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Abstract: A simple approach for modeling multivariate extremes is to
consider the vector of component-wise maxima and their max-stable distri-
butions. The extremal dependence can be inferred by estimating the angular
measure or, alternatively, the Pickands dependence function. We propose
a nonparametric Bayesian model that allows, in the bivariate case, the si-
multaneous estimation of both functional representations through the use
of polynomials in the Bernstein form. The constraints required to provide
a valid extremal dependence are addressed in a straightforward manner,
by placing a prior on the coefficients of the Bernstein polynomials which
gives probability one to the set of valid functions. The prior is extended
to the polynomial degree, making our approach nonparametric. Although
the analytical expression of the posterior is unknown, inference is possi-
ble via a trans-dimensional MCMC scheme. We show the efficiency of the
proposed methodology by means of a simulation study. The extremal be-
haviour of log-returns of daily exchange rates between the Pound Sterling
vs the U.S. Dollar and the Pound Sterling vs the Japanese Yen is analysed
for illustrative purposes.
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1. Introduction

The estimation of future extreme episodes of a real process, such as heavy-
rainfall, heat-waves or simultaneous losses in the financial market, is of crucial
importance for risk management. In most applications, an accurate assessment
of such types of risks requires an appropriate modelling and inference of the
dependence structure of multiple extreme values.

A simple definition of multiple extremes is obtained by applying the defini-
tion of block (or partial)-maximum (Coles, 2001, Ch. 3) to each of the variables
considered. Then, the probabilistic modelling concerns the joint distribution of
the random vector of so-called component-wise (block) maxima, in short sample
mazima, whose joint distribution is named a multivariate extreme value distri-
bution (de Haan and Ferreira, 2006, Ch. 6). Within this approach, parametric
models for the dependence structure have been widely discussed and applied in
the literature (e.g. Coles, 2001, Beranger and Padoan, 2015), but a major down-
side is that a model which may be useful for a specific application is often too
restrictive for many others. As a consequence, more recently, much attention has
been devoted to the study of nonparametric estimators or estimation methods
for assessing the extremal dependence (see e.g. de Haan and Ferreira, 2006, Ch.
7). Some examples focused on nonparametric estimators of the Pickands depen-
dence function (Pickands, 1981) are provided in Capéraa et al. (1997), Genest
and Segers (2009), Biicher et al. (2011), Berghaus et al. (2013) and Marcon et al.
(2015), among others. Examples of Bayesian modelling of the extremal depen-
dence are Boldi and Davison (2007), Guillotte and Perron (2008) and Sabourin
and Naveau (2014) to cite a few.

In order to provide a comprehensive discussion of our approach, we restrict
our attention to the bivariate case, that is to two-dimensional vectors of sam-
ple maxima. Specifically, we describe how Bernstein polynomials (Lorentz, 1986)
can be used to model the extremal dependence within a Bayesian nonparametric
framework. In recent years, Bernstein polynomials are attracting much atten-
tion in Bayesian nonparametric statistics, in that they are useful for constructing
prior distributions of distribution functions (Petrone, 1999b), for density esti-
mation (Petrone, 1999a) and they have nice properties (Ghosal, 2001, Petrone
and Wasserman, 2002).

Our present proposal has the following key features that make it different from
Marcon et al. (2015). Firstly, the use of this particular polynomial expansion
makes it possible to accommodate different representations of the dependence
structure, such as the Pickands dependence function and the so-called angular
(or spectral) measure. This ensures that in each case, there is the fulfillment of
some specific constraints which guarantee that a proper extreme value distribu-
tion is defined. Secondly, model fitting, inference and model assessment can be
achieved via MCMC methods, preserving the relation between both extremal
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dependence forms. Information about the polynomial degree is yielded from the
data as part of the inferential procedure, and there is no need for a preliminary
estimate as is often the case when regularization methods are applied, (e.g.
Fils-Villetard et al., 2008, Marcon et al., 2015). Additionally, there is no need to
choose between representing the dependence by means of the angular measure
or the Pickands dependence function. Finally, the expression of approximate
probabilities for simultaneous exceedances can be derived in closed-form and
this implies that the predictive probability for such events is easy to calculate.

The paper is organised as follows. In Section 2 we briefly describe some basic
concepts regarding the extremal dependence structure. In Section 3 we propose
a Bayesian nonparametric model for the extremal dependence along with an
MCMC approach for posterior simulation. Section 4 illustrates the flexibility of
the proposed approach by estimating the dependence structure of data simulated
from some popular parametric dependence models. Section 5 provides a real
data application, in which we analyse the exchange rates of the Pound Sterling
against the U.S. Dollar and Japanese Yen, jointly, at extremal levels during the
past few decades.

2. Extremal dependence

In this section, we present some main ideas regarding multivariate extreme value
theory, which we use for the development of the framework we propose. For more
details see e.g. Chapters 4, 6 and 8 of Falk et al. (2010), de Haan and Ferreira
(2006) and Beirlant et al. (2004), respectively.

Assume that Z = (Z1, Z3) is a bivariate random vector of sample maxima
with an extreme value distribution G. A distribution as such has the attractive
feature of being maz-stable, that is for all n = 1,2, ..., there exist sequences
of constants a,,c, > 0 and b,,d, € R such that G™(anz1 + bn,cnza + dy) =
G(z1,29), for all z1, 20 € R. Hereafter, we refer to G as a bivariate max-stable
distribution. In particular, the margins of G, denoted by G;(z) = P(Z; < z), for
all z € R and ¢ = 1,2, are members of the Generalised Extreme Value (GEV)
distribution (Coles, 2001, Ch. 3), i.e.

R Nt YA
Gi(zi|pir o5, &) ZeXp{— (14—&%0 /h) }7 (2.1)

) +
where z;, 1,6 € R, 05 > 0 for ¢ = 1,2 and (z)y = max(0,z) and, hence,
are univariate max-stable distributions. Taking the transformation, with the
marginal parameters assumed to be known,

7\ Ve
n:(1+§i : “’) L i=1,2, (2.2)

g; +

then, the marginal distributions of Y = (Y7,Y3) are unit Fréchet, which means
P(Y; < y) = e V¥, for all y > 0 with i = 1,2, and the bivariate max-stable
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distribution takes the form

G(y1,y2) = exp{—L(1/y1,1/y2)}, y1,y2 >0, (2.3)

where L : [0,00)? — [0, 00), named the stable-tail dependence function (de Haan
and Ferreira, 2006, pp. 221-226) is given by

L(zy,22) =2 /S max{zr; w,z2 (1 —w)}H(dw), z1,22 >0. (2.4)

S = [0, 1] denotes the one-dimensional simplex and H, named the angular (or
spectral) measure, is the distribution function of a probability measure sup-
ported on & and satisfying the following condition,

(C1) The center of the mass of H must be at 1/2, that is,

/wH(dw) _ /(1 — w) H(dw) = 1/2.
s s

We stress that marginal parameters can always be estimated separately using
some standard methods (e.g. de Haan and Ferreira, 2006, Ch. 3, Coles, 2001,
Ch. 3, 9) and hence be used to achieve the representation (2.3).

More precisely, for any max-stable distribution Gy there exists a finite measure,
H* on 8, satisfying the mean conditions [qw H*(dw) = [¢(1 —w) H*(dw) = 1,
which implies H*(S) = 2, such that G can be represented by the general form
(2.3), where the angular measure is given by the normalization H := H*/H*(S).
We will use H to denote both the probability measure and its distribution func-
tion, since the difference can be derived from the context. Conversely, any prob-
ability measure with distribution function H satisfying (C1) generates a valid
bivariate max-stable distribution (de Haan and Ferreira, 2006, Ch. 6). As usual
practice, for simplicity we focus on a subset of all the possible angular measures
(Beirlant et al., 2004, Ch. 8).

Assumption 2.1. Let ({0},8,{1}) be a partition of S, where S = (0,1). Con-
sider angular measures of the form

H([a, b]) = podo([a, b]) + A((a,b]) + p161([a, b]),

for any a,b € S with a <b and py,p1 € [0,1/2]. Specifically, 6,(A) is the Dirac
measure for any x € R and a measurable set A C R, A((a,b]) = H(b) — H(a)
is the Lebesgue-Stieltjes measure, where H(w) = fow h(t)dt and h(t) > 0 is a

Lebesgue integrable function such that fol h(w)dw =1 —pg — p1.

The role of the angular measure can be explained by means of its geometric
interpretation. The more the dependence between variables increases (the more
likely it is that they are similar in value), the more the mass of H tends to
accumulate at the center of the simplex, i.e. 1/2 by condition (C1). Conversely,
the more the mass of H moves to the vertices of the simplex, the more the
variables become independent. The distribution function of the angular measure
is

H(w) = po+ H(w) +pilpw(l), weS (2.5)
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where 14(z) is the indicator function of the set A. This means that H has
atoms on the vertices {0} and {1}, denoted by po = H({0}) and p; = H({1}) =
H([0,1]) — H([0,1)) respectively, and it is absolutely continuous on S. Notice
that, by the mean constraint (C1), the following two identities must be satisfied

- :1/2—/0 w h(w) dw, p0=1/2—/0 (1—w)h(w)dw.  (2.6)

We stress that although (2.5) excludes atoms in &, it is already rich enough
to describe the dependence of many practical applications. In the following
sections, we will denote by H the space of angular distributions defined in this
way, so that each H € H is defined by a valid triplet (po, p1, H)

The properties of the stable-tail dependence function are: a) it is homo-
geneous of order 1, that is L(vxi,vxs) = vL(x1,x2) for all v,x1,29 > 0;
b) L(z,0) = L(0,z) = =z for all z > 0; ¢) it is continuous and convex, i.e.
L(v(zq, 22)+(1—v)(x), 2%)) < vL(x1, z2)+(1—v)L(x}, xh) for all z1, o, 2, 2 >
0 and v € S; d) max(z1,z2) < L(z1,22) < x1 + 22 for all 1,22 > 0. The lower
and upper bounds of the last condition represent the cases of complete depen-
dence and independence, respectively. By the homogeneity of L we have that,
for all z1,29 >0,

L(zy,m0) = (1 +22)A(t), A(t) = Q/Smax{t (1—w), (1 —t)w}H(dw), (2.7)

where t = xo/(21 + 22) € S. The function A is called the Pickands dependence
function and, by the properties of L, it satisfies the following conditions:

(C2) A(t) is convex, i.e., A(at+ (1 —a)t') < aA(t)+ (1 —a)A(t'), for a,t,t’ € S;
(C3) A(t) has lower and upper bounds

1/2 <max(t,1 —t) < A(t) <1; teS.

In condition (C3), the lower and upper bounds represent the cases of complete
dependence and independence, respectively. In other words, any Pickands de-
pendence function belongs to the class A of functions A : § — [1/2, 1] satisfying
the above conditions (Falk et al., 2010, Ch. 4). Conversely, if a function A € A
has second derivatives on S, then a valid angular measure H exists, such that

A(t):1+2/tH(w)dw—t, tes (2.8)
0

and therefore A’(t) = —1+2H([0,1]), where A’ is seen as the right-hand deriva-
tive and A”(t) = 2h(t), for t € S (Beirlant et al., 2004, Ch. 8). From the above
relation follows that the atoms on the vertices of the simplex can be expressed by
the Pickands dependence function as pg = {1+ A’(0)}/2 and p; = {1-A'(1)}/2,
where A’(1) = sup,¢o,1) A'(2).

The angular distribution is also used to define another important tail depen-
dence function, R, given by

R(x1,x2) = 2/ min{z; w,z2 (1 —w)}H(dw), =z1,22 >0,
s
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or equivalently, by R(x1,x2) = 21 + 2 — L(x1, z2). This function can be used
to approximate the probability of simultaneous exceedances, i.e.

P(Yl > Y1, 3/2 > y2) ~ R(l/y17 1/3/2), (29)

for high enough thresholds y,y> > 0 (e.g., Beranger and Padoan, 2015), as well
as to compute the coefficient of upper tail dependence (e.g., Coles, 2001, p.163),
ie.
x= lim P71 >y|Ya>y)= lim P(Y2 > y|V1 >y) = R(1,1), (2.10)
y——+00 y—+o0
with x € [0,1]. This is an important summary measure of the extremal depen-

dence between two random variables. Y7 and Y, are independent in the upper
tail when x = 0, whereas they are completely dependent when y = 1.

3. Bayesian nonparametric modeling of H and A
3.1. Bernstein polynomial representation

The basic idea behind our proposal is to define both the distribution function
of the angular measure and the Pickands dependence function as polynomials,
restricted to S, of the form Z?:o a;b;(x), where each a; is a real-valued coetfi-
cient and the b;(-), j = 1,2,... form an adequate polynomial basis. Denote by
Py the space of polynomials of degree k, and let H and A be the sets of angular
distributions and Pickands dependence functions, respectively, as in the previ-
ous section. Since |J;—, Py is dense in the spaces H and A, we know that any
angular distribution function in H as well as any Pickands dependence function
in A, can be arbitrarily well approximated by a polynomial in Pj for some k.
Due to their shape preserving properties, it is convenient to use a Bernstein
polynomial basis (Lorentz, 1986) that, when restricted to S, will allow us to
construct proper functions on ‘H and A by identifying valid sets of coefficients.

For each k = 1,2, ..., the Bernstein basis polynomials of degree k are defined
as

k!
b k) = S

Throughout the article, use will be made of the simple identities,

(1—x)*, j=0,... k.

(k+1)bj(z;k) =Be(zlj+1,k—j+1), z€S8, (3.1)

where Be(+|a, b) denotes the beta density function with shape parameters a > 0
and b > 0, and for k > 1

bj((); k‘) = 53'70, bj(l; ]{}) = 5j,k7 (32)

where §; , is the Kronecker delta function (e.g., Petrone, 1999b).
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We start modeling the extremal dependence by representing the distribution
function (2.5) through a polynomial of degree k — 1 in Bernstein form, for some
k=1,2,.... Specifically, we define

er_1 M bjlwk—1) if we|0,1
Hy,_y (w) :{ ?aﬁk 1115 b ) ” w:[l ) (3.3)

and taking the first derivative of Hy_; with respect to w, we have that the
density in the interior of S is equal to

k—2

Hi_y(w) =Y (1 —nj)Be(wlj + Lk —j—1) = hj_1(w), weS (34)
j=0

<~

Proposition 3.1. By forcing the coefficients ng,...,ng—1 in (3.3), for fized
polynomaal degree k, to meet the restrictions:

(R1) 0<po=m<m<...<mp1=1-—p1 <1
(R2) no+ -+ me—1 = k/2;

it is ensured that Hy_q1 is the distribution function of a valid angular measure
satisfying Assumption 2.1.

Alternatively, we can also model the extremal dependence by representing the
Pickands dependence function in (2.7) with a polynomial of degree k = 0,1, ...
in the Bernstein form. Specifically, let

k
Ap(t) =) Bib(t:k),  teS, (3.5)
j=0

then by forcing the coefficients Sy, ..., Sk in (3.5) to meet the restrictions:

0 — Pk — Z j, lIorall 3 =1,...,kF — 1]
R3) Bo=fr=1>p; forallj=1,... k-1
(R4) By = E=LE20 and B, = LBz,

(R5) Bjta —2Bj41+B; 20,5 =0,....k =2

it is ensured that Ay satisfies conditions (C2)—(C3) and hence it is a proper
Pickands dependence function (Marcon et al., 2015). This is easily explained by
the following. First, by (3.2) we have that Ax(0) = Ap(1) = 11if 5y = pr =1
and it is immediate to check that Ag(t) = 1 for all t € S when Gy = -+ =
Br = 1. Because b;(t;k) < 1 for all ¢ € S then Ai(t) < 1 by (R3). Second,
Ap(t) > max(t,1 —t) for all t € S if A} (0) > —1 and A} (1) < 1, where

k-1

A (#) = (Bjs1 — B;) Be(tlj + 1,k —j), teS. (3.6)

Jj=0

Since A% (0) = k(B — fo), A, (1) = k(Bx — Brk—1) and, on the other hand,
knowing also from (2.8) that A} (0) = 2py — 1 and A} (1) = 1 — 2p;, we obtain
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the conditions in (R4), which imply that 5y > 1 — 1/k and Bx—; > 1 — 1/k.
Finally, Ax(t) is convex if A}/ (t) > 0 for all t € S, where
k—

Ap(t) =k Z(5j+2 —2Bj41+Bj)Be(t|j +1,k—j—1), teS. (3.7)
=0

(V]

<

Clearly the positivity of (3.7) is guaranteed by the conditions in (R5).
Under Assumption 2.1, the distribution function (3.3) and the Pickands de-
pendence function (3.5) are linked, as described by the next result.

Proposition 3.2. Let Hy_1 be the distribution function of an angular measure
with expression (3.3), and Ay be the Pickands dependence function given in
(3.5). Then, the following are equivalent:

i) Given Ay one may recover Hy_1 by means of their coefficients’ relation-

ship:
k 1 .
Conversely, given Hy_1, one may recover Ay by means of their coefficients’
relationship:
1 J
B =1 (2;771-4%—3—1) , J=0...k=1 (39)
with B() =1.

ii) Restrictions (R1) and (R2) are satisfied and Hy_1 meets condition (C1),
if and only if restrictions (R3)-(R5) are verified and Ay, meets conditions
(C2) and (C3).

This result tells us that the one-to-one relationship between the angular mea-
sure and the Pickands dependence function, when these are represented with
Bernstein polynomials, is simply expressed through a one-to-one relationship
between their corresponding coefficients. Its implications are as follows. One
can estimate the coefficients in (3.3) so that they meet the conditions (R1) and
(R2) and then compute the coefficients in (3.5) by equation (3.9), which will
automatically meet the conditions (R3)—(R5). Or vice versa, estimate the co-
efficients in (3.5) satisfying conditions (R3)—(R5) and derive the coefficients in
(3.3) by (3.8), which will satisfy (R1) and (R2). As a consequence, for inference,
there is no need to choose between one or the other way of representing the
dependence structure.

Finally, Hr_1 and Ay can provide accurate approximations of the true func-
tions H and A.

Proposition 3.3. Let
Hi—1 ={wr— Hy_1(w) = Z njbj(w;k —1)
j<k—1
N0, -, Mk—1 € [0,1] and (R1)-(R2) are satisfied}
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and

Ay =
{t = Ar(t) = Zﬂjbj(t; k) : Bo,...,Bk €0,1] and (R3)-(R5) are satisfied}.

i<k

Then, Ay and Hi_1, k = 1,2,... are nested sequences in A and H, respectively.
Additionally, there are polynomials Ay and Hyp_1 such that

lim sup|Ak(t) — A(t)| =0 (3.10)
k—00 tcS
and
lim sup |Hy—1(w) — H(w)| = 0. (3.11)
k—o0 wES

3.2. Bayesian inference

We provide details of the key ingredients of a Bayesian nonparametric model
for the extremal dependence. This can be formulated through (3.3) or (3.5),
indifferently since, as seen in Section 3.1, one expression can always be recovered
from the other. We show the explicit forms in which the prior distribution and
the likelihood function for one approach are linked to those of the other.

We start by constructing a prior probability on the space H of valid an-
gular measures using the Bernstein polynomial representation (3.3), for some
polynomial order k. Then, the prior on H is induced by a joint prior distribu-
tion on (k,m;), where n,, = (no,...,nk—1). We conveniently express the prior
distribution as

II(k, my) = T(n|k) TL(k). (3.12)

Note that for k < 3, the resulting dependence structure is trivial, so we will only
consider the case when k > 3. Some convenient choices for the prior distribution
of the polynomial order are II(k) = Pois(k—3|xp) or Il(k) = nbin(k—3|kn5,02),
where kp,knyp > 0 are the means of Poisson and negative binomial distribu-
tions, respectively. The latter, however, is more flexible through its variance 2.
Specifically, the probability mass function for the negative binomial distribu-
tion is T'(z + s)/(T(s)z!) p* (1 — p)*, for . =0,1,2,..., with target for number
of successful trials s > 0 and probability of success in each trial 0 < p < 1.
With this parametrization, the mean corresponds to kyp = s(1 — p)/p and the
variance to 02 = s(1 — p)/p?. In order to define a valid prior on H, I1(n,|k)
must assign, for each k& € N, probability one to the set & = &(k) C S* of k-
dimensional vectors satisfying (R1) and (R2). By (R1) we have that the atoms
on the edges are represented by parameters g = pp and nx_1 = 1 — py. Given
the particular role that these quantities play in the model, and the relevance
of their interpretation, we have decided to treat them separately when defining
the prior. Furthermore, this choice seems empirically justified by the results ob-
tained through simulation studies. Therefore, we define the conditional prior for
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the polynomial coefficients given the degree k in the following manner,

(k) = (01, . .., nk—2[p1, po, k) IL(p1[k, po) IL(po)-
Specifically, we let TI(pg) = Unif(0,1/2). Then,

k
(k—1)po+(1—pp) < > M= k/2 <po+ (k—1)(1—p1), (3.13)

|
—

Il
=

where the identity follows from condition (R2), while the two inequalities stem
from (R1). After simple manipulations, it follows that, in order for (R1) and (R2)
to hold, a necessary condition is (k—1) po—k/2+1 < p1 < (po+k/2-1)/(k—1),
so we set II(p1|k, po) = Unif(a, b), with interval limits given by a = a(k,pg) =
max{0, (k — 1)po — k/2+ 1} and b = b(k,po) = (po + k/2 —1)/(k —1).

Now, conditional on k, 19 and 7x—1, we set Xg = 1o and we extend the
prior distribution to the remaining parameters 7y, ...,n,_1 by focusing on the
differences X; =n; —nj—1,j =1,...,k—1, in order to guarantee that condition
(R1) is satisfied. For simplicity, analogous to what we did with p;, we make
such differences conditionally uniformly distributed on appropriate intervals,
specified below, in order to satisfy also condition (R2), that is

k—1 k—1
donp =Y (k=HX; =k/2. (3.14)
=0 =0

Notice that we can rewrite (3.14) as

k—1 j—1
(k=NX;+ D (k=X =k/2=) (k-1)X,,
I=j+1 =0

for j =1,...,k — 2. Thus, if we assume that X; =0fori=j7+1,...,k — 2, so
that my =mn; for [ =j+1,...,k — 2, we attain the upper bound,

1 =
Xj < g —] (k/Q‘f‘Pl—l—Z(k_l_l)Xl),

=0

for j =1,...,k — 2. On the other hand, if we assume that

k—2 J
dok—1-1)Xi= (k—j—2>(1—p1 —le>,
I=j+1 1=0

corresponding to; = 1 —py for Il = j+1,...,k — 2, then we attain, through
few algebraic manipulations, the lower bound

j—1
X; > maX{O,k/Z—i—(j —k+1)(1—-p1)— Z(] —l+1)Xl},
1=0
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for j = 1,...,k — 2. Rewriting these inequalities in terms of 7;, we find that

the widest valid range for the coefficients can be expressed in terms of intervals
g}' = éaj(kvn(b s =1, 77k—1)» given by

k . =
max{ﬁj—lv 5t (k—j—-1p-1)— Zm};
1=0

j—1
min{l—pl;ik_;_l(g—Fpl—l—znl)}‘|a

=0

éajz

for j =1,...,k— 2. Finally, we let m1|(k, o, nx—1) and n;|(k, 0, ..., Mj—1, Mk—1)
for j = 2,...,k—2 be uniformly distributed on such intervals, therefore arriving
at the following conditional prior distribution
k—2 k—2
H(nla v a”k—?'kaplapo) = H H(nj|ka 7o, - - - 777j—1777k—1) = H Umf(é’j)
j=1

Jj=1

(3.15)

A direct consequence of Proposition 3.2 is that a valid prior distribution is
induced also on the space A of valid Pickands dependence functions, as expressed
by the following result.

Corollary 3.4. Let # = %(k) C SkT! be the space of (k + 1)-dimensional
vectors satisfying restrictions (R3)—(R5). Then, for any fixed k > 3 the prior
distribution (3.15) induces a prior distribution on the coefficients of Ay in (3.5).

Precisely, 8;1(Bo, ---,Bj-1,Bk—1,Bk), for 3 =2,...,k — 2, turns out to be uni-
formly distributed on the intervals

@j = [max {Q,Bj—1 - ﬁj—27 (k —j)ﬁk—l - (k —J- 1)};

k%j (5k_1 +(k—j— 1)@'—1)] :

The prior distribution on By, = (Po, - .., Bk) is then given by

k-2

I(Bylp1.po.k) = L13(Bo) Lih-112p0)/63 (B1) [ TL(Bs1Bos - - - Bi=1, Bre1)

Jj=2

X Ly—142p0)/k3 (Bo-1) L{13(Br)

= 1413 (Bo) Tyk—142p0)/k} (B1) Lik—142p1)/%3 (Be—1) L1y (Br)

k—2 k k—3
<[] vnif;) (2) .
j=2
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This result follows directly from the change of variable formula. In fact, letting
B(n; k) given by expression (3.9) denote the inverse transformation of n(S; k),
given by expression (3.8), the corresponding Jacobian is (k/2)¥~3. Notice that,
in this representation, the point masses of H are given by po = 1/2—k(1—/51)/2
and p1 =1/2 — k(1 — Br_1)/2.

The prior thus constructed assigns positive probability to any subset of ({k} x
S*¥), k > 1 which is valid, in the sense of satisfying conditions (R1)-(R2) or
equivalently, to every subset of ({k} x S¥*1), k > 1 which is valid, in the sense
of satisfying conditions (R3)—(R5). It therefore follows from proposition 3.3 that
the prior has a full support, in terms of the L., norm, on the spaces H and .A.

We now derive the analytical expression of the likelihood function. To do so,
we consider for simplicity the distribution (2.3) with stable tail dependence func-
tion represented by (2.7). Then, the joint probability density function (p.d.f.) is
given by

82
9(y1,y2) = [J (Y1, 52)| MG(I/xl,l/@)

11:1/1117%2:1/1127
for all y1,y2 > 0, where J(y1,v2) = (y1y2) 2. This is equal to

{AR) —tAOHAR) + (1 -t A'(D)} N A"(1)
(Y1y2)? (Y1 +y2)?

9(y1,92) = G(y1,92) [

Let Y1, = (Y1,...,Y,,) be ii.d. copies of a bivariate max-stable random
vector with p.d.f. g(y1,y2). Assume that the Pickands dependence function is
represented by (3.5), for some fixed k. Then, the log-likelihood function is equal
to

n

(9 = =3 (o +

)Zﬁg (ti; k)

Yi,i Y2,i

n k—1
+Zlog{ (Zﬂg (tisk) —tik Z(ﬁjﬂ —ﬁj)bj(ti§k—1))
i1

Jj=0

L Lm0 B biltisk) + (1= )k 35500 (Byen — 8) byl k — 1)
(y1,i92,i)°

+ (3.16)

k(k—1) SV 0(Bja = 2Bj11 + By) by(tisk — 2)
(Y1, +y2,4)3 ’
where 8 = (k, By, ..., Br) € ® C (N x S¥*1), abusing notation. We denote by

L(y;.,]0) the associated likelihood function. We may once again apply Proposi-
tion 3.2, to obtain the log-likelihood function in terms of @ = (k,no, ..., Mk—1) €



3322 G. Marcon et al.

© C (N x S8*) which, abusing terminology, can be seen as a reparametrization.
More formally, this corresponds to the representation of the distribution (2.5),
in the stable-tail dependence function (2.4), by means of a polynomial angular
distribution given by the expression (3.3).

There is no closed form for the posterior distribution 1II"(8|y;.,,), which is
proportional to I1(0)L(y;.,|@), regardless of the representation considered. For
this reason, we base the model inference on a complex MCMC posterior sim-
ulation scheme and, to be concise, we only describe the estimation procedure
of the polynomial angular distribution, since it has been established that the
Pickands dependence function can be obtained through a transformation. The
main difficulty stems from the fact that, at each MCMC iteration, the dimension
of the vector of coeflicients 1, changes with k. We therefore resort to a trans-
dimensional MCMC scheme proposed by Godsill (2001) and, in the infinite-
dimensional case, applied by Antoniano-Villalobos and Walker (2013). Thus,
we extend II(k,n,) to

M(k, no) = T(ny.|k) TH(k) ] T(ny),
>k

where 1., = (0,71, . - .) denotes an infinite sequence of which, given k, only the
first k elements are relevant, and II(n;) is any fully known distribution. In order

to update the pair (k( ,noo)) at the current state s of the Markov chain, we
propose a Metropolis-Hastings step with the following proposal distribution,

q(k, noo B n$)) = gr(k[ED) - gy (g |k) - T] Tmy),

j>k

where ¢, (n,|k) coincides with the conditional prior distribution II(n,|k), and

1 if k() =3
k=E® £1k)) =
Uk ( | ) 12 if k) >3

and
if k(s =
(k—k 1|k5)) 0 iR =3
/2  if k) > 3.

Thus, given the current state s of the Markov chain and the proposal, indexed
by s + 1, the acceptance probability depends on the ratio

n s s+1 s s 1
p(EHD, ) K, ) = I ) sy 1) gk, s [k, &)
» M(s+1)» k) — s
7 (k(), 08 |yy.,) g(k G+, SV k), n)

which, for any k() > 3, simplifies to

s (s+1)
p (k(8+1) e @)) _ O(S) Lly 1:n K¢ +1)’nk<5+1))
k(s+1) e P :

(k) L(y n|k(s)ank( )
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For k) = 3, we have k(T = k(*) 1 1 with probability one, so there is a 1/2
factor multiplying the ratio.
This leads to the following algorithm.

Algorithm 3.5. MCMC scheme to draw samples from the posterior distribution
" (k,n|yy.,) of the polynomial order and coefficients.

1. Set s = 0 and some starting values for the parameters (k(s), nés()s) € éakm) ;
2. Repeat M times the update of the parameters according to:
(a) Draw the proposals:

KD~ gy (kIES)) and L) ~ g (my [KETD);

(b) Compute the acceptance probability:
p = min (p (k(s+1)7 n](:(:;ll))a (e, U,(j()s)) ) 1) ;
(¢) Draw U ~ Unif(0,1) and, if U > p, then set:

s s+1 s
(k( +1)7 T’](:(s+1))) = (k( )a n;cs()s))v

(d) Set s=s+1;

Thus, after an appropriate burn-in period of, say m iterations, the sequence
(k) 77](:(1) )M, +1 provides a sample from the posterior distribution II" (k, n;,|y1.,,)-

An important goal of an extreme value analysis is to predict the probability
of future simultaneous exceedances. A simple way to do so is to use formula
(2.9). This task can be fully performed, within the Bayesian paradigm, through

a Monte Carlo estimate of the posterior predictive distribution, i.e.
PY1 > 1, Y2 > 43|y 1.0) Rﬁ/@ @P(Yl >y1, Y2 > 45(0)11"(0]y,.,,) 4O, (3.17)
€

where y7,y5 > 0 are unobserved thresholds. For each element of the posterior
sample, applying expressions (2.9) and (3.3), we have that

* * 1
P(Y1 > yy, Y2 > 43)0) =~ % (M1 — ;)
7=0
y G+UB(yi /(i +w3) lj+2.k—j—1)
(7
. (k—j—l)B(yé‘/(yHy%‘)Ik—j,j+1)>
s ’

where B(zl|a,b), for x € S, denotes the cumulative distribution function of a
Beta random variable with shape parameters a,b > 0. Therefore, an estimate
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can be obtained by averaging these quantities over the complete posterior sam-
ple.

The efficacy of our proposed model and inference methodology is numerically
illustrated in the next section.

4. Numerical examples

We illustrate the performance and flexibility of our methodology through a sim-
ulation study in which the extremal dependence of some well-known parametric
models is inferred. In particular, we consider the symmetric logistic (SL) model
(Coles, 2001, p. 146), the asymmetric logistic (AL) model (Tawn, 1990), the
Hiisler-Reiss (HR) model (Hiisler and Reiss, 1989) and the Extremal-¢ (ET)
model (Nikoloulopoulos, Joe, and Li, 2009).

For each model, a sample of n = 100 bivariate observations with common
unit Fréchet marginal distributions is simulated. Using such datasets, MCMC
posterior samples of the angular measure and the Pickands dependence function
are simulated via Algorithm 3.5 and compared with the theoretical functions
(see Figures 1 and 2). After a burn-in period of m = 400 thousand iterations, 100
thousand samples are considered. Figure 1 displays the results obtained using
the AL model with a mild dependence structure. In particular, the dependence
parameter is & = 0.6 and the asymmetry parameters are (11,72) = (0.3,0.8).
The four columns report the results attained using different prior distributions
for the polynomial degree k, when modeling the distribution function Hy_1. Pre-
cisely, from left to right, a Poisson distribution with mean xp = 7 and negative
binomials with parameters (kxp = 0.57,02% = 0.73), (kyp = 12.40, 0% = 23.66),
(knp = 3.2,02 = 4.48) have been considered. The third row shows the prior
and posterior distributions for k, in green and red, respectively. The posterior
median values are equal to 9, 3, 13 and 5, respectively for the four cases, from
left to right. In the fourth row the prior (green line) and posterior (red line) dis-
tributions for the atom pg, in addition to its true value py = (1 — 72)/2 = 0.35
(black dashed line) are reported. For all the cases, we see that most of the mass
of the posterior distribution is concentrated close to the true value. The cor-
responding median values of the posterior distributions for pg are 0.351, 0.342,
0.358 and 0.349, from left to right. For the atom p; = (1—71)/2 = 0.10 we obtain
the median values 0.149, 0.155, 0.165 and 0.139. Then, we can conclude that
the information about the point masses at the edges of the unit interval is well
reproduced. The first and second rows report the point-wise mean (red line) and
the point-wise 95% credibility bands (in grey) computed through the posterior
samples of the angular density and the Pickands dependence function, respec-
tively. The credibility bands are the point-wise 0.05- and 0.95-quantiles of the
posterior samples. The solid black lines are the true functions. In the first row,
the true point masses on the edges are represented by black dots and the means
computed from the posterior distributions are represented by red dots. The grey
points are 95% upper and lower limits of the credibility intervals for the point
masses. The true functions (angular density and Pickands) and the point masses
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Fic 1. Summary of the Bayesian nonparametric fitting of the extremal dependence. The true
model is the Asymmetric Logistic model. Different prior distributions for the polynomial’s
degree k are considered, from left to right.

fall within the point-wise 95% credibility bands in most of the cases, pointing
out that our inferential method captures the dependence structure quite well.
In the four cases, the results are quite similar; only in the third column (from
the left), the 95% credibility bands do not include the true functions in a few
points. So, it seems that our method is not too sensitive to the prior distribution
for k. The fifth row reports the Monte Carlo predictive probabilities (red lines)
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Fic 2. Summary of the Bayesian nonparametric fitting for the extremal dependence models:

Symmetric Logistic (mild and weak), Hisler-Reiss and Extremal-t.

of future simultaneous exceedances (3.17) for pairs of unobserved thresholds
(y3,y3) ranging between 10 and 100. The black lines are the true probabilities.
In the second and fourth cases (from the left) the estimates are very accurate,

while they are less so for the first and the third.

Figure 2 reports (from left to right) the results obtained for data generated
from the SL model with mild and weak dependence structures (denoted by SLm
and SLw) given by dependence parameter values @ = 0.45 and 0.85; the HL
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and the ET models with mild dependence given by the dependence parameters
A =12 and (w = 0.8, v = 2), respectively. The format of the graphs is the
same as that of the previous figure. The results are obtained using the same
prior distribution for the polynomial degree k, i.e. a Poisson distribution with
mean £p = 7. Other prior settings can be considered (skipped here for brevity)
and, as the previous study shows, the results do not change significantly. In
the four cases, the posterior median values for k are 6, 9, 7 and 8. The only
model that includes point masses on the edges is the ET, corresponding to
po = p1 = T,(—w{(v+1)/(1 —w?)}?) = 0.104, where T,1(-) denotes
a t distribution function with v + 1 degrees of freedom. The medians of the
posterior distributions for the point masses are (0.018, 0.041), (0.235, 0.151),
(0.047, 0.045) and (0.041, 0.097), respectively for the four cases. We see, from the
first and second row-panels, that the posterior distributions adequately capture
the different extremal dependence forms. Also, the plots in the last row show
rather accurate predictions of the probabilities of joint exceedances, outlining
the good performance of our inferential method.

Finally, going beyond visual checks, we measure the accuracy of our proposed
method. To do so, we focus on the Pickands dependence function and we com-
pute, for each element of the posterior MCMC sample, the integrated squared
error:

1 2
ISE(A®, A) = / (490 - ) at,
0

where A is the true Pickands dependence function and A®), s = 1,...,m, is
a Pickands dependence function sampled from the posterior. Table 1 reports,
for different sample sizes and for each of the four models considered in Figures
1 and 2 (first column), the Monte Carlo posterior mean of the ISE (second
column). Between parenthesis the 0.05- and 0.95- quantiles of the posterior
distribution for the ISE are reported. For comparison purposes, the third and
fourth columns report similar estimates obtained using the projection method
discussed in Marcon et al. (2015) and focusing on the multivariate madogram
(MD) and Capéraa-Fougeres-Genest (CFG, Capéraa et al., 1997) estimators
as pilot estimates, see Marcon et al. (2015) for details. In particular, for each
dataset, 500 bootstrap replicates are produced and for each of these the ISE is
computed, where in this case A(*) is the estimated Pickands dependence function
obtained with the projection method. In the table, the mean and the 0.05- and
0.95- quantiles (in parenthesis) of the ISE computed over the 500 bootstrap
replicates, are reported. Results in Table 1 show the slightly better performance
of our proposed method with respect to the competitors, for the several examples
considered. This supports our new proposal.

We have also compared our inferential approach with other proposals, for in-
stance that in Einmahl et al. (2008) (see also, Kliippelberg et al., 2007, Krajina,
2012). They proposed a parametric method for estimating the tail of a bivariate
distribution that is in the domain of attraction of a bivariate extreme value
distribution (de Haan and Ferreira, 2006, Ch. 6). Instead, we directly model the
extremal dependence of bivariate extreme value distributions. Thus, care must
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TABLE 1

Mean, 95% credibility intervals (Bayesian method) and 95% bootstrap confidence intervals
(projection method) of the ISE for the models in Figures 1 and 2, for increasing sample

sizes.

Model Inferential methods
Sample size 25
Bayesian Projection-MD Projection-CFG
AL 235 x 10~ 3 5.10 x 10~3 1.13 x 102
(3.53 x 107%;5.65 x 1073)  (1.81 x 1074;1.90 x 10~2) (8.02 x 107%;2.45 x 10~2)
SLm 7.64 x 1073 6.63 x 1073 1.47 x 1073
(8.33 x 1074;2.09 x 1072) (8.57 x 1075;3.01 x 1072) (6.15 x 1075;6.98 x 1073)
SLw 1.75 x 1073 3.81 x 1073 4.36 x 1073
(1.23 x 1074;4.21 x 1073)  (3.26 x 107%4;6.10 x 1073)  (3.95 x 107%;1.31 x 1072)
HR 8.75 x 1073 4.58 x 1073 6.75 x 1073
(4.95 x 1074, 1.75 x 1072)  (3.10 x 107%;9.94 x 1073)  (1.51 x 1073;9.92 x 1073)
ET 3.43 x 1072 7.00 x 1072 6.55 x 10~2

(2.35 x 1072;5.18 x

1072)

(6.17 x 1072;8.63 x 1072)

(6.18 x 1072;7.31 x 10~2)

Sample size 50

Bayesian Projection-MD Projection-CFG
AL 1.23 x 1073 2.04 x 10~3 1.96 x 1073
(4.73 x 1075;4.09 x 1073)  (1.10 x 107%4;6.48 x 1073)  (8.67 x 1075;6.67 x 1073)
SLm 1.76 x 1073 6.52 x 1074 4.17 x 1074
(1.16 x 1074;5.04 x 1073)  (2.53 x 107°;2.35 x 1073)  (1.87 x 1075;1.18 x 1073)
SLw 1.47 x 1073 2.14 x 1073 2.33 x 1073
(9.18 x 107°;3.89 x 1073)  (3.74 x 107%4;5.59 x 1073)  (2.39 x 107%;7.08 x 1073)
HR 8.87 x 1074 2.71 x 1073 4.38 x 1073
(4.53 x 107°;3.26 x 1073)  (2.47 x 1074;6.82 x 1073)  (9.63 x 1074;8.29 x 10~3)
ET 3.20 x 1072 7.46 x 1072 7.08 x 1072
(2.42 x 1072;4.51 x 1072)  (6.68 x 1072;8.52 x 1072) (6.53 x 1072;7.69 x 1072)
Sample size 100
Bayesian Projection-MD Projection-CFG
AL 5.71 x 10~2 9.48 x 1072 6.51 x 102
(1.60 x 1075;2.02 x 1073)  (7.10 x 1075;6.47 x 1073)  (2.98 x 1075;2.30 x 1073)
SLm 3.58 x 1074 1.85 x 1074 1.91 x 107*
(7.67 x 107%;1.13 x 1073)  (1.53 x 107°;2.85 x 10™4) (2.10 x 1075;2.84 x 107%)
SLw 8.44 x 104 1.21 x 1073 1.17 x 1073
(4.77 x 107°;2.74 x 1073)  (9.67 x 107°;3.88 x 1073)  (1.23 x 1074;4.02 x 10~3)
HR 5.61 x 1074 2.16 x 1073 2.37 x 1073
(3.89 x 1073;1.67 x 1073) (2.32 x 1074;4.71 x 1073)  (5.38 x 107%;4.24 x 1073)
ET 2.49 x 10~2 6.66 x 102 6.68 x 102
(2.14 x 1072;2.99 x 1072)  (6.49 x 1072;7.23 x 1072)  (6.49 x 1072;7.09 x 1072)
Sample size 200
Bayesian Projection-MD Projection-CFG
AL 3.76 x 102 6.09 x 10~% 4.95 x 107%
(1.87 x 107°;1.22 x 1073)  (4.50 x 107°;1.92 x 1073)  (3.31 x 1075;1.63 x 1073)
SLm 5.62 x 1075 4.52 x 1074 4.84 x 1074
(6.45 x 1079%;1.50 x 10~%)  (4.69 x 107°;1.03 x 1073)  (1.01 x 1074;9.65 x 10~%)
SLw 5.16 x 104 8.10 x 104 1.19 x 1073
(2.87 x 1075;1.72 x 1073)  (4.59 x 1075;2.54 x 1073) (6.41 x 1075;3.39 x 1073)
HR 2.53 x 104 3.91 x 104 3.62 x 104
(1.73 x 1075;8.55 x 1074)  (2.22 x 1075;1.20 x 1073)  (2.59 x 1075;1.09 x 1073)
ET 2.28 x 1072 6.25 x 1072 6.16 x 10~ 2

(2.09 x 1072;2.56 x

10~2)

(6.10 x 102;6.93 x 10~2)

(6.15 x 1072;6.93 x 10~2)
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be taken when interpreting the results, which for brevity are not presented here.
For specific parametric families of dependence models, their parametric method
outperforms our nonparametric proposal. However, the integrated squared er-
ror (used for comparison) is of the same order in both techniques, suggesting
that our model-free proposal is equally appealing, in addition to providing wide
applicability.

In conclusion, we stress that the computational cost of running our proposed
Bayesian model is moderately low. For example, to run M = 500 thousand iter-
ations of the MCMC algorithm, it takes only 114.03 seconds, with an intel Core
i7 processor at 2.2 GHz. The code for the model fitting will soon be available
with the R-package ExtremalDep. The data simulation was performed using the
R-package evd (Stephenson, 2004).

5. Analysis of extreme log-return exchange rates

Predicting exchange rates is one of the most challenging tasks in economics. A
seminal paper by Meese and Rogoff (1983) showed that predictions of exchange
rates based on macroeconomic models are unable to outperform those derived
from a random walk. However, recent literature (e.g. Engel and West, 2005) has
established a link between exchange rates and fundamental economic principles.
The modern asset market approach relies on a supply-and-demand analysis of
the exchange rate viewed as the price of domestic assets in terms of foreign
assets (Madura, 2014). In the short-term, the exchange rate is influenced by
a positive interest rate differential, which causes an appreciation of the home
currency. In the long-term, a rise in the home country’s price level causes the
depreciation of its currency, while higher productivity or an increased demand
for exports cause the appreciation of the currency (the opposite holds true for
an increased demand for imports).

The United States and Japan share some common features, such as the pres-
ence of titanic enterprises and a similar monetary policy, so a strong depen-
dence between the exchange rates of the Pound Sterling against the US dollar
(GBP/USD) and the Japanese yen (GBP/JPY) is to be expected. In fact, Fig-
ure 3 shows a remarkable relation between the daily log-returns for this pair of
exchange rates from March 1991 to October 2015. Our interest is in estimat-
ing extremely high (or low) joint levels of the exchange rates, thus we focus
on monthly-maxima of log-returns. An inspection of the data shows, for in-
stance, that monthly-maxima often occur on the same day of the month. An
adequate quantification of the dependence of the bivariate maxima is crucial for
predicting future extremely high exchange rates of GBP/JPY based on occur-
rences of extremely high exchange rates of GBP/USD, and vice versa. Figure 4
shows that an important degree of extremal dependence persists, even after
removing the trend and seasonality from each of the monthly-maxima series.
Firstly, we estimate the marginal GEV parameters of each series of residuals,
by the maximum likelihood method. The parameter estimates for GBP/USD
and GBP/JPY are p; = 0.0055, o1 = 0.0025, & = 0.0249 and pe = 0.0068,
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oo = 0.0030, & = 0.1199, respectively. Note that &5 is higher than &;. Since
the shape parameter drives the heaviness of the tail, the larger it is, the heavier
the tail is, therefore the higher the marginal probability of observing extreme
values is for GBP/JPY as opposed to GBP/USD. Secondly, we transform the
data to obtain unit Fréchet margins, by means of transformation (2.2) and us-
ing the estimated marginal parameters. The data transformed in this way can
be assumed to be a sample coming approximately from a bivariate max-stable
distribution of the type (2.3). The extremal dependence of monthly-maxima of
log-returns is then inferred by using the method described in Section 3.

The set-up for computing the approximate posterior distributions is the same
as that considered for the models illustrated in Figure 2 of Section 4. The sum-
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maries of results obtained from the posterior distribution are displayed in Fig-
ure 5. The first row reports the point-wise posterior means (red lines) and 95%
credibility bands (in grey) of the angular density (left panel) and the Pickands
dependence function (right panel). The results regarding the Pickands depen-
dence function suggest that the dependence structure is symmetric. Results
about both the Pickands dependence function and the angular density suggest
a mild dependence, with posterior median values of the point masses py and
p1 equal to 0.149 and 0.093, respectively. The bottom-left panel of Figure 5
displays the prior (green dots) and posterior distributions (red dots) for the
polynomial degree k, with posterior median value 7. The bottom-right panel
displays the predicted probabilities of joint exceedances, given by (3.17), for
combinations of values ranging between 10 and 100. These results highlight
that the probability of joint exceedances is also symmetric and hence the two
variables can be considered exchangeable. However, as we have previously dis-
cussed, the marginal distribution of monthly-maxima of GBP/USD log-returns
is different from that of GBP/USD. Therefore, bringing this small case study
to a close, we compute both conditional probabilities when the conditioning
variable exceeds its 99% percentile, i.e. P(GBP/JPY > ¢; | GBP/USD > ¢)
and P(GBP/USD > ¢ | GBP/JPY > ¢2). To do so, we proceed as follows. We
calculate g1 and g9 as the 99% percentiles of the marginal GEV distributions of
log-returns of exchange rates GBP/USD and GBP/JPY, respectively, using the
estimated marginal parameters. These are equal to ¢; = 0.0162 and g2 = 0.0221.
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We transform the thresholds in order to represent them in unit-Fréchet scale by

(1/&)

g =g (R . =12
5J o;

+

Now, for ¢; we obtain the thresholds y3, = 14.12 and yi; = 57.25 and the
joint predictive probability (3.17) is equal to 0.0050. Therefore, we obtain the
final result P(GBP/JPY > ¢, |GBP/USD > q1,) = P(Yz > y5, | Y1 > yi,) =
0.2880. Similarly, for ¢o we obtain the thresholds yj o = 450.23 and y3 , = 52.32
and the joint predictive probability (3.17) is equal to 0.0007. Therefore, we
obtain the final result P(GBP/USD > g2 | GBP/JPY > go) ~ P(Y1 > yi 5| Y2 >
Y5 2) = 0.0386.

In conclusion, in contrast to the case of the joint exceedances, since the
GBP/JPY tends to assume larger values than GBP/USD, the conditional prob-
ability of the log-returns of GBP/USD given elevated values of log-returns of
GBP/JPY is quite high.

Appendix: Proofs

Proof of Proposition 3.1. Using the identities in (3.2) we have that Hj_1(0) =
po, Hp—1(1) = 1 — p1, where the former is the mass at {0} and Hj_1(1) =
Supyep0,1) Hr—1(w). As a result Hy—1([0, 1]) — Hi—1(1) = p1, which is the mass
at {1}.

Second, for any w; < wy € [0,1) we have
k—1 ws
Hy1([0,ws]) — He—1([0,w1]) = > (nj41 — ﬂj)/ Be(v|j + 1,k — j)dv > 0,

=0 w1

where the inequality holds because by (R1) we have that 1,11 —n; > 0, for
j=0,...,k—1 and therefore Hy_1([0,w1]) < Hg_1([0,w3]).
Third, note that

. _
1
/ whi—1(w)dw +p1 =p1 + Z Ni+1—n;)(J +1), (A1)
0 k=
and
1 1 k=
poct [ (= w)hicsw)dw = gy + E; mivi =)k —j—1).  (A2)

Equating (A.1) and (A.2) to 1/2 we attain the condition in (R2). Then Hy_1
satisfies the mean constraint (C1) by applying (R2) to its coefficients. O
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Proof of Proposition 3.2. By (2.8) we have that H([0,w]) = (A" (w) + 1)/2 for
w € [0,1). Applying such a relationship between Hj_; and Ay we attain

k—1
Hea0.0) = 33k (Bre = B)bi(wsk = 1) +1
7=0
k*ll
= 5 (B(Bj1 = B5) + 1} bj(wi k — 1)
7=0
k—1
= nibj(w; k — 1),
=0

where we have used the identity > .., ,b;j(w;k —1) = 1. From the above
formula the result in (3.8) follows. On the other hand we have

AL(t) = 2H,1([0,t]) =1
k-1 k1
EY (Biva = Bbi(tik—1) = > (2n; — )btk — 1)
Jj=0 =0

where the last identity holds if and only if k(8;4+1 — B;) = 2n; — 1 for all
j=0,...k—1. Resolving for 5,11 we attain the formula 5,11 = 8;+(2n;—1)/k.
From this we get 51 = (2no + k — 1)/k, for 7 = 0, since Sy = 1. Applying it
recursively we get 82 = (2(no+m)+k—2)/k, for j = 1. Repeating this reasoning
for j = 2,3,... we attain the general recursive formula in (3.9). Thus, statement
i) is shown.

Consider Ay, in (3.5) and assume it fulfills (R3)—(R5). Then, we must check
that Hy_1 in (3.3) with coefficients given by (3.8) fulfill (R1) and (R2).

By (3.8) we have ng = k(81 — 1+ 1/k)/2 and 1 = k(1 — Br_1 + 1/k)/2 for
j=0and j = k—1. By (R4) we have therefore that ny = pp and nx_1 =1 —py.
Next, it needs to be shown that n; < 541 for j = 0,...,k — 2. By (3.8)
this inequality is equal to k(841 — B + 1/k)/2 < k(Bjy2 — Bj+1 + 1/k)/2
for j =0,...,k — 2. This holds if and only if 8,12 — 28,41 + §; > 0 and this is
true by (R5). Thus Hy_ fulfills (R1).

It remains to show that ng + - -+ + nx—1 = k/2. By (3.8) with a few steps we
attain

k
g tpr—l=p = an
_ Ii(k(ﬁm 2/sj+1/k>>
-

k kk*Z
= 5—1+§Z(5j+1—5j)
j=1
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and from the last identity we obtain 2(p; — po) = Bk—1 — B1. By (R4) it is
straightforward to check that the last equation holds. Therefore Hj_; fulfills
also (R2) and it is the distribution of a valid angular measure.

Now, consider Hj_; in (3.3) and assume it fulfills (R1) and (R2). Then, we
must check that Ay in (3.5) with coefficients given by (3.9) fulfills (R3)—(R5).

Applying (3.9) with j = k — 1 we have that 8; = 1 and this is attained
using the condition (R2). Next, it needs to be shown that §;1; < 1 for any
j=0,...,k—1. Applying (3.9) to check that such inequalities hold is equivalent
to checking that >, m; < (j+1)/2 for any j =0,...,k—1. Thus, when j =0
we have 9 < 1/2 and this holds since that 179 = pg by (R1) and pg € [0,1/2]
by Assumption 2.1. For any j = 1,...,k — 2 suppose, on the contrary, that
(no+---+mn;) > (j+1)/k. From this and taking into account (R1) and that p; €
[0,1/2] by Assumption 2.1, it follows the contradiction that (R2) is not valid.
As a consequence, the opposite inequalities hold. Since Sy = 1 by definition,
then Aj fulfills (R3).

By (3.9), for j = 0 and j = k — 2, we derive with some manipulations
B1=2po+k—1)/k and Br_1 = (2p1 + k — 1)/k. These results are attained by
using (R1) and (R2), respectively. Therefore Ay fulfills (R4).

It remains to show that 3,42 —28;41+8; > 0forall j =0,...k—2. Applying
(3.9) and with some manipulations we have

0 < Bjra—2Bj41+ B

L[
_%<22m+k—j—2>—

=0
2
< E(nﬁl —1;)

N
ENllN

=0

J 1 j—1
(22ni+k_j_1>+E QZ’(]Z'—Fk—j
=0

for j =0,...k—2. This result holds since n; < n;41 for j =0,...k—2 by (R1).
Therefore Ay fulfills also (R5) and is a valid Pickands dependence function.
Then the proof is concluded. O

Proof of Proposition 3.3. The fact that Ay, k = 1,2, ... is nested in 4 has been
shown by Proposition 3.3 in Marcon et al. (2015). Here we only need to show
that Ay1(t) satisfies the conditions in (R4), where

- k+1—j j
A’H_l(t) = Zﬁj b](t’k+ 1)7 ﬁ; = (Bjk—-l-]. +ﬁj—1k—_’_l> .
7=0

Applying the above formula we have 87 = (kB + Bo)/(k + 1) and 5 = (B +
kBr—1)/(k+1). Substituting with 8o = B =1, 1 = 2po+k—1)/k and Br_1 =
(2p1 + k —1)/k, we obtain 8 = (2po + k)/(k+ 1) and B;; = (2p1 + k)/(k + 1).
Therefore, the result is shown. We now show that also Hy, k = 1,2, ... is nested
in H. Let

J

Hy(w) = Ui bj(w; k), n; = an +7]j71E~

<.
I ME‘
o
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We can verify that n; <n7,,, for j =0,...,k — 1. Using the definition of n; we
obtain
J k—j—1
—p i =mj—1) <= (e — 1))

and the left-hand and right-hand side of the above inequality are always negative
and positive, respectively, by (R1). Therefore, also Hy, satisfies condition (R1).
Furthermore, we have

k+1 b
K

Il
3
+
N =

where the last equation holds by (R2). As a consequence also Hj, satisfies con-
ditions in (R2) and hence Hy, k =1,2,..., is nested in H.
Now, let

k .
Ba(wik)=> A (%) bi(w; k), k=1,2,...,

7=0
then, by Proposition 3.1 in Marcon et al. (2015) we have

1
sup |Ba(w; k) — A(w)| < —.
o 1Ba(sk) — AW < 5o

Therefore, by Proposition 3.3 in Marcon et al. (2015) the result in (3.10) follows.
Next, consider Hy_ as in (3.3), where Hj_1(w) = (A} (w) +1)/2 for w € [0,1)
and Ay as in (3.5), satisfying (R3)—(R5). Then, Hy_1 € H by Proposition 3.
and M}, is nested in 7 as has been shown above. Furthermore, let By (w; k—1) =
(B (w; k) +1)/2 for w € S, then

|Bu(w;k — 1) = H(w)| = [By(w; k) — A'(w)|, weS,
As a consequence the result (3.10) implies that also result (3.11) holds, by the

uniform convergence of the first derivative of convex functions (see Theorem
25.7 in Rockafellar, 2015). O
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