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Abstract: Nonparametric smoothing methods have been widely used in
trend analysis. However, the inference procedure usually requires the cru-
cial assumption that the underlying trend function is smooth. This paper
considers the situation where the trend function has potential jumps in
addition to smooth changes. In order to determine the existence of jumps,
we propose a nonparametric test that can survive under dependent and
nonstationary errors, where existing tests assuming independence or sta-
tionarity can fail. When the existence of jumps is affirmative, we further
consider the problem of estimating the number, location and size of jumps.
The results are illustrated via both Monte Carlo simulations and a real
data example.
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1. Introduction

Given a sequence of observations collected over time, a problem of significant in-
terest is to understand the pattern of the underlying trend (mean) function. For
this, a common approach is to form a small window around each time point and
use the (weighted) sample average within the selected window as an estimator of
the corresponding local mean. The method is nonparametric as it does not im-
pose any parametric assumption on the underlying trend function, and has been
frequently used and widely studied in the literature; see for example Härdle and
Mammen (1993), Fan and Zhang (1999), Horowitz and Spokoiny (2001), Zhou
and Wu (2010), Chen and Hong (2012) and references therein. Nevertheless, the
validity of the methods developed in the aforementioned papers relies critically
on the assumption that the trend function is smooth, namely it does not contain
any jump. Although the smoothness assumption provides the basic motivation
and technical justification for using nonparametric smoothing methods, Müller
and Stadtmüller (1999) argued that a small number of jumps can exist in addi-
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tion to smooth changes for a number of applications. Therefore, an immediate
and important problem is to detect whether the trend function has any jump
before calling the nonparametric estimation procedure. This motivates us to
consider a rigorous statistical test for the existence of jumps in the trend func-
tion regardless of whether it has smooth changes. Therefore, smooth changes can
exist under both the null and alternative hypotheses, which makes the current
problem different from the conventional problem of testing for change-points
where one is interested in detecting any change from constancy; see for example
Shao and Zhang (2010), Zhou (2013), Vogt and Dette (2015) for recent devel-
opments and review papers by Aue and Horváth (2013) and Jandhyala et al.
(2013) for further references in this direction. As a result, applying the tests
developed in the aforementioned papers to the current problem may result in
distorted p-values, as the current null hypothesis contains smooth changes which
however belong to the alternative of the aforementioned tests.

Nonparametric inference of regression functions with jumps has been an
active area of research; see for example Hall and Titterington (1992), Müller
(1992), Loader (1996), Qiu and Yandell (1998), Spokoiny (1998), Grégoire and
Hamrouni (2002a,b), Gijbels et al. (2007) and Joo and Qiu (2009). Nevertheless,
most of the existing results focused on estimating the discontinuous regression
curve by assuming that the errors are independent and identically distributed
(iid). In contrast, the problem of testing for jumps has been studied mainly
in the setting that the potential jump location is known to the practitioner,
while the difficult problem of establishing an asymptotically valid global test
has been much less explored in the literature. Assuming that the errors are iid,
Wu and Chu (1993) proposed a test based on the maximal discrepancy between
two kernel estimators that use the same bandwidth but different kernels; while
Müller and Stadtmüller (1999) proposed a test by estimating the sum of squared
jump sizes via simple linear regression. However, as commented by Wu and Zhao
(2007), the independence assumption used in Wu and Chu (1993) and Müller
and Stadtmüller (1999) can cause serious restriction on their applicability to
time series data where dependence is the rule rather than the exception. To ac-
commodate for serial correlation, Wu and Zhao (2007) proposed a dependence-
corrected test by assuming that the error process is strictly stationary; see also
Gao et al. (2008) for the case with stationary α-mixing observations. We shall
here substantially generalize existing results by allowing dependent and nonsta-
tionary errors, which appear commonly in practice (Elsner et al., 2008; Zhou
and Wu, 2009; Degras et al., 2012; Guinness and Stein, 2013).

Nevertheless, generalizing the aforementioned tests to allow nonstationary
error processes can be a nontrivial task. For example, the method of Müller and
Stadtmüller (1999) relies on the relationship in their equation (3.2) to estimate
the jump indicator parameter. However, if the error process is nonstationary,
then the intercept in their equation (3.2) may also depend on time or the index
variable, making it no longer suitable for the aforementioned purpose. Also, the
test of Gao et al. (2008) requires a stationary regressor process with a continuous
density function to guarantee its convergence to a proper limiting distribution,
which is violated in the current setting where the data collection time serves
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as the index variable which is deterministic and discrete. Since nonstationary
processes with time-varying features have experienced a surge of attention in
the recent literature, the current paper makes an effort and consider a non-
parametric test that can survive under both dependence and nonstationarity.
In addition, to overcome the slow convergence issue of the asymptotic extreme
value distribution, we propose to use a pivotalized simulation-assisted (PSA)
procedure, and the current test seems to outperform the one by Wu and Zhao
(2007) even for stationary error processes for which the aforementioned test
is designed; see the simulation comparison in Section 5.1. Moreover, the cur-
rent test largely relaxes the restrictive bandwidth condition required by Wu
and Zhao (2007), which can help bring a great convenience to practitioners.
To be more specific, in order for their test statistic to have a proper limiting
distribution, Wu and Zhao (2007) requires that the bandwidth bn satisfies the
condition nb3n logn → 0; see also Wu and Chu (1993) for a similar condition on
the bandwidth. Although the aforementioned condition is able to regularize the
bandwidth sequence to produce a smaller bias, it can cause a larger asymptotic
variance of the resulting kernel estimators and in turn bring more randomness
or uncertainties into the resulting test statistic making it less powerful. A pop-
ular bandwidth choice that is known to balance the bias-variance trade-off is
of the form bn = cn−1/5 for some constant 0 < c < ∞, which has been widely
used for estimation and testing purposes in the literature; see the discussion in
Zhang and Wu (2011) for further references. Nevertheless, this popular choice is
not allowed by the test of Wu and Zhao (2007), which can cause a great incon-
venience for practitioners as finding another bandwidth sequence that has the
nice interpretation and satisfies the conditions imposed by Wu and Chu (1993)
and Wu and Zhao (2007) can be a nontrivial task. Wu and Zhao (2007) did not
provide a solution on this and simply used bn = n−2/5 in their applications. In
contrast, the current test relaxes the condition to nb7n logn → 0, and therefore
one can conveniently use the popular bandwidth choice bn = cn−1/5 in practice
to avoid the hassle of finding another appropriate bandwidth subject to the
conditions imposed by Wu and Chu (1993) and Wu and Zhao (2007). Further-
more, the current paper makes an effort to further consider the situation when
the null hypothesis of no jump point is rejected by the proposed test. In this
case, we further propose an algorithm that one can use to estimate the num-
ber of jumps, locations of jump points and their jump sizes. The corresponding
asymptotic theory is also established under the nonstationary framework intro-
duced in Section 2. Unlike the case for iid normal observations, the current proof
uses probabilistic tools including the m-dependence approximation and martin-
gale decomposition to handle nonstationary error processes, and our asymptotic
theory allows a growing number of jump points.

The rest of the paper is organized as follows. Section 2 introduces the nonsta-
tionary framework and basic assumptions. Section 3 contains our main results,
including a nonparametric test for determining the existence of jumps and an
algorithm for estimating the number, location and size of jumps. Section 4 deals
with various implementation issues, and Section 5 contains Monte Carlo simula-
tions and a real data application. Technical proofs are deferred to the Appendix.
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2. Framework and basic assumptions

Assume that the data (yi)
n
i=1 are observed from the model

yi = μ(i/n) + ei, i = 1, . . . , n, (1)

where μ : [0, 1] → R is the unknown trend function and (ei)
n
i=1 is a zero-

mean error process which can be nonstationary. If the trend function is smooth,
then one can naturally estimate it, along with its derivative, by the local linear
estimator (Fan and Gijbels, 1996)

{μ̃n(t;K), μ̃′
n(t;K)} = argmin

η0,η1∈R

n∑
i=1

{yi − η0 − (i/n− t)η1}2K
(
i/n− t

bn

)
(2)

for any t ∈ [0, 1], where K(·) is the kernel function and bn is the bandwidth
sequence satisfying bn → 0 and nbn → ∞. Throughout the paper we assume
that the kernel K(·) is a symmetric nonnegative function in C1[−1, 1] satisfy-

ing
∫ 1

−1
K(v)dv = 1 and K(0) > 0. For example, if K(v) = 1I{|v|≤1}/2 is the

rectangle kernel, then the local linear estimator (2) becomes the least squares
estimator based on the local data points {yi : i/n ∈ [t − bn, t + bn]}. Other
popular choices include the Epanechnikov kernel K(v) = 3max(0, 1 − v2)/4,
the quartic kernel K(v) = 15{max(0, 1 − v2)}2/16 and the triweight kernel
K(v) = 35{max(0, 1 − v2)}3/32. For a random variable X, we write X ∈ Lq,
q > 0, if ‖X‖q = {E(|X|q)}1/q < ∞ and denote ‖ · ‖ = ‖ · ‖2.

As commented by Müller and Stadtmüller (1999), in many applications the
underlying function is smooth everywhere except for a certain number of points
where jumps occur. We shall here consider the situation that the trend function
μ(·) is piecewise smooth on [0, 1] with a finite number of jump points. To be
more precise, we say that a function f ∈ PSM [0, 1] if there exists 0 = t0 < t1 <
· · · < tM < tM+1 = 1 such that on each of the intervals [t0, t1), . . . , [tM−1, tM )
and [tM , 1], f has bounded third-order derivatives, while lims↑tk f(s) �= f(tk),
k = 1, . . . ,M . Hence, M represents the total number of jump points. We want
to test the null hypothesis that the trend function does not contain any jump,
namely

H0 : μ ∈ PS0[0, 1]. (3)

Let
K−(v) = K(v)1I{v<0}, K+(v) = K(v)1I{v≥0}

be the two one-sided kernel functions deduced from K(·), and

μ̂n,−(t) = μ̃n(t;K−), μ̂n,+(t) = μ̃n(t;K+), t ∈ [bn, 1− bn],

be the corresponding local linear estimators. Then μ̂n,−(t) and μ̂n,+(t) represent
the left and right local linear estimators by using the data points {yi : i/n ∈
[t− bn, t)} and {yi : i/n ∈ [t, t+ bn]} respectively. If the function μ(·) is smooth,
then both μ̂n,−(t) and μ̂n,+(t) are consistent estimator of μ(t), and thus their
difference is expected to be small. On the other hand, if the trend function
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has a jump at time t and μ(t−) = lims↑t μ(s) �= μ(t), then μ̂n,+(t) − μ̂n,−(t)
provides an estimator of the jump size μ(t) − μ(t−) which is relatively large.
The formulation of a formal test would require an asymptotic theory on the
discrepancy between the left and right local linear estimators, which can be
quite nontrivial even for stationary error processes. We shall here substantially
generalize earlier results by allowing nonstationary and nonlinear error processes
so that our asymptotic theory can be widely applicable.

The problem of modeling nonstationary processes has been an active area of
research; see for example Dahlhaus (1996), Nason et al. (2000), Ombao et al.
(2005), Subba Rao (2006) and references therein. A more detailed comparison on
existing frameworks can be found in Zhang and Wu (2011); see also Dahlhaus
and Subba Rao (2006) and Vogt (2012) for additional discussions. We shall
here generalize the framework of Draghicescu et al. (2009) and assume that
there exists a zero-mean nonstationary process {G(i/n;Fi)}ni=1 in the sense of
Draghicescu et al. (2009) such that

max
1≤i≤n

‖ei −G(i/n;Fi)‖p = O(n−1) (4)

holds for some p ≥ 2, where Fi = (. . . , εi−1, εi) is the shift process of iid random
variables εj , j ∈ Z, and G is a measurable function. Therefore, one can interpret
Fi and G(i/n;Fi) as the input and output of a time-varying physical system
G, which approximates the underlying data generating mechanism by (4). As
discussed in Draghicescu et al. (2009) and Zhang and Wu (2011), this framework
covers a wide range of nonstationary processes and naturally extends many
existing stationary time series models to their nonstationary counterparts.

We shall now introduce the functional dependence measure that will be
useful in our asymptotic theory. Let (ε�j )j∈Z be an iid copy of (εj)j∈Z and
F�

i = (F−1, ε
�
0, ε1, . . . , εi) be the coupled shift process, we define the functional

dependence measure

θi,q = sup
t∈[0,1]

‖G(t;Fi)−G(t;F�
i )‖q, (5)

which quantifies the dependence of G(t;Fi) on the single innovation ε0 over
t ∈ [0, 1]. The functional dependence measure (5) enables us to develop an
asymptotic theory for complicated statistics of time series data; see Wu (2005)
for a comparison with strong mixing conditions and near-epoch dependence
conditions. If the short range dependence condition Θ0,q =

∑∞
i=0 θi,q < ∞

holds for some q ≥ 2, then the long-run variance function

g(t) =
∑
k∈Z

E{G(t;F0)G(t;Fk)}

is uniformly bounded over t ∈ [0, 1]. Recall that PSM [0, 1] represents the class
of functions on [0, 1] with M jump points. We need the following technical
assumptions in establishing the main results.

(A1) The trend function μ ∈ PSM [0, 1], where M ≥ 0 can either be fixed or
grow with the sample size.
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(A2) There exists c0 < ∞ such that ‖G(s1;Fi)−G(s2;Fi)‖ ≤ c0|s1 − s2| holds
for all s1, s2 ∈ [0, 1].

(A3) The long-run variance function g(·) is bounded away from zero on [0, 1].

Condition (A2) suggests that the the error process is approximately locally
stationary. In particular, consider the process ζj(i/n) = G(i/n;Fj), j ∈ Z, which
is generated by using the same physical system G(i/n, ·) and is thus stationary.
Then by condition (A2), in the small neighborhood i − kn ≤ l ≤ i + kn with
kn/n → 0, we have ‖el − ζl(i/n)‖ = O(kn/n+ 1/n) → 0.

3. Main results

3.1. A nonparametric test for jumps

Recall that the left and right local linear estimators μ̂n,−(t) and μ̂n,+(t) are
based on the data points {yi : i/n ∈ [t − bn, t)} and {yi : i/n ∈ [t, t + bn]}
respectively, and thus the difference μ̂n,+(t)−μ̂n,−(t) provides a natural statistic
for testing whether there is a jump at time t. Let

κl =

∫ 1

0

vlK(v)dv, l = 0, 1, 2, . . . ,

and

φ =

∫ 1

0

{
(κ0κ2 − κ2

1)
−1(κ2 − κ1v)K(v)

}2
dv.

Theorem 3.1 provides the central limit theorem of μ̂n,+(t)− μ̂n,−(t) which can
be used for testing whether a jump occurs at a certain time point.

Theorem 3.1. Assume (A1), (A2) with jump points 0 < t1 < · · · < tM < 1,
Θ0,2 < ∞, nbn → ∞ and nb7n → 0. If mink∈{1,...,M+1} |tk − tk−1|/bn → ∞, then
(i) for any continuous point t ∈ (0, 1) \ {t1, . . . , tM},

(nbn)
1/2{μ̂n,+(t)− μ̂n,−(t)} ⇒ N{0, 2φg(t)};

and (ii) for any jump point tk with jump size dk = μ(tk)− lims↑tk μ(s),

μ̂n,+(tk)− μ̂n,−(tk) = dk +Op{(nbn)−1/2 + b2n}, k = 1, . . . ,M.

If t ∈ (0, 1) \ {t1, . . . , tM} is a continuous point, then the bias of current
estimator is E{μ̂n,+(t) − μ̂n,−(t)} = O{b3n + (nbn)

−1} as can be seen from
the proof of Theorem 3.1. For stationary error processes, Wu and Zhao (2007)
considered using the difference between the left and right local averages

Δn(t) = (nbn)
−1

(
n∑

i=1

yi1I{i/n∈(t,t+bn]} −
n∑

i=1

yi1I{i/n∈(t−bn,t]}

)
, (6)

and the corresponding bias is E{Δn(t)} = bnμ
′(t) + O{b2n + (nbn)

−1}. Hence,
the finite-sample performance of their method can be greatly affected by the
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steepness of the underlying function. Intuitively, the right and left local averages
in (6) estimate μ(t+ bn/2) and μ(t− bn/2) respectively, and thus the associated
bias is of order O(bn), which is larger than its local linear counterpart. Due to
the large bias, the method of Wu and Zhao (2007) can be very restrictive on
the choice of the bandwidth. In fact, they require that the bandwidth satisfies
nb3n logn → 0, which excludes the popular choice of bn = cn−1/5, where 0 <
c < ∞ is a constant; see also the discussion in Section 1. It is remarkable that
using the technique of local linear estimation usually can only bring significant
improvements for points in the boundary area (Fan and Gijbels, 1996), which
only constitutes a small proportion of the whole region and thus the difference
is usually neglected. However, for the specific problem of testing for jumps, left
and right local estimators are formed and compared, which makes each time
point a boundary point and thus improving the boundary performance by using
local linear estimators can bring significant advantages to the current problem
but was not taken into account by the test of Wu and Zhao (2007).

If one has the prior knowledge that a certain time point t ∈ (0, 1) is a potential
jump point due to the occurrence of some sudden events at that time, then
Theorem 3.1 is useful in providing a statistical test. In particular, by Theorem
3.1 (i), one rejects the null hypothesis that t is not a jump point at level α ∈ (0, 1)
if

(nbn)
1/2

∣∣∣∣ μ̂n,+(t)− μ̂n,−(t)

{2φg(t)}1/2

∣∣∣∣ > z1−α/2,

where z1−α/2 is the (1−α/2)-th quantile of the standard normal distribution. By
Theorem 3.1 (ii), the above test has unit asymptotic power as n → ∞. Never-
theless, for many applications it is usually the case that potential jump locations
are unknown to the practitioner, and the problem of identifying jump locations
can require a series of statistical analysis. We shall here provide a global test
that can be used for determining the existence of jumps in the trend function
without prespecifying potential jump locations. Theorem 3.2 shows that under
the null hypothesis (3), after proper centering and scaling the maximal dis-
crepancy between the left and right local linear estimators has the asymptotic
extreme value distribution.

Theorem 3.2. Assume (A1)–(A3) with M = 0, θn,4 = O(n−ι) for some ι ≥ 2,
and

nb5/2n /(logn)15/2 → ∞, nb7n logn → 0. (7)

Then as n → ∞,

pr

[
(nbn)

1/2 sup
t∈Tn

∣∣∣∣ μ̂n,+(t)− μ̂n,−(t)

{2φg(t)}1/2

∣∣∣∣−BK(mn) ≤
u

(2 logmn)1/2

]
→ exp{−2 exp(−u)},

where Tn = [bn, 1− bn], mn = 1/bn, and

BK(mn) = (2 logmn)
1/2 + (2 logmn)

−1/2[log logmn/2 + log{CK/(2π1/2φ)}],
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with
CK = {(κ2 − κ1)

2K(1)2 + 2κ2
2K(0)2}/(κ0κ2 − κ2

1)
2.

By Theorem 3.2, we reject the null hypothesis (3) at level α ∈ (0, 1) if

sup
t∈Tn

∣∣∣∣ μ̂n,+(t)− μ̂n,−(t)

{2φg(t)}1/2

∣∣∣∣ > (nbn)
−1/2

[
BK(mn)−

log log{(1− α)−1/2}
(2 logmn)1/2

]
. (8)

If there is at least one jump point in the trend function, namely μ ∈ PSM [0, 1]
for some M > 0, then by Theorem 3.1 (ii), the above test has unit asymptotic
power as n → ∞. If the null hypothesis (3) of no jump point is rejected, then
one would be interested in knowing the number of jump points along with their
locations and sizes, which we shall discuss in Section 3.2.

3.2. Estimating the location and size of jumps

3.2.1. The case with a single jump point

If one has prior knowledge about the jump location, say t1 ∈ (0, 1), then the
corresponding jump size can be simply estimated by the difference μ̂n,+(t1) −
μ̂n,−(t1), whose consistency is guaranteed by Theorem 3.1 (ii). We shall here
consider the situation that the jump location is unknown and needs to be es-
timated. Recall that the difference μ̂n,+(t)− μ̂n,−(t) provides a consistent esti-
mator of the jump size that is zero for continuous points, and thus it is natural
to estimate the jump location by the maximizer

t̂1 = argmax
t∈Tn

|μ̂n,+(t)− μ̂n,−(t)|.

The corresponding jump size can then be estimated by

d̂1 = μ̂n,+(t̂1)− μ̂n,−(t̂1).

Fryzlewicz (2014) considered the problem of estimating the number and loca-
tions of change-points in a piecewise-constant mean function with iid observa-
tions. We shall here consider the problem of distinguishing jumps from smooth
changes with dependent and nonstationary observations. The following theo-
rem states that t̂1 and d̂1 consistently estimate the true jump location and the
corresponding jump size respectively.

Theorem 3.3. Assume (A1)–(A3) with M = 1 and θn,4 = O(n−ι) for some

ι ≥ 2. If
∫ κ2/κ1

0
(κ0κ2 − κ2

1)
−1(κ2 − κ1v)K(v)dv < 2 and there exist ν1 > ν2 ≥ 2

such that nbν2
n → ∞ and nbν1

n → 0, then for any ε > 0 which can be taken
arbitrarily small, we have (i)

t̂1 − t1 = Op{n−(1−ε)};

and (ii)

d̂1 − d1 = Op{(nbn)−1/2 + b2n}.
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3.2.2. The Case with multiple jump points

In the existence of multiple jump points, by the discussion in Section 3.2.1 one
can naturally estimate the corresponding jump locations by local maximizers
of the discrepancy function |μ̂n,+(t)− μ̂n,−(t)|. To be more specific, we shall in
the following present an algorithm that one can use to estimate the number,
location and size of jumps.

(a) Find the critical region Jn ⊆ Tn where |μ̂n,+(t)−μ̂n,−(t)| exceeds a thresh-
old, say ϕn > 0;

(b) Find the location ϑ̂1 where |μ̂n,+(t) − μ̂n,−(t)| achieves its maximum on
Jn, and stop the algorithm if Jn is empty;

(c) Exclude the neighborhood [ϑ̂1 − 2bn, ϑ̂1 + 2bn] from Jn and repeat step

(b) until all local maximizers are found, denoted by ϑ̂1, . . . , ϑ̂N ;

(d) Estimate the number of jump points by M̂ = N and sort ϑ̂1, . . . , ϑ̂N in an

increasing order, denoted by ϑ̂(1) < . . . < ϑ̂(N);

(e) Estimate the jump locations and sizes by t̂k = ϑ̂(k) and d̂k = μ̂n,+(t̂k) −
μ̂n,−(t̂k), k = 1, . . . , N , respectively.

The following theorem provides the estimation consistency of the above algo-
rithm.

Theorem 3.4. Assume (A1)–(A3) with M ≥ 0 and remaining conditions of
Theorem 3.3. If mink∈{1,...,M+1} |tk − tk−1|/bn → ∞ and the threshold satisfies

ϕn → 0 and ϕn/{(nbn)−1/2(logn)1/2 + b3n} → ∞, then (i)

lim
n→∞

pr(M̂ = M) = 1;

and (ii) the result of Theorem 3.3 continues to hold for t̂k and d̂k, k = 1, . . . , M̂ .

4. Implementation

4.1. Estimation of long-run variance

To apply Theorems 3.1 and 3.2, we need an estimate of the long-run variance
function g(t), t ∈ (0, 1). Let τn and �n be bandwidth sequences satisfying τn → 0,
�n → 0 and nτn�n → ∞, and

λi =

⎧⎪⎨
⎪⎩

e2i + 2ei
∑n

j=1 ej1I{0<j/n−i/n≤τn
n}, if i/n ≤ τn�n;

e2i + 2ei
∑n

j=1 ej1I{0<i/n−j/n≤τn
n}, if i/n ≥ 1− τn�n;

ei
∑n

j=1 ej1I{|i/n−j/n|≤τn
n}, otherwise.

(9)

Following Zhang and Wu (2012), we estimate g(t), t ∈ [0, 1], by

ĝ(t) =
n∑

i=1

λiwi,τn(t), (10)
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where wi,b(t) = K{(i/n − t)/b}{Pb,2(t) − (t − i/n)Pb,1(t)}/{Pb,2(t)Pb,0(t) −
Pb,1(t)

2} are local linear weights with bandwidth b and Pb,l(t) =
∑n

j=1(t −
j/n)lK{(j/n − t)/b}. Theorem 4.1 provides the asymptotic property of our
long-run variance estimate (10), where (i) is a result of Proposition 4.1 of Zhang
and Wu (2012) and (ii) concerns the uniform consistency which is more desir-
able for the current problem. Note that uniform results as in Theorem 4.1 (ii)
are generally much more difficult to obtain than its counterpart as in (i), and
the detailed proof is given in the Appendix.

Theorem 4.1. Assume (A2), θn,4 = O(n−ι) for some ι > 5/4 and (4) holds
for some p ≥ 4. If g ∈ C2[0, 1], then (i) for any t ∈ [0, 1],

ĝ(t)− g(t) = Op{�1/2n + (nτn�n)
−(ι−1) + (τn�n)

(ι−1)/ι + τ2n}; (11)

and (ii)

sup
t∈[0,1]

|ĝ(t)− g(t)| = Op{ψn + (nτn�n)
−(ι−1) + (τn�n)

(ι−1)/ι + τ2n}, (12)

where ψn = n−1/4(τn�n logn)
1/2 + n1/2�n.

We shall here briefly discuss the bounds in (11) and (12). For both of them,
the optimal bounds are complicated and depend on ι, the decay rate of the
dependence. If ι ≥ 2 as assumed in Theorem 3.2, then the bound in (11) is
minimized and becomes Op{n−2(ι−1)/(5ι−3)} if τn � n−(ι−1)/(5ι−3) and �n �
n−4(ι−1)/(5ι−3), where for two positive sequences (rn) and (sn) we write rn � sn
if rn/sn + sn/rn is bounded for all large n. On the other hand, the bound in
(12) is minimized and becomes Op{n−(ι−1)/(3ι−1)} if τn � n−(ι−1)/(6ι−2) and
�n � n−(5ι−3)/(6ι−2). Hence if the error process satisfies the geometric moment
contraction condition, namely θn,4 = O(ρn) for some 0 ≤ ρ < 1 as for finite-
order autoregressive processes, then the bounds in (11) and (12) can achieve
Op(n

−2/5+ε) and Op(n
−1/3+ε) respectively for some arbitrarily small ε > 0. In

practice, the error process (ei)
n
i=1 is usually not observable, and we shall replace

it by the estimated residuals. We suggest using êi = yi − μ̂n(i/n), i = 1, . . . , n,
where for each t, μ̂n(t) is one of the one-sided local linear estimates μ̂n,±(t) that
has the smaller weighted residual mean squares

Ψn,±(t) =

∑n
i=1{yi − μ̂n,±(t)− (i/n− t)μ̂′

n,±(t)}2K±{(i/n− t)/bn}∑n
i=1 1I{K±{(i/n−t)/bn}>0} − 2

,

where
∑n

i=1 1I{K±{(i/n−t)/bn}>0}−2 represents the degree of freedom of the local
fit. Let g̃(t), t ∈ [0, 1], denote the resulting estimate of the long-run variance
function, and its asymptotic property is provided in Theorem 4.2.

Theorem 4.2. Assume conditions of Theorems 3.2 and 4.1, then

sup
t∈[0,1]

|g̃(t)− g(t)| = Op{χn + ψn + (nτn�n)
−(ι−1) + (τn�n)

(ι−1)/ι + τ2n},

where χn = {(nbn)−1/2(logn)1/2 + b2n}n5/4τn�n.
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4.2. A pivotalized simulation-assisted testing procedure

It is well known that the convergence to the extreme value distributions as in
Theorem 3.2 can be quite slow, and a very large sample size would be needed
for the approximation to be reasonably accurate. We shall here consider a piv-
otalized simulation-assisted (PSA) procedure that can help improve the finite-
sample performance of the proposed test. In particular, by (8), we reject the
null hypothesis (3) at level α ∈ (0, 1) if

Tn = sup
t∈Tn

∣∣∣∣ μ̂n,+(t)− μ̂n,−(t)

{ĝ(t)}1/2

∣∣∣∣
> {2φ/(nbn)}1/2

[
BK(mn)−

log log{(1− α)−1/2}
(2 logmn)1/2

]
.

We then generate iid standard normal random variables y◦i and compute the
corresponding test statistic T ◦

n . We repeat this for many times and obtain the
empirical quantile q̂1−α of T ◦

n . Since Tn and T ◦
n are both asymptotically pivotal

and share the same asymptotic distribution, we reject the null hypothesis (3) at
level α ∈ (0, 1) if Tn > q̂1−α. It can be seen from the simulation study in Section
5.1 that the above PSA procedure can help largely improve the finite-sample
performance, and the current method can outperform the one by Wu and Zhao
(2007) even for stationary error processes for which the aforementioned test is
designed.

4.3. Bandwidth selection

Bandwidth selection is a nontrivial problem in the application of nonparametric
methods. In the context of nonparametric hypothesis testing, it has been stud-
ied by Hall and Hart (1990), Kulasekera and Wang (1997) and Gao and Gijbels
(2008) among others. Although many candidates have been proposed in the lit-
erature, Wang (2008) commented that usually there is no uniform guidance for
an optimal choice. On the positive side, our simulation results in Section 5.1 sug-
gest that the performance of the proposed testing procedure is not very sensitive
to the choice of the bandwidth. Therefore, one can simply choose bn = n−1/5 as
suggested by Zhang and Wu (2011) that has the nice interpretation. As an alter-
native, we consider the generalized cross-validation (GCV) selector, and correct
the dependence by estimating the covariance matrix Γn = {E(eiej)}1≤i,j≤n as
suggested by Wang (1998). In particular, let Y = (y1, . . . , yn)

�, where � is the
transpose operator. Then for any bandwidth b ∈ (0, 1), recall that μ̂n(t; b) is one
of the one-sided local linear estimates μ̂n,±(t; b) that has the smaller weighted

residual mean squares (2), we denote the corresponding fitted values as Ŷ (b).
We choose the bandwidth b̃n that minimizes

GCV(b) =
n−1{Ŷ (b)− Y }�Γ̂−1

n {Ŷ (b)− Y }
{1−K(0)/(nb)}2 . (13)



Distinguishing jumps from smooth changes under dependence 717

An estimate of the covariance matrix Γn can be obtained by using the banding
technique as in Bickel and Levina (2008) and Wu and Pourahmadi (2009). The
GCV selector (13) works reasonably well in our simulation studies. For the
choice of τn and �n in estimating the long-run variance, we suggest using the
data-driven selector of Zhang and Wu (2012). When implementing the algorithm
described in Section 3.2.2 for finite-sample problems, we suggest using the cut-off
value from the hypothesis test as the threshold to device the critical region.

5. Numerical experiments

5.1. Monte Carlo simulations

We shall in this section carry out Monte Carlo simulations to examine the
finite-sample performance of the proposed test and compare it with the existing
method. The problem of testing for jumps in regression functions has attracted
much attention in the literature; see for example Hall and Titterington (1992),
Qiu and Yandell (1998), Grégoire and Hamrouni (2002b) and Joo and Qiu (2009)
for local tests designed specifically for a given potential jump point, and Wu and
Chu (1993) and Müller and Stadtmüller (1999) for global tests with unknown
jump locations. However, as commented by Wu and Zhao (2007), existing results
usually assume that the errors are iid, which can cause a serious limitation on
their applicability to time series data where dependence is the rule rather than
the exception. The aforementioned paper proposed a dependence-corrected test
by assuming that the error process is strictly stationary. We shall here provide a
brief review of their test and compare it with the proposed method. In particular,
Wu and Zhao (2007) proposed to use the test statistic

TWZ = max
kn≤i≤n−kn

|Δn(i/n)|, (14)

where Δn(·) is the difference between left and right local averages as defined in
(6), and kn = �nbn is the largest integer not exceeding nbn. To obtain the cut-
off values, Wu and Zhao (2007) suggested a simulation scheme by using quantiles
of T ◦

WZ, test statistics obtained from independent standard normal observations.
Nevertheless, due to the lack of pivotalization, asymptotic distributions of TWZ

and T ◦
WZ can be different by a scale, which needs to be estimated by

r̂ =

(
kn

2qΦ,0.75

)1/2

median(|Ai,n −Ai−1,n|, 1 ≤ i ≤ �n/kn − 1),

where qΦ,0.75 = 0.674 is the third quartile of the standard normal distribution

and Ai,n = k−1
n

∑kn

j=1 yikn+j . The cut-off value is then set to be the correspond-
ing quantile of r̂T ◦

WZ. We shall here compare it with the proposed test for both
stationary and nonstationary error processes. Let n = 500 and the trend func-
tion μ(t) = 2 sin(2πt), we consider the problem of testing the null hypothesis (3).
Throughout our numerical experiments, the rectangle kernel K(v) = 1I{|v|≤1}/2
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Fig 1. A comparison of the test by Wu and Zhao (2007) in the left panel with the proposed
test in the right panel for stationary autoregressive error processes. Q-Q plots of (a) TWZ/r̂
against T ◦

WZ; and (b) Tn against T ◦
n . The dashed line in both plots has unit slope and zero

intercept.

is used. Since the test of Wu and Zhao (2007) was developed specifically for
stationary error processes, we first consider a stationary autoregressive error
process ei = 0.3ei−1 + εi, where εi, i ∈ Z, are iid standard normal random vari-
ables, and we use the bandwidth suggested by Wu and Zhao (2007). The results
are summarized in Figure 1, from which we can see that the performance of the
simulation method of Wu and Zhao (2007) may still not be decent enough as
quantiles of TWZ are not well approximated by those of r̂T ◦

WZ. In contrast, the
proposed test seems to perform reasonably well as can be seen from Figure 1
(b).

We shall now consider the situation with nonstationary error processes. In
this case, the asymptotic distribution derived by Wu and Zhao (2007) for their
test statistic may no longer hold, as Δn(t) in (14) at different time points can
behave differently for nonstationary processes. Write ζi(t) = G(t;Fi) where
Fi = (. . . , εi−1, εi), we consider

(a) a time-varying autoregressive error process: ζi(t) = ρ(t)ζi−1(t)+ εi, where
εi, i ∈ Z, are iid random variables with pr(εi = −1) = pr(εi = 1) = 1/2;

(b) a time-varying nonlinear error process: ζi(t) = εi−ρ(t){|εi−1|− (2/π)1/2},
where εi, i ∈ Z, are iid standard normal random variables.

Model (a) generalizes the traditional autoregressive model by allowing the re-
gression coefficient to change over time, and has been widely used in modeling
nonstationary signals. By the moving-average representation of autoregressive
processes, condition (A2) is satisfied if the coefficient function ρ(·) is Lips-
chitz continuous on [0, 1] and satisfies supt∈[0,1] |ρ(t)| < 1. For model (b), by

elementary calculation ‖ζi(t1) − ζi(t2)‖ = |ρ(t1) − ρ(t2)| · ‖|εi−1| − (2/π)1/2‖,
and thus condition (A2) is satisfied if ρ(·) is Lipschitz continuous on [0, 1]. Let
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Table 1

Empirical acceptance probabilities (in percentage) of the proposed method based on Tn and
the test based on TWZ of Wu and Zhao (2007) for different choices of sample size n and

bandwidth b.

Model (a) Model (b)
Tn TWZ Tn TWZ

b 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
0.05 93.8 96.5 99.1 88.0 92.0 96.3 88.3 94.2 98.9 91.5 94.6 98.2
0.06 92.8 96.1 99.1 94.2 96.3 98.6 89.8 95.4 99.0 95.9 97.8 99.2
0.07 92.8 96.1 99.1 98.1 98.9 99.7 89.9 95.1 99.3 98.5 99.1 99.8
0.08 93.8 97.4 99.4 98.7 99.2 99.6 90.3 94.4 98.8 99.3 99.6 99.9
0.09 93.2 96.7 99.5 99.8 99.9 100.0 91.0 95.5 99.3 99.8 100.0 100.0
0.10 93.0 96.0 99.3 99.9 100.0 100.0 90.2 94.9 98.9 100.0 100.0 100.0
0.11 93.7 96.7 99.3 99.9 100.0 100.0 90.7 95.1 98.9 100.0 100.0 100.0
0.12 94.2 97.5 99.5 99.9 100.0 100.0 90.3 95.3 98.9 100.0 100.0 100.0
0.13 93.8 96.7 99.5 100.0 100.0 100.0 90.8 94.9 98.7 100.0 100.0 100.0
0.14 93.1 96.4 99.2 100.0 100.0 100.0 90.7 95.3 98.9 100.0 100.0 100.0
0.15 92.1 95.8 99.1 99.9 100.0 100.0 90.9 95.1 98.6 99.8 99.9 100.0
0.16 92.4 96.1 99.1 100.0 100.0 100.0 90.2 95.0 98.8 99.9 100.0 100.0
0.17 92.1 96.1 99.2 100.0 100.0 100.0 88.8 93.7 98.8 100.0 100.0 100.0
0.18 91.3 95.3 99.0 100.0 100.0 100.0 88.4 93.8 98.6 100.0 100.0 100.0
0.19 89.6 94.7 99.0 100.0 100.0 100.0 85.7 91.7 97.8 100.0 100.0 100.0
0.20 88.3 94.0 98.4 100.0 100.0 100.0 82.5 90.5 97.6 100.0 100.0 100.0

ρ(t) = 0.5t − 0.2, we consider the problem of testing the null hypothesis (3).
The results are summarized in Table 1 for different choices of bandwidths, from
which we can see that the empirical acceptance probabilities of the proposed
test based on Tn are fairly close to their nominal levels (90%, 95% and 99%) and
the results are not very sensitive to the choice of bandwidths. As a comparison,
empirical acceptance probabilities of the test by Wu and Zhao (2007) generally
deviate from their nominal levels.

5.2. Application to global temperature data

The data set at http://cdiac.ornl.gov/ftp/trends/temp/jonescru/global.
txt contains global monthly temperature anomalies in Celsius from 1850 to
2012. The data set has been widely studied in the literature on understanding
the trend pattern, and a time series plot is provided in Figure 2. In particu-
lar, Wu et al. (2001) modeled the trend function as piecewise constant, namely
changes in the mean can only occur by means of pure jumps. On the other
hand, Wu and Zhao (2007) proposed to model the trend as a smooth func-
tion as their test suggested that there is no jump in the trend function with a
p-value of 0.22. Nevertheless, the aforementioned results relied on the assump-
tion of stationarity, while Zhou and Wu (2009) argued that the series should
be treated as nonstationary. We shall here model the error process by (4) and
apply the proposed method to test whether the trend function contains any
jump. The selected bandwidth is b̂n = 0.18, and the corresponding test statistic
is Tn = 0.537. By the PSA procedure described in Section 4.2 with 5000 simu-
lated T ◦

n , the p-value is 0.011 thus we reject the null hypothesis of no jump at

http://cdiac.ornl.gov/ftp/trends/temp/jonescru/global.txt
http://cdiac.ornl.gov/ftp/trends/temp/jonescru/global.txt
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Fig 2. Monthly global temperature anomalies in Celsius from 01/1850 to 12/2012. The period
between the two dashed lines corresponds to 11/1944–12/1946.

the 5% significance level. We provide in Figure 2 the region (between the two
dashed lines) where the local discrepancy exceeds the critical value. It can be
seen from Figure 2 that there is a huge decrease in the mean during the small
period between the two dashed lines, which should be treated as a jump as
suggested by our analysis. By the algorithm in Section 3.2.2, the jump location
is estimated at March 1946 with a jump size d̂ = −0.26 in Celsius, indicating a
sudden cooling after the Second World War during which atomic bombs were
dropped at Japanese cities of Hiroshima and Nagasaki. Also, the end of World
War II could lead to significant changes in naval activities at and under the
sea surface, national and foreign policies of various countries and other human
activities that could potentially affect temperature measurements.

Appendix

A.1. Technical proofs

Define the projection operator

Pk(·) = E(· | Fk)− E(· | Fk−1), k ∈ Z.

Let e�i = G(i/n;Fi), i = 1, . . . , n, and for t ∈ (0, 1) let

Rn,±(t) = (nbn)
−1

n∑
i=1

(κ0κ2 − κ2
1)

−1{κ2 ∓ κ1(i/n− t)/bn}K±{(i/n− t)/bn}ei

and

R�
n,±(t) = (nbn)

−1
n∑

i=1

(κ0κ2 − κ2
1)

−1{κ2 ∓ κ1(i/n− t)/bn}K±{(i/n− t)/bn}e�i .
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The following lemma provides the asymptotic properties of Rn,±(t) and R�
n,±(t),

t ∈ (0, 1), and would be useful in proving Theorems 3.1 and 3.2. The proof of
Lemma A.1 is given in Section A.2.

Lemma A.1. Assume (A2), Θ0,2 < ∞, bn → 0 and nbn → ∞. Then (i)

sup
t∈(0,1)

‖R�
n,±(t)‖ = O{(nbn)−1/2};

(ii) for each t ∈ (0, 1),

(nbn)
1/2{R�

n,+(t)−R�
n,−(t)} ⇒ N{0, 2φg(t)};

and (iii) the same results hold with R�
n,±(t) in (i) and (ii) replaced by Rn,±(t).

Proof. (Theorem 3.1) Observe that the left and right local linear estimates have
the closed form solution[

μ̂n,±(t)
bnμ̂

′
n,±(t)

]
=

[
Un,0,±(t) Un,1,±(t)
Un,1,±(t) Un,2,±(t)

]−1 [
Vn,0,±(t)
Vn,1,±(t)

]
, (15)

where

Un,l,±(t) = (nbn)
−1

n∑
i=1

{(i/n− t)/bn}lK±{(i/n− t)/bn},

with the convention that 00 = 1 and

Vn,l,±(t) = (nbn)
−1

n∑
i=1

{(i/n− t)/bn}lK±{(i/n− t)/bn}yi.

Note that {Un,0,±(t), Un,1,±(t), Un,2,±(t)} = (κ0,±κ1, κ2) + O{(nbn)−1} uni-
formly over t ∈ [bn, 1− bn]. By Lemma A.1 (iii), we have

μ̂n,±(t)− E{μ̂n,±(t)} = Rn,±(t) +Op[(nbn)
−1{(nbn)−1/2 + b2n}]. (16)

If t ∈ (0, 1) \ {t1, . . . , tM} is a continuous point, then by (15),

E{μ̂n,±(t)}−μ(t) = b2n(κ
2
2−κ1κ3)μ

′′(t)/{2(κ0κ2−κ2
1)}+O{b3n+(nbn)

−1}. (17)

Therefore, E{μ̂n,+(t)− μ̂n,−(t)} = O{b3n+(nbn)
−1} and (i) follows by (16), (17)

and Lemma A.1 (iii). On the other hand, for any jump point tk, k = 1, . . . ,M ,
by properties of local linear estimates, we have E{μ̂n,+(tk)− μ̂n,−(tk)} = dk +
O{b2n + (nbn)

−1}. Then (ii) follows by (16) and Lemma A.1 (iii).

Recall that D±(v) = (κ0κ2 − κ2
1)

−1(κ2 ∓ κ1v)K±(v), v ∈ R, from the proof
of Lemma A.1. The following lemmas are useful in proving Theorem 3.2, and
their proofs are given in Section A.2.
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Lemma A.2. Let Z1, . . . , Zn be iid standard normal random variables and

Qn(t) = (2φnbn)
−1/2

n∑
i=1

[D+{(i/n− t)/bn} −D−{(i/n− t)/bn}]Zi, t ∈ (0, 1).

If bn → 0 and nb2n → ∞, then

pr

{
sup
t∈Tn

|Qn(t)| −BK(mn) ≤
u

(2 logmn)1/2

}
→ exp{−2 exp(−u)}.

Lemma A.3. Assume (A2), (A3) and θn,4 = O(n−ι) for some ι ≥ 2. If bn → 0

and nb
5/2
n /(log n)15/2 → ∞, then (i)

pr

{
(nbn)

1/2 sup
t∈Tn

∣∣∣∣∣R
�
n,+(t)−R�

n,−(t)

{2φg(t)}1/2

∣∣∣∣∣−BK(mn) ≤
u

(2 logmn)1/2

}

→ exp{−2 exp(−u)};

and (ii) the same result holds for Rn,+(t)−Rn,−(t).

Proof. (Theorem 3.2) Let Un,l,±(t) and Vn,l,±(t) be defined as in (15), then by
(4) and Lemma A.3 of Zhang and Wu (2012),

sup
t∈Tn

|Vn,l,±(t)− E{Vn,l,±(t)}| = Op{(nbn)−1/2(logn)1/2 + (nbn)
−1n1/4}

for l = 0, 1, and thus

sup
t∈[bn,1−bn]

|μ̂n,±(t)− E{μ̂n,±(t)}| = Op{(nbn)−1/2(logn)1/2 + (nbn)
−1n1/4}.

Note that nb2n → ∞ from (7), we have n1/4 = o{(nbn)1/2} and thus by (4) and
(15),

sup
t∈[bn,1−bn]

|μ̂n,±(t)−E{μ̂n,±(t)}−Rn,±(t)| = Op{(nbn)−3/2(log n)1/2+(nbn)
−1}.

Since μ ∈ PS0[0, 1] that has bounded third-order derivatives, by (15) and (17)
we have E{μ̂n,+(t)− μ̂n,−(t)} = O(b3n) uniformly over t ∈ [bn, 1− bn], and thus

sup
t∈[bn,1−bn]

|{μ̂n,+(t)− μ̂n,−(t)} − {Rn,+(t)−Rn,−(t)}|

= Op{(nbn)−3/2(log n)1/2 + (nbn)
−1 + b3n}.

Since (nbn logn)
1/2{(nbn)−3/2(logn)1/2+(nbn)

−1+b3n} → 0 from (7), Theorem
3.2 follows by Lemma A.3 (ii).

For any r > 0, let N (t1, r) = {t ∈ [0, 1] : |t− t1| ≤ r} be the neighborhood of
t1 with radius r. The following lemmas are useful in proving Theorem 3.3.
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Lemma A.4. Assume conditions of Theorem 3.3. Then for any positive non-

increasing sequence ξn satisfying ξn/(b
2
n + n−1/2b

1/2
n ) → ∞, we have

lim
n→∞

pr

{
|μ̂n,+(t1)− μ̂n,−(t1)| > sup

t∈Tn\N (t1,ξn)

|μ̂n,+(t)− μ̂n,−(t)|
}

= 1.

Proof. We shall first deal with the region where t ∈ Tn \N (t1, bn). Since M = 1
is assumed, the mean function does not have any jump other than t1, and thus
by the proof of Theorem 3.2,

sup
t∈Tn\N (t1,bn)

|μ̂n,+(t)− μ̂n,−(t)| = Op{(nbn)−1/2(logn)1/2 + b3n}.

On the other hand, by Theorem 3.1 (ii),

|μ̂n,+(t1)− μ̂n,−(t1)| = |d1|+Op{(nbn)−1/2 + b2n},

and thus

lim
n→∞

pr

{
|μ̂n,+(t1)− μ̂n,−(t1)| > sup

t∈Tn\N (t1,bn)

|μ̂n,+(t)− μ̂n,−(t)|
}

= 1.

Therefore, it suffices to deal with the remaining region where t ∈ N (t1, bn) ∩
Tn \N (t1, ξn), for which we need the following preparation. Let ζk(t) = G(t;Fk)
and write Ξk,m,n = E{ζk(k/n) | Fk−m,k} − E{ζk(k/n) | Fk−m+1,k}, then

e�k =
∑∞

m=0 Ξk,m,n and Ξk,m,n, k = 1, . . . , n, form a sequence of martingale

differences. Note that max1≤i≤n ‖ei − e�i‖ = O(n−1) and

‖Ξk,m,n‖ = ‖E{ζm(k/n) | F0,m} − E{ζm(k/n) | F1,m}‖ ≤ θm,2,

by Doob’s inequality and the summation by parts formula, we have

sup
t∈N (t1,bn)∩Tn

|Vn,l,±(t)− E{Vn,l,±(t)}| = Op{(nbn)−1/2}, l = 0, 1,

and thus

sup
t∈N (t1,bn)∩Tn

|μ̂n,±(t)− E{μ̂n,±(t)}| = Op{(nbn)−1/2}.

Without loss of generality, assume that the jump size d1 > 0. Let ωn = bn +
(nbn)

−1, then by (15),

sup
t∈[t1−bn,t1)∩Tn

∣∣∣∣∣E{μ̂n,+(t)− μ̂n,−(t)} − d1

∫ 1

(t1−t)/bn

D+(v)dv

∣∣∣∣∣ = O(ωn),

and

sup
t∈[t1,t1+bn]∩Tn

∣∣∣∣∣E{μ̂n,+(t)− μ̂n,−(t)} − d1

∫ −(t−t1)/bn

−1

D−(v)dv

∣∣∣∣∣ = O(ωn).
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Let PK(s) =
∫ s

0
D+(v)dv =

∫ s

0
(κ0κ2 − κ2

1)
−1(κ2 − κ1v)K(v)dv, s ∈ [0, 1], then

PK(·) is a continuous function on [0, 1] satisfying PK(0) = 0, PK(1) = 1 and
0 < PK(s) < 2 if s ∈ (0, 1). Since the kernel function K(·) is symmetric on
[−1, 1], we have

sup
t∈N (t1,bn)∩Tn

|{μ̂n,+(t)−μ̂n,−(t)}−d1{1−PK(|t1−t|/bn)}| = O{(nbn)−1/2+bn},

and thus

lim
n→∞

pr

(
inf

t∈N(t1,bn)∩Tn

[{μ̂n,+(t1)− μ̂n,−(t1)}+ {μ̂n,+(t)− μ̂n,−(t)}] > 0

)
= 1.

(18)
If |t − t1| > ξn, then by the condition on ξn we have (|t − t1|/bn)/{bn +
(nbn)

−1/2} → ∞ and

pr

(
inf

t∈N(t1,bn)∩Tn\N (t1,ξn)
[{μ̂n,+(t1)− μ̂n,−(t1)} − {μ̂n,+(t)− μ̂n,−(t)}] > 0

)

tends to one as n → ∞. Therefore,

pr

(
inf

t∈N(t1,bn)∩Tn\N (t1,ξn)
[{μ̂n,+(t1)− μ̂n,−(t1)}2 − {μ̂n,+(t)− μ̂n,−(t)}2] > 0

)

also tends to one as n → ∞, which entails the desired result. If the jump size
d1 < 0, then one can apply the above argument to the transformed data −yi,
i = 1, . . . , n, in which case |μ̂n,+(t) − μ̂n,−(t)| remains at the same but the
direction of jump is flipped.

Lemma A.5. Assume conditions of Theorem 3.3. Let ξn be as in Lemma A.4,
then for any positive nonincreasing sequence ξn satisfying ξn/(ξnbn +

n−1/2ξ
1/2
n ) → ∞, we have

lim
n→∞

pr

{
|μ̂n,+(t1)− μ̂n,−(t1)| > sup

t∈Tn\N (t1,ξ
�
n)

|μ̂n,+(t)− μ̂n,−(t)|
}

= 1.

Proof. In view of Lemma A.4, it suffices to consider the case where ξn < bn and
ξn/bn → 0. Let �n = nξn, then by the technique of martingale decomposition
as in the proof of Lemma A.4, one can obtain that for l ∈ {0, 1},

sup
t∈N (t1,ξn)∩Tn

|Vn,l,±(t1)− Vn,l,±(t)− E{Vn,l,±(t1)− Vn,l,±(t)}|

= Op

{
(nbn)

−1/2�n + �
1/2
n

nbn

}
,

by splitting the sum in Vn,l,±(t1) − Vn,l,±(t) into common and non-common
indices. Since �n/(nbn) → 0, we have

sup
t∈N (t1,ξn)∩Tn

|μ̂n,±(t1)− μ̂n,±(t)− E{μ̂n,±(t1)− μ̂n,±(t)}| = Op{(nbn)−1�1/2n }.

(19)
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Recall the definition of PK(s), s ∈ [0, 1], from the proof of Lemma A.4, and
without loss of generality assume that the jump size d1 > 0. The case with
d1 < 0 can be similarly handled as in the proof of Lemma A.4. Since the trend
function μ(·) is smooth on [0, t1), we have μ(t)− μ(t1) = O(ξn) uniformly over
t ∈ [t1 − ξn, t1) ∩ Tn, and thus by (15),

sup
t∈[t1−ξn,t1)∩Tn

|E{μ̂n,−(t1)− μ̂n,−(t)}| = O(n−1�n). (20)

On the other hand, by the smoothness of the trend function on [t1, 1], one
can group nonzero summands in E{μ̂n,+(t1)} and E{μ̂n,+(t)} according to the
closest weight or order and obtain that

sup
t∈[t1−ξn,t1)∩Tn

|E{μ̂n,+(t1)−μ̂n,+(t)}−d1PK(|t1−t|/bn)| = O{(nbn)−1+n−1�n}.

(21)
Let Ωn(t1, t) = {μ̂n,+(t1) − μ̂n,+(t)} − {μ̂n,−(t1) − μ̂n,−(t)}, then by (19)–(21)
and a similar argument on t ∈ [t1, t1 + ξn] ∩ Tn, we have

sup
t∈N (t1,ξn)∩Tn

|Ωn(t1, t)− d1PK(|t1 − t|/bn)| = Op{(nbn)−1�1/2n + n−1�n}.

If t /∈ N (t1, ξ

n), then (|t − t1|/bn)/{ξn + (nbn)

−1/2(ξn/bn)
1/2} → ∞. Since

ξn = �n/n and (nbn)
−1/2(ξn/bn)

1/2 = (nbn)
−1�

1/2
n , we have

pr

(
inf

t∈N (t1,ξn)∩Tn\N (t1,ξ
�
n)
[{μ̂n,+(t1)− μ̂n,−(t1)} − {μ̂n,+(t)− μ̂n,−(t)}] > 0

)

tends to one as n → ∞. Therefore, by (18) we have

pr

(
inf

t∈N (t1,ξn)∩Tn\N (t1,ξ
�
n)
[{μ̂n,+(t1)− μ̂n,−(t1)}2 − {μ̂n,+(t)− μ̂n,−(t)}2] > 0

)

also tends to one as n → ∞, and the result follows in view of Lemma A.4.

Proof. (Theorem 3.3) Let �n,0 = nbn and construct �n,k recursively by

�n,k = �n,k−1bn + �
1/2
n,k−1, k > 0.

Under the stated bandwidth condition, bn = o(n−1/ν1) for some ν1 > 1, and
thus �n,0 = o(n1−1/ν1). Let ς0 = 1− 1/ν1 and construct ςk recursively by

ςk = max(ςk−1 − 1/ν1, ςk−1/2), k > 0,

then ςk, k ≥ 0, form a monotonic sequence on (0, 1) and zero is its limit point.
Therefore, for any given ε > 0, there exists aKε,ν1 < ∞ such that ςk < ε/2 holds
for all k ≥ Kε,ν1 . By induction, we have �n,k = o(nςk) and thus �n,k = o(nε/2)
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for all k ≥ Kε,ν1 . We now define �n,k = �n,k(logn)
k, k ≥ 0, then for each k > 0

as n → ∞,
�n,k/{�


n,k−1bn + (�n,k−1)

1/2} → ∞,

and �n,Kε,ν1
= o(nε). Since �n,0 = �n,0 = nbn, by Lemma A.4,

lim
n→∞

pr

⎧⎨
⎩|μ̂n,+(t1)− μ̂n,−(t1)| > sup

t∈Tn\N (t1,�
�
n,1/n)

|μ̂n,+(t)− μ̂n,−(t)|

⎫⎬
⎭ = 1,

and thus by induction and the proof of Lemma A.5 we have

lim
n→∞

pr

⎧⎨
⎩|μ̂n,+(t1)− μ̂n,−(t1)| > sup

t∈Tn\N (t1,�
�
n,Kε,ν1

/n)

|μ̂n,+(t)− μ̂n,−(t)|

⎫⎬
⎭ = 1.

Since �n,Kε,ν1
/n = o(nε−1) and t̂1 by definition is the maximizer of |μ̂n,+(t) −

μ̂n,−(t)|, we have t̂1 ∈ N (t1, n
ε−1) with probability tending to one as n → ∞

and thus (i) follows. For (ii), by the proof of Lemma A.5 we have

sup
t∈N (t1,nε−1)∩Tn

|{μ̂n,+(t1)− μ̂n,+(t)} − {μ̂n,−(t1)− μ̂n,−(t)}| = Op{(nbn)−1nε}.

Recall from the proof of Lemma A.5 that Ωn(t1, t) = {μ̂n,+(t1) − μ̂n,+(t)} −
{μ̂n,−(t1)− μ̂n,−(t)}, then for any positive sequence Nn → ∞ we have

pr{n1−εbn|d̂1 − {μ̂n,+(t1)− μ̂n,−(t1)}| ≥ Nn}

≤ pr

[
n1−εbn sup

t∈N (t1,nε−1)∩Tn

|Ωn(t1, t)| ≥ Nn

]
+ pr(t̂1 − t1 > nε−1),

which goes to zero as n → ∞. Since ε > 0 can be taken arbitrarily small, the
result follows by Theorem 3.1 (ii).

Proof. (Theorem 3.4) Let J 
n = ∪M

k=1N (tk, bn) be the collection of jump neigh-
borhoods, then by the proof of Theorem 3.2,

sup
t∈Tn\J �

n

|μ̂n,+(t)− μ̂n,−(t)| = Op{(nbn)−1/2(logn)1/2 + b3n},

and thus

lim
n→∞

pr

{
sup

t∈Tn\J �
n

|μ̂n,+(t)− μ̂n,−(t)| ≥ ϕn

}
= 0.

On the other hand, by the properties of local linear estimators and the proof of
Theorem 3.1 (ii), we have

lim
n→∞

pr

[
min

k∈{1,...,M}
|μ̂n,+(tk)− μ̂n,−(tk)| ≥ ϕn

]
= 1.
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Therefore, with probability tending to one, there will be M separate regions
where |μ̂n,+(t)−μ̂n,−(t)| exceeds the threshold ϕn. Since the window size bn → 0
as n → ∞, (i) follows. The second claim follows by applying the argument of
Theorem 3.3 on N (tk, bn), k = 1, . . . ,M , respectively.

Proof. (Theorem 4.1) Let λ�
i , i = 1, . . . , n, be defined as in (9) but with (ej)

therein replaced by (e�j), then

|λi − λ�
i | ≤

⎛
⎝|e�i |+

∣∣∣∣∣∣
n∑

j=1

e�j1I{0<i/n−j/n≤τn
n}

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=1

e�j1I{0>i/n−j/n>−τn
n}

∣∣∣∣∣∣
⎞
⎠

×2|ei − e�i |+ 2|ei|
n∑

j=1

|ej − e�j |1I{|i/n−j/n|≤τn
n}.

Hence, by (4) and the proof of Lemma A.1 (i), we have

max
1≤i≤n

‖λi − λ�
i‖1 = O{n−1(nτn�n)

1/2 + τn�n},

and (i) follows by Proposition 4.1 of Zhang and Wu (2012). For (ii), note that
by (4),

max
1≤i≤n

|ei − e�i | ≤
{

n∑
i=1

(ei − e�i)
4

}1/4

= Op(n
−3/4),

and thus max1≤i≤n |ei| ≤ max1≤i≤n |e�i |+max1≤i≤n |ei − e�i | = Op(n
1/4) and

max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

|ej − e�j |1I{|i/n−j/n|≤τn
n}

∣∣∣∣∣∣ ≤
(

max
1≤k≤n

|ek − e�k|
)
(2nτn�n + 1)

= Op(n
1/4τn�n).

In addition, by the proof of Theorem 3.2, we have

max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

e�j1I{0<i/n−j/n≤τn
n}

∣∣∣∣∣∣ = Op{(nτn�n logn)1/2 + n1/4},

and thus

max
1≤i≤n

|λi − λ�
i | = Op{n−1/4(τn�n logn)

1/2 + n−1/2 + n1/2τn�n}.

Since τn → 0 and nτn�n → ∞, it suffices to prove that the same result holds for

ĝ�(t) =
n∑

i=1

λ�
iwi,τn(t).
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For this, note that

‖Pi−l(e
�
ie

�
j)‖ = ‖E(e�ie

�
j | Fi−l)− E(e�ie

�
j | Fi−l−1)‖

≤ (θl,4 + θl+j−i,4) sup
t∈[0,1]

‖G(t;F0)‖4,

we have

‖Pi−lλ
�
i‖ ≤ 2

n∑
j=1

‖Pi−l(e
�
ie

�
j)‖1I{|i−j|≤nτn
n}

≤ 2{(2nτn�n + 1)θl,4 +Θl+nτn
n�,4 −Θl−nτn
n�,4}
× sup

t∈[0,1]

‖G(t;F0)‖4. (22)

For any fixed l ∈ Z, (Pi−lλ
�
i)

n
i=1 forms a sequence of martingale differences, and

by Doob’s inequality,

∥∥∥∥∥ max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Pi−lλ
�
i

∣∣∣∣∣
∥∥∥∥∥ ≤ 2

∥∥∥∥∥
n∑

i=1

Pi−lλ
�
i

∥∥∥∥∥ = 2

(
n∑

i=1

‖Pi−lλ
�
i‖2

)1/2

. (23)

Let C denote an absolute constant whose value may vary from place to place.
Note that ĝ�(t)− E{ĝ�(t)} =

∑
l∈Z

∑n
i=1 Pi−lλ

�
iwi,τn(t) and∑

l∈Z

{Θl+nτn
n�,4 −Θl−nτn
n�,4} ≤ (2nτn�n + 1)Θ0,4,

by (22), (23) and the summation by parts formula,∥∥∥∥∥ sup
t∈[0,1]

|ĝ�(t)− E{ĝ�(t)}|
∥∥∥∥∥ ≤ C

nτn

∑
l∈Z

∥∥∥∥∥ max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Pi−lλ
�
i

∣∣∣∣∣
∥∥∥∥∥ ≤ Cn1/2�nΘ0,4.

By the proof of Proposition 4.1 of Zhang and Wu (2012),

max
1≤i≤n

|E(λ�
i)− g(i/n)| = O{(nτn�n)−(ι−1) + (τn�n)

(ι−1)/ι},

(ii) follows by properties of local linear estimates.

Proof. (Theorem 4.2) Let λ̂i, i = 1, . . . , n, be defined as in (9) but with (ej)
therein replaced by (êj), then

|λi − λ̂i| ≤

⎛
⎝|ei|+

∣∣∣∣∣∣
n∑

j=1

ej1I{0<i/n−j/n≤τn
n}

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=1

ej1I{0>i/n−j/n>−τn
n}

∣∣∣∣∣∣
⎞
⎠

×2|ei − êi|+ 2|êi|
n∑

j=1

|ej − êj |1I{|i/n−j/n|≤τn
n}.



Distinguishing jumps from smooth changes under dependence 729

By the proof of Theorem 3.2, we have

max
1≤i≤n

|ei − êi| = Op{(nbn)−1/2(log n)1/2 + b2n},

and thus max1≤i≤n |êi| ≤ max1≤i≤n |ei|+max1≤i≤n |ei − êi| = Op(n
1/4) and

n∑
j=1

|ej − êj |1I{|i/n−j/n|≤τn
n} ≤
(

max
1≤j≤n

|ej − êj |
)
(2nτn�n +1) = Op(n

−1/4χn).

In addition, by the proof of Theorem 4.1, we have

max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

ej1I{0<i/n−j/n≤τn
n}

∣∣∣∣∣∣
≤ max

1≤i≤n

∣∣∣∣∣∣
n∑

j=1

e�j1I{0<i/n−j/n≤τn
n}

∣∣∣∣∣∣+Op(n
1/4τn�n)

= Op{(nτn�n logn)1/2 + n1/4},

and thus

max
1≤i≤n

|λi − λ̂i| = Op[{(nbn)−1/2(log n)1/2 + b2n}{(nτn�n logn)1/2 + n1/4}+ χn].

Since nτn�n → ∞, the result follows by Theorem 4.1.

A.2. Additional Technical Proofs

We shall here provide the proofs for Lemmas A.1–A.3.

Proof. (Lemma A.1) For any fixed l ≥ 0, the projections Pi−le
�
i , i = 1, . . . , n,

form a sequence of martingale differences. Let ζk(t) = G(t;Fk),D±(v) = (κ0κ2−
κ2
1)

−1(κ2 ∓ κ1v)K±(v), v ∈ R, and

Mn,±(t) = (nbn)
−1

n∑
i=1

D±{(i/n− t)/bn}ζi(t).

Since ‖Pi−lζi(t)‖ = ‖P0ζl(t)‖ ≤ θl,2 and ‖Pi−l{e�i − ζi(t)}‖ ≤ ‖e�i − ζi(t)‖ ≤
c0|i/n− t| by (A2), we have

‖R�
n,±(t)−Mn,±(t)‖

≤ (nbn)
−1

∞∑
l=0

[
n∑

i=1

|D±{(i/n− t)/bn}|2‖Pi−l{e�i − ζi(t)}‖2
]1/2

≤ (nbn)
−1/2(κ0κ2 − κ2

1)
−1

{
2 sup
v∈[−1,1]

|K(v)|
}2 ∞∑

l=0

min(θl,2, bn).
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Since bn → ∞ and
∑∞

l=0 θl,2 = Θ0,2 < ∞, by the dominated convergence
theorem we have

sup
t∈(0,1)

‖R�
n,±(t)−Mn,±(t)‖ = o{(nbn)−1/2}. (24)

Note that

‖Mn,±(t)‖ ≤ (nbn)
−1

∞∑
l=0

[
n∑

i=1

|D±{(i/n− t)/bn}|2‖Pi−lζi(t)‖2
]1/2

≤ (nbn)
−1/2Θ0,2(κ0κ2 − κ2

1)
−1

{
2 sup
v∈[−1,1]

|K(v)|
}2

,

(i) follows. For (ii), let ζ̃k(t) = E{ζk(t)| Fk−m,k} where Fk−m,k = (εk−m, . . . , εk),
then

ζ̃k(t)− ζk(t) =

∞∑
l=m

[E{ζk(t) | Fk−l,k} − E{ζk(t) | Fk−l−1,k}]

and ‖E{ζk(t) | Fk−l,k} − E{ζk(t) | Fk−l−1,k}‖ ≤ θl,2. Let

M̃n,±(t) = (nbn)
−1

n∑
i=1

D±{(i/n− t)/bn}ζ̃i(t),

then we have

(nbn)
1/2‖Mn,±(t)− M̃n,±(t)‖ ≤ (κ0κ2 − κ2

1)
−1

{
2 sup
v∈[−1,1]

|K(v)|
}2 ∞∑

l=m

θl,2,

(25)

which goes to zero as m → ∞. Note that
∫ 1

−1
D+(v)

2dv =
∫ 1

−1
D−(v)

2dv = φ

and for each t ∈ (0, 1), {ζ̃k(t)}k∈Z forms an m-dependent stationary process, (ii)
follows by (24), (25) and the central limit theorem form-dependent random vari-
ables; see for example Hoeffding and Robbins (1948). Note that max1≤i≤n ‖ei−
e�i‖ = O(n−1) by (4), we have supt∈(0,1) ‖R�

n,±(t)−Rn,±(t)‖ = O(n−1), and (iii)
follows.

Proof. (Lemma A.2) Let B(v), v ∈ R, be a standard Brownian motion, and

Υ(u) = (2φ)−1/2

∫
R

{D+(v − u)−D−(v − u)}dB(v), u ∈ R.

Then Υ(u), u ∈ R, is a stationary Gaussian process with mean zero and marginal
variance (2φ)−1

∫
R
{D+(v − u) − D−(v − u)}2dv ≡ 1. In addition, let Ds(v) =

{D+(v)−D−(v)}−{D+(v−s)−D−(v−s)}, v ∈ R, then the covariance satisfies

cov{Υ(u),Υ(u+ s)} = 1− (4φ)−1

∫
R

{Ds(v − u)}2dv = 1− (2φ)−1CKs+ o(s).
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Since the process {Υ(u)}u∈[1,b−1
n −1] is identically distributed as {Υ(u)}u∈[0,b−1

n −2]

from the stationarity of Υ(u), u ∈ R, by Corollary A1 of Bickel and Rosenblatt
(1973),

pr

{
sup

u∈[1,b−1
n −1]

|Υ(u)| −BK(b−1
n − 2) ≤ u

{2 log(b−1
n − 2)}1/2

}

→ exp{−2 exp(−u)}.
Note that BK(b−1

n − 2) = BK(mn)+ o(bn) and log(b−1
n − 2) = log(mn)+O(bn),

one obtains that

pr

{
sup

u∈[1,b−1
n −1]

|Υ(u)| −BK(mn) ≤
u

(2 logmn)1/2

}
→ exp{−2 exp(−u)}. (26)

For u ∈ R, let

Υ̌(u) = (2φ)−1/2

∫
R

{
D+

(
�1 + nbnv

nbn
− u

)
−D−

(
�1 + nbnv

nbn
− u

)}
dB(v),

then by the chaining argument in the proof of Lemma 2 of Wu and Zhao (2007),
we have supu∈[1,b−1

n −1] |Υ(u)− Υ̌(u)| = Op{(nbn)−1/2 logn} and thus (26) holds

with Υ(u) therein replaced by Υ̌(u). By the scaling property of Brownian mo-
tion, the processes {Qn(t)}t∈Tn and {Υ̌(t/bn)}t∈Tn have the same joint distri-
bution, and Lemma A.2 follows.

Proof. (Lemma A.3) Recall from the proof of Lemma A.1 that ζk(t) = G(t;Fk).
By the orthogonality of martingale differences,

|E{ζ0(t)ζk(t)}| =

∣∣∣∣∣
∑
l∈Z

E{Plζ0(t)Plζk(t)}
∣∣∣∣∣

≤
∑
l∈Z

‖Plζ0(t)‖‖Plζk(t)‖ ≤
∞∑
i=0

θi,2θi+|k|,2.

Therefore, for any t1, t2 ∈ [0, 1] we have

|E{ζ0(t1)ζk(t1)} − E{ζ0(t2)ζk(t2)}| ≤ 2

∞∑
i=0

θi,2θi+|k|,2. (27)

On the other hand, let c1 = supt∈[0,1] ‖ζ0(t)‖, then by the stochastic Lipschitz
continuous condition (A2),

|E{ζ0(t1)ζk(t1)} − E{ζ0(t2)ζk(t2)}| ≤ 2c0c1|t1 − t2|. (28)

Let �n = �b−1/3
n , then by (27) and (28),

sup
|t1−t2|≤bn

|g(t1)− g(t2)| ≤ 4

∞∑
k=0

min

(
c0c1|t1 − t2|,

∞∑
i=0

θi,2θi+|k|,2

)

≤ 4�nc0c1|t1 − t2|+ 4Θ0,2Θ�n+1,2 = O(b1/3n ). (29)
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Let Qn(t), t ∈ (0, 1), be defined as in Lemma A.2 and

Q̌n(t)= {2φnbng(t)}−1/2
n∑

i=1

[D+{(i/n−t)/bn}−D−{(i/n−t)/bn}]{g(i/n)}1/2Zi,

where Z1, . . . , Zn are iid standard normal random variables. Then by (29),

supt∈Tn
|Q̌n(t)−Qn(t)| = Op{b1/3n (log n)1/2} and thus by Lemma A.2,

pr

{
sup
t∈Tn

|Q̌n(t)| −BK(mn) ≤
u

(2 logmn)1/2

}
→ exp{−2 exp(−u)}. (30)

Let S�
0 = 0 and S�

i =
∑i

j=1 e
�
j , i = 1, . . . , n. By Theorem 2 in Zhou and Wu

(2010), on a richer probability space, there exists a process (S†
i )

n
i=0 and iid

standard normal random variables Z1, . . . , Zn such that (S†
i )

n
i=0 has the same

joint distribution as (S�
i )

n
i=0 and

max
1≤i≤n

∣∣∣∣∣∣S†
i −

i∑
j=1

{g(j/n)}1/2Zj

∣∣∣∣∣∣ = op(n
3/10 logn).

By the technique of summation by parts, we have

sup
t∈Tn

∣∣∣∣∣(nbn)−1
n∑

i=1

D±{(i/n− t)/bn}[S†
i − S†

i−1 − {g(j/n)}1/2Zi]

∣∣∣∣∣
= op(n

−7/10b−1
n log n).

Let e†j = S†
j − S†

j−1, j = 1, . . . , n, and

R†
n,±(t) = (nbn)

−1
n∑

i=1

(κ0κ2 − κ2
1)

−1{κ2 ∓ κ1(i/n− t)/bn}K±{(i/n− t)/bn}e†i ,

then we have

sup
t∈Tn

∣∣∣∣∣ (nbn)
1/2{R†

n,+(t)−R†
n,−(t)}

{2φg(t)}1/2 − Q̌n(t)

∣∣∣∣∣ = op(n
−1/5b−1/2

n logn).

Since (logn)1/2n−1/5b
−1/2
n logn → 0 from (7), (i) follows by (30). For (ii), let

S0 = 0 and Si =
∑i

j=1 ej , i = 1, . . . , n, then by (4),∥∥∥∥ max
1≤i≤n

|Si − S�
i |
∥∥∥∥ ≤

n∑
i=1

‖ei − e�i‖ = O(1).

Therefore, by the technique of summation by parts, we have

sup
t∈[0,1]

|Rn,±(t)−R�
n,±(t)| = Op{(nbn)−1},

and (ii) follows.
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