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Abstract: We consider the detection problem of correlations in a p-dimen-
sional Gaussian vector, when we observe n independent, identically dis-
tributed random vectors, for n and p large. We assume that the covariance
matrix varies in some ellipsoid with parameter α > 1/2 and total energy
bounded by L > 0.

We propose a test procedure based on a U-statistic of order 2 which is
weighted in an optimal way. The weights are the solution of an optimiza-
tion problem, they are constant on each diagonal and non-null only for
the T first diagonals, where T = o(p). We show that this test statistic is
asymptotically Gaussian distributed under the null hypothesis and also un-
der the alternative hypothesis for matrices close to the detection boundary.
We prove upper bounds for the total error probability of our test proce-
dure, for α > 1/2 and under the assumption T = o(p) which implies that
n = o(p2α). We illustrate via a numerical study the behavior of our test
procedure.

Moreover, we prove lower bounds for the maximal type II error and
the total error probabilities. Thus we obtain the asymptotic and the sharp
asymptotically minimax separation rate ϕ̃ = (C(α,L)n2p)−α/(4α+1), for
α > 3/2 and for α > 1 together with the additional assumption p =
o(n4α−1), respectively. We deduce rate asymptotic minimax results for test-
ing the inverse of the covariance matrix.

We construct an adaptive test procedure with respect to the parameter
α and show that it attains the rate ψ̃ = (n2p/ ln ln(n

√
p))−α/(4α+1).
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1. Introduction

A large variety of applied fields collect and need to recover information from
high-dimensional data. Among these we can cite communications and signal the-
ory (functional magnetic resonance imaging, spectroscopic imaging), economet-
rics, climate studies, biology (gene expression micro-array) and finance (port-
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folio allocation). Testing large covariance matrix is an important problem and
has recently been approached via several techniques: corrected likelihood ratio
test using the theory of large random matrices, methods based on the sample
covariance matrix and so on.

Let X1, . . . , Xn, be n independent and identically distributed p-vectors fol-
lowing a multivariate normal distribution Np(0,Σ), where Σ = [σij ]1≤i,j≤p is the
normalized covariance matrix, with σii = 1, for all i = 1 to p. Let us denote by
Xk = (Xk,1, . . . , Xk,p)

T for all k = 1, . . . , n. In this paper we also assume that
the size p of the vectors grows to infinity as well as the sample size n, p → ∞
and n → ∞. We assume here that Σ belongs to the class F(α,L) defined for
α > 0 by

F(α,L) =
{
Σ ≥ 0 ;

1

p

∑
1≤i<j≤p

σ2
ij |i− j|2α ≤ L for all p and σii = 1

for all i = 1, . . . , p
}
.

For any covariance matrix Σ, we recall that the Frobenius norm is computed as

‖Σ− I‖2F = tr[(Σ− I)2] = 2
∑

1≤i<j≤p

σ2
ij .

We consider the goodness-of-fit test, with null hypothesis

H0 : Σ = I, where I is the p× p identity matrix (1)

against the composite alternative hypothesis

H1 : Σ ∈ F(α,L), such that
1

2p
‖Σ− I‖2F ≥ ϕ2.

In order to test H0 : Σ = Σ0, for some given non negative definite covariance

matrix Σ0, we suggest rescaling the data Zi = Σ
−1/2
0 Xi and then apply the same

test procedure provided that Σ
−1/2
0 ΣΣ

−1/2
0 belongs to F(α,L). Let us denote

by

Q(α,L, ϕ) =

{
Σ ∈ F(α,L) ;

1

p

∑
1≤i<j≤p

σ2
ij ≥ ϕ2

}
, (2)

where ϕ = ϕn,p(α,L) is related to n and p, but also to α and L assumed
fixed. The set of covariance matrices under the alternative hypothesis consists
of matrices of size p × p, whose elements decrease polynomially when moving
away from the diagonal. This assumption is natural for covariances matrices
and has been considered for estimation problems, see e.g [3], [11]. Regulariza-
tion techniques, originally used for nonparametric estimation of functions, were
successfully employed to the estimation of large covariance matrices. Among
these works, let us mention minimax and adaptive minimax results: via band-
ing the covariance matrix [3], thresholding the entries of the empirical covariance
matrix [4], block-thresholding [10], tapering [11], �1-estimation [12] and so on.
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Unlike the estimation of the covariance matrix, there are very few works for
testing in a minimax setup in the existing literature.

Several types of test statistics have been proposed in the literature in order to
test the null hypothesis (1). The likelihood ratio (LR) statistic, was first designed
for fixed p and n → +∞. To treat the high dimensional case when n, p → +∞,
[1] proposed a correction to the LR statistic and showed its convergence in
law under the null hypothesis, as soon as p/n → c, for some fixed c ∈ (0, 1).
Indeed, this correction is based on the asymptotic behavior of the spectrum of
the covariance matrix. Another approach is based on the largest magnitude of
the off-diagonal entries of the sample correlation matrix and was introduced
by [19]. Later, [8] and [22] show an original limit behavior of Gumbel type for
a self-normalized version of the maximum deviation of the sample covariance
matrix. We also note that a non-asymptotic sphericity test for Gaussian vectors
was studied by [2]. The alternative is given by a model with rank-one and sparse
additive perturbation in the variance.

Furthermore, an approach based on the quadratic form Un = (1/p)tr(Sn−I)2,
where Sn = (1/n)

∑n
i=1 XiX

�
i is the sample covariance matrix, was proposed

by [21], to test (1). Later, [20] shows that the test of H0 based on Un is not
consistent for large p. They introduce a corrected version of Un and study its
asymptotic behavior when n, p → ∞ and p/n → c ∈ (0 + ∞). In order to
deal with non Gaussian random vectors, and without specifying any relation
between n and p, [13] proposed a U-statistic of order 2, as a new correction of
the previous quadratic form. They do moment assumptions in order to show
the asymptotic behavior of their U-statistic, under the null and under a fixed
alternative hypothesis. Motivated by their work, [9] used the U-statistic given
in [13] to test (1) from a sample of Gaussian vectors, and studied the testing
problem from a minimax point of view. They consider the alternative hypothesis
H1 : Σ such that ‖Σ − I‖F ≥ ϕ and they establish the minimax rates of order√

p/n in this case. In our setup the restriction to the ellipsoid F(α,L) leads to
different rates for testing.

In this paper, we introduce a U-statistic, which is weighted in an optimal way
for our problem. This can also be seen as a regularization technique for estimat-
ing a quadratic functional, as it is often the case in minimax nonparametric
test theory (see [18]). We use this test statistic to construct an asymptotically
minimax test procedure. Let us stress the fact that we study the type II error
probability uniformly over the set of all matrices Σ under the alternative and
that induces a separation rate saying how close Σ can be to the identity matrix
I and still be distinguishable from I. We describe the sharp separation rates for
fixed unknown α and give an adaptive procedure free of α that allows to test at
the price of a logarithmic loss in the rate.

We describe here the rate asymptotics of the error probabilities from the min-
imax point of view. We recall that a test procedure Δ is a measurable function
with respect to the observations, taking values in [0, 1]. Set η(Δ) = EI(Δ) =
PI(Δ = 1) its type I error probability, β(Δ, Q(α,L, ϕ)) = supΣ∈Q(α,L,ϕ) EΣ(1−
Δ) = supΣ∈Q(α,L,ϕ) PΣ(Δ = 0) its maximal type II error probability over the
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set Q(α,L, ϕ), and by

γ(Δ, Q(α,L, ϕ)) = η(Δ) + β(Δ, Q(α,L, ϕ))

the total error probability of Δ. Let us denote by γ the minimax total error
probability over Q(α,L, ϕ) which is defined by

γ = γ(ϕ) := γ(Q(α,L, ϕ)) = inf
Δ

γ(Δ, Q(α,L, ϕ))

where the infimum is taken over all test procedures. We want to describe the
separation rate ϕ̃ = ϕ̃(n, p) such that, on the one hand,

γ → 1 if
ϕ

ϕ̃
→ 0.

In this case we say that we can not distinguish between the two hypotheses.
On the other hand, we exhibit an explicit test procedure Δ∗ such that its total
error probability tends to 0

γ(Δ∗, Q(α,L, ϕ)) → 0 if
ϕ

ϕ̃
→ +∞.

We say that Δ∗ is asymptotically minimax consistent test and ϕ̃ is the asymp-
totically minimax separation rate.

In this paper, we find asymptotically minimax rates for testing over the class
F(α,L). The minimax consistent test procedure is based on a U-statistic of
second order, weighted in an optimal way. In this, our procedure is very differ-
ent from known corrected procedures based on quadratic forms of the sample
covariance matrix, see e.g. [20]. This is the first time a weighted test-statistic is
used for testing covariance matrices.

Moreover, our rates are sharp minimax. We show a Gaussian asymptotic be-
haviour of the test statistic in the neighbourhood of the separation rate. We get
the following sharp asymptotic expression for the maximal type II probability
error, under some assumptions relating ϕ, n and p,

inf
Δ:η(Δ)≤w

β(Δ, Q(α,L, ϕ)) = Φ(z1−w − n
√
pb(ϕ)) + o(1),

where Φ denotes the cumulative distribution function (cdf) of the standard
Gaussian distribution and z1−w is the 1− w quantile of the standard Gaussian
distribution for any w ∈ (0, 1). We deduce that the sharp minimax total error
probability is of the type

γ(ϕ) = 2Φ(−n
√
p b(ϕ)/2) + o(1),

where b2(ϕ) = C(α,L)ϕ4+1/α as ϕ → 0, C(α,L) is explicitly given. It is usual
to call the asymptotically sharp minimax rate

ϕ̃ = (C(α,L)n2p)−α/(4α+1),

corresponding to n2pb2(ϕ̃) = 1 and to the asymptotic testing constant C(α,L).
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Analogous results were obtained by [7] in the particular case where the co-
variance matrix is Toeplitz, that is σi,j = σ|i−j| for all different i and j from
1 to p. We note a gain of a factor p in the minimax rate. The asymptotically
sharp minimax rate for Toeplitz covariance matrices is

ϕ̃T = (C(α,L)n2p2)−α/(4α+1).

This additional factor p can be heuristically explained by the number of pa-
rameters p − 1 for a Toeplitz matrix, instead of p(p − 1)/2 for an arbitrary
covariance matrix. For n = 1 the test problem for Toeplitz covariance matrices
was solved in the sharp asymptotic framework, as p → ∞, by [14]. Let us also
recall that the adaptive rates (to α) for minimax testing are obtained for the
spectral density problem by [15] by a non constructive method using the asymp-
totic equivalence with a Gaussian white noise model. We also give an adaptive
procedure for testing without prior knowledge on α, for α belonging to a closed
subset of (1/2,+∞).

Important generalizations of this problem include testing in a minimax setup
of composite null hypotheses like sphericity, H0 : Σ = v2 · I, for unknown v2

in some compact set separated from 0, or bandedness, H0 : Σ = Σ0 such that
[Σ0]ij = 0 for all i 
= j with |i − j| > K. Our proofs rely on the Gaussian
distribution of Gaussian vectors. Generalizations to non Gaussian distributions
with finite moments of some order can be proposed under additional assumptions
on the behaviour of higher order moments, like e.g. [13].

Section 2 introduces the test statistic and studies its asymptotic properties.
Next we give upper bounds for the maximal type II error probability and for
the total error probability and refine these results to sharp asymptotics under
the condition that n = o(1)p2α. In Section 3 we implement our test procedure
and estimate its power. In Section 4 we prove sharp asymptotic optimality and
deduce the optimality of the minimax separation rates for all α > 1 and as soon
as p = o(n4α−1). In Section 5 we present the rate minimax ressults for testing
the inverse of the covariance matrix. In Section 6 we define an adaptive test
procedure and show that the price of adaptation is a loss of (ln ln(n

√
p))α/(4α+1)

in the separation rate.

Proofs are given in Section 7 and in the Appendix.

2. Test procedure and asymptotic properties

In the minimax theory of tests developed since [17] it is well understood that
optimal test statistics are estimators (suitably normalized and tuned) of the
functional which defines the separation of an element in the alternative from the
element of the null hypothesis. In our case this is the Frobenius norm ‖Σ−I‖2F =
tr[(Σ− I)2].

Weighting the elements of the sample covariance matrix appeared first as hard
thresholding in minimax estimation of large covariance matrices. Let us mention
[3] for banding i.e. truncation of the matrix to its k first diagonals (closest to the
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main diagonal), [4] for hard thresholding, then [11] where tapering was studied.
It is a natural idea when coming from minimax nonparametric estimation.

However, that was never used for tests concerning large covariance matrices.
In this section, we introduce a weighted U-statistic of order 2 for testing large
covariance matrices, study its asymptotic properties and give asymptotic upper
bounds for the minimax rates of testing.

From now on asymptotics and symbols o, O, ∼ and � are considered as n
and p tend to infinity and as ϕ tends to 0. Recall that, given sequences of real
numbers u and real positive numbers v, we say that they are asymptotically
equivalent, u ∼ v, if limu/v = 1. Moreover, we say that the sequences are
asymptotically of the same order, u � v, if there exist two constants 0 < c ≤
C < ∞ such that c ≤ lim inf u/v and lim supu/v ≤ C.

2.1. Test statistic and its asymptotic behaviour

Our test statistic is a weighted U-statistic of order 2. It can be also seen as
a weighted functional of the sample covariance matrix. The weights w∗

ij are
constant on each diagonal (they depend on i and j only through i− j), non-zero
only for |i − j| ≤ T for some large integer T and decreasing polynomially for
elements further from the main diagonal (as |i−j| is increasing). More precisely,
we consider the following test statistic:

D̂n =
1

n(n− 1)p

∑
1≤k �=l≤n

∑
1≤i<j≤p

w∗
ijXk,iXk,jXl,iXl,j (3)

where

w∗
ij =

λ

2b(ϕ)

(
1−

( |i− j|
T

)2α)
+
, T = CT (α,L) · ϕ− 1

α �

λ = Cλ(α,L) · ϕ
2α+1

α , b(ϕ) = C1/2(α,L) · ϕ2+ 1
2α

(4)

with

CT (α,L) = ((4α+ 1)L)
1
2α , Cλ(α,L) =

2α+ 1

2α
((4α+ 1)L)

− 1
2α ,

C(α,L) =
2α+ 1

(4α+ 1)1+1/(2α)
L− 1

2α .

(5)

The weights {w∗
ij}i,j and the parameters T, λ, b2(ϕ) are asymptotically equiva-

lent (as ϕ → 0 such that p/T � pϕ1/α → ∞) to the solution of the optimization
problem:

1

p

∑
1≤i<j≤p

w∗
ijσ

∗2
ij = sup{

(wij)ij : wij≥0;

1
p

∑
1≤i<j≤p w2

ij=
1
2

} inf{
Σ : Σ=(σij)i,j ;

Σ∈Q(α,L,ϕ)

} 1

p

∑
1≤i<j≤p

wijσ
2
ij . (6)
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Indeed our test statistic D̂n will concentrate asymptotically around EΣ(D̂n) =
(1/p)

∑
1≤i<j≤p wijσ

2
ij which is 0 for Σ = I. The minimax paradigm considers

the worst parameter Σ∗ in the class Q(α,L, ϕ), that will give the smallest value

EΣ∗(D̂n(wij)) and then finds the parameters {w∗
ij}i<j of the test statistic to

provide the largest value EΣ∗(D̂n(w
∗
ij)). Such procedure performs uniformly well

over all parameters Σ ∈ Q(α,L, ϕ). That explains why we solve the optimization
problem (6).
Note that the weights in (4) have further properties, as ϕ → 0 and pϕ1/α → ∞:

w∗
ij ≥ 0 , sup

i,j
w∗

ij ≤
λ

2b(ϕ)
≤ O(1)ϕ

1
2α � 1√

T

and

1

p

∑
1≤i<j≤p

w∗2
ij =

λ2

4pb2(ϕ)

∑
1≤i<j≤p

(
1− (

|i− j|
T

)2α)
)2

+

∼ λ2

4pb2(ϕ)
· pT

(
1− 2

2α+ 1
+

1

4α+ 1

)
=

C2
λ(α,L) · CT (α,L)

4C(α,L)
· 8α2

(2α+ 1)(4α+ 1)
=

1

2
.

The following Proposition gives the moments of D̂n under the null and their
bounds under the alternative hypothesis, respectively, as well as the asymptotic
normality under the null hypothesis.

Proposition 1. The test statistic D̂n defined by (3) with parameters given by
(4) and (5) has the following moments, under the null hypothesis:

EI(D̂n) = 0, VarI(D̂n) =
2

n(n− 1)p2

∑
1≤i<j≤p

w∗2
ij =

1

n(n− 1)p

and is asymptotically normal

n
√
p D̂n

d→ N (0, 1).

Moreover, under the alternative, if we assume that ϕ → 0, p ϕ1/α → ∞ and
α > 1/2, we have, for all Σ in Q(α,L, ϕ):

EΣ(D̂n) =
1

p

∑
1≤i<j≤p

w∗
ijσ

2
ij ≥ b(ϕ) and VarΣ(D̂n) =

T1

n(n− 1)p2
+

T2

np2
,

where

T1 ≤ p · (1 + o(1)) + p · EΣ(D̂n) ·O(T
√
T ), (7)

T2 ≤ p · EΣ(D̂n) ·O(
√
T ) + p3/2

(
E
3/2
Σ (D̂n) ·O(T 3/4) + EΣ(D̂n) · o(1)

)
. (8)
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Note that, under the alternative, we have the additional assumption that
pϕ1/α � p/T → +∞, when p grows to infinity.

Let us look closer at the optimization problem (6): for given ϕ > 0, b(ϕ) is the

least value that EΣ(D̂n) can take when Σ is in the alternative set of hypotheses.
Under the alternative, we shall establish the asymptotic normality under ad-

ditional conditions that the underlying covariance matrix is close to the solution
of (6). This will be sufficient to give upper bounds of the total error probability
of Gaussian type in the next Section.

Proposition 2. The test statistic D̂n defined by (3) with parameters given by
(4) and (5), such that ϕ → 0, pϕ1/α → ∞ and under the additional assumption
that n2pb2(ϕ) � 1, is asymptotically normal:

n
√
p(D̂n − EΣ(D̂n))

d→ N (0, 1),

for any Σ in Q(α,L, ϕ) such that EΣ(D̂n) = O(b(ϕ)).

2.2. Upper bounds for the error probabilities

In order to distinguish between the two hypothesisH0 andH1 defined previously,
we propose the following test procedure

Δ∗ = Δ∗(t) = 1(D̂n > t), t > 0 (9)

where D̂n is the estimator defined in (3).
The following theorem proves that the previously defined test procedure is

minimax consistent if t is conveniently chosen.

Theorem 1. The test procedure Δ∗ defined in (9) with t > 0 has the following
properties :

Type I error probability : if n
√
p · t → +∞ then η(Δ∗) → 0.

Type II error probability : if α > 1/2 and if

ϕ → 0, pϕ1/α → ∞ and n2pb2(ϕ) → +∞

then, uniformly over t such that t ≤ c ·C1/2(α,L) ·ϕ2+ 1
2α , for some constant c

in (0, 1), we have
β(Δ∗(t), Q(α,L, ϕ)) → 0.

If t verifies all previous assumptions, then Δ∗(t) is asymptotically minimax con-
sistent:

γ(Δ∗(t), Q(α,L, ϕ)) → 0.

In the next Theorem we give sharp upper bounds of error probabilities of
Gaussian type. The proof of this result explains the choice of the weights as
solution of the optimization problem (6). Moreover, we will see that the Gaussian
behavior is obtained near the separation rates.

Recall that Φ is the cumulative distribution function (cdf) of standard Gaus-
sian random variable and, for any w ∈ (0, 1), z1−w is defined by Φ(z1−w) = 1−w.
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Theorem 2. The test procedure Δ∗ defined in (9) with t > 0 has the following
properties :

Type I error probability : we have η(Δ∗(t)) = 1− Φ(n
√
p · t) + o(1).

Type II error probability : if α > 1/2 and if

ϕ → 0, pϕ1/α → ∞ and n2p b2(ϕ) � 1 , (10)

then, uniformly over t, we have

β(Δ∗(t), Q(α,L, ϕ)) ≤ Φ(n
√
p · (t− b(ϕ))) + o(1).

In particular, for t = tw such that n
√
p · tw = z1−w we have η(Δ∗(tw)) ≤

w + o(1) and

β(Δ∗(tw), Q(α,L, ϕ)) ≤ Φ(z1−w − n
√
p · b(ϕ)) + o(1).

Another important consequence of the previous theorem, is that the test proce-
dure Δ∗(t∗), with t∗ = b(ϕ)/2 has total error probability

γ(Δ∗(t∗), Q(α,L, ϕ)) ≤ 2Φ

(
−n

√
p
b(ϕ)

2

)
+ o(1).

3. Simulation study

We include several examples, to illustrate the numerical behavior of our test
procedure. First, we estimate the type I error probabilities to test the null
hypothesis Σ = I. We implement D̂n defined in (3) and (4) for α = L = 1
and ϕ = ϕ̃. We choose the threshold t such that t = tη where tη = z1−η/(n

√
p)

and z1−η is the (1−η)-quantile of the standard normal distribution. We show in

Table 1 the estimated type I error probabilities PI(D̂n > tη) which are obtained
from 1000 repeated samples.

We observe that the estimated probabilities are all close to the corresponding
significant levels η except for p too small compared to n .

Table 1

Estimated type I error probabilities PI(D̂n > tη), when η ∈ {0.01, 0.05, 0.1} and
for p ∈ {10, 20, . . . , 90} and n ∈ {30, 60, 90}

η \p 10 20 30 40 50 60 70 80 90 n

0.004 0.012 0.011 0.008 0.015 0.011 0.010 0.015 0.012 30
0.01 0.005 0.004 0.013 0.013 0.012 0.007 0.009 0.009 0.008 60

0.002 0.005 0.006 0.008 0.008 0.011 0.007 0.007 0.006 90

0.022 0.048 0.038 0.046 0.045 0.043 0.047 0.046 0.034 30
0.05 0.013 0.036 0.033 0.043 0.059 0.048 0.041 0.047 0.050 60

0.008 0.030 0.040 0.044 0.044 0.039 0.039 0.041 0.048 90

0.049 0.075 0.089 0.072 0.104 0.085 0.074 0.097 0.085 30
0.1 0.040 0.076 0.078 0.082 0.077 0.107 0.098 0.098 0.073 60

0.019 0.061 0.058 0.074 0.085 0.078 0.094 0.095 0.089 90
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Fig 1. Boxplots of D and D(M) = n
√
p · D̂n, when n = 50 and p = 80, under the null

hypothesis I and under the alternative hypothesis Σ(M).

Second, we illustrate the asymptotic behavior of our test procedure under
the null hypothesis and under alternative hypothesis defined by the symmetric
positive matrices

Σ(M) = (σij(M))1≤i,j≤p ; σij(M) = 1(i=j) +
uij · |i− j|−2

M
· 1(i �=j) , (11)

forM ∈ [ 3/2 , 9 ] and where uij = uji are independently sampled from a uniform
distribution on [0, 1] and their role is to produce non-Toeplitz matrices. Note
that this set of matrices has been considered in the literature see e.g. [10] and

[11]. We implement the test statistic D̂n for α = L = 1, and

ϕ = ϕ(M) =
1

M
√
p
·
(∑

i<j

u2
ij · |i− j|−4

)1/2

.

We denote by D(M) = n
√
p · D̂n the test statistic associated to Σ(M) and by

D the one associated to I, the identity matrix.
Third we study the power of our test procedure. We test the null hypothesis

Σ = I against the alternative hypothesis constituted by the matrices Σ(M)
given in (11). We choose the threshold t of the test empirically, under the null
hypothesis Σ = I, from 1000 repeated samples of size n, such that the type
I error probability is close to and smaller than 0.05. We use t to estimate the
type II error probability, also from 1000 repetitions and then plot the power as
function of ϕ(M).

Figure 2 shows that the power is an increasing function of ϕ(M). Also, we
can see that for a fixed value of ϕ(M) the power increases with p. Indeed, our
procedure benefits from large values of p, which is not a nuisance parameter
here.

We also compare our test procedure to the one given in [9], which is based on
a U -statistic of order 2, denoted here by CM-test. We consider different cases
that are characterized by different values of n and p.
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Fig 2. Power curves of the Δ-test as function of ϕ(M) for n = 30 and p ∈ {30, 70, 130}

Figure 3, shows that for p smaller than, equal to or bigger than n, the Δ-test
based on the weighted U-statistics D̂n has larger power than the CM-test based
on the non weighted U-statistic. Moreover, the improvement of the Δ-test over
the CM-test is larger, when the ratio p/n is bigger.

Fig 3. Power curves of the Δ-test and the CM-test as functions of ϕ(M)
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Let us consider the tridiagonal matrices Σ(ρ) = (1{i=j}+ρ1{|i−j|=1})1≤i,j≤p,
for ρ ∈ (0, 0.35] under the alternative hypothesis. These are the covariance ma-
trices of a MA(1) Gaussian processes. Moreover, the matrices Σ(ρ) are Toeplitz,
we also compare our the procedure to the one proposed in [7] for Toeplitz co-
variance matrices, that we denote by BZ-test. The thresholds are evaluated
empirically for each procedure at type I error probability close to and smaller
than 0.05. We plot the power curves of the three test procedures.

Fig 4. Power curves of the BZ-test, Δ-test and CM-test as functions of ϕ(ρ), for MA(1)
Gaussian processes

Figure 4 shows that, when the alternative hypothesis consists of Toeplitz
matrices the BZ-test has the better performance. However if we miss the infor-
mation that the matrix is Toeplitz, we see that the Δ-test is not bad and its
power dominates the power of the CM-test.

Fig 5. Power curves of the BZ-test, Δ-test and CM-test as functions of ϕ(ρ), for AR(1)
Gaussian processes

Finally, as a third example, we consider the covariance matrices of AR(1)
Gaussian processes

Σ(ρ) = (σij(ρ))1≤i,j≤p; σij(ρ) = ρ|i−j|
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for ρ ∈ (0, 0.6], under the alternative hypothesis. In this case we take L = 2.
Similarly to the previous cases the thresholds are estimated so that the type
I error probability is fixed at 0.05, and we compute the power curves of the
different test procedures.

4. Asymptotic optimality

In this section, we first state the lower bound for testing, which, in addition to
the test procedure exhibited in the previous section, shows that the asymptoti-
cally minimax separation rate is

ϕ̃ =
(
n
√
pC1/2(α,L)

)− 2α
4α+1

, (12)

where the constant C(α,L) is given by (5).

Theorem 3. Assume that, either α > 3/2, or α > 5/8 and npϕ6− 2
α → 0. If

ϕ → 0, pϕ1/α → ∞, and n2p b2(ϕ) → 0,

then γ = infΔ γ(Δ, Q(α,L, ϕ)) → 1, where the infimum is taken over all test
statistics Δ.

Together with Theorem 1, the proof that ϕ̃ is asymptotically minimax, under
our assumptions, is complete. Note that the condition npϕ6− 2

α → 0 is verified
when α > 3/2 for all n and p → +∞ giving a general result in this case. When

5/8 < α < 3/2, the same condition holds for p = o(n
8α−5
3−2α ). This result is proven

by showing that the χ2 distance between the null hypothesis and an averaged
likelihood under the alternative (that we explicitly construct) tends to 0.

Next, the sharp lower bound for the type II error probability is of Gaussian
type.

Theorem 4. Assume that α > 1 and if

ϕ → 0, pϕ1/α → ∞,
√
pϕ2− 1

2α → 0 and n2p b2(ϕ) � 1, (13)

inf
Δ:η(Δ)≤w

β(Δ, Q(α,L, ϕ)) ≥ Φ(z1−w − n
√
pb(ϕ)) + o(1),

where the infimum is taken over all test statistics Δ with type I error probability
less than or equal to w. Moreover,

γ = inf
Δ

γ(Δ, Q(α,L, ϕ)) ≥ 2Φ(−n
√
p
b(ϕ)

2
) + o(1).

Remark: Theorems 2 and 4 imply that for α > 1, the sharp separation rate for
minimax testing is ϕ̃, under the additionnal assumptions (13). Let us check when
the separation rate verifies these assumptions: pϕ̃1/α → ∞ holds if n = o(1)p2α,

and
√
pϕ̃2− 1

2α → 0 holds if p = o(n4α−1).
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Let us assume that p = nB for B > 0 and that ϕ = ϕ̃. In this case, ϕ̃ =
(C · n2+B)−α/(4α+1) that tends to 0 with n. Upper bounds are valid as soon as
pϕ̃1/α = (C−1n2(2αB−1))1/(4α+1) tends to infinity, that is B > 1/(2α). In addi-
tion the lower bounds are valid if pϕ̃4−1/α = C−(4α−1)/(4α+1)n−2(4α−1−B)/(4α+1)

tends to 0, that is B < 4α− 1.
If we assume that p = exp(Bn) for some B > 0 and that ϕ = ϕ̃, than pϕ̃1/α

always tends to infinity, so the upper bounds hold. However, the additional
assumption that pϕ̃4−1/α tends to 0 will never hold. In this case, we only have
the minimax separation rates (for α > 3/2) but not the sharp constants. It is
easy to see that for p = (ln(n))B we have pϕ̃1/α tends to 0, so neither our upper
bounds nor the lower bounds hold in this case.

Note that, there is a more general test procedure independent of ϕ, for which
it is possible to derive the upper bounds as in Theorems 1 and 2. It suffices to
use the test statistic D̂n with the weights w∗

ij replaced by the weights w∗
ij(ϕ̃)

defined as in (4) and (5) for ϕ replaced by ϕ̃. For more details see section 4.2 in
[5].

The proof of the lower bounds is given in Section 7. We construct a family of n
large centered Gaussian vectors with covariance matrices based on {σ∗

ij}1≤i,j≤p

given by the optimization problem (6) and a prior measure Pπ on these covari-
ance matrices. The logarithm of the likelihood ratio associated to an arbitrary
Σ with respect to I under the null hypothesis is known to drift away to infinity
(see [1], who corrected this ratio to get a proper limit). However, we show that
the logarithm of the Bayesian likelihood ratio with our prior measure Pπ verifies

log
fπ
fI

(X1, ..., Xn) = unZn − u2
n

2
+ ξ, in PI probability

where un = n
√
pb(ϕ), Zn is asymptotically distributed as a standard Gaus-

sian distribution and ξ is a random variable which converges to zero under PI

probability.

5. Testing the inverse of the covariance matrix

Let us consider the same model, but the following test problem

H0 : Σ−1 = I

against the alternative

H1 : Σ ∈ G(α,L, λ) such that
1

2p
‖Σ−1 − I‖2F ≥ ψ2,

where G(α,L, λ) is the class of covariance matrices Σ in F(α,L) with the ad-
ditional constraint that the eigenvalues λi(Σ) are bounded from below by some
λ ∈ (0, 1) for all i from 1 to p and all Σ in the set.

We prove here that previous results apply to this setup and we get the same
rates, but not the sharp asymptotics. Note that, the additional hypothesis is
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mild enough so that it does not change the rates for testing. Indeed, we see
this case as a well-posed inverse problem. The cases of ill-posed inverse problem
where the smallest eigenvalue can be allowed to tend to 0 will most certainly
imply a loss in the rate and is beyond the scope of this paper.

Theorem 5. Suppose α > 3/2, L > 0 and λ ∈ (0, 1). If n and p tend to infinity,
such that n = o(1)p2α, then ϕ̃ defined in (12) is the asymptotically minimax rate
for the previous test.

Proof. Note that Σ−1 = I if and only if Σ = I. Moreover, if Σ belongs to
G(α,L, λ) such that 1

2p‖Σ−1 − I‖2F ≥ ψ2, then Σ obviously belongs to F(α,L)
and is such that

1

2p
‖Σ− I‖2F ≥ λ2

2p
‖Σ−1 − I‖2F ≥ λ2ψ2.

Thus we can proceed with our former test procedure, with ϕ replaced by λψ
and we obtain the upper bounds in the definition of the separation rates.

The lower bounds in the previous Section will also remain valid. Indeed, this
proof is based on the construction of a subfamily {Σ∗

U : u ∈ U} on the set of
alternatives. We have proven in Proposition 3, that

min
i

λi(Σ
∗
U ) ≥ 1−O(ϕ1−1/(2α)),

and we have α > 1/2 and ϕ = λψ → 0 as ψ → 0, therefore, 1−O(ϕ1−1/(2α)) ≥ λ
for ψ > 0 small enough. Thus, this family belongs to the set of alternatives we
consider here, as well. Moreover, Proposition 3 proves also that

‖Σ∗
U‖2 := max

i
λi(Σ

∗
U ) ≤ 1 +O(ϕ1−1/(2α)) ≤ λmax,

for some fixed λmax free of α and L. Thus,

1

2p
‖(Σ∗

U )
−1 − I‖2F ≥ 1

2p · ‖Σ∗
U‖22

· ‖Σ∗
U − I‖2F ≥ 1

λ2
max

1

2p
· ‖Σ∗

U − I‖2F .

Thus we proceed the same way with ϕ replaced by λmaxψ.

6. Adaptive testing procedure

We want to built a test procedure of H0 in (1) which is free of the parameter α
belonging to some closed interval A = [α, ᾱ] ⊂ (1/2,+∞). The radius L plays a
minor role in the procedure and we suppose that it is known (w.l.o.g we assume
that L = 1). Such a procedure is called adaptive and it solves the test problem
H0 in (1) against a much larger set of alternative hypotheses:

H1 : Σ ∈ ∪
α∈A

Q(α,L, Cψα) , (14)
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where C is a large enough positive constant and

ψα =
( ρn,p
n
√
p

) 2α
4α+1

, ρn,p =
√
ln ln(n

√
p) , (15)

depend on n and p, but also on α. In order to construct the adaptive test
procedure, we define a finite regular grid over the set A = [α, ᾱ] :

AN = {αr = α+
ᾱ− α

N
· r ; r = 1, . . . , N}, where N = �ln(n√p)�.

To each r ∈ {1, · · · , N}, we associate the weights :

w∗
ij,r =

λr

br

(
1−

( |i− j|
Tr

)2αr
)
+
,

where the parameters λr, br and Tr are given in (4) and (5) with α replaced by
αr and ϕ by ψα. Define the adaptive test procedure, for some constant C∗ > 0
large enough

Δ∗
ad = max

r=1,...,N
1(D̂n,r > C∗tr), where tr = Cλr · ρn,p/(n

√
p), (16)

and where D̂n,r is the test statistic in (3) with weights {wij,r}i<j . Note that
the test Δ∗

ad rejects the null hypothesis as soon as there exists at least on

r ∈ {1, . . . , N} for which D̂n,r > C∗tr.

Theorem 6. Assume that

p ·
( ρn,p
n
√
p

) 2
4α+1 → +∞ and

ln p

n
→ 0

The test statistic defined in (16) with C∗ large enough verifies :

γ(Δ∗
ad, ∪

α∈A
Q(α,L, Cψα)) → 0,

for all C >
(
C∗+

1

C(α, ᾱ)

)
, where ψα is given in (15) and C(α, ᾱ) = exp(−8(ᾱ−

α)/(4α+ 1)).

The proof that the adaptive procedure we propose attains the above rate is
given in Section 7. By analogy to nonparametric testing of functions, we expect
the loss ρn,p to be optimal uniformly over the class in the alternative hypothesis
(14) .

7. Proofs

Proof of Theorems 1 and 2. The proof is based on the Proposition 1 and the
asymptotic normality of the weighted test statistic n

√
pD̂n in Proposition 2. We

get for the type I error probability of Δ∗

η(Δ) = P(D̂n > t) = 1− Φ(n
√
p · t) + o(1).
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For the type II error probability of Δ∗, uniformly in Σ over Q(α,L, ϕ), we have

PΣ(D̂n ≤ t) ≤ PΣ(|D̂n − EΣ(D̂n)| ≥ EΣ(D̂n)− t) ≤ VarΣ(D̂n)

(EΣ(D̂n)− t)2
,

for t ≤ c · b(ϕ) and 0 < c < 1. It implies that n
√
p · t ≤ cn

√
pb(ϕ). Therefore,

we distinguish the cases where n2pb2(ϕ) tends to infinity or is bounded.

We use the fact that, under the alternative, EΣ(D̂n) ≥ b(ϕ). We bound from
below as follows:

EΣ(D̂n)− t ≥ (1− c)EΣ(D̂n).

Then, it gives

PΣ(D̂n ≤ t) ≤ T1

n(n− 1)p2(1− c)2E2
Σ(D̂n)

+
T2

np2(1− c)2E2
Σ(D̂n)

=: S1 + S2.

Let us bound from above S1 using (7):

S1 ≤ 1 + o(1)

n(n− 1)p(1− c)2b2(ϕ)
+

O(T 3/2)

n(n− 1)p b(ϕ)
.

We have T 3/2b(ϕ) � ϕ2− 1
α = o(1), for all α > 1/2, which proves that :

S1 ≤ 1 + o(1)

n(n− 1)p(1− c)2b2(ϕ)

which tends to 0 provided that n2pb2(ϕ) → +∞. We will see using (8) that the
term S2 tends to 0 as well:

S2 ≤ O(
√
T )

np b(ϕ)
+

O(T 3/4b1/2(ϕ))

n
√
p b(ϕ)

+
o(1)

n
√
p b(ϕ)

= o(1) for all α > 1/2, as soon as n
√
pb(ϕ) → +∞.

Now, if ϕ is close to the separation rate: n2pb2(ϕ) � 1, we see that whenever

EΣ(D̂n)/b(ϕ) tends to infinity, the bound is trivial (S1 + S2 → 0).
The nontrivial bound is obtained when Σ under the alternative is close to the

optimal matrix Σ∗ = (σ∗
ij)1≤i,j≤p, in the sense that EΣ(D̂n) = O(b(ϕ)) together

with the fact that ϕ is close to the separation rate: n2pb2(ϕ) � 1. We apply
Proposition 2 to get the asymptotic normality

n
√
p(D̂n − EΣ(D̂n)) → N (0, 1).

Thus,

sup
Σ∈Q(α,L,ϕ))

PΣ(D̂n ≤ t) ≤ sup
Σ∈Q(α,L,ϕ))

Φ(n
√
p · (t− EΣ(D̂n))) + o(1)

≤ Φ(n
√
p · (t− inf

Σ∈Q(α,L,ϕ))
EΣ(D̂n))) + o(1).
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At this point, choosing optimal weights translates into

inf
wij>0:

∑
i �=j w2

ij=1/2
sup

Σ∈Q(α,L,ϕ))

PΣ(D̂n ≤ t)

≤ Φ(n
√
p · (t− sup

wij>0:
∑

i �=j w2
ij=1/2

inf
Σ∈Q(α,L,ϕ))

EΣ(D̂n))) + o(1)

≤ Φ(n
√
p · (t− b(ϕ))) + o(1),

after solving the optimization problem in the Appendix, which ends the proof
of the Theorem.

Proof of Theorems 3 and 4. The first step of the proof is to reduce the set of
parameters to a convenient parametric family. Let Σ∗ = [σ∗

ij ]1≤i,j≤p be the
matrix which has 1 on the diagonal and off-diagonal entries σ∗

ij where

σ∗
ij =

√
λ

(
1− (

|i− j|
T

)2α
) 1

2

+

for i 
= j, (17)

with λ and T are given by (4) and (5).
Let us define Q∗ a subset of Q(α,L, ϕ) as follows

Q∗ = {Σ∗
U : [Σ∗

U ]ij = I(i = j) + uijσ
∗
ijI(i 
= j) for all 1 ≤ i, j ≤ p , U ∈ U}

where

U = {U = [uij ]1≤i, j≤p : uii = 0, ∀i and uij = uj i = ± I(|i−j| ≤ T ), for i 
= j}.
The cardinality of U is p(T − 1)/2.

Proposition 3. For α > 1/2, the symmetric matrix Σ∗
U = [uijσ

∗
ij ]1≤i,j≤p, with

σ∗
ii = 1, for all i from 1 to p, and σ∗

ij defined in (17) is non-negative definite,
for ϕ > 0 small enough, and for all U ∈ U .

Moreover, denote by λ1,U , ..., λp,U the eigenvalues of Σ∗
U , then |λi,U − 1| ≤

O(1)ϕ1−1/(2α), for all i from 1 to p.

We deduce that

‖Σ∗
U‖ ≤ 1 +O(ϕ1− 1

2α ) and ‖Σ∗
U − I‖ ≤ O(ϕ1− 1

2α ). (18)

Indeed, ‖Σ∗
U‖ = maxi=1,...,p λi,U ≤ 1 + O(ϕ1+ 1

2α ) and Σ∗
U − I has eigenvalues

λi,U − 1.
Proposition 3 shows that for all Σ∗

U ∈ Q∗, Σ∗
U is non-negative definite, for

ϕ > 0 small enough.
Assume that X1, . . . , Xn ∼ N(0, I) under the null hypothesis and denote

by PI the likelihood of these random variables. We assume that X1, . . . , Xn ∼
N(0,Σ∗

U ), under the alternative, and we denote PU the associated likelihood. In
addition let

Pπ =
1

2p(T−1)/2

∑
U∈U

PU

be the average likelihood over Q∗.
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The problem can be reduced to the test H0 : X1, ..., Xn ∼ PI against the
averaged distribution H1 : X1, ..., Xn ∼ Pπ, in the sense that

inf
Δ:η(Δ)≤w

β(Δ(t), Q(α,L, ϕ)) ≥ inf
Δ:η(Δ)≤w

β(Δ(t), Pπ) + o(1)

and that
inf
Δ

γ(Δ, Q(α,L, ϕ)) ≥ inf
Δ

γ(Δ, Pπ) + o(1).

It is, therefore, sufficient to show that, when un � 1,

inf
Δ:η(Δ)≤w

β(Δ(t), Pπ) ≥ Φ(n
√
p · (t− b(ϕ))) + o(1) (19)

and that

inf
Δ

γ(Δ, Pπ) ≥ 2Φ(−n
√
p
b(ϕ)

2
) + o(1). (20)

While, for un = o(1), we need to show that

inf
Δ

γ(Δ, Pπ) → 1. (21)

In order to obtain (19) and (20), we apply results in Section 4.3.1 of [18] giving
the sufficient condition that, in PI probability:

Ln,p := log
fπ
fI

(X1, ..., Xn) = unZn − u2
n

2
+ ξ, (22)

where un = n
√
pb(ϕ) � 1, b(ϕ) = C

1
2 (α,L) · ϕ2+ 1

2α , Zn is asymptotically
distributed as a standard Gaussian distribution and ξ is a random variable
which converges to zero under PI probability. Moreover, to show (21), it suffices
to show that

EI

(
dPπ

dPI

)2

≤ 1 + o(1), (23)

since

γ ≥ 1− 1

2
‖PI − Pπ‖1 and ‖PI − Pπ‖21 ≤ EI

(
dPπ

dPI

)2

− 1.

We first begin by showing (23), in order to finish the proof of Theorem 3. Let,

Hn,p := EI

(
dPπ

dPI
(X1, · · · , Xn)

)2

= EIEU,V

⎛⎝exp
(
− 1

2

∑n
k=1 X

�
k ((ΣU )

−1 + (ΣV )
−1 − 2I)Xk

)
(2π)

np
2 det

n
2 (ΣUΣV )

⎞⎠ (24)

We have

Hn,p = EU,V

⎛⎝det−
n
2

(
(ΣU )

−1 + (ΣV )
−1 − I

)
det

n
2 (ΣUΣV )

⎞⎠
= EU,V

(
det−

n
2

(
ΣU +ΣV − ΣUΣV

))
.
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We define ΔU = ΣU − I and note that ΣU +ΣV −ΣUΣV = I −ΔUΔV . As the
matrix ΔUΔV is not necessarily symmetric, we write

(I −ΔUΔV )(I −ΔUΔV )
� = I −M

where M = MU,V := ΔUΔV +ΔV ΔU −ΔUΔ
2
V ΔU is symmetric. Moreover, we

prove that for all U and V ∈ U the eigenvalues ofM are in (−1, 1) for all α > 1/2
and ϕ small enough. Indeed, by Gershgorin’s theorem, for each eigenvalue λM

of M there exists at least one i ∈ {1, . . . , p} such that

|λM −Mii| ≤
∑
j;j �=i

|Mij |.

We can show that
∑

j;j �=i |Mij | = O(ϕ2− 1
α ) and |Mii| ≤ O(ϕ2) + O(ϕ4− 1

α ).
Thus,

Hn,p = EU,V (det
−n

4 (I −M)) = EU,V exp
(
− n

4
logdet(I −M)

)
The Taylor expansion for the logdet of a symmetric matrix writes

−1

4
logdet(I −M) =

1

4
tr(M) +

1

8
tr(M2) +O(tr(M3)).

In more details,

1

4
tr(M) =

1

2
tr(ΔUΔV )−

1

4
tr(Δ2

UΔ
2
V )

1

8
tr(M2) =

1

4
tr(ΔUΔV )

2 +
1

4
tr(Δ2

UΔ
2
V ) +

1

8
tr(ΔUΔ

2
V ΔU )

2

−1

4
tr(ΔUΔ

2
V Δ

2
UΔV )−

1

4
tr(ΔV Δ

2
UΔ

2
V ΔU )

Recall that ∀A,B ∈ R
p×p we have ‖AB‖F ≤ ‖A‖2‖B‖F . For all U, V ∈ U , we

use the last inequality and the Cauchy-Schwarz inequality to get

tr(ΔUΔ
2
V Δ

2
UΔV ) ≤ ‖ΔUΔV ‖F ‖ΔV Δ

2
UΔV ‖F

≤ ‖ΔV ‖2 ‖ΔU‖F ‖ΔV Δ
2
U‖2 ‖ΔV ‖F ≤ p · ϕ6− 2

α ,

tr(ΔUΔ
2
V ΔU )

2 = ‖ΔUΔ
2
V ΔU‖2F ≤ ‖ΔUΔ

2
V ‖22 ‖ΔU‖2F ≤ p · ϕ8− 3

α .

Finally, using similar arguments we can show that

tr(M3
U,V ) = O(pϕ6− 2

α ).

Thus,

−1

4
logdet(I −M) =

1

2
tr(ΔUΔV ) +

1

4
tr(ΔUΔV )

2 +O(pϕ6− 2
α ).

Now we develop the terms on the right hand side of the previous equation. We
obtain

tr(ΔUΔV ) =
∑

1≤i,j≤p
1<|i−j|<T

uijvij · σ∗2
ij = 2

∑
1≤i<j≤p
1<|i−j|<T

uijvij · σ∗2
ij
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and

tr(ΔUΔV )
2 =

∑
1≤i,j,h,l≤p

1<|i−h|,|h−j|,|i−l|,|l−j|<T

uihvhjujlvli · σ∗
ihσ

∗
hjσ

∗
jlσ

∗
li

=
∑

1≤i,l≤p
1<|i−l|<T

σ∗4
ij + 2

∑
1≤i,j,l≤p

i<j
1<|i−l|,|l−j|<T

uilujlvljvli · σ∗2
il σ

∗2
lj

+ 4
∑

1≤i,j,h,l≤p
i<j,l<h

1<|i−h|,|h−j|,|i−l|,|l−j|<T

uihujlvhjvli · σ∗
ihσ

∗
jlσ

∗
hjσ

∗
li.

Now, we can write (24) as follows:

Hn,p = EU,V exp
(
− nlogdet(I −ΔUΔV )

2

)
= EU,V exp

(
n

∑
1≤i<j≤p
1<|i−j|<T

uijvij · σ∗2
ij +

n

2

∑
1≤i,j,l≤p

i<j
1<|i−l|,|l−j|<T

uilujlvljvli · σ∗2
il σ

∗2
lj

+ n
∑

1≤i,j,h,l≤p
i<j,l<h

1<|i−h|,|h−j|,|i−l|,|l−j|<T

uihujlvhjvli · σ∗
ihσ

∗
jlσ

∗
hjσ

∗
li

)

+
n

4

∑
1≤i,l≤p

1<|i−l|<T

σ∗4
ij +O(npϕ6− 2

α ).

We explicit the expected value with respect to the i.i.d Rademacher random
variables {uijvij}i<j , {uilujlvljvli}i<j,l �∈{i,j} and {uihujlvhjvli}i<j,l<h pairwise
distinct and independent:

Hn,p =
∏
i<j

1<|i−j|<T

cosh(nσ∗2
ij )

∏
1≤i,j,l≤p

i<j
1<|i−l|,|l−j|<T

cosh(
n

2
σ∗2
il σ

∗2
lj )

∏
1≤i,j,h,l≤p
i<j,l<h

1<|i−h|,|h−j|,|i−l|,|l−j|<T

cosh
(
nσ∗

ihσ
∗
jlσ

∗
hjσ

∗
li

)
exp

(n
2

∑
1≤i,l≤p

1<|i−l|<T

σ∗4
ij +O(npϕ6− 2

α )
)
.

We use the inequality cosh(x) ≤ exp(x2/2) and get

Hn,p ≤ exp
{n2

2

( ∑
i<j

1<|i−j|<T

σ∗4
ij +

1

4

∑
1≤i,j,l≤p

i<j
1<|i−l|,|l−j|<T

σ∗4
il σ

∗4
lj

+
∑

1≤i,j,h,l≤p
i<j,l<h

1<|i−h|,|h−j|,|i−l|,|l−j|<T

σ∗2
ihσ

∗2
jl σ

∗2

hjσ
∗2
li

)}
· exp

(n
2

∑
1≤i,l≤p

1<|i−l|<T

σ∗4
ij +O(npϕ6− 2

α )
)
.
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Or,
n2

2

∑
i<j

1<|i−j|<T

σ∗4
ij = n2pb2(ϕ) and since ϕ → 0 we have that

n2

8

∑
1≤i,j,l≤p

i �=j
1<|i−l|,|l−j|<T

σ∗4
il σ

∗4
lj =

n2

8

∑
i �=l

1<|i−l|<T

σ∗4
il

∑
j

1<|l−j|<T

σ∗4
lj

= n2pb2(ϕ) ·O(λ2T ) = n2pb2(ϕ) · o(1)
and

n2

2

∑
1≤i,j,h,l≤p
i �=j,l �=h

1<|i−h|,|h−j|,|i−l|,|l−j|<T

σ∗2
ihσ

∗2
jl σ

∗2
hjσ

∗2
li

= n2O(pλ4T 3) = O(n2pϕ4+ 1
α · ϕ4) = n2pb2(ϕ) · o(1).

Finally, npϕ6− 2
α = n2pϕ4+ 1

α · ϕ
2− 3

α

n
= o(1) as soon as n2pϕ4+ 1

α → 0 and

α > 3/2 or 5/8 < α < 3/2 and p < n
8α−5

−2α+3 .

As consequence, if n2pb2(ϕ) → 0 with the additional conditions on α, n and
p given previously, we get

EI

(
dPπ

dPI

)2

≤ exp
(
n2pb2(ϕ)(1 + o(1))

)
= 1 + o(1),

which ends the proof of Theorem 3.

Now, we show (22) in order to finish the proof of Theorem 4. More explicitly,

Ln,p = log
fπ
fI

(X1, ..., Xn)

= logEU exp

(
−1

2

n∑
k=1

X�
k ((Σ∗

U )
−1 − I)Xk − n

2
log det(Σ∗

U )

)
, (25)

where U is seen as a randomly chosen matrix with uniform distribution over the
set U . Let us denote ΔU = Σ∗

U − I and recall that proposition 3 implies that

‖ΔU‖ ≤ O(1)ϕ1− 1
2α = o(1) for all α > 1/2. We write the following approxima-

tions obtained by matrix Taylor expansion:

− 1

2
((Σ∗

U )
−1 − I) =

1

2

5∑
l=1

(−1)l+1 ·Δl
U +O(1)Δ6

U (26)

log det(Σ∗
U ) = tr

( 5∑
l=1

(−1)l+1

l
·Δl

U +O(1)Δ6
U

)
(27)

Note that, tr(ΔU ) = 0 and that tr(Δ2
U ) = ‖Σ∗ − I‖2F = 2

∑
1≤i<j≤p

σ∗2
ij does not
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depend on U . Moreover,

EI(

n∑
k=1

X�
k Δ6

UXk) = n · tr(Δ6
U ) ≤ n · ‖ΔU‖4 · tr(Δ2

U ) ≤ O(1) · nϕ4− 2
α · pϕ2

≤ O(1) · n√pϕ2+ 1
2α · √pϕ4− 5

2α

≤ O(1) · un · √pϕ2− 1
2α · ϕ2− 2

α = o(1)

for all α > 1 and when un = O(1) and
√
pϕ2− 1

2α = O(1). Also, for all α > 1

VarI(

n∑
k=1

X�
k Δ6

UXk) = 2ntr(Δ12
U ) ≤ O(1)nϕ10− 5

α · pϕ2 = o(1).

In conclusion, we use Yn = EI(Yn)+OP (
√
Var(Yn)) for any sequence of random

variables Yn, to get

n∑
k=1

X�
k Δ6

UXk − ntr(Δ6
U ) = oP (1), in PI -probability.

We get

Ln,p = logEU exp
(1
2

n∑
k=1

X�
k ΔUXk − 1

2

n∑
k=1

X�
k Δ2

UXk +
n

4
tr(Δ2

U ) (28)

+
1

2

5∑
l=3

(−1)l+1
n∑

k=1

X�
k Δl

UXk −
n

2

5∑
l=3

(−1)l+1

l
· tr(Δl

U )
)
+ oP (1).

From l = 3, 4 and 5, we treat similarly the terms

n∑
k=1

X�
k Δl

UXk = EI(

n∑
k=1

X�
k Δl

UXk) +OP

(√√√√VarI(

n∑
k=1

X�
k Δl

UXk)
)

= ntr(Δl
U ) +OP (1) ·

√
ntr(Δ2l

U ) (29)

By (28), we have ntr(Δ6
U ) = o(1), similarly we obtain ntr(Δ2l

U ) = o(1) for l = 4
and 5. Thus (28) becomes :

Ln,p = logEU exp
( 1

2

n∑
k=1

X�
k ΔUXk − 1

2

n∑
k=1

X�
k Δ2

UXk +
n

4
tr(Δ2

U )

+
n

2

5∑
l=3

(−1)l+1
(
1− 1

l

)
· tr(Δl

U )
)
+ oP (1). (30)

We have

tr(Δ3
U ) =

∑
i �=j �=k
k �=i

uijujkukiσ
∗
ijσ

∗
jkσ

∗
ki = 3!

∑
i<j<k

uijujkukiσ
∗
ijσ

∗
jkσ

∗
ki

and we decompose



1950 C. Butucea and R. Zgheib

tr(Δ4
U ) =

∑
i �=j �=k
i �=l �=k

uijujkukluliσ
∗
ijσ

∗
jkσ

∗
klσ

∗
li

=
∑
i �=j

σ∗4
ij + 2

∑
i �=j �=k

σ∗2
ij σ

∗2
jk + 4!

∑
i<j<k<l

uijujkukluliσ
∗
ijσ

∗
jkσ

∗
klσ

∗
li.

Note that

n
∑
i �=j

σ∗4
ij = O(npϕ4+ 1

α ) = O(n
√
pϕ2+ 1

2α · √pϕ2+ 1
2α ) = o(1)

2n
∑

i �=j �=k

σ∗2
ij σ

∗2
jk = O(npλ2T 2) = O(n

√
pϕ2+ 1

2α · √pϕ2− 1
2α )

= O(un · √pϕ2− 1
2α ) = o(1),

if un � 1 and
√
pϕ2− 1

2α → 0. As for the last term :

tr(Δ5
U ) =

∑
i �=j �=k
k �=l �=v
v �=i

uijujkuklulvuviσ
∗
ijσ

∗
jkσ

∗
klσ

∗
lvσ

∗
vi

= 5
∑

k �=l �=j
j �=k

ujkukluljσ
∗
jkσ

∗
klσ

∗
lj(

∑
i

σ∗2
ij )

+ 5
∑

i �=j �=k
k �=i

uijujkukiσ
∗
ijσ

∗
jkσ

∗
ki(σ

∗2
ij )

+ 5!
∑

i<j<k<l<v

uijujkuklulvuviσ
∗
ijσ

∗
jkσ

∗
klσ

∗
lvσ

∗
vi.

The first two terms in the decomposition of tr(Δ5
U ) group with tr(Δ3

U ) and
σ∗2
ij ↘ 0 for all 1 < |i− j| < T ,

0 < σ∗2
ij ≤

∑
j:1<|j−i|<T

σ∗2
ij =

∑
j:|j−i|<T

λ
(
1−

( |i− j|
T

)2α)
+

= O(λ · T ) = O(ϕ2) = o(1),

as ϕ → 0, therefore we ignore these terms in further calculations.

Let us denote by Wij =

n∑
k=1

Xk,iXk,j , then

n∑
k=1

X�
k ΔUXk =

∑
1≤i �=j≤p

uijσ
∗
ij ,Wij

n∑
k=1

X�
k Δ2

UXk =
∑

1≤i,j≤p

[Δ2
U ]ijWij

=
∑

1≤i �=j≤p

∑
h/∈{i,j}

uihuhjσ
∗
ihσ

∗
hjWij +

p∑
i=1

∑
h �=i

σ∗2
ihWii
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and
n

4
tr(Δ2

U ) =
n

4

∑
1≤i �=h≤p

σ∗2
ih . Then, from (30) we get

Ln,p = logEU exp
(1
2

∑
1≤i �=j≤p

uijσ
∗
ijWij −

1

2

∑
1≤i �=h≤p

σ∗2
ih

(
Wii −

n

2

)
− 1

2

∑
1≤j �=h �=i≤p

i �=j

uihuhjσ
∗
ihσ

∗
hjWij +

n

2

5∑
l=3

(−1)l+1 · l − 1

l
·tr(Δl

U )
)
+ oP (1)

= logEU exp
( ∑

1≤i<j≤p

uijσ
∗
ijWij −

∑
1≤i �=j �=h �=i≤p

i<j

uihuhjσ
∗
ihσ

∗
hjWij

+
n

2

5∑
l=3

(−1)l+1 · (l − 1)

l
· l!

∑
k1<k2<···<kl

uk1k2 · · ·uklk1σ
∗
k1k2

· · ·σ∗
klk1

)
− 1

2

∑
1≤i �=h≤p

σ∗2
ih

(
Wii −

n

2

)
+ oP (1). (31)

Now, we explicit the expected value with respect to the i.i.d Rademacher ran-
dom variables uij , uihuhj , uk1k2uk2k3uk3k1 , . . . for all i < j, h, k1 < k2 < · · · < kl
pairwise distinct. Indeed, products of independent Rademacher random vari-
ables are still Rademacher and independent. Thus,

Ln,p =
∑

1≤i<j≤p

log cosh(σ∗
ijWij) +

∑
1≤i<j≤p
h/∈{i,j}

log cosh(σ∗
ihσ

∗
hjWij)

+

5∑
l=3

∑
k1<···<kl

log cosh
(n(−1)l+1

2
· (l − 1) · (l − 1)! · σ∗

k1k2
· · ·σ∗

klk1

)
− 1

2

∑
1≤i �=h≤p

σ∗2
ih (Wii −

n

2
) + oP (1). (32)

We shall use repeatedly the Taylor expansion of log cosh(u) = u2/2−(u4/12)(1+
o(1)) as u → 0. Indeed, EI(Wij) = 0 and EI(|σ∗

ijWij |2) ≤ O(1) · λn = O(1) ·
n− 1

(4α+1) p−
2α+1

(4α+1) = o(1), giving that |σ∗
ijWij | = oP (1). Thus

log cosh(σ∗
ijWij) =

1

2
(σ∗

ijWij)
2 − 1

12
(σ∗

ijWij)
4(1 + oP (1)). (33)

Similarly, using the first order Taylor expansion, we get

log cosh(σ∗
ihσ

∗
hjWij) =

1

2
(σ∗

ihσ
∗
hjWij)

2(1 + oP (1))

and for l = 3, 4 and 5,

log cosh
(n(−1)l+1

2
· (l − 1) · (l − 1)! · σ∗

k1k2
· · ·σ∗

klk1

)
=

n2
(
(l − 1) · (l − 1)!

)2

8
· σ∗2

k1k2
· · ·σ∗2

klk1
(1 + o(1))
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Recall now that σ∗
ij = 0, for all i, j such that |i − j| ≥ T and σ∗2

ij ≤ λ =

O(1)ϕ2+ 1
α . Then,

E

( ∑
1≤i<j≤p
h/∈{i,j}

σ∗2
ihσ

∗2
hjW

2
ij

)
= O(npλ2T 2) = O(npϕ4)

= O(1) · n√pϕ2+ 1
2α · √pϕ2− 1

2α = o(1),

as soon as un � 1 and
√
pϕ2− 1

2α → 0. In conclusion, as the convergence in
L1(PI) implies convergence in PI probability, we get∑

1≤i<j≤p
h/∈{i,j}

log cosh(σ∗
ihσ

∗
hjWij) −→ 0 in PI probability. (34)

Moreover, for l = 3, 4 and 5,

n2
∑

k1<···<kl

(
(l − 1) · (l − 1)!

)2

8
· σ∗2

k1k2
· · ·σ∗2

klk1

= O(n2pλlT l−1) = O(n2pϕ2l+ 1
α ) = o(1). (35)

Using (34) and (35), (32) gives

Ln,p =
1

2

∑
1≤i<j≤p

σ∗2
ij W

2
ij −

1

12

∑
1≤i<j≤p

σ∗4
ij W

4
ij(1 + oP (1))

− 1

2

∑
1≤i<j≤p

σ∗2
ij

(
Wii −

n

2

)
+ oP (1) (36)

we further decompose as follows :

1

2

∑
1≤i<j≤p

σ∗2
ij W

2
ij

=
1

2

n∑
k=1

∑
1≤i<j≤p

σ∗2
ij X

2
k,iX

2
k,j +

1

2

∑
1≤k �=l≤n

∑
1≤i<j≤p

σ∗2
ij Xk,iXk,jXl,iXl,j

With our definition: σ∗2
ij = 2 · w∗

ij · b(ϕ), we can write

1

2

∑
1≤k �=l≤n

∑
1≤i<j≤p

σ∗2
ij Xk,iXk,jXl,iXl,j = n

√
pb(ϕ) · (n− 1)

√
p · D̂n

and we put Zn = (n − 1)
√
p · D̂n which has asymptotically standard Gaussian

under PI probability, by Proposition 1.

By Proposition 4 given in the Appendix, we have E(W 4
ij) = 3n2(1 + o(1)),

then

1

12
· EI

( ∑
1≤i<j≤p

σ∗4
ij W

4
ij

)
=

1

12
· 3n2

∑
1≤i<j≤p

σ∗4
ij (1 + o(1)) =

u2
n

2
(1 + o(1)).
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Moreover,

VarI(
∑
i<j

σ∗4
ij W

4
ij) =

∑
i<j

σ∗8
ij VarI(W

4
ij) +

∑∑∑
1≤i<j �=j′≤p

σ∗4
ij σ

∗4
ij′CovI(W

4
ij ,W

4
ij′)

= O(n4pλ4T ) +O(n3pλ4T 2)

= O(n4pϕ8+ 3
α ) +O(n3pϕ8+ 2

α ) = o(1).

We deduce that,

1

12

∑
1≤i<j≤p

σ∗4
ij W

4
ij =

u2
n

2
+ oP (1)

Remaining terms in (36) can be grouped as follows:

1

4

n∑
k=1

∑
1≤i �=j≤p

σ∗2
ij (X

2
k,i − 1)(X2

k,j − 1) = oP (1)

since the random variable in the previous display is centered and

EI

( n∑
k=1

∑
1≤i �=j≤p

σ∗2
ij (X

2
k,i − 1)(X2

k,j − 1)
)2

=

n∑
k=1

∑
1≤i �=j≤p

σ∗4
ij · EI(X

2
k,i − 1)2EI(X

2
k,j − 1)2

= 4n
∑

1≤i<j≤p

σ∗4
ij = O(npb2(ϕ)) = o(1),

which concludes the proof of (22).

Proof of Theorem 6. The type I error probability tends to 0 as a consequence
of the Berry-Essen type inequality in Lemma 1 in the Appendix applied to the
degenerate U-statistic D̂n,p. We have that, for some ε ∈ (0, 1/2) and any t > 0 :

∣∣∣PI(D̂n,r ≤ t)− Φ(n
√
p · t)

∣∣∣ ≤ 16ε1/2 exp(−n2pt2

4
) +O

( 1

n

)
+O

( 1

pTr

)
for all 1 ≤ r ≤ N . We use the relation 1 − Φ(u) ≤ (1/u) exp(−u2/2) for all
u ∈ R, to deduce that

PI(D̂n,r > x) ≤
( 1

n
√
p · x + 16ε1/2

)
exp(−n2px2

4
) +O

( 1

n

)
+O

( 1

pTr

)
We use this previous result to show that the type I error probability tends

to 0. See that for all r ∈ {1, · · · , N}, Cλr ≥ c(α, ᾱ), where c(α, ᾱ) = (2α +

1)/(2ᾱ(4ᾱ + 1)
1
2α ). Thus since n

√
p · tr = Cλr

√
ln ln(n

√
p), we obtain that

n
√
p · tr ≥ c(α, ᾱ)

√
ln ln(n

√
p) =: t for all r ∈ {1, · · · , N}. Recall that N =
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�ln(n√p)�, therefore

PI(Δ
∗
ad = 1) = PI(∃r ∈ {1, . . . , N}; D̂n,r > C∗tr) ≤

N∑
r=1

PI(D̂n,r > C∗tr)

≤
N∑
r=1

{( 1

n
√
p · C∗tr

+ 16ε1/2
)
exp(−n2p · C∗2t2r

4
) +O

( 1

n

)
+O

( 1

pTr

)}
≤ N

( 1

n
√
p · c(α, ᾱ)C∗t

+ 16ε1/2
)
exp(−n2p · c2(α, ᾱ)C∗2t2

4
) +O

(N
n

)
+ O

(1
p

) N∑
r=1

1

Tr

≤
( 1

c(α, ᾱ)C∗
√

ln ln(n
√
p)

+ 16ε1/2
)
(ln(n

√
p))1−(c(α,ᾱ)C∗/2)2

+
O(ln(n

√
p))

n
+

O(1)

p

N∑
r=1

1

Tr
.

See that 1/Tr = (ψαr)
1

αr ≤ (ρn,p/(n
√
p))2/(4ᾱ+1) and therefore:

1

p

N∑
r=1

1

Tr
≤ �ln(n√p)�

p

( ρn,p
n
√
p

) 2
4ᾱ+1

= o(1).

Moreover if (ln p)/n = o(1), then ln(n
√
p)/n = o(1), and if C∗ ≥ 2/c(α, ᾱ) we

obtain
PI(Δ

∗
ad = 1) = o(1).

Now, we move to the type II error probability. Let us consider Σ ∈ F(α,L)
such that (1/2p)‖Σ − I‖2F = (1/p)

∑
i<j σ

2
ij ≥ (Cψα)

2 for some α ∈ A. We
defined αr0 as the smallest point on the grid such that α < αr0 . We denote by

D̂n,r0 , tr0 , λr0 , br0 and Tr0 the test statistic, the threshold and the parameters
depending on αr0 . Also we define CTr0

, Cλr0
and Cbr0

the constants defined
in (5) for αr0 instead of α and L = 1. We have Cbr < 1 and CTr > 1, for all
r ∈ {1, · · ·N}. The type II error probability is bounded from above as follows,
∀α ∈ [α, ᾱ] and ∀Σ ∈ Q(α,L, Cψα) :

PΣ(Δ
∗
ad = 0) = PΣ

(
∀1 ≤ r ≤ N, D̂n,r ≤ C∗tr

)
≤ PΣ

(
D̂n,r0 ≤ C∗tr0

)
≤ PΣ

(
EΣ(D̂n,r0)− D̂n,r0 ≥ EΣ(D̂n,r0)− C∗tr0

)
First we have

EΣ(D̂n,r0) =
1

p

∑
i<j

w∗
ij,r0σ

2
ij =

1

p
· λr0

br0

∑
i<j

(
1−

( |i− j|
Tr0

)2αr0
)
+
σ2
ij
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≥ 1

p
· λr0

br0

(∑
i<j

σ2
ij −

∑
i<j

|i−j|>Tr0

σ2
ij −

∑
i<j

|i−j|<Tr0

|i− j|2αr0

T
2αr0
r0

· σ2
ij

)

≥ λr0

br0

(
C2 · ψ2

α −
∑
i<j

|i− j|2α
T 2α
r0

· σ2
ij

)
≥ λr0

br0

(
C2 · ψ2

α − L · T−2α
r0

)
≥ Cλr0

· (Cbr0
)−

1
2 (ψαr0

)
1

2αr0

(
C2 · ψ2

α − (CTr0
)−2α · (ψαr0

)
4α

2αr0

)
≥ Cλr0

(
C · (ψαr0

)
1

2αr0 · ψ2
α − (CTr0

)−2α · (ψαr0
)

4α+1
2αr0

)
=: (E1 − E2).

Now we show that, since α < αr0 we have,

E1 · t−1
r0 = C · (ψαr0

)
1

2αr0 · (ψα)
2 · ((n√p)/ρn,p)

= ((n
√
p)/ρn,p)

4(αr0−α)

(4αr0+1)(4α+1) ≥ C

Moreover, use that 0 > α− αr0 ≥ −(ᾱ− α)/ ln(n
√
p), to obtain

tr0 · E−1
2 = (ρn,p/(n

√
p)) · (CTr0

)2α · (ψαr0
)
− 4α+1

2αr0 ≥ ((n
√
p)/ρn,p)

4(α−αr0 )

(4αr0+1)

= exp
{4(α− αr0)

4αr0 + 1
· ln((n√p)/ρn,p)

}
≥ exp

{
− 4(ᾱ− α)

4α+ 1
(1 + o(1))

}
≥ C(α, ᾱ).

We deduce that,

EΣ(D̂n,r0) ≥
(
C − 1

C(α, ᾱ)

)
· tr0 .

Let us denote by T1 and T2 the right-hand side termes in (7) and (8), respectively.

Then by Markov inequality, for C − 1

C(α, ᾱ)
− C∗ > 0, we get

PΣ(Δ
∗
ad = 0) ≤ PΣ

(
|D̂n,r0 − EΣ(D̂n,r0)| ≥ EΣ(D̂n,r0)− C∗tr0

)

≤ VarΣ(D̂n,r0)(
EΣ(D̂n,r0)− C∗tr0

)2 ≤

(
C − 1

C(α, ᾱ)

)2

VarΣ(D̂n,r0)(
C − 1

C(α, ᾱ)
− C∗

)2

E
2
Σ(D̂n,r0)

≤

(
C − 1

C(α, ᾱ)

)2

· (T1 + (n− 1)T2)

n(n− 1)p2
(
C − 1

C(α, ᾱ)
− C∗

)2

E
2
Σ(D̂n,r0)

:= F1 + F2.
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We use (7) to show that F1 tends to zero.

F1 :=

(
C − 1

C(α, ᾱ)

)2

· T1

n(n− 1)p2
(
C − 1

C(α, ᾱ)
− C∗

)2

E
2
Σ(D̂n,r0)

≤ 1 + o(1)

n(n− 1)p
(
C − 1

C(α, ᾱ)
− C∗

)2

t2r0

+
O(T

3
2
r0 · tr0)

n(n− 1)pt2r0
= O(ρ−2

n,p) = o(1),

since T
3
2
r0 · tr0 = O

(
(ρn,p/n

√
p)

− 3
4αr0+1+1

)
= o(1) for αr0 > 1/2. Similarly we

use (8) to show that

F2 :=

(
C − 1

C(α, ᾱ)

)2

· T2

np2
(
C − 1

C(α, ᾱ)
− C∗

)2

E
2
Σ(D̂n,r0)

= o(1).

Thus we get, for C − 1

C(α, ᾱ)
− C∗ > 0,

sup
α∈[α ,ᾱ ]

sup
Σ∈F(α,L) ;

1
2p‖Σ−I‖2

F≥C2ψ2
α

PΣ(Δ
∗
ad = 0) = o(1).

Appendix

Proof of Proposition 1. We recall that under the null hypothesis the coordinates
of the vector Xk are independent, so using this fact we have:

VarI(D̂n) =
2

n2(n− 1)2p2
Var(

p∑
i=1

p∑
j=1

i<j

n∑
l=1

n∑
k=1

k �=l

w∗
ijXk,iXk,jXl,iXl,j)

=
2

n(n− 1)p2

p∑
i=1

p∑
j=1

i<j

w∗2
ij E

4(X2
1,i) =

2

n(n− 1)p2

p∑
i=1

p∑
j=1

i<j

w∗2
ij

=
1

n(n− 1)p

For Σ ∈ Q(α,L, ϕ),

EΣ(D̂n) =
1

n(n− 1)p

p∑
i=1

p∑
j=1

i<j

n∑
l=1

n∑
k=1

k �=l

w∗
ijE(Xk,iXk,jXl,iXl,j)

=
1

p

p∑
i=1

p∑
j=1

i<j

w∗
ijE(X1,iX1,j)E(X2,iX2,j) =

1

p

p∑
i=1

p∑
j=1

i<j

w∗
ijσ

2
ij
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Remark that D̂n − EΣ(D̂n) can be written as the following form

D̂n − EΣ(D̂n) =
1

n(n− 1)p

n∑
l=1

n∑
k=1

k �=l

p∑
i=1

p∑
j=1

i<j

w∗
ij(Xk,iXk,j − σij)(Xl,iXl,j − σij)

+
2

np

n∑
k=1

p∑
i=1

p∑
j=1

i<j

w∗
ij(Xk,iXk,j − σij)σij (37)

Then the variance of the estimator D̂n is a sum of two uncorrelated terms

VarΣ(D̂n) =
2

n(n− 1)p2
EΣ{

p∑
i=1

p∑
j=1

i<j

w∗
ij(X1,iX1,j − σij)(X2,iX2,j − σij)}2

+
4

np2
EΣ{

p∑
i=1

p∑
j=1

i<j

w∗
ij(Xk,iXk,j − σij)σij}2 (38)

Now we will give an upper bound for the first term on the right-hand side of
(38). Denote by

T1 = 2EΣ{
p∑

i=1

p∑
j=1

i<j

w∗
ij(X1,iX1,j − σij)(X2,iX2,j − σij)}2

=
1

2

p∑
i=1

p∑
j=1

i �=j

p∑
i′=1

p∑
j′=1

i′ �=j′

w∗
ijw

∗
i′j′E

2
Σ{(X1,iX1,j − σij)(X1,i′X1,j′ − σi′j′)}

=
1

2

p∑
i=1

p∑
j=1

i �=j

p∑
i′=1

p∑
j′=1

i′ �=j′

w∗
ijw

∗
i′j′(σii′σjj′ + σij′σi′j)

2

We shall distinguish three terms in the previous sum, that is (i, j, i′, j′) ∈ A1 ∪
A2 ∪ A3, where A1, A2, A3 form a partition of the set{(i, j, i′, j′) ∈ {1, . . . , p}4
such that i 
= j, i′ 
= j′}. More precisely in A1 we have (i, j) = (i′, j′) or (i, j) =
(j′, i′), in A2 we have three different indices (i = i′ and j 
= j′) or (j = j′ and i 
=
i′) or (i = j′ and j 
= i′) or (j = i′ and i 
= j′) and finally in A3 the indices are
pairewise distinct. First, when (i, j, i′, j′) ∈ A1, we use that VarΣ(X1,iX1,j) =
(1 + σ2

ij)
2, to get

T1,1 =

p∑
i=1

p∑
j=1

i �=j

w∗2
ij (1 + σ2

ij)
2 =

p∑
i=1

p∑
j=1

i �=j

w∗2
ij +

p∑
i=1

p∑
j=1

i �=j

w∗2
ij (2σ

2
ij + σ4

ij)

≤ p+ 3

p∑
i=1

p∑
j=1

i �=j

w∗2
ij σ

2
ij ≤ p+ 6 · p · L · sup

i,j
w∗2

ij (39)
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and this is p(1+o(1)) since supi,j w
∗2
ij � (1/T ) → 0. When the indices are in A2,

we have three indices out of four which are equal. We assume i = i′, therefore
it is sufficient to check that,

T1,2 = 2

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

j �=j′

w∗
ijw

∗
ij′(σjj′ + σijσij′)

2

≤ 4

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

j �=j′

w∗
ijw

∗
ij′σ

2
jj′ + 4

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

j �=j′

w∗
ijw

∗
ij′σ

2
ijσ

2
ij′

Now let us bound from above the first term of T1,2,

T1,2,1 :=

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

j �=j′

w∗
ijw

∗
ij′σ

2
jj′

≤
p∑

i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

|j−j′|<T

w∗
ijw

∗
ij′σ

2
jj′ +

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

|j−j′|≥T

|j − j′|2α
T 2α

σ2
jj′

p∑
i=1

w∗
ijw

∗
ij′ (40)

Again we will treat each term of T1,2,1 separately. We recall that the weights
w∗

ij verify the following properties

(w∗
ij ≥ w∗

i′j′ for |i− j| ≤ |i′ − j′|) and

p∑
i=1

w∗
ij �

√
T .

In the rest of the proof we denote by k0(α,L), k1(α,L), . . . different constants
that dependent only on α and/or on L.

T1,2,1,1 :=

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

|j−j′|<T

w∗
ijw

∗
ij′σ

2
jj′

=

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

|j−j′|≤|i−j|<T

w∗
ijw

∗
ij′σ

2
jj′ +

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

|i−j|<|j−j′|<T

w∗
ijw

∗
ij′σ

2
jj′

≤
p∑

j=1
j �=i

p∑
j′=1
j′ �=i

|j−j′|<|i−j|<T

w∗
jj′σ

2
jj′

p∑
i=1

w∗
ij′ +

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

|i−j|<|j−j′|<T

w∗
ijw

∗
ij′ |j − j′|2α

|i− j|2α σ2
jj′
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We have for α > 1/2,

T1,2,1,1 ≤ k0(α,L)
√
T · pEΣ(D̂n)

+ (sup
i,j

w∗
ij)

2

p∑
j=1

p∑
j′=1
j �=j′

|j − j′|2ασ2
jj′(

p∑
i=1

1

|i− j|2α )

≤ k0(α,L) ·
√
T · p · EΣ(D̂n) + k1(α,L) · L · p · (sup

i,j
w∗

ij)
2

≤ p · EΣ(D̂n)O(
√
T ) + o(p). (41)

For the second term in (40), where |j − j′| ≥ T , we use the following bound:

p∑
i=1

i �=j,j′

w∗
ijw

∗
ij′ ≤

p∑
i=1

i �=j,j′

(w∗
ij)

2 ≤ 1

2
,

then we prove that,

T1,2,1,2 :=

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

|j−j′|≥T

|j − j′|2α
T 2α

σ2
jj′

p∑
i=1

w∗
ijw

∗
ij′ ≤

L · p
T 2α

= O(
p

2T 2α
) = o(p). (42)

Note that supi,j σij ≤ 1. The second term of T1,2, is bounded as follows:

T1,2,2 :=

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

j �=j′

w∗
ijw

∗
ij′σ

2
ijσ

2
ij′ =

p∑
i=1

( p∑
j=1
j �=i

w∗
ijσ

2
ij

)( p∑
j′=1
j′ �=i

w∗
ij′σ

2
ij′

)

≤ (sup
i,j

w∗
ij) sup

i

( p∑
j=1

1≤|j−i|<T

σ2
ij

)( p∑
i=1

p∑
j′=1
j′ �=i

w∗
ij′σ

2
ij′

)

≤ 2L · (sup
i,j

w∗
ij) · T · p · EΣ(D̂n) ≤ p · EΣ(D̂n) ·O(

√
T ) (43)

As a consequence of (41) to (43),

T1,2 ≤ p · EΣ(D̂n) ·O(
√
T ) + o(p) (44)

The last case, where (i, j, i′, j′) vary in A3, the indices are pairwise distinct,

T1,3 =
∑

(i,j,i′,j′)∈A3

w∗
ijw

∗
i′j′(σii′σjj′ + σij′σi′j)

2

≤ 2
∑

(i,j,i′,j′)∈A3

w∗
ijw

∗
i′j′σ

2
ii′σ

2
jj′ + 2

∑
(i,j,i′,j′)∈A3

w∗
ijw

∗
i′j′σ

2
ij′σ

2
i′j
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As the two previous terms have the same upper bound, let us deal with the first
one say T1,3,1. We should distinguish two cases, the first when |i− i′| < T and
the second when |i − i′| ≥ T . We begin by the first case, which in turn will be
decomposed into three terms. First,

T1,3,1,1 :=
∑

(i,j,i′,j′)∈A3
|i−j|≥|i−i′|,|i′−j′|≥|i−i′|

w∗
ijw

∗
i′j′σ

2
ii′σ

2
jj′ ≤

∑
(i,j,i′,j′)∈A3

|i−j|≥|i−i′|,|i′−j′|≥|i−i′|

w∗2
ii′σ

2
ii′σ

2
jj′

≤ (sup
ij

w∗
ij)

∑
1≤i,i′≤p

w∗
ii′σ

2
ii′

∑
1≤j,j′≤p

1<|i−j|,|i′−j′|<T

σ2
jj′

≤ (sup
ij

w∗
ij) · T 2 · p · EΣ(D̂n) (45)

Then,

T1,3,1,2 :=
∑

(i,j,i′,j′)∈A3
|i−j|<|i−i′|<T,|i′−j′|≥|i−i′|

w∗
ijw

∗
i′j′σ

2
ii′σ

2
jj′ ≤

∑
(i,j,i′,j′)∈A3

|i−j|<|i−i′|<T,|i′−j′|≥|j−j′|

w∗
ijw

∗
ii′σ

2
ii′σ

2
jj′

≤ (sup
ij

w∗
ij)T

2 · pEΣ(D̂n) ≤ k2(α,L) · T
√
T · p · EΣ(D̂n) (46)

Finally, using Cauchy-Schwarz inequality, we have,

T1,3,1,3 :=
∑

(i,j,i′,j′)∈A3
|i−j|<|i−i′|<T,|i′−j′|<|i−i′|<T

w∗
ijw

∗
i′j′σ

2
ii′σ

2
jj′

=
∑

(i,j,i′,j′)∈A3
|i−j|<|i−i′|<T,|i′−j′|<|j−j′|<T

w∗
ijw

∗
i′j′ ·

|i− i′|2α
|i− j|α|i′ − j′|α · σ2

ii′σ
2
jj′

≤ (sup
i,j

w∗
ij)

2

p∑
i=1

p∑
i′=1
i′ �=i′

|i− i′|2ασ2
ii′

∑
1≤ j,j′ ≤p

1≤|i−j|,|i′−j′|<T

σ2
jj′

|i− j|α|i′ − j′|α

≤ k3(α,L) · T−1 · 2pL ·max{1, T−2α+2} = o(p) (47)

for all α > 1
2 . Now we suppose that we have |i− i′| > T , then,

T1,3,2 :=
∑

(i,j,i′,j′)∈A3
|i−i′|>T

w∗
ijw

∗
i′j′σ

2
ii′σ

2
jj′ =

∑
(i,j,i′,j′)∈A3

|i−i′|>T

w∗
ijw

∗
i′j′

|i− i′|2α
T 2α

σ2
ii′σ

2
jj′

≤
(sup
i,j

w∗
ij)

2

T 2α

∑
1≤i,i′≤p

|i− i′|2ασ2
ii′

∑
1≤j,j′≤p

1≤|i−j|,|i′−j′|<T

σ2
jj′

≤
(sup
i,j

w∗
ij)

2

T 2α
· 2pL · T 2 ≤ k4(α,L) · p

T 2α−1
= o(p) for α >

1

2
. (48)
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Finally we obtain, from (45) to (48) :

T1,3 ≤ p · EΣ(D̂n) ·O(T
√
T ) + o(p). (49)

Put together (39), (44) and (49) to obtain (7). Let us give an upper bound for
the second term of (38),

T2 = 4EΣ{
p∑

i=1

p∑
j=1

i<j

w∗
ij(Xk,iXk,j − σij)σij}2

=

p∑
i=1

p∑
j=1

i �=j

p∑
i′=1

p∑
j′=1

i′ �=j′

w∗
ijw

∗
i′j′σijσi′j′EΣ(X1,iX1,j − σij)(X1,i′X1,j′ − σi′j′)

=

p∑
i=1

p∑
j=1

i �=j

p∑
i′=1

p∑
j′=1

i′ �=j′

w∗
ijw

∗
i′j′σijσi′j′(σ

∗
ii′σ

∗
jj′ + σ∗

ij′σ
∗
i′j)

Proceeding similarly, we shall distinguish three kind of terms. Let us begin by
the case when the indices belong to A1,

T2,1 = 2

p∑
i=1

p∑
j=1

i �=j

w∗2
ij σ

2
ijEΣ[(X1,iX1,j − σij)

2] = 2

p∑
i=1

p∑
j=1

i �=j

w∗2
ij σ

2
ij(1 + σ2

ij)

≤ 4(sup
i,j

w∗
ij)

p∑
i=1

p∑
j=1

i �=j

w∗
ijσ

2
ij = 8(sup

i,j
w∗

ij) · p · EΣ(D̂n) = o(1) · p · EΣ(D̂n).

(50)

Next, when (i, j, i′, j′) ∈ A2,

T2,2 = 4

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

w∗
ijw

∗
ij′σijσij′(σjj′ + σijσij′)

= 4

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

w∗
ijw

∗
ij′σijσij′σjj′ + 4

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

w∗
ijw

∗
ij′σ

2
ijσ

2
ij′

We bound from each term of T2,2 separately. Using Cauchy-Schwarz inequality
two times we obtain,

T2,2,1 :=

p∑
i=1

p∑
j=1
j �=i

p∑
j′=1
j′ �=i

w∗
ijw

∗
ij′σijσij′σjj′

≤
p∑

i=1

p∑
j=1
j �=i

w∗
ijσij

( p∑
j′=1
j′ �=i

w∗2
ij′σ

2
ij′

)1/2( p∑
j′=1
j′ �=i

σ2
jj′

)1/2
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≤
( p∑

i=1

p∑
j=1
j �=i

w∗2
ij σ

2
ij

)1/2( p∑
i=1

p∑
j=1
j �=i

(

p∑
j′=1
j′ �=i

w∗2
ij′σ

2
ij′)(

p∑
j′=1
j′ �=i

σ2
jj′)

)1/2

≤ (sup
i,j

w∗
ij) · p · EΣ(D̂n) ·O(T ) = O(

√
T ) · p · EΣ(D̂n).

The second term in T2,2 is T1,2,2 and therefore,

T2,2 = O(
√
T ) · p · EΣ(D̂n). (51)

Finally, when (i, j, i′, j′) ∈ A3, we have to bound from above

T2,3 =
∑

(i,j,i′,j′)∈A3

w∗
ijw

∗
i′j′σijσi′j′σ

∗
ii′σ

∗
jj′ +

∑∑
(i,j,i′,j′)∈A3

w∗
ijw

∗
i′j′σijσi′j′σ

∗
ij′σ

∗
i′j .

These last two terms, in T2,3 are treated similarly, so let us deal with :

T2,3,1 :=
∑

(i,j,i′,j′)∈A3

w∗
ijw

∗
i′j′σijσi′j′σ

∗
ii′σ

∗
jj′

≤
∑
j

∑
i′

(∑
i

w∗
ijσ

2
ii′

)1/2(∑
i

w∗
ijσ

2
ij

)1/2(∑
j′

w∗
i′j′σ

2
i′j′

)1/2(∑
j′

w∗
i′j′σ

2
jj′

)1/2

≤
(∑

j

∑
i′

(
∑
i

w∗
ijσ

2
ij)(

∑
j′

w∗
i′j′σ

2
i′j′)

)1/2( ∑
(i,j,i′,j′)∈A3

w∗
ijw

∗
i′j′σ

2
jj′σ

2
ii′

)1/2

≤ p · EΣ(D̂n) ·
( ∑
(i,j,i′,j′)∈A3

w∗
ijw

∗
i′j′σ

2
jj′σ

2
ii′

)1/2

Using the upper bound of T1,3 obtained previously, we have

T2,3 ≤ p
√
p ·

(
E
3/2
Σ (D̂n) ·O(T 3/4) + EΣ(D̂n) · o(1)

)
(52)

Put together (50), (51) and (52) to get (8).
The asymptotic normality under the null hypothesis is obvious.

Proof of Proposition 2. We use the decomposition (37) in the proof of the
Proposition 1 and we treat each term separately. Recall that, by our assump-
tions, n

√
p · EΣ(D̂n) = O(1). Use (8) to get

VarΣ

( 2√
p

n∑
l=1

∑
1≤i<j≤p

w∗
ij(Xl,iXl,j − σij)σij

)
≤ n

p

(
p3/2

(
o(1) · EΣ(D̂n) +O(T 3/4)E

3/2
Σ (D̂n)

)
+ p · EΣ(D̂n)O(

√
T )

)
= o(1)n

√
p · EΣ(D̂n) + (n

√
p · EΣ(D̂n))

3/2 · O(T 3/4)

n1/2p1/4
+ n

√
p · EΣ(D̂n) · o(1)

(53)
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This tends to 0, since T 3/n2p = (n2pb2(ϕ))−1 · ϕ4−2/α = o(1), which is true for
all α > 1/2.

It follows that, for proving the asymptotic normality, it is sufficient to prove
the asymptotic normality of

n
√
p · 1

n(n− 1)p

∑
1≤k �=l≤n

∑
1≤i<j≤p

w∗
ij(Xk,iXk,j − σij)(Xl,iXl,j − σij).

We study Vn which is a centered, 1-degenerate U-statistic, with symmetric kernel
Hn(X1, X2) defined as follows

Vn =
∑

1≤k �=l≤n

Hn(Xk, Xl),

Hn(X1, X2) =
1

n
√
p

∑
1≤i<j≤p

w∗
ij(Xk,iXk,j − σij)(Xl,iXl,j − σij).

We apply Theorem 1 of [16]. Therefore we check that EΣ(H
2
n(X1, X2)) < +∞

and that
EΣ(G

2
n(X1, X2)) + n−1

EΣ(H
4
n(X1, X2))

E
2
Σ(H

2
n(X1, X2))

−→ 0,

where, for x, y ∈ R
p,

Gn(x, y) = EΣ(Hn(X1, x)Hn(X1, y))

=
1

n2p

∑
1≤i<j≤p

∑
1≤i′<j′≤p

w∗
ijw

∗
i′j′(xixj − σij)(yiyj − σij)(σii′σjj′ + σi′jσij′).

Since n
√
p · EΣ(D̂n) = O(1), and from the inequality (7), we have

EΣ(H
2
n(X1, X2)) =

1

2n2
(1 + o(1)) .

In order to prove that EΣ(G
2
n(X1, X2))/E

2
Σ(H

2
n(X1, X2)) = o(1), it is sufficient

to show that

EΣ

( ∑
1≤i<j≤p

∑
1≤i′<j′≤p

w∗
ijw

∗
i′j′(X1,iX1,j − σij)(X2,i′X2,j′ − σi′j′)

·(σii′σjj′ + σi′jσij′)
)2

= o(p2).

In fact,

EΣ

( ∑
1≤i<j≤p

∑
1≤i′<j′≤p

w∗
ijw

∗
i′j′(X1,iX1,j − σij)(X2,i′X2,j′ − σi′j′)

·(σii′σjj′ + σi′jσij′)
)2
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=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

∑
1≤i′2<j′2≤p

w∗
i1j1w

∗
i′1j

′
1
w∗

i2j2w
∗
i′2j

′
2

·(σi1i′1
σj1j′1

+ σi′1j1
σi1j′1

)(σi2i′2
σj2j′2

+ σi′2j2
σi2j′2

)

·E[(X1,i1X1,j1 − σi1j1)(X1,i2X1,j2 − σi2j2)]

·E[(X2,i′1
X2,j′1

− σi′1j
′
1
)(X2,i′2

X2,j′2
− σi′2j

′
2
)]

=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

∑
1≤i′2<j′2≤p

w∗
i1j1w

∗
i′1j

′
1
w∗

i2j2w
∗
i′2j

′
2

·(σi1i′1
σj1j′1

+ σi′1j1
σi1j′1

)(σi2i′2
σj2j′2

+ σi′2j2
σi2j′2

)

·(σi1i2σj2j1 + σi1j2σi2j1)(σi′1i
′
2
σj′2j

′
1
+ σi′1j

′
2
σi′2j

′
1
)

(54)

To bound from above (54), we shall distinguish four cases. The first one is when
all couples of indices are equal,

G1 :=
∑

1≤i1<j1≤p

w∗4
i1j1

(1 + σ2
i1j1

)4

≤ (sup
i1,j1

w∗2

i1j1
) · (sup

i1,j1

(1 + σ2
i1j1

)4) ·
∑

1≤i1<j1≤p

w∗2
i1j1

≤ 8 · (sup
i1,j1

w∗2

i1j1
) · p = o(p) = o(p2).

The second one is when we have two different pairs of couples of indices, which
can be obtained by two different combinations of the couples of indices. When
we have equal pairs of couples of indices, as for example (i1, j1) = (i2, j2),
(i′1, j

′
1) = (i′2, j

′
2) and (i1, j1) 
= (i′1, j

′
1), we get

G2,1 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

w∗2
i1j1

w∗2
i′1j

′
1
(σi1i′1

σj1j′1
+ σi′1j1

σi1j′1
)2

·(1 + σ2
i1j1

)(1 + σ2
i′1j

′
1
)

≤ (sup
i1,j1

w∗2

i1j1
) · (sup

i1,j1

(1 + σ2
i1j1

)2) ·
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

w∗
i1j1

w∗
i′1j

′
1

· (σi1i′1
σj1j′1

+ σi′1j1
σi1j′1

)2

≤ 4 · (sup
i1,j1

w∗2

i1j1
) · n2p · EΣ(H

2
n(X1, X2)) = 4 · (sup

i1,j1

w∗2

i1j1
) · p = o(p2).

When we have three couples of indices equal, for example (i1, j1) = (i2, j2) =
(i′2, j

′
2) and (i1, j1) 
= (i′1, j

′
1), we get

G2,2 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

w∗3
i1j1

w∗
i′1j

′
1
(σi1i′1

σj1j′1
+ σi′1j1

σi1j′1
)2

·(1 + σ2
i1j1

)(1 + σ2
i′1j

′
1
)

≤ 4 · (sup
i1,j1

w∗2

i1j1
) · n2p · EΣ(H

2
n(X1, X2)) = o(p2).
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For the third case, there are three different couples of pairs of indices, for ex-
ample, (i1, j1) = (i′2, j

′
2) and (i1, j1) 
= (i′1, j

′
1) 
= (i2, j2). Using Cauchy-Schwarz

inequality we obtain,

G3 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

w∗
i1j1w

∗
i′1j

′
1
w∗2

i2j2(σi1i′1
σj1j′1

+ σi′1j1
σi1j′1

)

·(σi1i2σj2j1 + σi1j2σi2j1)(σi′1i2
σj2j′1

+ σi′1j2
σi2j′1

)(1 + σ2
i2,j2)

≤
∑

1≤i′1<j′1≤p

∑
1≤i2<j2≤p

w∗
i′1j

′
1
w∗2

i2j2(σi′1i2
σj2j′1

+ σi′1j2
σi2j′1

)(1 + σ2
i2,j2)

·
( ∑
1≤i1<j1≤p

w∗
i1j1(σi1i′1

σj1j′1
+ σi′1j1

σi1j′1
)2
)1/2

·
( ∑
1≤i1<j1≤p

w∗
i1j1(σi1i2σj2j1 + σi1j2σi2j1)

2
)1/2

≤
∑

1≤i2<j2≤p

w∗2
i2j2(1 + σi2,j2)

2
( ∑
1≤i′1<j′1≤p

w∗
i′1j

′
1
(σi′1i2

σj2j′1
+ σi′1j2

σi2j′1
)2
)1/2

·
( ∑
1≤i′1<j′1≤p

∑
1≤i1<j1≤p

w∗
i′1j

′
1
w∗

i1j1(σi1i′1
σj′1j1

+ σi1j′1
σi′1j1

)2
)1/2

·
( ∑
1≤i1<j1≤p

w∗
i1j1(σi1i2σj2j1 + σi1j2σi2j1)

2
)1/2

.

Moreover, we recognize in these bounds∑
i′1<j′1

∑
i1<j1

w∗
i′1j

′
1
w∗

i1j1(σi1i′1
σj′1j1

+ σi1j′1
σi′1j1

)2 = n2p · EΣ(H
2
n(X1, X2))

which is O(p). Thus,

G3 ≤ sup
i2,j2

(1 + σi2j2)
2
( ∑
1≤i2<j2≤p

∑
1≤i′1<j′1≤p

w∗2
i2j2w

∗
i′1j

′
1
(σi′1i2

σj2j′1
+σi′1j2

σi2j′1
)2
)1/2

·
(
n2pEΣ(H

2
n(X1, X2))

∑
1≤i2<j2≤p

∑
1≤i1<j1≤p

w∗2
i2j2w

∗
i1j1(σi1i2σj2j1 + σi1j2σi2j1)

2
)1/2

≤ 2(sup
i1,j1

w∗
i1j1) · n

3p3/2 · E3/2
Σ (H2

n(X1, X2)) ≤ (sup
i1,j1

w∗
i1j1) · p

3/2

= o(p3/2) = o(p2).

Now we will treat the last case, when the pairs of indices are pairwise distinct,
in this case, we have 16 terms to handle. As all terms are treated the same way,
let us deal with:

G4 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

∑
1≤i′2<j′2≤p

w∗
i1j1w

∗
i′1j

′
1
w∗

i2j2w
∗
i′2j

′
2

·σi1i′1
σi2i′2

σj2j′2
σj1j′1

σi1i2σj2j1σi′1i
′
2
σj′2j

′
1
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In order to find an upper bound for G4, we decompose the previous sums, into
several sums, similarly to the upper bound of (49). That is (i1, j1, i

′
1, j

′
1, i2, j2, i

′
2,

j′2) ∈ J1 ∪ J2 ∪ · · · ∪ J16, where J1, . . . , J16, form a partition of the set

J := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ {1, . . . , p}8}.

Let us define,

J1 := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ J ; 1 < |i1−i′1|, |i1−i2|, |i2−i′2|, |i′1−i′2| < T )},

J2 := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ J ; 1 < |i1 − i′1|, |i1 − i2|, |i2 − i′2| < T,

and |i′1 − i′2| > T )},

and so on, for all Jr , r = 3, . . . , 16. To bound from above the sum over J1, we
partition again J1, J1 = J1,1 ∪ · · · ∪ J1,16 such that,

J1,1 := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ J1; |i1 − i′1| ≤ |i1 − j1|, |i′1 − i′2| ≤ |i′1 − j′1|,
|i1 − i2| ≤ |i2 − j2| and |i2 − i′2| ≤ |i′2 − j′2|},

and so on, until we get the partition of J1.

G4,1 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

∑
1≤i′2<j′2≤p

(i1,j1,i′1,j
′
1,i2,j2,i

′
2,j

′
2)∈J1,1

w∗
i1j1w

∗
i′1j

′
1
w∗

i2j2w
∗
i′2j

′
2

·σi1i′1
σj1j′1

σi2i′2
σj2j′2

σi1i2σj2j1σi′1i
′
2
σj′2j

′
1

≤
∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗
i1i′1

w∗
i1i2w

∗
i′1i

′
2
w∗

i2i′2
σi1i′1

σi2i′2
σi1i2σi′1i

′
2

·
∑

1≤j1,j′1≤p

∑
1≤j2,j′2≤p

1<|i1−j1|,|i′1−j′1|,|i2−j2|,|i′2−j′2|<T

σj2j′2
σj1j′1

σj2j1σj′2j
′
1

≤ T 4(sup
i1,j1

w∗
i1j1)

2
∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

(w∗
i1i′1

w∗
i1i2w

∗
i′1i

′
2
w∗

i2i′2
)

1
2 σi1i′1

σi2i′2
σi1i2σi′1i

′
2

≤ T 4 · (sup
i1,j1

w∗
i1j1)

2
( ∑
1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗
i1i′1

w∗
i2i′2

σ2
i1i′1

σ2
i2i′2

) 1
2

·
( ∑
1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗
i1i2w

∗
i′1i

′
2
σ2
i1i2σ

2
i′1i

′
2

) 1
2

≤ T 4 · (sup
i1,j1

w∗
i1j1)

2 · p2 · E2
Σ(D̂n)

Again, by our assumption that n2p · E2
Σ(D̂n) = O(1), we can see that :

G4,1 ≤ κ0(α,L) · T 3 · p2 · E2
Σ(D̂n) = p2 ·O(

T 3

n2p
) = p2 · o(1)
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where, from now on, κ0(α,L), κ1(α,L), . . . , denote constants that depend on α
and L. Now, we define J1,2 := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ {1, . . . , p}8, such that
|i− i′| ≤ |i− j|, |i′ − i′1| ≤ |i′ − j′|, |i− i1| ≤ |i1 − j1| and |i1 − i′1| > |i′1 − j′1|},
thus we have,

G4,2 :=
∑ ∑ ∑ ∑

(i1,j1,i′1,j
′
1,i2,j2,i

′
2,j

′
2)∈J1,2

w∗
i1j1w

∗
i′1j

′
1
w∗

i2j2w
∗
i′2j

′
2
σi1i′1

σi2i′2
σj1j′1

σj2j′2

·σi1i2σj2j1σi′1i
′
2
σj′2j

′
1

≤ (sup
i1,j1

w∗
i1j1)

5
2

∑
1≤i1,i′1≤p

∑
1≤i2,i′2≤p

(w∗
i1i′1

w∗
i1i2w

∗
i′1i

′
2
)

1
2 |i2 − i′2|ασi1i′1

σi2i′2
σi1i2σi′1i

′
2

·
∑

1≤j1,j′1≤p

∑
1≤j2,j′2≤p

1<|i1−j1|,|i′1−j′1|,|i2−j2|,|i′2−j′2|<T

1

|i′2 − j′2|α
· σj2j′2

σj1j′1
σj2j1σj′2j

′
1

≤ (sup
i1,j1

w∗
i1j1)

5/2
( ∑
1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗
i1i′1

|i2 − i′2|2ασ2
i1i′1

σ2
i2i′2

)1/2

·
( ∑
1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗
i1i2w

∗
i′1i

′
2
σ2
i1i2σ

2
i′1i

′
2

)1/2

· T 3 ·max{1, T−α+1}

≤
√
2L · (sup

i1,j1

w∗
i1j1)

5/2 · T 3 ·max{1, T−α+1} · p2 · E3/2
Σ (D̂n)

Therefore,

G4,2 ≤ κ1(α,L) ·max{T 7/4, T 11/4−α} · E3/2
Σ (D̂n)

≤ κ1(α,L) ·max{T 7/4, T 11/4−α} ·O(
1

n3/2p3/4
)

= o(1) since T 3/n2p −→ 0 (55)

Using similar arguments, we can prove that all remaining terms tend to zero.
In consequence,

EΣ(G
2
n(X1, X2))

E
2
Σ(H

2
n(X1, X2))

−→ 0.

Now let us prove that, EΣ(H
4
n(X1, X2))/E

2
Σ(H

2
n(X1, X2)) = o(n),

EΣ(H
4
n(X1, X2)) =

1

n4p2

∑
i1<j1

∑
i2<j2

∑
i3<j3

∑
i4<j4

w∗
i1j1w

∗
i2j2w

∗
i3j3w

∗
i4j4

·E2
Σ[(X1,i1X1,j1−σi1j1)(X1,i2X1,j2−σi2j2)(X1,i3X1,j3−σi3j3)(X1,i4X1,j4−σi4j4)]

The above squared expected value is a sum of a large number of terms that
are all treated similarly. Let us consider examples of terms containing squared
terms and products of terms, respectively. For α > 1/2,

H1 :=
∑
i1<j1

∑
i2<j2

∑
i3<j3

∑
i4<j4

w∗
i1j1w

∗
i2j2w

∗
i3j3w

∗
i4j4σ

2
i1i2σ

2
j1j2σ

2
i3i4σ

2
j3j4
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≤ 4(sup
i,j

w∗
ij)

4

p∑
i1=1

p∑
i2=1

|i1 − i2|2ασ2
i1i2

p∑
j1=1

|i1−j1|<T

sup
j2

σ2
j1j2

p∑
j2=1

|i2−j2|<T

1

|j1 − j2|2α

·
p∑

i3=1

p∑
i4=1

|i3 − i4|2ασ2
i3i4

p∑
j3=1

|i3−j3|<T

sup
j4

σ2
j3j4

p∑
j4=1

|i4−j4|<T

1

|j3 − j4|2α

≤ 16L2 · (2α− 1)−2 · (sup
i,j

w∗
ij)

4 · p2T 2 ≤ κ2(α,L) · p2

The terms containing no squared values are treated as, e.g.,

H2 :=
∑
i1<j1

∑
i2<j2

∑
i3<j3

∑
i4<j4

w∗
i1j1w

∗
i2j2w

∗
i3j3w

∗
i4j4σi1i2σj1j2σi3i4σj3j4

·σi1i3σj1j3σi2i4σj2j4

We can see that H2 coincides with G4,2. Then we can deduce that ,

EΣ(H
4
n(X1, X2))

E
2
Σ(H

2
n(X1, X2))

= O(1) = o(n).

Finally we can apply [16], and we obtain:

Vn =
1

n
√
p

∑
1≤k �=l≤n

∑
1≤i<j≤p

w∗
ij(Xk,iXk,j−σij)(Xl,iXl,j−σij)

L−→ N(0, 1). (56)

Combining (53) and (56), we have by Slutsky theorem that:

n
√
p · (D̂n − EΣ(D̂n))

L−→ N(0, 1).

Proof of Proposition 3 . Let us check the case where uij = 1 for all i, j such
that |i − j| ≤ T and the generalization to all U in U will be obvious. Using
Gershgorin’s Theorem we get that each eigenvalue of Σ∗

U = [uijσ
∗
ij ]1≤i,j≤p lies

in one of the disks centered in σii = 1 and radius Ri =

p∑
j=1
j �=i

|uijσ
∗
ij | =

p∑
j=1
j �=i

σ∗
ij .

We have,

p∑
j=1
j �=i

σ∗
ij =

√
λ

p∑
j=1
j �=i

(
1− (

|i− j|
T

)2α
) 1

2

+

≤ 2
√
λ

T∑
k=1

(
1− (

k

T
)2α

) 1
2

≤ 2
√
λ
( T∑

k=1

(1− (
k

T
)2α)

) 1
2

T
1
2 = O(1)T

√
λ

≤ O(1)ϕ1− 1
2α → 0 provided that α > 1/2.

We deduce that the smallest eigenvalue is bounded from below by

min
i=1,...,p

λi,U ≥ min
i
{σ∗

ii −
p∑

j=1
j �=i

σ∗
ij} = 1−max

i

p∑
j=1
j �=i

σ∗
ij ≥ 1−O(1)ϕ1− 1

2α

which is strictly positive for ϕ > 0 small enough.
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Proposition 4. For all 1 ≤ i < j ≤ p, Wij is a centered random variable with
variance, VarI(Wij) = n. Moreover, for 1 ≤ i < j 
= j′ ≤ p, we have

EI(W
4
ij) = 3n2 + 6n , EI(W

2
ijW

2
ij′) = n2 + 2n ,

EI(W
4
ijW

4
ij′) = 9(n4 + 12n3 + 44n2 + 48n).

Also we have that EI(W
8
ij) = 105n4(1 + o(1)). Note that if we have i 
= i′ and

j 
= j′, then W d
ij and W d

i′j′ are not correlated for d finite integer. Moreover, for
all 1 ≤ i ≤ p, the random variables Wii are such that,

E(Wii) = n , EI(W
2
ii) = n2 + 2n , EI(W

4
ii) = n4 + 12n3 + 44n2 + 48n.

Proof of Proposition 4. To show the results we use lemma 3 and some technical
computation of [9].

VarI(Wij) =EI(W
2
ij) = EI(X

�
·i X·j)

2 = EI(tr(X·iX
�
·i X·jX

�
·j )) = tr(I2n) = n.

EI(W
4
ij) =EI(X

�
·i X·j)

4 = 3tr2(I2n) + 6tr(I4n) = 3n2 + 6n

EI(W
2
ijW

2
ij′) =EI((X

�
·i X·j)

2(X�
·i X·j′)

2) = tr2(I2n) + 2tr(I4n) = n2 + 2n

EI(W
4
ijW

4
ij′) =EI((X

�
·i X·j)

4(X�
·i X·j′)

4) = EI

(
EI

(
(X�

·i X·j)
4(X�

·i X·j′)
4|X·i

))
.

Or EI

(
(X�

·i X·j)
4(X�

·i X·j′)
4|X·i

)
= g(X·i), where

g(x·i) = EI

(
(x�

·iX·j)
4(x�

·iX·j′)
4
)
= EI

(
(x�

·iX·j)
4
)
EI

(
(x�

·iX·j′)
4
)

EI

(
(x�

·iX·j)
4
)
= EI

( p∑
k=1

xk,iXk,j

)4

=

p∑
k=1

x4
k,iEI(X

4
k,j) + 3

∑∑
k1 �=k2

x2
k1,ix

2
k2,iEI(X

2
k1,j)EI(X

2
k2,j)

= 3
( p∑

k=1

x2
k,i

)2

= 3(x�
·ix·i)

2

then we obtain that

EI(W
4
ijW

4
ij′) = 9EI(X

�
·i X·i)

4 = 9(n4 + 12n3 + 44n2 + 48n).

Also we have that

EI(W
8
ij) = EI

( n∑
k=1

Xk,iXk,j

)8

=
n∑

k=1

E
2
I(X

8
k,i) + C6

8 ·
∑∑
k1 �=k2

E
2
I(X

6
k1,i) · E

2
I(X

2
k2,i)
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+
C4

8

2!
·
∑∑
k1 �=k2

E
2
I(X

4
k1,i) · E

2
I(X

4
k2,i)

+
C4

8 · C2
4

2!
·
∑∑∑
k1 �=k2 �=k3

E
2
I(X

4
k1,i) · E

2
I(X

2
k2,i) · E

2
I(X

2
k3,i)

+
C2

8 · C2
6 · C2

4

4!

∑∑∑
k1 �=k2 �=k3 �=k4

E
2
I(X

2
k1,i) · E

2
I(X

2
k2,i) · E

2
I(X

2
k3,i) · E

2
I(X

2
k4,i)

= 1052n+ (28× 152 + 35× 9)n(n− 1) + (210× 9)n(n− 1)(n− 2)

+ 105n(n− 1)(n− 2)(n− 3)

= 105n4 + 1220n3 + 2100n2 + 7560n

We use similar arguments to calculate the moments of Wii.

Lemma 1. Let 0 < ε < 1/2, for any t > 0 we have that,∣∣∣PI(D̂n,r ≤ t)− Φ(n
√
p · t)

∣∣∣ ≤ 16ε1/2 exp(−n2pt2

4
) +O

( 1

n

)
+O

( 1

pTr

)
for all 1 ≤ r ≤ N .

Proof of Lemma 1. For each r ∈ {1, . . . , N}, D̂n,r is a degenerated U-statistic
of order 2, and can be written as follows:

D̂n,r =
∑∑
1≤k �=l≤n

K(Xk, Xl),

where

K(Xk, Xl) =
1

n(n− 1)p

∑∑
1≤i<j≤p

w∗
ij,rXk,iXk,jXl,iXl,j .

Define,

Zk =
1√

VarI(D̂n,r)

k−1∑
l=1

K(Xk, Xl) and V 2
n =

n∑
k=2

EI(Z
2
k/Fk−1)

where Fk is the σ-field generated by the random variables {X1, . . . , Xk}. More-
over, fix 0 < δ ≤ 1, and define

Jn =
n∑

k=2

EI(Zk)
2+2δ + EI |V 2

n − 1|1+δ.

Then by Theorem 3 of [6] we get that, there exists a positive constant k de-
pending only on δ such that for any 0 < ε < 1/2 and any real t,∣∣∣PI(D̂n,r ≤ t)− Φ

( x√
VarI(D̂n,r)

)∣∣∣ ≤ 16ε1/2 exp(− t2

4VarI(D̂n,r)
) +

k

ε1+δ
· Jn.
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Now, we give upper bounds for
∑n

k=2 EI(Zk)
2+2δ and EI |V 2

n − 1|1+δ for δ = 1
and get,

n∑
k=2

EI(Zk)
4 =

1

n2(n− 1)2p2

n∑
k=2

EI

( k−1∑
l=1

∑∑
1≤i<j≤p

w∗
ij,rXk,iXk,jXl,iXl,j

)4

=
1

n2(n− 1)2p2

n∑
k=2

{
(k − 1)

(
34

∑∑
1≤i<j≤p

w∗4
ij,r + 3

∑∑
1≤i<j≤p

∑∑
1≤i′<j′≤p

w∗2
ij,rw

∗2
i′j′,r

)
+3(k − 1)(k − 2)

(
32

∑∑
1≤i<j≤p

w∗4
ij,r +

∑∑
1≤i<j≤p

∑∑
1≤i′<j′≤p

w∗2
ij,rw

∗2
i′j′,r

)}
≤ 1

n2(n− 1)2p2

{n(n− 1)

2

(81
2

· p(sup
i,j

w∗2
ij,r) +

3p2

4

)
+
(n− 1)n(2n− 1)

6

(9
2
· p(sup

i,j
w∗2

ij,r) +
p2

4

)}
=O

( 1

n

)
.

Similarly we can show that EI(V
2
n − 1)2 = O

( 1

n

)
+ O

( 1

pTr

)
. Thus we obtain

the desired result.
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