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Abstract: We propose a thresholding least-squares method of inference
for high-dimensional regression models when the number of parameters, p,
tends to infinity with the sample size, n. Extending the asymptotic behav-
ior of the F-test in high dimensions, we establish the oracle property of the
thresholding least-squares estimator when p = o(n). We propose two auto-
matic selection procedures for the thresholding parameter using Scheffé and
Bonferroni methods. We show that, under additional regularity conditions,
the results continue to hold even if p = exp(o(n)). Lastly, we show that,
if properly centered, the residual-bootstrap estimator of the distribution of
thresholding least-squares estimator is consistent, while a naive bootstrap
estimator is inconsistent. In an intensive simulation study, we assess the
finite sample properties of the proposed methods for various sample sizes
and model parameters. The analysis of a real world data set illustrates an
application of the methods in practice.
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1. Introduction

There is a wide interest in developing statistical and computational methods
and theory for high-dimensional regression models when the number of param-
eters, p, tends to infinity with the sample size, n. In this paper, we propose
a thresholding least-squares estimator (TLSE) for high-dimensional linear re-
gression models as a computationally efficient alternative to penalized least-
squares. Thresholding inferential methods have been widely used in wavelet
nonparametric regression (Donoho and Johnstone, 1994), wavelet nonparamet-
ric density estimation (Donoho et al., 1996), and estimation of sparse covariance
matrices (Bickel and Levina, 2008; El Karoui, 2008). However, to the best of
our knowledge, there is no systematic analysis of thresholding least-squares for
high-dimensional linear regression models. The main purpose of this paper is to
fill in this gap in the literature.

One of the most popular penalized least-squares estimators for linear regres-
sion models is the least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996) which combines the favorable properties of model selection
and ridge regression. Other penalized least-squares estimators are the Bridge
estimators (Frank and Friedman, 1993), which include the LASSO as a special
case. The asymptotic behavior of Bridge estimators were analyzed by Knight
and Fu (2000). The smoothly clipped absolute deviation (SCAD) estimator was
proposed by Fan and Li (2001) who also established that the SCAD estima-
tor satisfies the oracle property. An estimator has the oracle property if it is
variable selection consistent and the limiting distribution of its subvector corre-
sponding to the non-zero coefficients is the same as if their set were known prior
to estimation. Motivated by the fact that the LASSO does not have the oracle
property, Zou (2006) proposed the adaptive LASSO (ALASSO) and proved its
oracle property. All these methods and theoretical results have been developed
under the assumption that p is fixed.

The literature on high-dimensional regression inference dates back to Huber
(1973) who showed the asymptotic normality of M-estimators when p = o(n1/2),
results which were further extended by Portnoy (1984, 1985) for the case when
p log(n) = o(n2/3). Asymptotic theory for M-estimators was also developed by
Mammen (1989) for the case when hn1/3(log(n))2/3 → 0, where h is the maxi-
mum diagonal element of the hat matrix. The consistency of L2-boosting, which
is similar to the forward stagewise least-squares variable selection method, was
proven by Bühlmann (2006) when p = o(exp(n)). Asymptotic error rates and
power for some multi-stage regression methods were developed by Wasserman
and Roeder (2009) for p = o(exp(n)). More recently, van de Geer, Bühlmann and
Zhou (2011) compared the ALASSO with the thresholded LASSO in potentially
misspecified regression models when p ≥ n in terms of prediction error, mean
absolute error, mean squared error, and the number of false positive selections.
The oracle property of the ALASSO and the Bridge estimators were established
by Huang, Ma and Zhang (2008) and Huang, Horowitz and Ma (2008) when
p = o(n). Using a (marginal) componentwise estimator as an initial screening of
relevant variables, they showed that, under additional regularity conditions, the
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results continue to hold even if p = exp(o(n)). The sure-independence screening
methodology for ultra-high dimensional feature space was introduced by Fan
and Lv (2008). More recently, Wang and Leng (2016) proposed an alternative
screening procedure with improved statistical properties and similar computa-
tional complexity.

Bootstrap methods (Efron, 1979; Freedman, 1981) are popular computational
intensive alternatives to the asymptotic inference which often improve accuracy
of inference on small samples (Hall, 1992). The consistency of the residual-
bootstrap distribution of the least-squares estimator (LSE) was proved by Bickel
and Freedman (1983) when p = o(n). The consistency of residual-bootstrap dis-
tributions of M-estimators in general and of the LSE in particular were proved
by Mammen (1989, 1993). A parametric bootstrap in conjunction with thresh-
olding inference for a high-dimensional mean with unknown covariance matrix
was used by van der Laan and Bryan (2001). More recently, Chatterjee and
Lahiri (2011) showed that the residual-bootstrap distribution of the LASSO is
inconsistent when the model is sparse, i.e., when some regression coefficients
are equal to zero, and that centering the bootstrap distribution at a consis-
tent variable selection estimator provides consistent bootstrap inference. The
consistency of the residual-bootstrap distribution of the ALASSO and the or-
acle property of the residual empirical process for high-dimensional regression
models was proved by Chatterjee and Lahiri (2013) and Chatterjee, Gupta and
Lahiri (2015).

In this paper, we propose a two-step thresholding least-squares method of
inference for high-dimensional regression models. We first show the oracle prop-
erty of the TLSE when p = o(n) based on an extension of the asymptotic
distribution of the F-test for high-dimensional regression models. Similarly to
Huang, Ma and Zhang (2008), Huang, Horowitz and Ma (2008), and Fan and
Lv (2008), we then show that using a componentwise least-squares estimator
as an initial dimension reduction estimator, the resulting TLSE has the ora-
cle property even when p = exp(o(n)). Our theoretical results require that the
number of non-zero coefficients, q, be of order q = o(n); this constitutes an
advantage of the TLSE compared to multi-stage regression models (Wasserman
and Roeder, 2009) which require q = O(1), and the ALASSO and the Bridge
estimators (Huang, Ma and Zhang, 2008; Huang, Horowitz and Ma, 2008) which
essentially require q = o(n1/2). We propose two automatic selection procedures
for the thresholding parameter which ensure the oracle property of the TLSE
using Scheffé and Bonferroni methods adapted for high-dimensional models. We
further show that, when properly centered, the residual-bootstrap distribution
of the TLSE is consistent, and when the regression model is sparse, then a naive
bootstrap distribution of the TLSE, as a random element in the space of prob-
ability distributions on a finite dimensional space, converges in distribution to
a random normal distribution, and thus, it is inconsistent.

We conclude this section with an outline. In Section 2, we present the large
sample properties of the TLSE for both cases: (i) p < n and (ii) p ≥ n, and
present the automatic thresholding parameter selection methods. In Section 3,
we study the asymptotic behavior of the bootstrap distribution of TLSE. In
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Section 4, we present the results of an empirical study of the finite sample
properties of the proposed methods and in Section 5, we analyze a real-world
data set to illustrate an application of the methods in practice. The proofs of
theoretical results can be found in an Appendix.

2. Thresholding least-squares

Consider the linear regression model:

Yi = XT
i β + εi , i = 1, . . . , n , (2.1)

where Yi ∈ R is the response and Xi = (Xi1, . . . , Xip)
T ∈ R

p is the (non-
random) explanatory variable corresponding to the ith subject, β ∈ R

p is the
(unknown) regression parameter vector, and εi ∈ R is the (unobserved) error,
with ε1, . . . , εn ∼ i.i.d.P , P is a distribution on R, with E(ε) = 0, var(ε) = σ2,
and ε ∼ P . For identifiability reasons, we assume throughout the paper that q,
the number of the non-zero components of β, is smaller than the sample size,
i.e., q < n. We are interested in statistical inference for β in the case when
its dimension, p, increases with the sample size, n, and β is sparse, i.e., when
some of its components are zero. For notational convenience, we suppress the
dependence on n of p, q, Xi, and Yi.

Without loss of generality, by centering the response and standardizing the
covariates, we assume that the intercept term has been removed from the set of
predictors. Thus, Ȳ = 0, X̄(j) = 0, and S̄(j) = 1, where

Ȳ = n−1
n∑

i=1

Yi , X̄(j) = n−1
n∑

i=1

Xij , S̄(j) = n−1
n∑

i=1

X2
ij , j = 1, . . . , p .

Let I = {1, . . . , p}. For b = (b1, . . . , bp)
T ∈ R

p, let Kb = {j ∈ I : bj = 0},
Jb = {j ∈ I : bj �= 0}, qJ = card(J) for J ⊂ I and card(J) denotes the number
of elements of J , Θ1 = {b ∈ R

p : Kb �= ∅}, and Θ2 = R
p \ Θ1, where ∅ is the

empty set. The regression model (2.1) is called sparse if β ∈ Θ1, i.e., when some
of the regression coefficients are 0.

2.1. Case p < n

In this section, we consider the case when p < n. Let β̄ be the least-squares
estimator (LSE) of β, i.e.,

β̄ = (XTX)−1XTY = n−1Ω−1
n∑

i=1

XiYi =

n∑
i=1

ciYi ,

where X = (Xij) ∈ R
n×p is the design matrix, Y = (Y1, . . . , Yn)

T ∈ R
n is the

response vector, ci = (XTX)−1Xi ∈ R
p, and

Ω = n−1XTX = n−1
n∑

i=1

XiX
T
i ∈ R

p×p .
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Let σ̄2 be the (unbiased) LSE of σ2 given by

σ̄2 =
1

n− p

n∑
i=1

(
Yi −XT

i β̄
)2

.

Let ρ1 and ρ2 denote the minimum and the maximum eigenvalues of Ω, re-
spectively, and let ‖a‖ denote the Euclidean norm of a ∈ R

p. We assume the
following regularity conditions:

A.1 E(ε) = 0, var(ε) = σ2, and E(ε4) < ∞, where ε ∼ P ;
A.2 ρ1 > 0, max1≤i≤n‖Xi‖2= O(p), and p/(nρ1) = o(1).

Note that since tr(Ω) = p, where tr(Ω) denotes the trace of Ω, then ρ1 ≤ 1. By
condition A.2, it thus follows that p = o(n). Lemma 2.1 shows the consistency
of β̄ and σ̄2, that the rate of convergence of aT (β̄ − β) depends on ρ1 (which
is allowed to tend to 0 but at a slower rate than p/n), and that the rate of
convergence of σ̄2 to σ2 is n−1/2, exactly the same as in the case of fixed p.

Lemma 2.1. Suppose that conditions A.1–A.2 hold and let a ∈ R
p with ‖a‖= 1.

Then (i) aT (β̄ − β) = OP ((ρ1n)
−1/2); and (ii) σ̄2 = σ2 +OP (n

−1/2).

Let
d−→ denote convergence in distribution. Lemma 2.2 shows that aT β̄ is

asymptotically normal for all a ∈ R
p, with ‖a‖= 1.

Lemma 2.2. Suppose that conditions A.1–A.2 hold and let a ∈ R
p with ‖a‖= 1.

Then s̄−1/2aT (β̄ − β)
d−→ N(0, 1), where s̄ = n−1σ̄2aTΩ−1a.

For J ⊆ I, let βJ = (βj : j ∈ J)T ∈ R
qJ , XJ = (Xij : 1 ≤ i ≤ n, j ∈ J) ∈

R
n×qJ , ΩJK = n−1XT

J XK ∈ R
qJ×qK , and let

ΣKK = ΩKK − ΩKJΩ
−1
JJΩJK ∈ R

qK×qK (2.2)

be the Schur complement of the block matrix ΩJJ , where K = I \ J . An imme-
diate consequence of Lemma 2.2 is that for every fixed K ⊂ Kβ (i.e., K does
not depend on n), we have

n1/2σ̄−1Σ
1/2
KK(β̄K − βK)

d−→ N(0, IqK ) ,

where IqK is the identity matrix in R
qK×qK . Note that the F-test statistic for

testing the null hypothesis H0 : Kβ = K against Ha : Kβ �= K, where K ⊂ I is
fixed, is given by

F̂ (K) = n
β̄T
KΣKK β̄K

qK σ̄2
.

By Lemma 2.2, it follows that under H0 : Kβ = K, then

qK F̂ (K)
d−→ χ2

qK ,

where χ2
qK is the chi-squared distribution with qK degrees of freedom. Lemma 2.3

shows the limiting null distribution of the scaled and centered F-test statistic
when the cardinality of K increases with n (and thus, qK increases with n).
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Lemma 2.3. Suppose conditions A.1–A.2 hold and nρ21 → ∞. Then, under
H0 : Kβ = K,

qK F̂ (K)− qK
(2qK)1/2

d−→ N(0, 1) . (2.3)

Let K̂ be a thresholding estimator of the index set of the zero components
of β, Kβ , given by:

K̂ =
{
j ∈ I : |β̄j | ≤ γσ̄jj

}
,

where β̄ = (β̄j : j ∈ I)T ∈ R
p, γ is the thresholding parameter, σ̄jj =n−1/2σ̄ω

1/2
jj ,

and Ω−1 = (ωij) ∈ R
p×p. We assume that γ satisfies the following conditions:

ρ1ρ
−1
2 γ2 − qKβ

q
1/2
Kβ

→ ∞ (2.4a)

and

ρ1ρ
−1
2

(
n1/2σ−1ρ

1/2
1 minj∈Jβ

|βj | − γ
)2 − q

q1/2
→ ∞ . (2.4b)

To get an intuition about conditions (2.4a) and (2.4b), suppose for the moment
that lim infn ρ1 > 0, lim infn ρ

−1
2 > 0, lim infn minj∈Jβ

|βj | > 0, and qKβ
∼ nτ ,

where 0 < τ < 1; here and elsewhere, we use the standard notation that an ∼ bn
if and only if an = O(bn) and bn = O(an). In this case, we can choose γ ∼ nτ0/2,
where τ < τ0 < 1. Our default choice for γ is γ = (p log(p))1/2, and as long as
p = o(n/ log(n)), then conditions (2.4a) and (2.4b) hold. In Section 2.2, we will
take up this problem in more detail and present two automatic thresholding
parameter selection procedures.

The TLSE of β is defined as follows:

β̂ = argmin
b∈Rp

{
(Y −Xb)T (Y −Xb) : bK̂ = 0

}
.

Note that β̂K̂ = 0 and β̂Ĵ = (XT
Ĵ
XĴ)

−1XT
Ĵ
Y , where Ĵ = I \ K̂. Let further

σ̂2 =
1

n− qĴ

n∑
i=1

(
Yi −XT

i β̂
)2

be the TLSE of σ2. Similarly to Lemma 2.1, it readily follows that σ̂2 = σ2 +
OP (n

−1/2). Theorem 2.1 shows that β̂ has the oracle property, and thus, the
TLSE has similar asymptotic properties as the LASSO-type estimators that
have the oracle property.

Theorem 2.1. Suppose that conditions A.1–A.2, (2.4a) and (2.4b) hold, and

that nρ21 → ∞. Then β̂ has the oracle property, i.e., (i) Pr(K̂ = Kβ) → 1; and

(ii) ŝ−1/2aT (β̂−β)
d−→ N(0, 1), where a ∈ R

p, ‖a‖= 1, and ŝ = n−1σ̂2aT
Ĵ
Ω−1

ĴĴ
aĴ .
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Note that the regularity conditions of Theorem 2.1 are less restrictive than
those imposed for Bridge estimators by Huang, Horowitz and Ma (2008). To this
end, assume that lim infn ρ1 > 0, lim infn ρ

−1
2 > 0, and lim infn minj∈Jβ

|βj | >
0. Then, by condition (A3)(b) of Huang, Horowitz and Ma (2008), we obtain
λ(p/n)γ/2p−1 → ∞, where λ is the regularization parameter and γ ∈ (0, 1) is the
power of the penalty component of the Bridge estimator. Hence λ/p → ∞. By
their condition (A2)(b), then λq/n → 0. However, this is a restrictive condition,
since, for example, if p ∼ n/ log(n), then q = o(log(n)); however, in this case,
our regularity conditions require only that p = o(n/ log(n)). See the paragraph
above for more details. Moreover, if the covariates are uniformly bounded, then
condition (A5)(b) holds only if q = o(n1/2) while our corresponding regularity
condition max1≤i≤p‖Xi‖2= O(p) holds without additional restrictions.

By Lemma 2.2 and Theorem 2.1, when β ∈ Θ2, the asymptotic distributions
of aT (β̄−β) and aT (β̂−β) are the same for all a ∈ R

p, with ‖a‖= 1. Corollary 2.1

is a direct consequence of Theorem 2.1 and shows that β̂ is more efficient than
β̄ in the sense that the asymptotic variance of aT (β̂−β) is smaller than or equal
to the asymptotic variance of aT (β̄ − β).

Corollary 2.1. Suppose conditions A.1–A.2, (2.4a) and (2.4b) hold, and that

nρ21 → ∞. Then β̂ is asymptotically at least as efficient as β̄.

2.2. Thresholding parameter selection

Theoretically, any sequence γ satisfying (2.4a) and (2.4b) will ensure the oracle

property of β̂. In this section, we describe two automatic selection procedures
for γ with good numerical and statistical properties. These procedures are based
on extensions of Scheffé and Bonferroni methods adapted for high dimensional
regression models.

Method I The first method is based on Scheffé procedure (see, e.g., Khuri,
2010, Section 6.6.1.1). We assume that conditions of Lemma 2.3 hold. Hence,

n(β̄ − β)TΩ(β̄ − β)/σ̄2 − p

(2p)1/2
d−→ N(0, 1) .

Let α > 0 be a sequence of nominal levels such that α = o(1) and log(α) =
o(n1/2/p1/4). Using an approximation of the upper tail probabilities of N(0, 1)
(see, e.g., Zelen and Severo, 1972, Example 26.2.12, p. 932), then ξα → ∞ and
ξα = o(n/p1/2), where ξα is the upper α-quantile of N(0, 1). Since ξα → ∞,
then

Pr
(
n(β̄ − β)TΩ(β̄ − β) ≤ pσ̄2 + (2p)1/2σ̄2ξα

)
→ 1 .

Let ζ = Ω1/2(β̄ − β) and c2 = pσ̄2/n + (2p)1/2σ̄2ξα/n. It is known that (see,
e.g., Khuri, 2010, Lemma 6.1),

ζT ζ ≤ c2 ⇐⇒
∣∣bT ζ∣∣ ≤ c(bT b)1/2 for all b ∈ R

p .
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Hence,

Pr
(∣∣bTΩ1/2(β̄ − β)

∣∣ ≤ (bT b)1/2
(
pσ̄2/n+(2p)1/2σ̄2ξα/n

)1/2
for all b ∈ R

p
)
→ 1 .

Letting l = Ω1/2b and substituting b = Ω−1/2l for b in the expression above, we
obtain

Pr
(∣∣lT (β̄ − β)

∣∣ ≤ (lTΩ−1l)1/2
(
pσ̄2/n+ (2p)1/2σ̄2ξα/n

)1/2
for all l ∈ R

p
)
→ 1 .

Let

K̂S =
{
j ∈ I : |β̄j | ≤ ω

1/2
jj

(
pσ̄2/n+ (2p)1/2σ̄2ξα/n

)1/2}
.

Let β̂(K̂S) be the TLSE of β corresponding to the Scheffé dimension reduction
set K̂S. Since ξα → ∞, then Pr(Kβ ⊆ K̂S) → 1 and since ξα = o(n/p1/2),

then Pr(Jβ ∩ K̂S) → 0. Hence, Pr(K̂S = Kβ) → 1. Similarly to the proof of

Theorem 2.1, then β̂(K̂S) has the oracle property.

Method II The second method is based on Bonferroni procedure (see, e.g.,
Khuri, 2010, Section 7.5.3) for normal models, i.e., under the additional assump-
tion that ε ∼ N(0, σ2). Let

K̂B =
{
j ∈ I : |β̄j | ≤ σ̄jjtn−p;α/p

}
,

where tp;α is the upper α-quantile of the t-distribution with p degrees of freedom,

α = o(1), and log(α) = o
(
(n1/2ρ

1/2
1 minj∈Jβ

|βj |)1/2
)
. Using the same normal tail

approximation as above, tn−p;α/p → ∞ and tn−p;α/p = o
(
n1/2ρ

1/2
1 minj∈Jβ

|βj |
)
.

Thus

lim inf
n→∞

Pr
(
Kβ ⊂ K̂B

)
= lim inf

n→∞
Pr

(
∩j∈Kβ

{|β̄j | ≤ σ̄jjtn−p;α/p}
)

≥ 1− lim sup
n

α = 1 .

Similarly to (A.17), by Lemma 2.3, we obtain

lim sup
n

Pr

(
min
j∈Jβ

|β̄j |
σ̄jj

≤ tn−p;α/p

)

≤ lim sup
n

Pr

(
max
j∈Jβ

|β̄j − βj |
σ̄jj

≥ n1/2σ̄−1ρ
1/2
1 min

j∈Jβ

|βj | − tn−p;α/p

)
= 0

Therefore, Pr
(
K̂B = Kβ

)
→ 1. Let β̂(K̂B) be the TLSE corresponding to the

Bonferroni dimension reduction set K̂B. Similarly to the proof of Theorem 2.1,
then β̂(K̂B) has the oracle property. In our simulation study and data analysis,
we have taken α = 1/(2 log(n)), and thus, for sample sizes 100 ≤ n ≤ 1000, we
have 0.07 < α < 0.10.
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2.3. Case p ≥ n

In this section, we consider the case when p ≥ n and q < n, where recall that
q = qJβ

is the number of non-zero components of β ∈ R
p. We will show that

in this case, we can make oracle inference about β in two steps using a similar
initial variable screening method as Huang, Horowitz and Ma (2008), Huang, Ma
and Zhang (2008), and Fan and Lv (2008). First, we select an index set Ĵ0 ⊆ I,
with card(Ĵ0) < n, with the property that it contains the indices i ∈ I for
which the absolute values of the t-statistics of the (marginal) componentwise
least-squares estimator (CLSE) of β are larger than an appropriately chosen
threshold value. In the second step, we perform the thresholding least-squares
inference presented in Sections 2.1–2.2 using only the covariates from the index
set Ĵ0. We will show that, under additional regularity conditions, the resulting
TLSE has the oracle property even when p increases almost exponentially with
respect to n.

Since the columns of the design matrix X ∈ R
n×p are standardized and

the response vector Y ∈ R
n is centered at 0, then the CLSE of β is given by

β̃ = (β̃j : j ∈ I)T ∈ R
p, where

β̃j =

∑n
i=1 XijYi∑n
i=1 X

2
ij

= n−1
n∑

i=1

XijYi , j ∈ I .

Let Γ̃ = {γ̃j : j ∈ I} be the set of the absolute values of the t-statistics corre-

sponding to β̃, i.e.,

γ̃j =
|β̃j |
σ̃j

, where σ̃2
j =

1

n(n− 1)

n∑
i=1

(
Yi −Xij β̃j

)2
, j ∈ I .

Let γ̃(j) denote the jth order statistic of Γ̃, j ∈ I. Then Ĵ0 is defined as the
index set corresponding to the largest m absolute values of the t-statistics cor-
responding to the CLSE of β, where q ≤ m and m = o(n) is a pre-specified
value corresponding to the hypothesized maximum number of non-zero regres-
sion coefficients. Thus,

Ĵ0 =
{
j ∈ I : γ̃j > γ̃(p−m)

}
.

The TLSE is defined in the same way as in Section 2.1 for the response vector
Y and design matrix XĴ0

. With a slight abuse of notation, let ρ1 and ρ2 denote

the minimum and the maximum eigenvalues of ΩĴ0Ĵ0
∈ R

m×m.
We assume the following regularity conditions.

B.1 E(ε) = 0, E(ε2) = σ2, where ε ∼ P , and P has sub-Gaussian tails, that is,
there exists constants c0, C0 > 0 such that

Pr
(
|ε| ≥ x

)
≤ C0 exp

(
−c0x

2
)

for all x ≥ 0 ;

B.2 p = q−1 exp(o(n)), q ≤ m, m = o(n), ρ1 > 0, m/(nρ1) = o(1), and
max1≤i≤n‖Xi,Ĵ0

‖2= o(m), where Xi,Ĵ0
= (Xi,j : j ∈ Ĵ0)

T ∈ R
m;
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B.3 (i) The maximum correlation between the covariates in Jβ and Kβ is of
order o(q−1), i.e.,

max
j∈Jβ ,k∈Kβ

n−1
∣∣∣ n∑
i=1

XijXik

∣∣∣ = o(q−1) ;

(ii) There exists a constant c2 > 0 such that

lim inf
n

min
j∈Jβ

|ζj | ≥ c2 ,

where ζj = E(β̃j) = n−1
∑n

i=1 X
T
i βXij ;

(iii) There exists a constant C3 > 0 such that

lim sup
n

max
j∈Jβ

|βj | ≤ C3 .

Theorem 2.2 shows that, under additional regularity conditions, the TLSE
has the oracle property even if p grows almost exponentially with n.

Theorem 2.2. Assume that conditions B.1–B.3, (2.4a) and (2.4b) hold, and

that nρ21 → ∞. Then (i) Pr(Jβ ⊂ Ĵ0) → 1; and (ii) ŝ−1/2aT (β̂ − β)
d−→ N(0, 1),

where a ∈ R
p, ‖a‖= 1, and ŝ = n−1σ2aT

Ĵ
Ω−1

ĴĴ
aĴ .

The regularity conditions of Theorem 2.2 are similar to those imposed for
the Bridge estimators by Huang, Horowitz and Ma (2008). However, we can
highlight an important difference. Specifically, the partial orthogonality condi-
tion (B2)(a) of Huang, Horowitz and Ma (2008) requires the correlation co-
efficients between the covariates corresponding to the zero and the non-zero
coefficients be of order O(n−1/2), while our corresponding condition B.3(i) re-
quires to be only of order o(q−1). Under their condition (B3)(a), q = o(n1/2),
and thus, our condition is less restrictive. Note that van de Geer, Bühlmann
and Zhou (2011) developed regularity conditions for an analytical comparison
between ALASSO and LASSO with thresholding in terms of prediction error,
mean absolute error, mean squared error, and the number of false positive selec-
tions. Since van de Geer, Bühlmann and Zhou (2011) did not prove the oracle
property of the ALASSO and the LASSO with thresholding, we cannot compare
our regularity conditions with theirs.

We can relax the condition of sub-Gaussian tails of the errors in condition B.1
on the expense of a slower growth of p. Specifically, assuming only finite fourth
order moments of ε given by condition A.1, by Markov’s inequality, we obtain

Pr
(
n−1

∣∣∣ n∑
i=1

Xijεi

∣∣∣ ≥ c2

)
= O(n−2) .

Analysis of the proof of Theorem 3.1 shows that part (i) and (ii) of the theorem
hold provided that pq = o(n2). Note further that we can also provide more
primitive conditions for B.3(ii). Specifically, we could request instead that

lim inf
n

min
j∈Jβ

|βj | ≥ c2 and max
j �=j′∈Jβ

n−1
∣∣∣ n∑
i=1

XijXij′

∣∣∣ = o(q−1) .
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To this end, note that for j ∈ Jβ , we have

|ζj | =
∣∣∣n−1

n∑
i=1

XijX
T
i β

∣∣∣ = ∣∣∣n−1
n∑

i=1

∑
j′∈Jβ

XijXij′βj

∣∣∣
≥ c2 − q

{
max
j∈Jβ

|βj |
}

max
j �=j′∈Jβ

n−1
∣∣∣ n∑
i=1

XijXij′

∣∣∣ ,
and thus, B.3(ii) holds.

In practice, we can set m = �n/ log(n)�, where �n/ log(n)� is the integer
part of n/ log(n). However, we can also select m via a k-fold cross-validation
procedure. Specifically, for i = 1, . . . , k, let Ti and Vi denote the index sets
corresponding to the ith training and validation data sets, respectively, where
Ti, Vi ⊂ I, with card(Vi) = nk and Ti = I \ Vi. Let L ⊂ {1, . . . , n} be a search
grid for m. For l ∈ L, let v̂i(l) denote the cross-validation estimate of the mean
squared prediction error of the submodel corresponding to m = l using the ith
validation set, i.e.,

v̂i(l) = n−1
k

∑
j∈Vi

(
Yj − Ŷ Ti

j,l

)2
,

where Ŷ Ti

j,l is the predicted value of Yj using the training data set Ti and the
design matrix XTi,Jl

= (Xt,j : t ∈ Ti, j ∈ Jl) and Jl = {j ∈ I : γ̃j > γ̃(p−l)}.
Let v̂(l) = k−1

∑k
i=1 v̂i(l), and set m = m̂, where m̂ = argminl∈L v̂(l). In the

simulation study and data analysis, we search l on a grid L of 20 equally spaced
values on the log-scale (so that the grid is finer for smaller values of l), and we
use k = 20.

3. Bootstrap inference

Let β̂ be the bootstrap version of β in the context of thresholding least-squares
inference. Let ε̂i = Yi −XT

i β̂ be the ith (raw) residual; since X̄ = 0 and Ȳ = 0,
then

∑n
j=1 ε̂j = 0, and thus, the residuals are inherently “centered” at zero.

Let Ê1:n = {ε̂1, . . . , ε̂n} be the sample of residuals and let P = n−1
∑n

i=1 δε̂i
denote its empirical distribution, where δx denotes the unit mass at x ∈ R. The
residual-bootstrap method (Freedman, 1981) is performed by first sampling,
with replacement, the residuals which are then added to the fitted values to
obtain a bootstrap sample. Specifically, given Ê1:n, let Ê∗

1:n = {ε̂∗1, . . . , ε̂∗n} be
a conditionally i.i.d. sample from P, i.e., Ê∗

1:n is a with replacement random

sample of size n from Ê1:n. Then, for each i = 1, . . . , n, let Y ∗
i = XT

i β̂+ ε̂∗i , and

let Y ∗ = (Y ∗
1 , . . . , Y

∗
n )

T ∈ R
n. The bootstrap version of β̂ is

β̂∗ = argmin
b∈Rp

{
(Y ∗ −Xb)T (Y ∗ −Xb) : bK̂ = 0

}
.
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Similarly to its sample version, the bootstrap version of β̂ has a closed form
solution given by β̂∗

K̂
= 0 and β̂∗

Ĵ
= (XT

Ĵ
XĴ)

−1XĴY
∗. Let

σ̂∗2 =
1

n− qĴ

n∑
i=1

(Y ∗
i −XT

i β̂)
2 and ŝ∗ = n−1σ̂∗2aT

Ĵ
Ω−1

Ĵ Ĵ
aĴ

be the bootstrap versions of σ̂2 and ŝ, respectively.
The bootstrap estimator of L (ŝ−1/2aT (β̂−β)) is the conditional distribution

given Y of ŝ∗−1/2aT (β̂∗ − β̂), which we denote as L (ŝ∗−1/2aT (β̂∗ − β̂)|Y ). An-

other option is to use β̄ as a centering value, and in this case, L (ŝ∗−1/2aT (β̂∗−
β̄)|Y ) is the “naive” bootstrap distribution estimator of L (ŝ−1/2aT (β̂ − β)).

Since it is determined by Y , the bootstrap distribution L (ŝ∗−1/2aT (β̂∗− β̂)|Y )
is a random element in P, the space of distributions on R. We equip P with
the Prohorov metric, which metrizes the weak convergence, and with the corre-
sponding Borel sigma-field generated by the topology of weak convergence (see,
e.g., Dudley, 2002, p. 393–399). Theorem 3.1 shows that, under the regularity

conditions of Theorem 2.1, the bootstrap distribution L (ŝ∗−1/2aT (β̂∗− β̂)|Y ) is

consistent, and if β ∈ Θ1, the “naive” version L (ŝ∗−1/2aT (β̂∗− β̄)|Y ) converges
in distribution to a random distribution, and thus is inconsistent. This result is
obtained for the case when p < n. Careful analysis of the proof of Theorem 3.1
shows that a similar result continue to hold also in the case when p ≥ n under
the regularity conditions of Theorem 2.2.

Theorem 3.1. Suppose that conditions A.1–A.2, (2.4a) and (2.4b) hold, and

that nρ21 → ∞. Then (i) L (ŝ∗−1/2aT (β̂∗−β̂)|Y )
Pr−→ N(0, 1) for β ∈ Θ. Suppose

further that lim supn ρ
−1
1 ρ2 < ∞; then (ii) L (ŝ∗−1/2aT (β̂∗ − β̄)|Y )

d−→ N(Z, 1)
for β ∈ Θ1, where Z ∼ N(0, σ2

η) and σ2
η is defined in the proof.

Another residual-bootstrap method is based on resampling the scaled resid-
uals r̂i, where r̂i = ri − r̄, ri = (1 − hii)

−1/2ε̂i, r̄ = n−1
∑

ri, and hii =
XT

i (X
TX)−1Xi is the ith element of the “hat matrix” (Davison and Hinkley,

1997, p. 259). By the regularity conditions of Theorem 3.1, max1≤i≤n hii =

O(p/(nρ1)) = o(1), and thus, n−1
∑n

i=1 r
2
i

Pr−→ σ2. Careful analysis of the proof
of Theorem 3.1 shows that this version of residual-bootstrap is also consistent.

4. Empirical results

4.1. Simulation models

In this section, we present the results of a simulation study of the finite sample
behavior of the thresholding least-squares inference in sparse low and high-
dimensional regression models. We assess our results in terms of computational
and numerical efficiency of the ordinary least-squares, LASSO, and threshold-
ing least-squares inferential methods. The computations are done in the R
language and we use the glmnet package (Friedman, Hastie and Tibshirani,
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2010; El Ghaoui, Viallon and Rabbani, 2012) to compute the LASSO estima-
tor (with the regularization parameter selected via the 10-fold cross-validation
procedure implemented in the package). We have implemented the threshold-
ing least-squares methods in an R package, called TLSE, which is available
from the author upon request. Simulations were performed on the HiPerGa-
tor cluster hosted by the High Performance Computing Center at University of
Florida.

Our simulation models are similar to those considered by Huang, Horowitz
and Ma (2008) for the Bridge estimators and we assess the finite sample perfor-
mance of the methods in terms of (i) variable selection, (ii) prediction accuracy,
and (iii) estimation efficiency. The variable selection performance is measured
by the relative frequency of correct identification of the set of zero and non-zero
regression parameters. Specifically, for j ∈ Kβ , the relative frequency of correct
identification is

p̂j = S−1
S∑

s=1

I(β̂s
j = 0) ,

where β̂s = (β̂s
1, . . . , β̂

s
p)

T ∈ R
p is the TLSE of β on the sth simulated sample,

s = 1, . . . , S, and S is the total number of simulated samples. For j ∈ Jβ , the
relative frequency of correct identification is

p̂j = S−1
S∑

s=1

I(β̂s
j �= 0) .

The prediction performance is measured by the (empirical) root mean squared
prediction error, which is calculated as:

RMSPE =
{
S−1

S∑
s=1

n−1
n∑

i=1

(
Y s
i − Ŷ s

i

)2}1/2

,

where Y s
i is the ith response of the sth simulated sample, and Ŷ s

i is the predicted
response for the ith observation in the sth simulated sample using the parameter
estimates obtained on the sth independent simulated sample of size n from the
regression model. The estimation efficiency is measured by the empirical root
mean squared error (RMSE) of the parameter estimates, which is calculated
as:

RMSE(β̂j) =
{
S−1

S∑
s=1

(
β̂s
j − βj

)2}1/2

, j = 1, . . . , p ,

and the root average mean squared error (RAMSE), which is calculated as:

RAMSE(β̂) =
{
p−1

p∑
j=1

S−1
S∑

s=1

(
β̂s
j − βj

)2}1/2

.

The samples are generated from the regression model (2.1), the design matrix
X ∈ R

n×p is generated once and then kept fixed across simulations, and the
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errors are generated from the normal distribution N(0, σ2). We have compared
the runtime of TLSE and LASSO on a data set generated from the model 6,
with n = 20000, on a Intel i5 ultrabook, 3.6 GHz, 64 bit, 8GB RAM, running
under Ubuntu 14.04. The runtime for the LASSO (we used the cv.glmnet func-
tion implemented in the glmnet package) was 12.7 sec, for the LSE (we used the
lm function) was 6.2 sec, and for the TLSE was 6.6 sec. We anticipate a signifi-
cant runtime improvement of the TLSE compared to the LASSO for ultra-high
dimensional data sets.

We generated the samples from the following six regression models.

Model 1. We set p = 30, σ = 0.5, Xi ∼ i.i.d.N(0,Σ), Σ = (σij) ∈ R
30×30 with

σij = r|i−j| and r = 0.5, βj = 0 for 1 ≤ j ≤ 15, βj = 0.5 for 16 ≤ j ≤ 20,
βj = 1.5 for 21 ≤ j ≤ 25, βj = 2.5 for 26 ≤ j ≤ 30.

Model 2. The same as Model 1 with r = 0.9.

Model 3. We set p = 30, σ = 0.5, Xij ∼ i.i.d.N(0, 1), 1 ≤ j ≤ 15, Xij =
Zi1+ηij , Zi1 ∼ i.i.d.N(0, 1), ηij ∼ i.i.d.N(0, 0.25), 16 ≤ j ≤ 20, Xij = Zi2+ηij ,
Zi2 ∼ i.i.d.N(0, 1), ηij ∼ i.i.d.N(0, 0.25), 21 ≤ j ≤ 25, Xij = Zi3 + ηij ,
Zi3 ∼ i.i.d.N(0, 1), ηij ∼ i.i.d.N(0, 0.25), 26 ≤ j ≤ 30, i = 1, . . . , n, βj = 0 for
1 ≤ j ≤ 15 and βj = 1.5 for 16 ≤ j ≤ 30.

Model 4. We set p = 200, σ = 0.5, Xi,1:185 ∼ i.i.d.N(0,Σ1), with Σ1 =
(σ1,ij) ∈ R

185×185 and σ1,ij = r|i−j|, r = 0.5, Xi,186:200 ∼ i.i.d.N(0,Σ2), Σ2 =
(σ2,ij) ∈ R

15×15, σ2,ij = r|i−j|, r = 0.5, Xi,1:185 and Xi,186:200 are independent,
i = 1, . . . , n, βj = 0 for 1 ≤ j ≤ 185, βj = 0.5 for 186 ≤ j ≤ 190, βj = 1.5 for
191 ≤ j ≤ 195, and βj = 2.5 for 196 ≤ j ≤ 200.

Model 5. The same as Model 4 with r = 0.9.

Model 6. We set p = 500, σ = 0.5, Xi,16:500 ∼ i.i.d.N(0, I485), Xi,486:500 are
generated in the same way as in Model 5,Xi,1:485 andXi,486:500 are independent,
i = 1, . . . , n, βj = 0 for 1 ≤ j ≤ 485, and βj = 1.5 for 486 ≤ j ≤ 500.

4.2. Simulation results

In this section, we present the results of the simulation study. The number
of simulations is S = 5000 and the sample sizes are n = 100, 200, 400, 800.
Figures 1–2 show the empirical frequency of correct identification of the zero
and non-zero regression parameters for the LASSO and the TLSE, respectively.
Note that the empirical frequency of correct identification for models 3 and 6
is about 1 for all regression parameters and sample sizes for both the LASSO
and the TLSE. The empirical frequency of correct identification for model 1 is
about 1 for the TLSE for all parameters and sample sizes and smaller than 1
for the LASSO in the case of the zero regression parameters (with values of
about 0.8 for n = 400). For model 5, the empirical frequency of correct iden-
tification is about 1 for the zero regression parameters and all sample sizes
for both the LASSO and the TLSE; however, even though the empirical fre-
quency is below 1 for smaller coefficients and smaller sample sizes, the TLSE
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Fig 1. Empirical frequency of correct identification of the zero and the non-zero regression
parameters for models 1–6 using the LASSO estimator. The number of simulations is S =
5000 and the sample sizes are n = 100, 200, 400, 800.

outperforms the LASSO for all cases. For models 2 and 4, we have mixed re-
sults. Specifically, for model 2, while the LASSO outperforms the TLSE for
smaller non-zero regression coefficients for n = 100, the TLSE outperforms
the LASSO for all other sample sizes for both the zero and non-zero parame-
ters. For model 4, while the LASSO outperforms the TLSE for small non-zero
parameters for n = 100, the TLSE has higher frequency of correct identifica-
tion for both the zero and non-zero regression parameters for all other sample
sizes.

Figures 3–5 show the root mean squared errors (RMSE) of the LSE, LASSO,
and TLSE, respectively. For models 4–6, the LSE is calculated using the first
m = �n/5� variables in the model. Note that for models 1 and 2, the RMSE
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Fig 2. Empirical frequency of correct identification of the zero and the non-zero regression
parameters for models 1–6 using the TLSE. The number of simulations is S = 5000 and the
sample sizes are n = 100, 200, 400, 800.

of LSE are larger for the zero regression parameters and smaller for the non-
zero regression parameters than of the LASSO and the TLSE; the RMSE of the
TLSE are generally smaller than of the LASSO for all parameters and sample
sizes, with one exception, for n = 100, where the RMSE of TLSE are larger than
of the LASSO for smaller regression parameters. For model 3, the RMSE of all
estimators are similar. The RMSE of the LASSO and the TLSE are significantly
smaller than of the LSE for all parameters and sample sizes for the models 4–6.
In these cases, the RMSE of LSE for some regression parameters are as high as 12
for model 5 due to the high dimension of the model and high correlation among
the variables. Note that, for these models the TLSE generally outperforms the
LASSO for all samples and regression parameters.
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Fig 3. Empirical root mean squared errors of the LSE for models 1–6. The number of simu-
lations is S = 5000 and the sample sizes are n = 100, 200, 400, 800. For models 4–6, the LSE
is calculated using the first m = �n/5� variables in the models.

Tables 1–2 show the empirical root mean squared prediction errors (RMSPE)
and the empirical root average mean squared errors (RAMSE) of the LSE, the
LASSO, and the TLSE, respectively. Note that for models 1–2, the RMSPE of
the LSE and the TLSE are similar and significantly smaller than of the LASSO
for all sample sizes. For model 3, the RMSPE of the LASSO is smaller than of
the LSE and the TLSE. Generally, the RAMSE of all estimators are similar, with
smaller values for the LSE and the TLSE. The situation changes dramatically
for the high-dimensional models 4–6. Specifically, the RMSPE and RAMSE of
the LASSO and the TLSE are significantly smaller than of the LSE, and that
generally, the TLSE outperforms the LASSO (with one exception, for model 5
with n = 200). The results of the simulation study shows a slightly better per-
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Fig 4. Empirical root mean squared errors of LASSO for models 1–6. The number of simu-
lations is S = 5000 and the sample sizes are n = 100, 200, 400, 800.

formance of the LSE and the TLSE over the LASSO in sparse low-dimensional
regression models, and a significant better performance of the LASSO and the
TLSE for high-dimensional regression models, with slightly better results for
the TLSE on smaller and moderate samples.

5. Data analysis

In this section, we use ordinary least-squares and thresholding least-squares
methods of inference to analyze a high-dimensional data set. The data set con-
sists of the data collected on intervention chemicals (chemicals given by a keto-
genic diet) and seizure load response (measured as the relative percent change
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Fig 5. Empirical root mean squared errors of the TLSE for models 1–6. The number of
simulations is S = 5000 and the sample sizes are n = 100, 200, 400, 800.

in seizure day from the baseline seizure day over a two-week period) for a group
of 55 children suffering from epilepsy. After removing incomplete cases as well
as explanatory variables with no variation, the pre-processed data set has 6830
observations and 116 explanatory variables. Since the correlation matrix of ex-
planatory variables is nearly singular, with more than 25 eigenvalues smaller
than 0.001, we fist perform a hierarchical cluster algorithm to identify groups
of highly correlated variables. The (distance) dissimilarity between variables is
calculated as 1 minus the absolute value of the correlation coefficient of the
variables and we use a group average agglomerative clustering algorithm (see,
e.g., Hastie, Tibshirani and Friedman, 2008, Section 14.3.12). The dendrogram
is cut at the height of h = 0.30; this choice implies that the average dissimi-
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Table 1

Empirical root mean squared prediction errors of the LSE, the LASSO, and the TLSE for
regression models 1–6. The number of simulations is S = 5000 and the samples sizes are
n = 100, 200, 400, 800. For models 4–6, the LSE is calculated using the first m = �n/5�

covariates in the models.

Estimate n Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 Mod 6

LSE 100 0.73 1.45 1.54 10.72 19.99 19.75
LASSO 100 1.05 2.53 0.92 1.25 2.05 1.8
TLSE 100 0.69 1.5 1.52 1.23 0.9 0.86

LSE 200 0.68 0.62 1.4 12.99 22.27 19.86
LASSO 200 0.88 0.95 1 0.71 0.76 1.26
TLSE 200 0.66 0.62 1.39 0.57 1.18 0.64

LSE 400 0.56 0.94 1.62 12.43 21.23 19.82
LASSO 400 0.59 1.45 1.35 0.57 0.89 0.99
TLSE 400 0.55 0.93 1.62 0.53 0.52 0.57

LSE 800 0.52 0.58 1.75 11.78 20.75 18.95
LASSO 800 0.53 0.62 1.58 0.54 0.75 0.59
TLSE 800 0.52 0.57 1.75 0.54 0.51 0.55

Table 2

Empirical root average mean squared errors of the LSE, the LASSO, and the TLSE for
regression models 1–6. The number of simulations is S = 5000 and the sample sizes are
n = 100, 200, 400, 800. For models 4–6, the LSE is calculated using the first m = �n/5�

covariates in the models.

Estimate n Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 Mod 6

LSE 100 0.112 0.209 0.59 0.577 2.102 0.4
LASSO 100 0.139 0.296 0.584 0.071 0.117 0.094
TLSE 100 0.096 0.283 0.587 0.098 0.071 0.036

LSE 200 0.071 0.121 0.631 0.749 2.108 0.412
LASSO 200 0.092 0.161 0.625 0.029 0.075 0.046
TLSE 200 0.062 0.11 0.63 0.021 0.048 0.023

LSE 400 0.046 0.097 0.585 0.714 2.288 0.457
LASSO 400 0.047 0.131 0.58 0.017 0.037 0.028
TLSE 400 0.039 0.078 0.585 0.015 0.022 0.016

LSE 800 0.035 0.061 0.607 0.66 2.038 0.483
LASSO 800 0.035 0.081 0.604 0.013 0.033 0.018
TLSE 800 0.031 0.045 0.607 0.013 0.016 0.01

larity (distance) between the clusters is larger than 0.30, and thus, the average
absolute correlation between the clusters is smaller than 0.70. For each group
of variables determined by the hierarchical clustering algorithm, we perform a
principal component analysis and use the scores of the first principal compo-
nents as covariates in the regression analysis. Our final design matrix has p = 74
columns and n = 6830 rows, and its minimum eigenvalue is ρ1 = 0.004 (which
is greater than log(n)/n = 0.001).
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Fig 6. Least-squares estimates (LSE) and thresholding least-squares estimates (TLSE) of
regression parameters with the corresponding 95% normal confidence intervals (CIs).

Figure 6 shows the LSE and TLSE of the regression parameters with the
corresponding 95% individual normal confidence intervals. The cardinality of
the non-zero regression parameter estimates of the TLSE is 14 (and thus,
74 − 14 = 60 components of the TLSE are set equal to zero). Note that,
the zero components of the TLSE correspond to non-significant components
of the LSE, and the widths of the corresponding confidence intervals are signifi-
cantly smaller. This is in agreement with the theoretical and simulation results
which shows that the TLSE is more efficient than the LSE for sparse regression
models.
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Appendix

Proof of Lemma 2.1. Note first that

var
(
aT (β̄ − β)

)
= σ2aT (XTX)−1a ≤ n−1σ2ρ−1

1 = O
(
(nρ1)

−1
)
.

Hence aT (β̄ − β) = OP ((ρ1n)
−1/2), as stated. To prove (ii), note that

σ̄2 = (n− p)−1Y T (I −H)Y = (n− p)−1εT1:n(I −H)ε1:n ,

where H = X
(
XTX

)−1
XT is the “hat matrix”, H = (hij) ∈ R

n×n, and ε1:n =
(ε1, . . . , εn)

T ∈ R
n. Since H is idempotent of rank p, then

∑n
j=1 hjj = p. Thus,

n∑
j=1

h2
jj ≤ p max

1≤j≤n
hjj = p max

1≤j≤n
XT

j (X
TX)−1Xj

≤
(
p/(ρ1n)

)
max
1≤j≤n

‖Xj‖2= O
(
p2/(nρ1)

)
= o(p) .

(A.1)

Hence,

var(σ̄2) = (n− p)−2 var
(
εT1:n(I −H)ε1:n

)
= (n− p)−2

(
2σ4 tr

(
(I −H)2

)
+ (μ4 − 3σ4)

n∑
j=1

(1− hjj)
2
)

= (n− p)−2
[
2σ4(n− p) + (μ4 − 3σ4)

(
n− 2p+

n∑
j=1

h2
jj

)]
= O

(
n−1

)
,

where μ4 = E(ε4). Thus, σ̄2 = σ2 +OP (n
−1/2), as stated.

Proof of Lemma 2.2. Since σ̄2 = σ2 + oP (1), by Slutsky’s theorem, it is enough

to show that s−1/2aT (β̄− β)
d−→ N(0, 1), where s = n−1σ2aTΩ−1a. To this end,

note that

s−1/2aT (β̄ − β) = s−1/2aT (XTX)−1XT ε1:n =

n∑
i=1

αiεi , (A.2)

where αi = s−1/2aT (XTX)−1Xi ∈ R. Thus, we have to show that
∑n

i=1 αiεi
d−→

N(0, 1). To this end, note first that E(αiεi) = 0. Let σ2
i = var(αiεi). Since

σ2
i = s−1σ2aT (XTX)−1XiX

T
i (X

TX)−1a ,

then
∑n

i=1 σ
2
i = 1. Thus, it is enough to show that the Lindeberg condition

holds (see, e.g., van der Vaart, 1998, p. 20):

n∑
i=1

E
(
|αiεi|2I(|αiεi| ≥ δ)

)
→ 0 for all δ > 0 . (A.3)
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Since α2
i = s−1aT (XTX)−1XiX

T
i (X

TX)−1a, then
∑n

i=1 α
2
i = 1/σ2. Thus, to

prove (A.3), it is enough to show that

max
1≤i≤n

E
(
ε2I(|αiε| ≥ δ)

)
→ 0 . (A.4)

Since
max
1≤i≤n

E
(
ε2I(|αiε| ≥ δ)

)
≤ E

(
ε2I(|ε| max

1≤i≤n
|αi| ≥ δ)

)
,

then (A.4) holds provided that max1≤i≤n|αi| = o(1). To this end, note that

max
1≤i≤n

α2
i = max

1≤i≤n

{
aT (XTX)−1XiX

T
i (X

TX)−1a

σ2aT (XTX)−1a

}

≤ max1≤i≤n‖Xi‖2
nσ2ρ1

= O
(
p/(nρ1)

)
= o(1) .

This concludes the proof of the lemma.

Proof of Lemma 2.3. Without loss of generality, we state (and prove) this result
for the case when K = I. By rescaling, we further assume without loss of
generality that σ2 = 1. Since H0 : Kβ = I holds, we have

nβ̄TΩβ̄ = nεT1:nX(XTX)−1Ω(XTX)−1XT ε1:n

=

( n∑
i=1

εiXi

)T

(XTX)−1

( n∑
i=1

εiXi

)
.

Let

Yj,n =

( j∑
i=1

εiXi

)T

(XTX)−1

( j∑
i=1

εiXi

)
−

j∑
i=1

hii .

Since
∑n

i=1 hii = p, then (2.3) holds provided that

Yn,n

(2p)1/2
d−→ N(0, 1) . (A.5)

Note that {(Yj,n,Fj,n) : 1 ≤ j ≤ n} is a martingale array, where Fj,n =
σa{εi : 1 ≤ i ≤ j} is the natural filtration and σa{εi : 1 ≤ i ≤ j} denotes
the σ-field generated by {ε1, . . . , εj}. To this end, since Yj,n is Fj,n-measurable
by definition, we have to show that E(Yj,n|Fj−1,n) = Yj−1,n almost surely
(a. s.), j = 1, . . . , n, where Y0,n = 0 a. s., and F0,n is the trivial σ-field. Let

Tj =
∑j

i=1 εiXi. Then, we write

Yj,n = (Tj−1 + εjXj)
T (XTX)−1(Tj−1 + εjXj)−

j−1∑
i=1

hii − hjj

= Yj−1,n + 2εjX
T
j (X

TX)−1Tj−1 + ε2jhjj − hjj

= Yj−1,n + 2εj

j−1∑
i=1

hjiεi + (ε2j − 1)hjj .

(A.6)



Thresholding least-squares inference 2147

Since E(εj |Fj−1,n) = 0 a. s. and E(ε2j |Fj−1,n) = 1 a. s., then E(Yj,n|Fj−1,n) =
Yj−1,n a. s.. Hence {(Yj,n,Fj,n) : 1 ≤ j ≤ n} is a martingale array. Consider the
martingale difference array {(Zj,n,Fj,n) : 1 ≤ j ≤ n}, where

Zj,n = (2p)−1/2
(
Yj,n − Yj−1,n

)
= (2p)−1/2

(
2εj

j−1∑
i=1

hjiεi + (ε2j − 1)hjj

)
.

(A.7)

Let ν2j,n = E(Z2
j,n) and ν2n =

∑n
j=1 ν

2
j,n. Note that

Z2
j,n =

1

2p

(
4ε2j

(j−1∑
i=1

hjiεi

)2

+ (ε2j − 1)2h2
jj + 4εj(ε

2
j − 1)hjj

j−1∑
i=1

hjiεi

)
, (A.8)

and thus,

ν2j,n =
1

2p

(
4

j−1∑
i=1

h2
ji + (μ4 − 1)h2

jj

)
. (A.9)

By (A.1), we further obtain

ν2n =
1

2p

n∑
j=1

(
4

j−1∑
i=1

h2
ji + (μ4 − 1)h2

jj

)

=
1

2p

n∑
j=1

(
2

n∑
i=1

h2
ji + (μ4 − 3)h2

jj

)

= p−1 tr(H2) + (2p)−1(μ4 − 3)

n∑
j=1

h2
jj = 1 + o(1) .

(A.10)

By the central limit theorem for martingale difference arrays (see, e.g., Chow
and Teicher, 1997) and (Athreya and Lahiri, 2006, p. 510), then (A.5) holds
provided that the following conditions hold:

n∑
j=1

E
∣∣Z3

j,n

∣∣ → 0 , (A.11a)

and

n∑
j=1

E
(
Z2
j,n

∣∣Fj−1,n

) Pr−→ 1 , (A.11b)

where
Pr−→ denotes convergence in probability. To prove (A.11a), we have to

show that

1

(2p)3/2

n∑
j=1

E

(∣∣∣∣2εj
j−1∑
i=1

hjiεi + (ε2j − 1)hjj

∣∣∣∣
3)

→ 0 . (A.12)
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Using Jensen’s inequality |x+ y|3 ≤ 4(|x|3 + |y|3) for x, y ∈ R, we obtain

1

p3/2

n∑
j=1

E

(∣∣∣∣2εj
j−1∑
i=1

hjiεi + (ε2j − 1)hjj

∣∣∣∣
3)

≤ 4

p3/2

n∑
j=1

E

(∣∣∣∣2εj
j−1∑
i=1

hjiεi

∣∣∣∣
3)

+
4

p3/2

n∑
j=1

E
(∣∣(ε2j − 1)3h3

jj

∣∣) . (A.13)

We first prove that the first term on the right side of (A.13) tends to 0. To this
end, using the identity

∑n
j1=1 h

2
jj1

= hjj (since H is an idempotent matrix) and

Holder’s inequality E(|Y |3) ≤
(
E(|Y |4)

)3/4
, we have

E

(∣∣∣∣εj
j−1∑
i=1

hjiεi

∣∣∣∣
3)

≤
{
E

(∣∣∣∣εj
j−1∑
i=1

hjiεi

∣∣∣∣
4)}3/4

=

{
μ4 E

( j−1∑
j1=1

j−1∑
j2=1

j−1∑
j3=1

j−1∑
j4=1

hjj1hjj2hjj3hjj4εj1εj2εj3εj4

)}3/4

≤
{
μ4σ

4
n∑

j1=1

n∑
j2=1

h2
jj1h

2
jj2

}3/4

= μ
3/4
4 σ3h

3/2
jj .

By Cauchy-Schwarz inequality, we thus obtain:

(
1

p3/2

n∑
j=1

E

∣∣∣∣εj
j−1∑
i=1

hjiεi

∣∣∣∣
3)2

≤ n

p3

n∑
j=1

{
E

(∣∣∣∣εj
j−1∑
i=1

hjiεi

∣∣∣∣
3)}2

≤ μ
3/2
4 σ6 n

p3

n∑
j=1

h3
jj ≤ μ

3/2
4 σ6 n

p3

n∑
j=1

hjj

{
max
1≤j≤n

h2
jj

}

=
n

p3
pO

(
p2/(nρ1)

2
)
= O

(
1/(nρ21)

)
= o(1) .

We now show that the second term on the right side of (A.13) tends to 0. To
this end, note that

1

p3/2

n∑
j=1

∣∣h3
jj

∣∣ ≤ 1

p3/2
p max
1≤j≤n

h2
jj = p−1/2O

(
p2/(nρ1)

2
)
= o(1) ,

and thus, (A.11a) holds, as stated. Lastly, to prove (A.11b), note first that

E
(
Z2
j,n|Fj−1,n

)
=

1

2p

(
4

(j−1∑
i=1

hjiεi

)2

+(μ4−1)h2
jj+4μ3

j−1∑
i=1

hjjhjiεi

)
, (A.14)

where μ3 = E(ε3). By Cauchy-Schwarz inequality and (A.1), we have

p−2 var

( n∑
j=1

j−1∑
i=1

hjjhjiεi

)
= p−2

n∑
j1=1

n∑
j2=1

min(j1,j2)∑
i=1

hj1j1hj1ihj2j2hj2i
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≤ p−2
n∑

j1=1

n∑
j2=1

hj1j1hj2j2

n∑
i=1

h2
j1i

n∑
i=1

h2
j2i

= p−2
n∑

j1=1

n∑
j2=1

h2
j1j1h

2
j2j2 = p−2o(p2) = o(1) .

Hence (A.11b) holds provided that

var

{
p−1

n∑
j=1

(j−1∑
i=1

hjiεi

)2}
= o(1) . (A.15)

To this end, note that

var

{
p−1

n∑
j=1

(j−1∑
i=1

hjiεi

)2}

= p−2
n∑

j=1

n∑
k=1

cov

( j−1∑
j1,j2=1

hjj1hjj2εj1εj2 ,

k−1∑
k1,k2=1

hkk1hkk2εk1εk2

)
.

Note that in the sum above, only the terms for which pairs of indices are equal
are non-zero. Consider the terms for which j1 = j2 and k1 = k2 (all other terms
are treated similarly). Hence, we have to show that

p−2
n∑

j=1

n∑
k=1

cov

( j−1∑
j1=1

h2
jj1ε

2
j1 ,

k−1∑
k1=1

h2
kk1

ε2k1

)
= o(1) .

Note further that in the sum above, only the terms for which j1 = k1 are non-
zero, and thus, by (A.1), we have

p−2
n∑

j=1

n∑
k=1

cov

( j−1∑
j1=1

h2
jj1ε

2
j1 ,

k−1∑
k1=1

h2
kk1

ε2k1

)

= p−2(μ4 − 1)

n∑
j=1

n∑
k=1

min(j,k)−1∑
j1=1

h2
jj1h

2
kj1

≤ p−2(μ4 − 1)

n∑
j=1

n∑
k=1

n∑
j1=1

h2
jj1h

2
kj1

≤ p−2(μ4 − 1)

n∑
j1=1

h2
j1j1 = p−2O

(
p2/(nρ1)

)
= o(1) .

This completes the proof.

Proof of Theorem 2.1. Let ΞKβKβ
= diag

(
Σ−1

KβKβ

)
∈ R

qKβ
×qKβ be the diagonal

matrix of Σ−1
KβKβ

= (Ω−1)KβKβ
∈ R

qKβ
×qKβ , where recall that qKβ

= card(Kβ).
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Note first that since Σ−1
KβKβ

is a diagonal submatrix of Ω−1, then ‖Σ−1
KβKβ

‖≤
‖Ω−1‖= ρ−1

1 , where ‖A‖ is the spectral norm of a matrix A (see, e.g., Bhatia,
1997). Since ΞKβKβ

is the diagonal matrix of Σ−1
KβKβ

and Σ−1
KβKβ

is a diagonal

submatrix of Ω−1, then

mineig(ΞKβKβ
) ≥ mineig

(
Σ−1

KβKβ

)
≥ mineig(Ω−1) = ρ−1

2 ,

where mineig(A) is the minimum eigenvalue of a symmetric matrix A. Hence,
‖Ξ−1

KβKβ
‖≤ ρ2. Since ‖AB‖≤ ‖A‖‖B‖, we further obtain:

Pr

(
max
j∈Kβ

|β̄j |
σ̄jj

≥ γ

)
≤ Pr

( ∑
j∈Kβ

β̄2
j

σ̄2
jj

≥ γ2

)

= Pr
(
nσ̄−2β̄T

Kβ
Ξ−1
Kβ

β̄Kβ
≥ γ2

)
≤ Pr

(
qKβ

F̂ (Kβ)‖Ξ−1
Kβ

‖‖Σ−1
Kβ

‖≥ γ2
)

≤ Pr
(
qKβ

ρ2ρ
−1
1 F̂ (Kβ) ≥ γ2

)
= Pr

(
qKβ

F̂ (Kβ) ≥ ρ1ρ
−1
2 γ2

)
.

(A.16)

By (2.4a) and Lemma 2.3, then Pr
(
qKβ

F̂ (Kβ) ≥ ρ1ρ
−1
2 γ2

)
→ 0. Hence, by

(A.16),

Pr

(
|β̄j |
σ̄jj

≤ γ for all j ∈ Kβ

)
→ 1 ,

and thus, Pr
(
Kβ ⊂ K̂

)
→ 1.

Since Σ−1
JβJβ

is a diagonal submatrix of Ω−1, then maxj∈Jβ
ωjj ≤ ‖Σ−1

JβJβ
‖≤

‖Ω−1‖= ρ−1
1 . Hence

Pr

(
min
j∈Jβ

|β̄j |
σ̄jj

≤ γ

)
≤ Pr

(
min
j∈Jβ

|βj | − |β̄j − βj |
σ̄jj

≤ γ

)

≤ Pr

(
min
j∈Jβ

|βj |
σ̄jj

−max
j∈Jβ

|β̄j − βj |
σ̄jj

≤ γ

)

= Pr

(
max
j∈Jβ

|β̄j − βj |
σ̄jj

≥ min
j∈Jβ

|βj |
σ̄jj

− γ

)

= Pr

(
max
j∈Jβ

|β̄j − βj |
σ̄jj

≥ n1/2σ̄−1 min
j∈Jβ

|βj |
ω
1/2
jj

− γ

)

≤ Pr

(
max
j∈Jβ

|β̄j − βj |
σ̄jj

≥ n1/2σ̄−1ρ
1/2
1 min

j∈Jβ

|βj | − γ

)
.

(A.17)

By (2.4b) and Lemma 2.3, similarly to (A.16), we obtain

Pr

(
min
j∈Jβ

|β̄j |
σ̄jj

≤ γ

)
→ 0 .
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Hence, Pr
(
Jβ ∩K̂ �= ∅

)
→ 0, and thus part (i) holds, as stated. Part (ii) follows

similarly to the proof of Lemma 2.2.

Proof of Corollary 2.1. Since ΣĴĴ � ΩĴĴ , then Ω−1

Ĵ Ĵ
� Σ−1

ĴĴ
, where � denotes

the Loewner partial ordering of symmetric matrices, where recall that Ω−1

ĴĴ
is

the inverse of ΩĴĴ . This further implies that ŝ ≤ s̄ a. s.. This completes the
proof.

Proof of Theorem 2.2. Since m = o(n) and m ≥ q, it readily follows that (i)
holds provided that Pr(minj∈Jβ

γ̃j ≥ maxk∈Kβ
γ̃k) → 1. To this end, note that

Pr
(
min
j∈Jβ

γ̃j ≥ max
k∈Kβ

γ̃k

)
≥ 1−

∑
j∈Jβ

∑
k∈Kβ

Pr
(
γ̃j ≤ γ̃k

)

= 1−
∑
j∈Jβ

∑
k∈Kβ

Pr

(∣∣∣n−1
n∑

i=1

XijYi

∣∣∣ ≤ ∣∣∣n−1
n∑

i=1

XikYi

∣∣∣)

= 1−
∑
j∈Jβ

∑
k∈Kβ

Pr

(∣∣∣n−1
n∑

i=1

Xij

(
XT

i β + εi
)∣∣∣ ≤ ∣∣∣n−1

n∑
i=1

Xik

(
XT

i β + εi
)∣∣∣)

= 1−
∑
j∈Jβ

∑
k∈Kβ

Pr

(∣∣∣ζj + n−1
n∑

i=1

Xijεi

∣∣∣ ≤ ∣∣∣ζk + n−1
n∑

i=1

Xikεi

∣∣∣) .

Note further that for k ∈ Kβ , we have

|ζk| =
∣∣∣n−1

n∑
i=1

XikX
T
i β

∣∣∣ = ∣∣∣n−1
n∑

i=1

∑
j∈Jβ

XikXijβj

∣∣∣
≤ q

{
max
j∈Jβ

|βj |
}

max
j∈Jβ ,k∈Kβ

n−1
∣∣∣ n∑
i=1

XikXij

∣∣∣ = o(1) .

Hence, for n sufficiently large,

Pr
(
min
j∈Jβ

γ̃j ≥ max
k∈Kβ

γ̃k

)

≥ 1−
∑
j∈Jβ

∑
k∈Kβ

Pr

(
|ζj | −

∣∣∣n−1
n∑

i=1

Xijεi

∣∣∣ ≤ |ζk|+
∣∣∣n−1

n∑
i=1

Xikεi

∣∣∣)

≥ 1−
∑
j∈Jβ

∑
k∈Kβ

Pr

(∣∣∣n−1
n∑

i=1

Xijεi

∣∣∣+ ∣∣∣n−1
n∑

i=1

Xikεi

∣∣∣ ≥ c2 − o(1)

)

≥ 1− 2q(p− q)max
j∈I

{
Pr

(∣∣∣n−1
n∑

i=1

Xijεi

∣∣∣ ≥ c2/4

)}

= 1− 2q(p− q)max
j∈I

{
Pr

(
n−1/2

∣∣εT1:nX(j)
∣∣ ≥ n1/2c2/4

))}
,
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where X(j) = (X1j , . . . , Xnj)
T ∈ R

n. By Lemma 4 (i) of Huang, Horowitz and
Ma (2008), n−1/2εT1:nX

(j) is sub-Gaussian, and thus, there exists K1 and K2

such that

Pr
(
n−1/2

∣∣εT1:nX(j)
∣∣ ≥ x

)
≤ K1 exp(−K2x

2) ,

where K1 and K2 do not depend on j. Hence,

Pr
(
min
j∈Jβ

γ̃j ≥ max
k∈Kβ

γ̃k

)
≥ 1− 2q(p− q)K1 exp

(
−K2n(c2/4)

2
)
→ 1 .

Thus, (i) follows, as stated. Part (ii) follows as in the proof of Theorem 2.1.

Proof of Theorem 3.1. Since σ̂∗2 = σ2 + oP (1), by the (conditional) Slutsky’s

theorem, it is enough to show the consistency result for L (ŝ−1/2aT (β̂∗− β̂)|Y ).
To this end, note first that

ŝ−1/2aT (β̂∗ − β̂) = ŝ−1/2aT
Ĵ
(XT

Ĵ
XĴ)

−1XT
Ĵ
ε̂∗1:n =

n∑
i=1

α̂iε̂
∗
i , (A.18)

where α̂i = ŝ−1/2aT
Ĵ
(XT

Ĵ
XĴ)

−1Xi,Ĵ ∈ R, Xi,Ĵ = (Xij : j ∈ Ĵ)T ∈ R
qĴ , and

ε̂∗1:n = (ε̂∗1, . . . , ε̂
∗
n)

T ∈ R
n. Thus, we have to show that

L
( n∑
i=1

α̂iε̂
∗
i

∣∣Y )
Pr−→ N(0, 1) .

To this end, note first that E(α̂iε̂
∗
i |Y ) = 0 a. s.. Let σ̂2

i = var(α̂iε̂
∗
i |Y ). Since

σ̂2
i = ŝ−1σ̂2aT

Ĵ

(
XT

Ĵ
XĴ

)−1
Xi,ĴX

T
i,Ĵ

(
XT

Ĵ
XĴ

)−1
aĴ ,

then
∑n

i=1 σ̂
2
i

Pr−→ 1. Thus, part (i) follows provided that the (conditional) Lin-
deberg condition holds:

n∑
i=1

E
(
|α̂iε̂

∗
i |2I(|α̂iε̂

∗
i | ≥ δ)|Y

) Pr−→ 0 for all δ > 0 . (A.19)

Since

α̂2
i = ŝ−1aT

Ĵ

(
XT

Ĵ
XĴ

)−1
Xi,ĴX

T
i,Ĵ

(
XT

Ĵ
XĴ

)−1
aĴ ,

then
∑n

i=1 α̂
2
i

Pr−→ 1/σ2. Thus, by (A.19), it is enough to show that

max
1≤i≤n

E
(
|ε̂∗|2I(|α̂iε̂

∗| ≥ δ)|Y
) Pr−→ 0 , (A.20)

where, conditionally on Y , ε̂∗ ∼ P. Since

max
1≤i≤n

E
(
|ε̂∗|2I(|α̂iε̂

∗| ≥ δ)|Y
)
≤ E

(
ε̂∗2I(|ε̂∗| max

1≤i≤n
|α̂i| ≥ δ)|Y

)
a. s. ,
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then (A.20) holds provided that max1≤i≤n |α̂i| = oP (1). To this end, note that

max
1≤i≤n

α̂2
i = max

1≤i≤n

{
aT
Ĵ
(XT

Ĵ
XĴ)

−1Xi,ĴX
T
i,Ĵ

(XT
Ĵ
XĴ)

−1aĴ

σ̂2aT
Ĵ
(XT

Ĵ
XĴ)

−1aĴ

}

≤
max1≤i≤n‖Xi,Ĵ‖2

nσ̂2ρ1
= OP

(
p/(nρ1)

)
= oP (1) .

Lastly, to prove (ii), note first that

ŝ−1/2aT (β̂∗ − β̄) = ŝ−1/2aT (β̂∗ − β̂) + ŝ−1/2aT (β̂ − β̄) .

Note further that

ŝ−1/2aT (β̂ − β̄) =

n∑
i=1

ηiεi + oP (1) ,

where

ηi = s
−1/2
Jβ

(
aTJβ

(XT
Jβ
XJβ

)−1Xi,Jβ
− aT (XTX)−1Xi

)
and sJβ

= n−1σ2aTJβ
Ω−1

JβJβ
aJβ

. Since

s = n−1σ2aTΩ−1a ≤ n−1σ2aT aρ−1
1 ≤ n−1σ2aTΩ−1

JβJβ
aρ−1

1 ρ2 = ρ2ρ
−1
1 sJβ

and lim supn ρ
−1
1 ρ2 < ∞, it follows that σ2

η < ∞, where

σ2
η = lim

n→∞

n∑
i=1

η2i .

Using the same approach as in the proof of Lemma 2.2 and Theorem 2.1, it
follows that

ŝ−1/2aT (β̂ − β̄)
d−→ N(0, σ2

η) .

By Slutsky’s theorem and the continuous mapping theorem on P, the space of
distributions on R, it readily follows that (ii) holds, as stated. This completes
the proof.
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