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Abstract: We present a novel method for controlling the k-familywise
error rate (k-FWER) in the linear regression setting using the knockoffs
framework first introduced by Barber and Candès. Our procedure, which
we also refer to as knockoffs, can be applied with any design matrix with at
least as many observations as variables, and does not require knowing the
noise variance. Unlike other multiple testing procedures which act directly
on p-values, knockoffs is specifically tailored to linear regression and im-
plicitly accounts for the statistical relationships between hypothesis tests
of different coefficients. We prove that knockoffs controls the k-FWER ex-
actly in finite samples and show in simulations that it provides superior
power to alternative procedures over a range of linear regression problems.
We also discuss extensions to controlling other Type I error rates such as
the false exceedance rate, and use it to identify candidates for mutations
conferring drug-resistance in HIV.
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1. Introduction

Multiple testing has received increasing attention with the advent of fields
like genetics, technology, and astronomy which produce very high-dimensional
datasets. The increasing number of hypotheses being simultaneously tested has
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motivated extensive research into procedures that maintain control of the fami-
lywise errors that abound when each hypothesis is only tested individually. For
instance, the canonical criterion of the familywise error rate (FWER) controls
the probability of falsely rejecting any of the true null hypotheses. A number
of more modern landmark works have introduced new Type I error rates that
allow for higher power by relaxing the FWER, including the false discovery rate
(FDR) [2], the k-FWER [16, 20], and the false discovery exceedance (FDX)
[9, 29]. Each one has a different interpretation, but all control an error rate
defined over all hypotheses being tested, so that conclusions can be drawn by
considering rejected hypotheses together.

Among multiple testing problems, some of most important deal with finding
relationships between variables. Such investigations are often posed as a linear
model

y = Xβ + z,

where X = [X1, . . . ,Xp] ∈ R
n×p is a design matrix, β ∈ R

p is a signal vector
of interest, and z ∈ R

n is the error term. The hypotheses of interest are which
variables βj , after controlling for all other variables, contribute to the model, or
have nonzero coefficients. With the ability to encode correlations between vari-
ables, linear models capture far more real-life examples than sequence models.
Examples abound particularly in genetics, where one searches for relationships
between parts of the genome, often in the form of single nucleotide polymor-
phisms or expression levels, and continuous variables such as health factors or
drug response. Unfortunately, due to the dependence among the variables in the
linear model, their respective tests do not in general exhibit any of the simple
dependence structures, such as independence or positive dependence, that are
required for many of the most powerful existing procedures.

In this work we focus on controlling the k-FWER, the probability of making
at least k false discoveries, in the context of linear models. Our method uses the
framework of knockoffs introduced by [1]. The idea of knockoffs is to carefully
construct artificial variables that serve as controls for the original variables.
Barber and Candès show that these controls are easy to construct and can be
used to automatically account for variable dependence to provide finite-sample
FDR control for general design matrices without knowledge of the noise vari-
ance. Controlling the FDR can be highly desirable in a high-power setting, but
results can be hard to interpret when few discoveries are made, as the realized
false discovery proportion may be highly variable. The k-FWER, which in the
case of k = 1 reduces to the standard FWER, always has a clear interpretation
by explicitly bounding the probability of k or more false discoveries, making it
a useful criterion in all settings, as evidenced by its wide acceptance in the sci-
entific community. The k-FWER also provides a fundamental building block to
other Type I error rates, such as the FDX and Per Family Error Rate (PFER),
as we will discuss in Section 4. We leverage the attractive features of the knock-
offs framework to construct a novel procedure for controlling the k-FWER that
implicitly accounts for the exact dependence structure in linear regression prob-
lems. In particular, we prove finite-sample k-FWER control for general design



962 L. Janson and W. Su

matrices without any knowledge of the noise variance, and show in simulations
that the power can be substantially greater than state-of-the-art alternatives.

Much previous work has studied controlling the k-FWER under varying as-
sumptions on the statistical dependence among the hypothesis test statistics or
p-values. The bulk of such work has dealt with procedures that act directly on
the p-values. When there are more observations than variables and the noise
is i. i. d. Gaussian, ordinary least squares regression generates dependent t-
statistics for all variables, allowing those procedures that can account for the
dependence structure to be applied to the associated p-values. Unfortunately,
the joint distribution of such p-values does not generally satisfy popular de-
pendence assumptions such as positive regression dependence on subset [3] or
multivariate total positivity [18]. Furthermore, many of the procedures that can
account for general dependence structures do so nonparametrically through re-
sampling. However, resampling procedures tend to require extra assumptions
such as subset-pivotality [31] which do not hold in general in the regression
setting, or only provide exact control asymptotically [27]. We mention here
some work on controlling the k-FWER in finite samples and refer the reader
to [12] for a more thorough review. The most popular methods for FWER con-
trol are the Bonferroni [7] and Holm’s [15] procedures, neither of which require
assumptions on the dependence among p-values. Under independence, the Bon-
ferroni procedure can be improved using the Šidák correction [30], or one can
employ Hochberg’s step-up procedure [14]. In [20], step-down procedures gener-
alizing Bonferroni and Holm’s procedures are presented, while [27] introduces a
generic step-down procedure, all for controlling the k-FWER. In addition, [26]
also presents step-up procedures for controlling the k-FWER under arbitrary
unknown dependence.

To avoid confusion, we point out that the recent work of [21] provides p-values
for coefficients in a linear model, however they deal with a different notion of
a null hypothesis than used here. In their framework, the null hypotheses are
defined sequentially with respect to a growing model, wherein each time the
model size is increased by one, the null hypothesis is that the new variable
is uncorrelated with the response, conditional on only the variables already
included in the model. In contrast, in our setting the null hypotheses are defined
globally as simply whether elements of β (the full-model coefficient vector) are
zero or not. For instance, if β1 �= 0 and β2 = 0 but is correlated with (only) β1,
we would consider selecting β2 to be a false discovery, while in the sequential
setting, β2 would be a true discovery as long as it is selected before β1.

The remainder of the paper is structured as follows. Section 2 introduces
notation and gives a short introduction to the knockoffs framework. Section 3
describes the knockoffs procedure for control of the k-FWER and proves this
control along with tail bounds. Section 4 provides a brief discussion of how
the procedure can be used to control the PFER and FDX. Section 5 com-
pares our procedure to state-of-the-art alternatives from the literature, both in
terms of practical considerations and power, in a series of simulations. Section 6
demonstrates an implementation on a real dataset from genetics, and Section 7
concludes with discussion and directions for future research.
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2. Preliminaries for knockoffs

In this section, we introduce the knockoffs machinery of [1] at a minimal level to
be sufficient for our exposition of k-FWER control. This material is largely bor-
rowed from the reference [1]. In referring to the knockoffs framework, we always
assume that the number of observations n is at least the number of variables
p, the design matrix X has full column rank so that the Gram matrix X�X
is invertible, and the noise term z has independent Gaussian entries. We would
like to briefly emphasize here that n ≥ p is necessary for the full-model multiple
hypothesis testing problem to even be well-defined. For any linear regression
problem, the “true” coefficient vector is only statistically well-defined modulo
addition with any vector in the null space of the design matrix. If p > n, then
the design matrix has a nontrivial null space, thus allowing zeros and nonzeros
in the coefficient vector to arise and disappear, changing the fundamental val-
ues of the null hypotheses, without changing the data-generating process at all.
Except for this non-degeneracy assumption, the knockoffs machinery works for
general designs X and does not even require knowledge of noise variance σ2.

To start with, again, consider the linear model

y = Xβ + z,

where the noise vector z has independent N (0, σ2) entries, and each column
of X has been normalized to have unit �2-norm, that is, ‖Xj‖ = 1 for all
1 ≤ j ≤ p. The first step of this method is to construct the knockoff design,

denoted as X̃ ∈ R
n×p, that obeys

X̃
�
X̃ = X�X, X�X̃ = X�X −Diag(s), (2.1)

where s ∈ R
p has nonnegative entries and the superscript � denotes matrix

transpose hereafter. There are multiple ways to construct this knockoff design;

see [1, Section 2.1]. The first equality forces X̃ to have the same correlation
structure among its columns as X. In the ideal case of n ≥ 2p, it can be guar-

anteed that the 2p column vectors of X and X̃ are jointly linearly independent.
By the second equality, for every 1 ≤ j ≤ p, the original variable Xj and the

knockoff counterpart X̃j have the same correlation with all the other 2p − 2

variables, namely, Xi, X̃i for i �= j. At a high level, we can view the knockoff
design as a control group as compared to the original design X, which is treated
as the case group.

Denote by XKO = [X, X̃] ∈ R
n×2p the concatenation of the original design

and the knockoff design. With XKO in hand, the next step is to generate statis-
tics for each variable. One way to do so, suggested in [1], is by fitting the entire
Lasso regularization path on the augmented design,

β̂(λ) = argmin
b∈R2p

1

2
‖y −XKOb‖2 + λ‖b‖1, (2.2)
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and letting Zj be the first λ such that β̂j is nonzero. Formally,

Zj = sup{λ : β̂j(λ) �= 0}.

Defining Z̃j analogously for each knockoff variable X̃j , the knockoff statistics
(using slightly different notation than in the original paper) are

Wj = max{Zj , Z̃j}, χj = sgn(Zj − Z̃j),

where sgn(x) = −1, 0, 1 if x < 0, x = 0, x > 0, respectively. As pointed out
in the reference paper, many alternative statistics, including some based on
least-squares, least angle regression [8], and sorted �1-penalized estimation [4],
can be used instead as long as they obey the sufficiency and antisymmetry
properties defined therein. The following result, due to [1], characterizes the
joint distribution of the null χj . We say j is a true null when βj = 0 and a false
null otherwise.

Lemma 2.1 ([1]). Conditional on all Wj and all false null χj , all true null χj

are jointly independent and uniformly distributed on {−1, 1}.
This simple lemma is very helpful in proving k-FWER control. Its proof fol-

lows from the symmetry between Xj and X̃j if βj = 0, which is provided by
the construction (2.1). The lemma shows that χj can be interpreted as a one-bit
p-value, in the sense that it has equal chance to take 1 or −1 if βj = 0. In fact
when βj = 0, the knockoff symmetry characterized in (2.1) introduces exchange-

ability between Xj and its knockoff counterpart X̃j in the Lasso path (2.2).

Hence, Xj and X̃j are equally likely to enter the Lasso path first. Conversely,

if βj �= 0, then Xj is likely to enter before X̃j so that χj = 1. Thus a large Wj

and a positive χj provide evidence against the jth null hypothesis H0,j : βj = 0.

3. k-familywise error rate control

Inspired by the interpretation of the statistics Wj and χj , it is reasonable to re-
ject hypotheses with positive signs χj and large Wj . Parameterized by a positive
integer v, the knockoffs procedure for controlling the k-FWER is as follows.

Step 1. Denote by Wρ(1) ≥ Wρ(2) · · · ≥ Wρ(p) the order statistics of W , where
ρ(1), . . . , ρ(p) is a permutation of 1, . . . , p.

Step 2. Let j� be the index of the vth −1 in the sequence χρ(1), . . . , χρ(p). If
fewer than v negatives appear, set j� = p.

Step 3. Reject all the null hypotheses H0,ρ(j) whenever j ≤ j� and χj = +1.

More compactly, define the threshold

Tv = sup
{
t > 0 : #{j : Wj ≥ t, χj = −1} = v

}
,

with the usual convention that sup ∅ = −∞. The multiplicity of Wj is not
accounted for since all Wj are unique with probability 1. Then, the knockoffs
procedure rejects all H0,j with Wj ≥ Tv and χj = +1.
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Before characterizing the distribution of false discoveries made by the knock-
offs procedure, we define some notation. Let N0 = {1 ≤ j ≤ p : βj = 0} be
the set of true null hypotheses and NB(m, q) denote a negative binomial ran-
dom variable, which counts the number of successes before the mth failure in a
sequence of independent Bernoulli trials with success probability q.

Lemma 3.1. For any integer v ≥ 1, the false discovery number

V = #{j ∈ N0 : Wj ≥ Tv and χj = +1}

is stochastically dominated by NB(v, 1/2).

Proof of Lemma 3.1. First, we prove this lemma in the case where N0 = {1, . . . ,
p}, that is, βj = 0 for all j. Conditional on all Wj , Lemma 2.1 concludes
that χρ(1), . . . , χρ(p) are independent and each takes +1 and −1, respectively,
with probability 1/2. Note that the permutation ρ is deterministic conditional
on the Wj . Recognizing that V is the number of positive χj before the vth
negative or the pth trial happens, whichever comes first, we see that V is an
early stopped negative binomial random variable. In the general case, false null
χj will insert −1’s into the process on the nulls, causing it to stop no later
than when N0 = {1, . . . , p}. Therefore, V is always stochastically dominated by
NB(v, 1/2).

The stochastic upper bound in Lemma 3.1 is tight in the following sense.
The distribution of V can be made arbitrarily close to NB(v, 1/2) under the
global null by taking p 
 v, as in this case at least v negative χj will appear in
the sequence with high probability. Next we present the main result, which is
immediate from Lemma 3.1 and the negative binomial cumulative distribution
function.

Theorem 3.1. For any integer k ≥ 1 and significance 0 < α < 1, let v be the
largest integer satisfying

∞∑
i=k

2−i−v

(
i+ v − 1

i

)
≤ α. (3.1)

Then the knockoffs procedure with parameter v controls the k-FWER at level α,
that is, P(V ≥ k) ≤ α.

As a concrete example, taking v = 4 would provide 10-FWER control at
level 0.05. As one may observe from (3.1), the integer v as a function of the
level α cannot be continuous. Consequently, P(V ≥ k) is in general lower than
the target level α. In particular, for α ≤ 1/2k no positive integer v satisfies (3.1),
so the naive procedure must reject nothing. This matter can be easily resolved
by randomization of v, as we will show in Remark 3.1.

To better understand the knockoffs procedure, we may want to know how
many false rejections are made when the k-FWER is not controlled. To this
end, the following result bounds the tail probability of V , or the probability of
making many more rejections than expected.
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Corollary 3.1. For arbitrary a > 0, the error rate of the knockoffs procedure
with parameter v obeys

P(V ≥ (1 + a)v) ≤ θ(a)v,

where θ(a) = (a+2)a+2

2a+2(a+1)a+1 < 1.

Proof of Corollary 3.1. By Lemma 3.1, it suffices to prove the inequality when
V is distributed as NB(v, 1/2). For any positive number η < log 2, from the
Markov inequality we get

P(V ≥ k) ≤ E(eηV )

e(1+a)ηv
=

1

(2− eη)ve(1+a)ηv
.

The desired bound follows from taking η = log(2 + 2a)− log(2 + a).

Remark 3.1 (Power Improvement). As mentioned earlier, the knockoffs proce-
dure suffers from a discretization problem, especially for small k, but this can
be remedied by randomization as follows. For any desired level α ∈ (0, 1), there
must exist an integer v ≥ 0 such that

Pv(V ≥ k) ≤ α ≤ Pv+1(V ≥ k),

where the subscript v or v + 1 emphasizes the parameter of the knockoffs pro-
cedure. We can devise a mixture procedure that obeys exactly P(V ≥ k) = α
by putting weights ω and 1− ω, respectively, on the knockoffs procedures with
parameters v and v + 1, where

ω =
Pv+1(V ≥ k)− α

Pv+1(V ≥ k)− Pv(V ≥ k)
.

Furthermore, as with any procedure controlling the k-FWER, power can
always be improved without affecting the k-FWER by always making at least
k − 1 rejections. In the case of knockoffs, if we were going to make fewer than
k−1 rejections, we can simply continue rejecting the indices with the largest Wj

and positive χj until there are k − 1. The benefit of this modification depends
on the ordering of the hypotheses induced by Wj .

4. Controlling other error rates

This paper has been about controlling the k-FWER, but the procedure intro-
duced can be used to control other Type I error rates as well, namely the PFER
and the FDX.

Originally proposed by John Tukey in an unpublished work in 1953, the
PFER is defined as E(V ), or in words, the expected number of false discoveries.
The control of this error rate under general p-value dependence has not received
as much attention in the literature as other error rates, although both [11] and
[23] have discussed using the Bonferroni procedure for this purpose. Lemma 3.1
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shows that the knockoffs procedure for controlling the k-FWER also controls

the PFER at level v, as E(V ) ≤ ENB(v, 1/2) = 1/2
1−1/2v = v.

The FDX, also known as the γ-false discovery proportion, tail probability for
the proportion of false positives, or false discovery excessive probability, is the
probability that the FDP exceeds a specified bound γ. It can be viewed as a
more stringent form of the FDR, and has received much attention recently; see,
for example, [12]. A number of authors have noticed its intimate connection with
the k-FWER, and many of the most successful FDX-controlling procedures in
the literature can be posed as meta-procedures applied to a family of k-FWER-
controlling procedures [29, 9, 27]. We briefly review three such meta-procedures,
any one of which could be combined with the knockoffs procedure introduced
here, and defer further investigation to future work.

In [29], the authors introduced a simple and intuitive procedure which aug-
ments any FWER-controlling procedure to control the FDX. This procedure was
generalized to any k-FWER-controlling procedure in [10]. Once the k-FWER-
controlling procedure makes R rejections, then if (k− 1)/R > γ, the augmenta-
tion procedure makes no rejections, but if (k− 1)/R ≤ γ, r more rejections can
be made, where r satisfies (k−1+r)/(R+r) ≤ γ. This augmentation procedure
controls the FDX exactly when the underlying k-FWER-controlling procedure
also provides exact control.

A test-inversion procedure for FDX control was proposed in [9], which is sim-
ilar to the closure principle of [22] for FWER control. This procedure was then
investigated further in [10]. The inversion procedure runs global null hypothesis
tests on every subset of hypotheses, and then finds the largest subset S whose
maximal intersection with any subset for which the global null was not rejected
is at most γ|S|. Note that any k-FWER-controlling procedure is also trivially
a test of the global null hypothesis, rejecting whenever k or more rejections are
made. Rejecting S from the inversion procedure controls the FDX exactly, and
although in general it takes exponential time, for some global tests it can be
run in polynomial time [9].

Given a procedure that can control the k-FWER for any k ≥ 1, [27] proposes
a heuristic that aims to control the FDX. In short, given a prescribed level γ and
significance α, both between 0 and 1, this heuristic uses a k-FWER-controlling
procedure to make rejections for increasing k until just before the number of
rejections goes above k/γ − 1. Explicitly, let Rk be the number of rejections
made by a procedure controlling the k-FWER. Then the Romano–Wolf heuristic
defines k̂ as the smallest k such that Rk < k/γ − 1 and makes rejections as

if controlling the k̂-FWER. Although not rigorous due to its adaptivity in k̂,
under some dependence assumptions, the Romano–Wolf heuristic is shown to
enjoy finite sample or asymptotic FDX control for step-down procedures [13, 6].

5. Comparison with other procedures

As mentioned in the introduction, the structure and dependence between coef-
ficients in linear regression preclude the use of many existing procedures. The



968 L. Janson and W. Su

state-of-the-art procedures that can be found in existing literature and provide
exact finite-sample control of the k-FWER in linear regression are:

(a) the generic step-down procedure of [27] applied to the least-squares p-
values

(b) the step-up procedure of [26] applied to the least-squares p-values
(c) the adaptation of Holm’s procedure to k-FWER applied to the least-

squares p-values [20]
(d) for 1-FWER, the Lasso pathwise testing procedure of [19]
(e) also for the 1-FWER, the closure of any global hypothesis testing proce-

dure, such as the χ2 test, that can be applied to p-values with any known
dependence, applied to the least-squares p-values

Procedure (d) requires the user to know σ2 exactly, and both (d) and (e) take
computation that is exponential in the dimension, p, making them infeasible
to use for problems of even moderate size. As a result, we only compare our
procedure to (a), (b), and (c). It should be noted that the problem dimensions we
considered in simulations were still limited by procedure (b), whose computation
time is O(pk−1), since each threshold is computed as a maximum over subsets
of size k − 1 from a superset of size up to p. There are also works that obtain
asymptotic control of the FWER under some assumptions on the distribution
of the design matrix (see, for example, [5, 17]). As knockoffs applies under no
assumptions on the design matrix and the error rates are controlled exactly, we
do not compare to such works here.

In each of the following simulations, we performed many independent exper-
iments to gauge how the performance of knockoffs, both in absolute terms and
relative to previous methods, depends on correlation in the columns of X, the
sparsity of β, and the signal to noise ratio. In each experiment, X is generated
by normalizing the columns of a multivariate Gaussian matrix with independent
and identically distributed rows, and β is generated by setting a pre-specified
number of entries to zero, and setting the rest to the same nonzero magnitude,
which is also prespecified. The following experiments are all performed in the
sparse setting, as that is what the canonical statistics W that use the Lasso are
best-suited for. However, nothing about the knockoffs framework to control any
Type I error rate is particularly tied to sparsity, and it is of continuing interest
to find different statistics W that achieve high power in all manner of settings.
In all the following simulations, n = 1000, p = 450, σ2 = 25, we control the
5-FWER at the 5% level, and we apply the modifications in Remark 3.1. The
step-up procedure is implemented using the critical values suggested in [26],
namely their Equation (13). For a sake of reproducibility, the code to generate
these figures is available at http://wjsu.web.stanford.edu/code.html.

Our first experiment took β to have 10 nonzero elements, all with magnitude
10, and varied the pairwise correlation between the columns of X from 0 to 0.5.
Figure 1 shows the power (number of true discoveries divided by ‖β‖0) of the
knockoff procedure nearly doubling that of all alternative procedures. The power
and 5-FWER of all four procedures is largely unaffected by the correlation in
the columns of X.

http://wjsu.web.stanford.edu/code.html
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Fig 1. Comparison of Holm’s procedure, generic step-down procedure, step-up procedure, and
knockoffs for controlling the 5-FWER at the 5% significance level. As functions of the column
correlation of the design matrix, the procedures’ powers are shown in (a), while the 5-FWER
is given in (b), with the grey line denoting the nominal level of 5%. The curves for Holm and
step-up lie on top of one another. Each point is an average over 2000 simulations.

Fig 2. Comparison of Holm’s procedure, generic step-down procedure, step-up procedure, and
knockoffs for controlling the 5-FWER at the 5% significance level. As functions of the number
of nonzero coefficients, the procedures’ powers are shown in (a), while the 5-FWER is given
in (b), with the grey line denoting the nominal level of 5%. The curves for Holm and step-up
lie on top of one another. Each point is an average over 2000 simulations.

Our second experiment generated columns for X independently, and varied
the sparsity of β, with each nonzero coefficient having magnitude 10. Figure 2
shows the power of the knockoff procedure approximately doubling that of all
alternative procedures in the sparsest regime and gradually losing its advantage
as the sparsity approaches 10%. The 5-FWER of the knockoffs and step-down
decrease as the coefficient vector becomes less sparse, with that of knockoffs
becoming conservative especially quickly.

Our third experiment generated independent columns for X, used β with 10
nonzero entries, and varied the magnitude of the nonzero entries on a logarithmic
scale.
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Fig 3. Comparison of Holm’s procedure, generic step-down procedure, step-up procedure and
knockoffs for controlling the 5-FWER at the 5% significance level. As functions of the magni-
tude of the nonzero coefficients, the procedures’ powers are shown in (a), while the 5-FWER
is given in (b), with the grey line denoting the nominal level of 5%. Each point is an average
over 2000 simulations.

Figure 3 shows the power of the knockoff procedure above all alternative
procedures in the low- to middle-power regimes, while it actually has slightly
less power in the very high-power regime, corresponding to a signal-to-noise
ratio ‖β‖2/σ2 > 350. This reversal can be explained by the fact that with non-
orthogonal columns and a not-extremely-sparse β, the Lasso will not perfectly
select all signal variables before the non-signal variables, even when the signal-
to-noise ratio is extremely high [28]. As such, the Lasso-based W statistic used
in knockoffs never achieves a power of 1; this phenomenon could be remedied
by using one of the least-squares-based W mentioned in [1]. The 5-FWER of
all four procedures is again largely unaffected by the coefficient magnitude.

6. Real data experiment

In this section, we apply our method to a data set on HIV drug resistance. Specif-
ically, the data set, described and analyzed in [25] and also used in the original
knockoffs paper [1], contains genotype information from samples of HIV Type
1, along with drug resistance measurements for 16 drugs across three classes.
The three classes are protease inhibitors (PI), nucleoside reverse transcriptase
inhibitors (NRTI), and nonnucleoside reverse transcriptase inhibitors (NNRTI),
each of which has its own set of samples. Drug resistance was measured as the
log-fold-increase of resistance as compared to a control, and the genetic infor-
mation comes as single nucleotide polymorphisms (SNPs), so that the design
matrix is binary with each column representing the presence or absence of a
minor allele at a given locus.

In order to analyze the data, some cleaning was required. In particular, some
samples do not have resistance measurements for some of the drugs, so these
samples were removed on a drug-by-drug basis. Also, some SNPs have so few mu-
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Table 1

Multiple testing procedures applied to HIV drug resistance data sets

Drug Type Samples SNPs FDR ko k-FWER ko Step-down Step-up Holm

APV PI 767 164 19/29 10/10 14/18 14/15 14/17
ATV PI 328 104 22/28 18/19 18/20 14/14 17/19
IDV PI 825 165 25/42 15/17 17/21 17/20 17/20
LPV PI 515 141 17/18 13/14 17/18 13/13 14/14
NFV PI 842 166 26/40 20/22 17/21 16/18 17/21
RTV PI 793 163 20/26 18/18 17/23 15/17 15/20
SQV PI 824 164 20/31 19/29 16/21 15/18 15/19
X3TC NRTI 629 216 4/6 5/7 6/9 5/6 6/8
ABC NRTI 623 216 16/35 16/31 8/11 8/11 8/11
AZT NRTI 626 216 15/21 13/17 13/21 10/14 11/18
D4T NRTI 625 216 15/26 13/21 11/12 10/11 10/11
DDI NRTI 628 216 2/2 5/5 8/13 7/9 8/12
TDF NRTI 351 148 6/6 8/8 9/11 7/8 9/10
DLV NNRTI 730 231 10/25 10/16 11/25 11/20 11/22
EFV NNRTI 732 236 11/21 11/19 10/17 10/16 10/16
NVP NNRTI 744 236 10/23 8/13 7/15 7/12 7/13

Average of True Discoveries 14.9 12.6 12.4 11.2 11.8
2-FWER 0.81 0.63 0.88 0.63 0.81

Summary: For each procedure, we report the number of true positives and the number of total
discoveries, separated by a slash. Among the k-FWER-controlling procedures, entries are bold
when fewer than k = 2 false discoveries are made. At the end of the table we report summary
statistics for each procedure. ko stands for knockoffs.

tations that either their effect would be too hard to detect, or their inclusion ac-
tually causes rank-deficiency in the design matrix. As such, for each drug we only
included polymorphisms with at least five mutations present in the culled sam-
ple; this was the minimum required to ensure all design matrices were full-rank.

We compare our knockoffs procedure to the step-down, step-up, and Holm
procedures, as well as to the original knockoffs procedure for controlling FDR
at level q. As k-FWER is often used as an exploratory analysis, and to make
analysis comparable with knockoffs for FDR control, we set α = 0.5 (FDR
controls a mean, and with α = 0.5, k-FWER controls a median). We set k = 2
and q = 0.2, and ran all five procedures on all 16 drugs, the results of which are
summarized in Table 1.

Although the ground truth is unknown in this case, there exists an approxi-
mate ground truth from treatment-selected mutation (TSM) panels [24]. These
panels list mutations that were found to be statistically significantly more fre-
quent in virus samples from individuals treated with a drug in that class than
samples from individuals who had not. Thus in our experiment evaluation, we
consider a SNP discovery for a given drug to be true if it has a mutation listed
in the TSM panel for that drug’s class.

The table shows the number of total discoveries and false discoveries made
by each method on each data set. As suspected, FDR-controlling knockoffs was
more powerful than any of the k-FWER-controlling procedures, but is harder to
interpret as it never makes a very large number of discoveries, and thus the FDP
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Fig 4. Average number of TSM-panel-confirmed (“true”) discoveries of k-FWER-controlling
procedures (a) as a function of k for α = 0.5 and (b) as a function of α for k = 2.

may be quite different from q. The remaining procedures have varying levels of
2-FWER, but recall that the error rates reported are likely to be overestimates,
as there may be important SNPs that the TSM panels missed. Still, we see that
on this data set, the step-down and Holm procedures commit more 2-familywise
errors than knockoffs, while the step-up procedure has over 10% less power than
knockoffs.

To better-understand the trade-offs with the choice of k and α, we also com-
pared the average number of “true” discoveries (discoveries confirmed by TSM
panels) as a function of k and α for all four k-FWER-controlling procedures.
Figure 4 shows the relative performance of knockoffs improving as the error
control (k and/or α) relaxes. To understand why this is, note that the least-
squares-p-value-based procedures all have fairly constant power as k and α vary,
because there is a group of variables with very strong signals whose p-values are
so small that they are always rejected, almost regardless of k and α. But as dis-
cussed with regard to Figure 3, the Lasso path does not always perfectly order
the very strong signals first, so knockoffs using the Lasso W statistic loses some
power to reject very strong signals. However, as k and/or α increase, knockoffs
easily finds the strong signals and more while the other procedures become in-
creasingly conservative. As evidenced in Figure 4, knockoffs quickly overtakes
the available alternatives when k and α are not chosen too stringently, so that a
large number of rejections are made. Because of this, we expect the advantages
of knockoffs to be especially pronounced in large exploratory analyses.

7. Discussion

This work leaves a number of important avenues open for future research.
First, we mentioned in Section 3 a number of methods that translate k-FWER-
controlling procedures into procedures for controlling the FDX. Investigating
the best such method could yield a powerful method for controlling another
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important Type I error rate. Second, [1] mentions in passing the possibility of
multiple knockoffs, i.e., constructing m ≥ 1 sets of knockoffs and replacing the
one-bit p-values corresponding to the χj ’s with m+1-discretized p-values. In the
setting of FDR control, one can search over many one-bit p-values and need only
consider what fraction, on average, may be false discoveries. However to control
the k-FWER, one must keep track of every false discovery, and we may expect
the extra resolution of multiple knockoffs to provide more power to distinguish
true discoveries from false ones. Lastly, we feel the knockoffs framework is still
a largely untapped resource for generating multiple testing procedures. The in-
vestigation of alternative Wj statistics for ordering variables, and the extension
to other regression settings such as logistic regression and higher-dimensional
problems (p > n) are all important open subjects.

We have presented a novel method for controlling the k-FWER in the context
of linear regression. Knockoffs requires no knowledge of the noise variance and
implicitly takes into account the exact dependence structure of the problem,
allowing it to provide considerable power improvements over state-of-the-art
alternatives in a range of settings. This, along with its intuitive justification
and ease of computation, makes knockoffs a useful practical tool for multiple
hypothesis testing.
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