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Abstract: Scoring rules evaluate the performance of probabilistic fore-
casts. A scoring rule is said to be local if it assigns a score based on the
observed outcome and on outcomes that are in some sense “close” to the
observed outcome. All scoring rules can be derived from a concave en-
tropy functional and the property of locality follows when the entropy is
1-homogeneous (up to an additive constant). Consequently, except for the
log score, a local scoring rule has the remarkable property that it is O-
homogeneous; in other words, it assigns a score that is independent of the
normalization of the quoted probability distribution. In many statistical
applications, it is not plausible to treat observed outcomes as independent,
e.g. time series data or multicomponent measurements. We show that local
scoring rules can be easily extended to multidimensional outcome spaces.
We also introduce the notion of an extensive scoring rule, i.e. a scoring rule
that ensures the score of independent outcomes is a sum of independent
scores. We construct local scoring rules that are extensive and show that
a scoring rule is a extensive if and only if it is derived from an extensive
entropy.
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1. Introduction

In many instances, the predictive value of a statistical model or analysis is of
vital importance. Typically, a prediction or forecast takes the form of a proba-
bility distribution for some quantity or quantities of interest. The probabilistic
nature of the forecasts reflects the fact that there is an inherent uncertainty
in any prediction we make (Dawid (1984)). Probabilistic forecasts were first
adopted in weather forecasting but have now become common in many areas,
including climate prediction and macroeconomic forecasting. The crucial ques-
tion, therefore, is how to assess the performance of a forecast as events unfold.
Scoring rules were devised to answer this exact question.

A desirable feature of a scoring rule is that the forecaster should be motivated
to state their true belief about future events (Brocker and Smith (2007)). In the
language of decision theory, the forecaster’s expected score under their true belief
should be optimized by actually using that belief to make their predictions. In
other words, we don’t want the scoring rule to be gamed. A scoring rule that
cannot be gamed is said to be proper. Proper scoring rules have been used
for evaluating weather and climate predictions (McCarthy (1956); Jolliffe and
Stephenson (2003); Gneiting et al. (2005); Suckling and Smith (2013)), economic
and financial forecasts (Boero, Smith and Wallis (2011); Gneiting and Ranjan
(2011)), and sports results modelling (Constantinou and Fenton (2012)).

Formally, a scoring rule S(z, @) is the loss on observing x having quoted the
probability distribution @ for the random variable X. We have S : (X, P) —
R = [~00,00], where X is the outcome space and P is a set of probability
distributions on X. The defining properties of a proper scoring rule pertain to
its expectation. Letting S(P, Q) = Ex..p S(X, Q), where P € P, we require that
(i) S(P,Q) is affine in P and (%) S(P,Q) > S(P, P) for all P,@Q € P. The first
condition means we can take P to be convex; the second condition means ones
expected score is minimized by quoting ones true belief. If S(P,Q) > S(P, P)
for @ # P, we say the scoring rule is strictly proper. A classical example of a
scoring rule is the log score: S(z, Q) = —Ing(x), where ¢(z) may be a probability
density or mass function. Strict propriety is then equivalent to the statement
that the Kullback-Leibler divergence d(P, Q) is positive for @ # P.

A unique feature of the log score is that it depends on the quoted distribution
only at the observed point x. Local scoring rules are scoring rules that come
close to obtaining this property: they depend on the quoted distribution only in
a neighbourhood of the point . When X is continuous, the neighbourhood is
infinitesimal and the scoring rule depends on the derivatives of the probability
density. The order of a scoring rule is the order of the highest derivative of g(x).
In the case when X" is an interval of the real line, Parry, Dawid and Lauritzen
(2012) characterized the form of such local scoring rules and showed that only
even order scoring rules are possible. Remarkably, the local scoring rules they
found were also independent of the normalization of the quoted probability
density. As an example, the simplest second order scoring rule is

seo-48 -3 (1) - (1) (). o
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and was independently discovered by Almeida and Gidas (1993) and Hyvérinen
(2005). General second order scoring rules were fully developed in Ehm and
Gueiting (2012).

When X is discrete, a neighbourhood structure is defined via a graph on the
outcome space: the edge xy indicates S(x, Q) depends on ¢(y). The resulting
scoring rules are also termed local and were characterized in Dawid, Lauritzen
and Parry (2012), who showed that the graph is undirected. Furthermore, like
their continuous counterparts, such local scoring rules are independent of the
normalization of the quoted probability distribution. As an example — essentially
pointed out by Hyvéarinen (2007) — the negative logarithm of Besag’s pseudo-
likelihood is a local scoring rule. A parallel development of local scoring rules
on discrete outcome spaces will be given elsewhere, but it is worth noting that
most of what follows can be extended, with appropriate modification, to the
discrete outcome case.

From now on we let X’ be a simply connected subset of R” and let ¢(z) be
a strictly positive density with respect to the Lebesgue measure. For simplicity,
we will only consider local scoring rules of second order so that ¢(z) is assumed
to be twice differentiable. In section 2, we recap the connection between entropy
and scoring rules, and use this to generalize local scoring rules to multidimen-
sional outcome spaces. In section 3, we introduce the notion of extensivity and
prove that a scoring rule is extensive if and only if its associated entropy is
extensive. We then construct two classes of extensive scoring rules, one that
takes advantage of an (arbitrary) ordering of the data termed the sequential
class, and one that is inherently a local class. Finally, in section 4, we use an
example of the local class to carry out inference for an otherwise intractable
Markov model.

2. Entropy and multidimensional scoring rules

Each (strictly) proper scoring rule defines a (strictly) concave entropy H(P) :=
S(P, P). The proof! relies on the fact that S(P,Q) is affine in P. Gneiting
and Raftery (2007) showed that the converse holds (see also McCarthy (1956),
Hendrickson and Buehler (1971)): if H(P) is (strictly) concave and H*(-, P) :
X — R is a supergradient to H at P € P then

S(z,Q) = H(Q) + H (z,Q) — H*(Q,Q), (2)

where H*(Q, Q) = Ex.g H*(X,Q), is a (strictly) proper scoring rule. In prac-
tice, H*(-, Q) is often a gradient and then H(Q) defines a unique scoring rule. In
this construction, locality is seen to be the statement that H(Q) = H*(Q, Q),
up to an additive constant.

As an example, the entropy that generates the log score is the Shannon
entropy: H(Q) = — [dz ¢(z) Ing(x). Its supergradient is H*(z,Q) = —Ing(x) —
1, so that H*(Q,Q) = H(Q) — 1.

For A € [0,1], H(1=A)P+AQ) = S(1-NP+AQ, (1-AN)P+AQ) = (1-N)S(P, (1-\)P+
AQ) + AS(Q, (1=N)P+AQ) > (1-N)S(P, P) + AS(Q,Q) = (1-\)H(P) + \H(Q).
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In the case of n=1 local scoring rules, Parry, Dawid and Lauritzen (2012) and
Ehm and Gneiting (2012) considered entropies of the form H(Q) = [dz ¢(z, ¢(z),
¢ (z)), where ¢(z,y,y1) is differentiable in x and, for almost all z € X, is
twice differentiable, jointly concave and 1-homogeneous? in (y,y;). For exam-

2
ple, eq. (1) is obtained with the choice ¢(x,y,y1) = —%‘% It is the condition

of 1-homogeneity that ensures H(Q) = H*(Q, Q) and, consequently, S(z, Q) is
0-homogeneous. In fact, the form of the gradient H*(-, Q) depends crucially on
assuming the boundary terms that arise in integration by parts are zero; this
puts important constraints on P (see Ehm and Gneiting (2012)).

The advantage of the entropy construction is that it suggests obvious gener-
alizations, first to the multidimensional case, i.e. n > 1, and second to the mul-
tidimensional local scoring rules found by Almeida and Gidas (1993), Hyvérinen
(2005), and Dawid and Lauritzen (2005). We denote the components of z € X
as 2°, where i = 1,...,n, and write ¢; for dq/dx'. We also let D; denote the
total derivative with respect to 2°. We now have the first key theoretical result
of this paper:

Theorem 1. If ply] := ¢(z!, ..., 2", y,y1,...Yn) is differentiable in x, and twice
differentiable, jointly (strictly) concave and 1-homogeneous in (Y, y1,...,Yn),
then, with a slight abuse of notation,

- 0 0
Sz, Q) = -D,— + —) 3
@@=} (-Dip + o) ¢l 3)
is a (strictly) proper local scoring rule of second order.

Proof. H(Q) = [dz ¢|q] is (strictly) concave. The proof then follows from
eq. (2). O

Remark. Note that ¢[y] being 1-homogeneous implies d¢/dy and 0¢/dy; are
0-homogeneous. This is a key result that we will use later.

The following example includes all previously known multidimensional scor-
ing rules as special cases. Let G;;(x) be (the components of) a positive definite
symmetric matrix and let G* be its inverse. Then ¢[q] = —%q_l Zij GYq,q;
generates the proper scoring rule

SQ) =Y {G”’ (q—J - %q;?‘) +G%} (1)

ij=1 4

where ¢;; = 0%¢q/02'0x7 and G ; = G /9z'. When, additionally, X has a
metric structure, the above scoring rule affords a covariant formulation. If g;;(x)
is the metric tensor on X then G(z) = g~/2q(x) is the probability density with
respect to the measure g'/2dz, where g := det[g;;]. Setting G,;; = gi;, gives
the scoring rule of Dawid and Lauritzen (2005) (up to an irrelevant additive

2A function f(x) is k-homogeneous if, for all x and A > 0, f(Ax) = A\* f(x).
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constant):

n <vivjq B lviqvja) (5)

S, Q)= ) g” —

iz,:l q 2 7

J=

where V; is the covariant derivative with respect to the Levi-Civita connection.

In what follows, ¢[q] plays central role and we will often say it generates its
associated local scoring rule.

3. Extensive scoring rules

At an intuitive level, extensivity of a scoring rule means that independent data
can be taken individually or all together yet yield the same score. Extensivity,
also known as additivity, has previously been applied to entropies: when the
outcomes are independent, the entropy of the joint distribution becomes a sum
of the entropies of the marginal distributions. As we shall see, extensivity of
scoring rules and entropy are inextricably linked. To avoid trivial subcases, we
assume n > 1 from now on.

Let @ € P be a joint distribution on X and let M; be the operation of
marginalizing over all variables except z‘. In other words, Q; := M;Q is the
marginal distribution for X*?. It follows that P; := M,P is a set of distributions
on X; := {z' |z € X} and that P; inherits convexity from P. We now define the
operator Z by

IQ=1:[1MiQ= [[1@-, (6)

i.e. ZQ is a distribution that treats the (X*) as independent. It is straightforward
to show Z? = Z, hence 7 is a projection operator. We call the range of Z the
center of P and denote it C = ZP C Py X --- X P,,. We say P is centered if
C C P. Note that C is not convex and so C # P. Further, we call R(C) ={Q €
P|ZQ = C} the ray at C € C. More generally, we can identify a ray by any
distribution it “passes through”; we define R(Q) = R(ZQ).

We are now in a position to define extensivity for scoring rules. Let P be a
convex and centered set of distributions on X. We say a scoring rule S(z, Q) on
(X, P) is extensive if it is strictly proper and if for all @ € C,

S, Q) =_ Si(a',Qi), (7)

where S;(z¢, Q;) are strictly proper scoring rules on (X;, P;). It follows that, for
QeC,S(P,Q)=>",Si(P,Q;). Note that the requirement of strict propriety
means eq. (7) cannot be lifted to @ € P, for we would have S(P,Q) = S(P, P)
for all @ € R(P). Therefore, eq. (7) represents a simplification of S(z, Q) only
in the case where Q € C.

Remark. Tt is worth pointing out that eq. (7) is often used when @ € P and
is referred to as the observed or empirical score, but it is perhaps not widely
appreciated that such a definition sacrifices strict propriety.
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We can also define extensivity for entropies in a similar way. We say an
entropy H(Q) on P is extensive if for all @ € C,

H(Q) = ZHi(Qi)a (8)

where H;(Q;) are entropies on P;. We now have the second key theoretical result
of this paper:

Theorem 2. If H(Q) defines the scoring rule S(x, Q) via eq. (2), then S(z, Q)
is extensive iff H(Q) is extensive.

Proof. Forwards is immediate. The reverse follows because, when @ € C,

H*(2,Q) = 31, Hf (2%, Q). O

3.1. Sequential class

We define the sequential class of extensive scoring rules as follows. Writing
the joint probability density as a product of nested conditional densities (the
ordering of outcomes is arbitrary), we have

q(z) = q(z" |z Hg(a" a2 - g(a?fat (o),
where we have introduced the shorthand notation x'/ = (z!,...,27) and used
the convention that the argument of ¢(-) implicitly specifies the outcome space
for the density. Then the following scoring rule is extensive:

n

S(z,Q) = Zsi(xi7Qi|1:i—1)7 (9)

i=1
where the S; are strictly proper scoring rules on (X;, P;).

Proof. When Q € C, this reduces to eq. (7) since then Q;1,,—1 = Q;, and strict
propriety follows from the fact that

S(P,Q) =) Exri-iop,, ,Si(Pijri-1, Qi1i-1)- (10)
i=1

O

Remark. The logarithmic scoring rule is clearly a member of the sequential class
since Ing(z) = 31, Ing(z? |z~ 1).

Result for separable Bregman scores. Separable Bregman scores are of
the form

Sz, Q) =¥’ (q(x)) + /dy {W(a(y) — ay)'(a(y))}
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and are (strictly) proper when ¢(s) is a (btrictly) concave function of s > 0.
(Note that eq. (2) holds with H(Q f dxz/; )).) For example, the well-
known Brier score is given by (s ) = —58 In many applications, the X; are
the same (possibly infinite) interval of the real line, i.e. X = X7*. In this case, the
S; will typically be taken to have the same functional form. The only separable
Bregman score in this restricted class of sequential extensive scoring rules is the
log score.

Proof. For extensivity, a necessary condition is ¥/(sy...s,) = f(s1) +--- +
f(sn), for some function f. Treating this as a functional equation, we see this
implies ¥/'(s) = f(s) + (n — 1)f(1). But then the original expression becomes
f(s1...80)— f(1) = [f(s1)— f(D)]+---+[f(sn) — f(1)] and the only solution to

this is f(s) — f(1) = Ins, up to irrelevant additive and multiplicative constants.
U

3.2. Local class

We now introduce the local class of extensive scoring rules. Specifically, if

Z@ RN (11)

where for all 4, ¢;(x?,y,y;) is differentiable in 2% and twice differentiable, jointly
strictly concave and 1-homogeneous in (y,y;), then

S0 =3 (—Dia% n 6%) b1l 4,41 (12)

i=1
is an extensive scoring rule.

Proof. The proof is straightforward though somewhat hampered by the limita-
tions of notation. When Q € C, g(z) = gq(z') ---q(2") = q(z")q(2") and ¢;(z) =
q(xil)q/(xz)’ where 27" := (xj |j 7é Z) Then (rbi(xla(bqi) = q(xiz) d)i(xlaQ(xl)a
¢ (z")) by 1-homogeneity, and

9 i 9, 9,
a_QSL('r aQ7qi) = 8_¢Z(x ﬁ%%‘) = a_d)’t(x 7y’yi)

q Yy Y=4¢,Yi=4; Yy y=q(z?),y;i=¢q'(z?)
and similarly with (9/9¢;)¢;(2¢, q, ¢;), by 0-homogeneity. Crucially, when Q € C,
0¢;/0q and d¢;/dq; no longer depend on z~*. Consequently, S(x,Q) becomes
a sum of strictly proper one-dimensional scoring rules, as required. O

As an example, a sufficient condition for local scoring rules of the form given
in eq. (4) to be extensive is that G¥ = h;(2%)d% and h;(-) > 0. (6% is the
Kronecker delta, which is 1 when i = j and 0 otherwise.) As with the sequential
class, in many applications we can expect the ¢; to have the same functional
form. This would imply h;(-) = h(-).
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3.3. Multivariate Normal data

We can use the equivalence of independence and vanishing covariance in jointly
Normally-distributed data to illustrate both the behaviour of extensive entropies
and the form of their associated scoring rules. As previously indicated, the en-
tropy associated with the log score — the canonical example of a sequential
class extensive scoring rule — is the Shannon entropy. If X ~ A(p,), then
the Shannon entropy is H(Q) = % Indet 2meX. When the off-diagonal terms of
> vanish, this simplifies to %Z?Zl In2meo?, which is clearly the sum of the

Shannon entropies of the marginal distributions. The log score is
1
S(x, Q) = 5{(Jv—u)TEfl(x—u)—!—lndetQﬂ'Z}. (13)

The simplest extensive local scoring rule arises when G¥ = §¥ in eq. (4).
We can make the extensivity of its associated entropy explicit by noting that
qi = —Zj(Z_l)ij(xj — w)g. Then H(Q) = —3trS~'. When the off-diagonal

n —

terms vanish, this becomes —% Y1 0; 2. The extensive local scoring rule is
1
S(0,Q) =t {374 g2 e - e - 0 TE . (14)

4. Application to statistical inference

If @ = Qg is a distribution from a parametric family, then scoring rules lead
to a straightforward inferential method: # = argming S(z, Q). Indeed, the use
of the log score is equivalent to maximum likelihood estimation. Typically, the
estimating equation becomes
00

and Dawid and Lauritzen (2005) have shown that it is unbiased and leads to a
consistent estimator for 6.

Consider a homogeneous discrete time Markov process as a model for a ran-
dom process on the real line, observed at times 0:n. If we model the transition
probability density as

q(zlz’) = exp(@j;:(ﬂe) p:c’))7 (16)

where p is assumed known, then the normalization Z(8) is typically not com-
putable. Nevertheless, local scoring rules enable inference in such cases. Condi-
tional on 2, the probability of the observations is

q(ml:nle) _ q(a:"\x"_l)q(x"_1|x"_2) . q(x1|x0) _ H eXp(@f(Z(;) pxtT )) )

=1

(17)
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Choosing the simplest extensive local scoring rule, namely that generated by

. 2
oi(x,q,q;) = —%%, we obtain the score

S(0.Q) = 01 +7%) Y 1w’ pa' ™) + 50° {(1+p2> > f(at - pat Tty

=1 i=1
n—1
2 fl@ —pat ) f (2 —ﬂxi)}- (18)
=1

Note that when p = 0, the states of the Markov chain are independent and the
scoring rule reduces to a sum of independent scores, as expected. In the case
of Gaussian diffusion, i.e. f(z) = —%(m — )2, 0 is the precision parameter and
Z(0) can be computed. The resulting estimator for 6 is

n n—1 -1
0= <l {Z(mi—pwi‘l—u)2 S Z(fci—pwi‘l—u)(:ﬂ”l—pwi—u)}> :

2
" i=1 1+ P i=1
(19)

which differs from the maximum likelihood estimator when p # 0 due to the
presence of the second sum. This illustrates the fact that tractability of the
estimator is achieved at the cost of efficiency.

However, there is a deeper analysis of this example to be made. Under the
Markov assumption, the Z* := ' — pz'~!, for i = 1,...,n, are independent
increments. If we treat the increments (conditional on xy) as the outcomes of
interest, then g(z'"|2%) = Z(0) "' [[/_, exp(0f(z")) is the probability density

=2
1%

S@Q) =0 @) + 50 {_Z f’(i")Q} : (20)

which is essentially eq. (18) with p = 0. In fact, we can obtain the same improved

on the new outcome space X. The scoring rule generated by ¢,(7",7,7;) = —
is

—2
score in the original outcome space by “transforming” —% %". Specifically, noting
that (9/0z") = > Ji7(0/0z7), where
. Z*J . > .
gl =gt =) (21)
0, otherwise,

we arrive at a scoring rule of the form given in eq. (4) with G = 3", , 6*J,J,7 =
(pli=3l — p"*7) /(1 — p?). Note that this is no longer of the extensive class for
the original outcome space but it is of the sequential class because S(T, Q) is

equivalent to
s { (LY 1 (d e i
v q(zi|z=1) 2 \ q(zizi-1) ’

and this is a special case of eq. (9) with each S; taking the form of eq. (1).
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The preceding result exemplifies a property of local scoring rules first pointed
out in Parry, Dawid and Lauritzen (2012), namely that they transform as scalars
under transformation of the data. More precisely, if T = F(x) is an invertible
transformation, then S(Z,Q) = S(z,Q) is a scoring rule for the appropriately
transformed distribution @, defined for outcomes in X = F(X'). This was proved
in Parry, Dawid and Lauritzen (2012) for the case n = 1; the proof in the case
n > 1 will be developed elsewhere.

4.1. Numerical example

Let f(2) = 0.4 (2 — 0.4)% — 0.08 2*, which is an example popularized by Mackay
(2003). We take n = 100 and, for simplicity, fix p = 1, though it is straightfor-
ward to jointly estimate p and 6. Supposing 8 = 1, we generate samples using
rejection sampling, and then numerically compare the performance of the esti-
mators arising from eq. (18) and eq. (20). We find the bias and variance of local
class estimator are both approximately 0.083, whereas the bias and variance of
the sequential class estimator are both approximately 0.07.

5. Conclusions

All scoring rules can be derived from an appropriate entropy functional. We have
used this fact to show that it is possible to usefully generalize local scoring rules
in multidimensional settings. Local or not, we have also shown that a scoring rule
has the extensive property if and only if its associated entropy does. Extensivity
means that the score of independent outcomes is the sum of independent scores.
Previously, only the log score was known to have this property.

In the context of multidimensional local scoring rules, an important technical
question that remains is how to specify P, the set of distributions on X, for which
the boundary entropy vanishes Ehm and Gneiting (2012); Parry, Dawid and
Lauritzen (2012). A more interesting problem, however, and one with particular
practical significance (e.g. Yang et al. (2014)), is how to devise local scoring
rules for mixed continuous and discrete outcomes.
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