbounded (see Bertail and Clémençon (2006a), page
706 for details). Thus, the finite dimensional convergence of distributions
of Z∗

n to the right gaussian process is ensured.
• It is shown in Tsai (1998) that F is totally bounded in L2(μ) when F

fulfills only the condition that the envelope F is in L2(μ) (see Tsai (1998),
page 9 for details).

5. Bootstrapping Fréchet differentiable functionals

Robust statistics provides tools to deal with data when we suspect that they
include a small proportion of outliers. Robust statistical methods are applied
to the solution of many problems such as estimation of regression parametres,
estimation of scale and location. One of the key concepts of robust statistics
when detecting the outliers in the data is an influence function. In the i.i.d.
setting, the influence function measures the change in the value of some func-
tional φ(P ) if we replace some infinitesimally small part of P by a pointmass x
(see van der Vaart (2000) for a detailed treatment of these issues in the i.i.d.
framework). Generalizing the concepts of robustness and influence function into
dependent case is a challeging task (see Bertail and Clémençon (2015) and refer-
ences therein). In a Markovian setting, one can measure the influence of (approx-
imate) regeneration data blocks instead of single observations. The regenerative
approach proposed by Bertail and Clémençon (2015) naturally leads to central
limit and convolution theorems.

In our framework, we show how we can use results from the previous section
to yield the bootstrap uniform central limit theorems for general differentiable
functionals over uniformly bounded classes (and with an envelope in L2(μ))
of functions F .

5.1. Preliminary assumptions and remarks

In robust statistics the influence function plays a crucial role to detect outliers
in data. Functions and estimators which have an unbounded influence function
should be carefully investigated, because the small proportion of the observa-
tions would have too much influence on the estimator.

Let’s make our considerations rigorous. We denote by P the set of all probabil-
ity measures on E. We keep the notation in agreement with notation introduced
in Bertail and Clémençon (2015).

The classical definition of the influence function is provided below.

Definition 5.1. Let (ϑ, ‖ · ‖) be a separable Banach space. Let T : P → ϑ be
a functional on P . If the limit

T ((1− t)μ+ tδx)− T (μ)

t
, as t → 0
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is finite for all μ ∈ P and for any x ∈ E, then we say that the influence function
T (1) : P → ϑ of the functional T is well-defined and for all x ∈ E

T (1)(x, μ) = lim
t→0

T ((1− t)μ+ tδx)− T (μ)

t
.

In the following, we recall the definition of Fréchet derivative which is an im-
portant concept in robust statistics. In particular, Fréchet differentiability en-
sures the existence of the influence function. Let d be some metric on P .

Definition 5.2. We say that the functional T : P → R is Fréchet differentiable
at μ0 ∈ P for a metric d, if there exists a continuous linear operator DTμ0

(from the set of signed measures of the form μ − μ0 in (ϑ, ‖ · ‖)) and a func-
tion ε(1)(·, μ0) : R → (ϑ, ‖ · ‖), which is continuous at 0 and ε(1)(0, μ0) = 0 such
that

∀ μ ∈ P , T (μ)− T (μ0) = DTμ0(μ− μ0) +R(1)(μ, μ0),

where R(1)(μ, μ0) = d(μ, μ0)ε
(1)(d(μ, μ0), μ0). Furthermore, we say that T has

an influence function T (1)(·, μ0) if the following representation holds for DTμ0 :

∀ μ0 ∈ P , DTμ0(μ− μ0) =

∫
E

T (1)(x, μ0)μ(dx).

In the context of empirical processes indexed by classes of functions, when
one want to derive the uniform central limit theorems for generally differentiable
functionals the appropriate choice of metric is the crucial point. We need to
choose the metric carefully in order to precisely control the distance d(μn, μ)
and the remainder R(1)(μn, μ). In our framework we have decided to work with
a generalization of the Kolmogorov’s distance which is defined as follows:

Definition 5.3. Let H be a class of real-valued functions (we do not impose the
measurability condition as one can work with outer measures and the Hoffmann-
Jørgensen (1991) convergence). We define a distance

dH(P,Q) := sup
h∈H

∣∣∣∣
∫

hd(P −Q)

∣∣∣∣ (5.1)

for any P,Q ∈ P .

The choice of metric defined in (5.1) is inspired by the arguments given
by Barbe and Bertail (1995) and Dudley (1990). Essentially, one may want to
work with metric dH because it enables very precise control of the distance
d(μn, μ). Moreover, in many cases we can find a class of functions H, which
makes the functionals Fréchet diferrentiable for dH. The latter is a significant
advantage since choice of metric that guarantees Fréchet differentiability of func-
tionals is usually challenging (see Barbe and Bertail (1995) and Dudley (1990)
for an extensive treatment on this subject).

Note, that permissible, uniformly bounded (or with an envelope in L2(μ))
classes of functions F fulfill the conditions imposed on the class H. Thus, we
can ease the notation and write dF for the distance defined by (5.1).
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5.2. Bootstrap uniform central limit theorems for Fréchet
differentiable functionals

In this subsection, we show how the results from Levental (1988), Tsai (1998)
and from the previous section yield the uniform bootstrap central limit theo-
rems for Fréchet differentiable functionals. Before we formulate the theorems,
we briefly recall the notation. In general Harris case,

μ∗
n =

1

n∗
AM

l∗n−1∑
i=1

f(B∗
i ) and μ̂n =

1

n̂AM

l̂n−1∑
i=1

f(B̂i),

where B̂i, i = 1, · · · , l̂n−1 are pseudo-regeneration blocks. In regenerative case,
the empirical mean is of the form

μn =
1

nA

ln−1∑
i=1

f(Bi).

The crucial observation in order to establish the results is, that as long as we
can control the distance dF (μ

∗
n, μ̂n) (we require it would be sufficiently small),

we can control the remainder term R(1)(μ∗
n, μ̂n). By the uniform central limit

theorem, the linear part of the T (μ∗
n)−T (μ̂n) is converging weakly to a desired

gaussian process which yields our result.

Theorem 5.4. Let F be a permissible, uniformly bounded class of functions,
such that ∫ ∞

0

√
logN2(ε,F)dε < ∞.

Suppose that the conditions of Theorem 4.2 hold and T : P → R is Fréchet
differentiable functional at μ. Then, in general Harris positive recurrent case,
we have that n1/2(T (μ∗

n)−T (μ̂n)) converges weakly in l∞(F) to a gaussian pro-
cess Gμ indexed by F , whose sample paths are bounded and uniformly continuous
with respect to the metric L2(μ).

Remark 5.1. It is obvious that the above theorem works also in the regenerative
case. Replace AM and the μ̂n for the split chain by A and μn respectively.
Then, under the assumptions from Theorem 5.4, we have the weak convergence
in l∞(F) to the gaussian process indexed by F , whose sample paths are bounded
and uniformly continuous with respect to the metric L2(μ).

Proof. Without loss of generality, we assume that EμT
(1)(x, μ) = 0. By the

Fréchet differentiability formulated in definition 5.2 we have

T (μ̂n)− T (μ) = DTμ(μ̂n − μ) + dF (μ̂n, μ)ε
(1)(dF (μ̂n, μ), μ) (5.2)

and

T (μ∗
n)− T (μ) = DTμ(μ

∗
n − μ) + dF (μ

∗
n, μ)ε

(1)(dF (μ
∗
n, μ), μ). (5.3)
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Thus,

√
n(T (μ∗

n)− T (μ̂n)) =
√
n (DTμ̂n(μ

∗
n − μ̂n)) +

√
n

(
dF (μ̂n, μ)ε

(1)(dF (μ̂n, μ), μ)
)

+
√
n

(
dF (μ

∗
n, μ)ε

(1)(dF (μ
∗
n, μ), μ)

)
.

We show that dF (μ̂n, μ) and dF (μ
∗
n, μ) are of order OPν (n

−1/2). Theorem 4.1
guarantees that

√
ndF (μ̂n, μ)

L−→ sup
f∈F

|G(f)|, as n → ∞,

where G is gaussian process whose sample paths are bounded and uniformly
continuous with respect to the metric L2(μ). Thus, dF (μ̂n, μ) = OPν (n

−1/2).
Next, observe that

dF (μ
∗
n, μ) ≤ dF (μ

∗
n, μ̂n) + dF (μ̂n, μ).

From Theorem 4.2 we conclude that

√
ndF (μ

∗
n, μ̂n)

L∗
−−→ sup

f∈F
|G(f)|, as n → ∞.

Thus, dF (μ
∗
n, μ̂n) = OP∗

(
n−1/2

)
.

Remark 5.2. Note that G and Gμ are not the same gaussian processes!

We show that dF (μ
∗
n, μ̂n) = OPν

(
n−1/2

)
. Indeed, consider the sequence Sn

of order OP∗(1) in Pν−probability along the sample, i.e.

lim
T→∞

lim sup
n→∞

P
∗{|Sn| ≥ T} → 0 in Pν − probability along the sample.

Then,

lim
T→∞

lim sup
n→∞

Pν{|Sn| ≥ T} = lim
T→∞

lim sup
n→∞

Eν [P
∗{|Sn| ≥ T}]

≤ lim
T→∞

Eν

[
lim sup
n→∞

P
∗{|Sn| ≥ T}

]

= Eν

[
lim

T→∞
lim sup
n→∞

P
∗{|Sn| ≥ T}

]
= 0

by the dominated convergence theorem and the Fatou’s lemma. Thus, dF (μ
∗
n, μ̂n) =

OPν (n
−1/2) and dF (μ

∗
n, μ) = OPν (n

−1/2).
Next, we scale (5.2) by

√
n:

√
n(T (μ̂n)− T (μ)) =

√
n(DTμ(μ̂n − μ)) + oPν (1)

and apply Theorem 4.2. Observe that the linear part in the above equation is
gaussian as long as 0 < EμT

(1)(Xi, μ)
2 ≤ C2

1 (μ)EμF
2(X) < ∞ (see Barbe and
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Bertail (1995), chapter I for details), but that assumption is of course fulfilled
since F is uniformly bounded. Thus, the following weak convergence in l∞(F)
holds:

√
n(T (μ̂n)− T (μ)) =

√
n(DTμ(μ̂n − μ)) + oPν (1)

=
√
n

∫
E

T (1)(x, μ)(μ̂n − μ)d(x)

=
√
n

⎡
⎣ 1

n̂AM

n̂AM∑
i=1

T (1)(Xi, μ)− 0

⎤
⎦ + oPν (1)

L−→ DTμGμ.

By the previous discussion, we also have

√
n(T (μ∗

n − T (μ))) =
√
n(DTμ(T (μ

∗
n − μ)) + oPν (1)

=
√
n

∫
E

T (1)(x, μ)(μ∗
n − μ)d(x)

=
√
n

⎡
⎣ 1

n∗
AM

n∗
AM∑
i=1

T (1)(X∗
i , μ)− 0

⎤
⎦ + oPν (1).

The above convergences yield

√
n[T (μ∗

n)− T (μ̂n)]

=
√
n

⎡
⎣ 1

n∗
AM

n∗
AM∑
i=1

T (1)(x∗
i , μ)−

1

n̂AM

n̂AM∑
i=1

T (1)(xi, μ)

⎤
⎦ + oPν (1)

L−→ DTμGμ

and this completes the proof.

Theorem 5.4 can be easily generalized to the case when F is unbounded and
has the envelope in L2(μ).

Theorem 5.5. Let F be a permissible class of functions such that the enve-
lope F satisfies

EAM

⎡
⎣ ∑
τAM<j≤τAM (2)

F (Xj)

⎤
⎦
2+γ

< ∞, γ > 0 (fixed). (5.4)

Suppose, that the following uniformity condition holds∫ ∞

0

√
logN2(ε,F)dε < ∞. (5.5)

Assume further that the conditions of Theorem 4.3 hold and that T : P →
R is Fréchet differentiable functional at μ. Then, in general Harris positive
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recurrent case, we have that n1/2(T (μ∗
n) − T (μ̂n)) converges weakly in l∞(F)

to a gaussian process Gμ indexed by F , whose sample paths are bounded and
uniformly continuous with respect to the metric L2(μ).

The proof of Theorem 5.5 follows analogously to the proof of Theorem 5.4.
Apply the results of Tsai (1998) and Theorem 4.3 instead of Levental’s (1988)
and Theorem 4.2 to control the remainder terms. Then, the reasoning goes line
by line as in the proof of Theorem 5.4.

Remark 5.3. In particular, Theorem 5.5 is also true in the regenerative case.
Replace μ̂n and AM by μn and A. The proof goes analogously as in the preceding
theorems.

6. Conclusion

In this paper, we have shown how the regenerative properties of Markov chains
can generalize some concepts in nonparametric statistics from i.i.d. to dependent
case. We have shown that uniform bootstrap functional central limit theorem
holds over permissible, uniformly bounded classes of functions. We have proved
that the uniform boundedness assumption imposed on F can be weakened and
it is feasible to require that F has an envelope in L2(μ). We have worked with
Markov chains on the general state space, but our results can be directly applied
to Markov chains on countable state space. Thus, some proofs of the already
existing results for the countable case, can be simplified when just applying the
methodology introduced in this paper.

The bootstrap asymptotic results for empirical processes indexed by F nat-
urally lead to bootstrap central limit theorems for Fréchet differentiable func-
tionals. We have shown that bootstrap uniform CLTs hold in the bounded and
the unbounded case over F . Similar approach can be also applied to Hadamard
differentiable functionals in order to establish analogous asymptotic results
to presented in this paper.
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