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Abstract: In this paper, we analyze methods for estimating the density of
a conditional expectation. We compare an estimator based on a straightfor-
ward application of kernel density estimation to a bias-corrected estimator
that we propose. We prove convergence results for these estimators and
show that the bias-corrected estimator has a superior rate of convergence.
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1. Introduction

This paper proposes and analyzes improved methods for estimating the density
of a conditional expectation.The following example illustrates and motivates the
problem of estimating the density of a conditional expectation.A pharmaceutical
production process produces batches of an ingredient. The true sodium content
of the ingredient randomly varies across batches.It is desired to learn the density
of the true sodium content.When a sample taken from a batch is subjected to
mass spectrometry, it yields an unbiased, noisy measurement of the sodium con-
tent in this batch.Due to this noise, the sodium content is measured separately
for multiple (homogenized) samples taken from each batch. The goal here is to
learn the density of the true sodium content, based on the noisy spectrometry
measurements.

We consider a general framework into which this example fits. Let Z be an
unobserved random variable. In the sodium measurement example, Z is the
true sodium content in a batch. Let X be an observed random variable that
has probabilistic dependence with Z. In the sodium measurement example, X
is a measurement of sodium content. Let Y = E(X|Z) be the conditional ex-
pectation of X given Z. We are seeking to estimate the density of Y based
on observations of X. In the sodium measurement example, Y = Z, the true
sodium content in a batch. Unlike in Berkson’s error model that Z ≡ E[X|Z], in
general cases of our model, Y and Z can be different. For example, Z could be
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a student’s standardized test scores and Y could be the conditional expectation
of X, the student’s income at age 30.

Suppose that m observations of X are available in n samples, each sample
being associated with a single value of the random variable Z, as in the following
statistical model:

Xij = Yi + Uij , i = 1, . . . , n, j = 1, . . . ,m, (1)

Yi = E(X|Z = Zi), i = 1, . . . , n. (2)

Here Xij is the jth observation of X in the ith sample, Uij = Xij − Yi is
its observation error relative to Yi, its conditional expectation given Zi, and
Zi is the value of the random variable Z associated with the ith sample of
observations, Xi1, . . . , Xim. Our assumptions are:

1. There are unobserved i.i.d. random variables Z1, . . . , Zn from the distri-
bution of Z.

2. For each i = 1, . . . , n, Xi1, . . . , Xim is the observed i.i.d. sample from the
conditional distribution of X given Z = Zi.

3. The observation error U = X −Y has mean zero and is uncorrelated with
Y , but it need not be independent of Y or Z.

4. The normality of U is used to derive the convergence rate. However, for
the proposed methods to be effective, the distribution of U need not be
normal or even known.

5. For any value of Z, the conditional expectation Y = E(X|Z) exists and is
finite. In general, Z need not equal to Y , although Z does equal to Y in
some interesting examples including the sodium example.

6. The conditional expectation Y has a density with respect to Lebesgue
measure.

In the sodium measurement example, the variance of the observation error
U = X − Y is larger for larger values of the sodium content Y . Significant het-
eroscedasticity also appears in stochastic simulation input uncertainty analysis
[10], another example that has motivated this work. Substantial bias in density
estimation can result from ignoring heteroscedasticity [23].

We estimate the density of conditional expectation using kernel smoothing
([29] and [17]). [29] gave an introduction and review of the subject of kernel
smoothing, while [17] proposed to use this method for a nested data structure.
The standard setting for kernel smoothing for density estimation is as follows:
Suppose (Yi : 1 ≤ i ≤ n) is a sequence of independent random variables with
density g. The standard kernel smoothing estimator is

ĝ(x;h) =
1

n

n∑
i=1

1

h
K

(
x− Yi

h

)
, (3)

where the kernel K is typically chosen to be a unimodal probability density
function that is symmetric about zero, and h is the bandwidth. The estimator of
(3) immediately suggests that we can estimate f(x), the density of Y = E(X|Z)
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evaluated at x, from model (1) via

f̂(x;m,n, h) =
1

n

n∑
i=1

1

h
K

(
x− X̄m(Zi)

h

)
, (4)

with X̄m(Zi) =
∑m

j=1 Xij/m. We call this the “standard estimator”, and it was
analyzed by [17] and [25].

The cost of the experiment from which this estimator is generated is δ1n +
δ2nm, where δ1 and δ2 are the average cost used to generate Zi and Xij given
Zi, respectively. [17] and [25] gave results on the convergence rate of the mean
squared error of the standard kernel estimator as the experiment cost goes to
infinity, including an analysis of asymptotically optimal choices of m, n, and h.

Our paper makes three contributions to estimation of the density of a condi-
tional expectation. First, we extend the results of [25], who analyzed only the
case in which Z is univariate and the conditional expectation Y = E(X|Z) is
monotone in Z. In this paper, results are presented that apply more broadly
to multivariate Z. Second, we propose and analyze a bias-corrected estimator,
which has a better rate of convergence than the standard estimator. Third, we
create practical methods for selecting the sample sizes n and m in the experi-
ment design and the bandwidth h in the experiment analysis.

Before addressing these contributions in detail, we explain why this paper
is based on kernel smoothing instead of kernel deconvolution [29]. One reason
is that, when using kernel smoothing, it is easier and more straightforward to
derive expressions for asymptotic mean integrated squared error. These expres-
sions provide the foundation for showing that the bias-corrected estimator has a
better rate of convergence than the standard estimator, and for the methods to
select the sample sizes and the bandwidth. Another reason is that deconvolution
is, in a sense, not necessary. In our asymptotic setting in which m → ∞, the
standard estimator (4) based on kernel smoothing is consistent. Furthermore,
our bias-corrected estimator is an alternative to deconvolution, in the sense that
it does something different to reduce the bias caused by observation error. A
third reason is that kernel deconvolution can be applied to the problem of es-
timating the density of a conditional expectation only under more restrictive
assumptions than we require when using kernel smoothing.

Most kernel deconvolution methods are based on the assumption that the
measurement error U is independent of Y , i.e., the measurement errors Uij have
a common distribution for all i = 1, . . . , n and j = 1, . . . ,m [2]. [17] propose a
kernel smoothing estimator for the nested data structure, which is very simi-
lar with our standard estimator, yet this paper works with measurement errors
Uij that have a common distribution, which we do not assume. [3] have a ker-
nel deconvolution method that allows for errors to have different distributions,
but all the error distributions must be known. [4] discuss a kernel deconvolu-
tion method for the case of a single unknown error distribution. It seems that
it would not be practical to identify the error distributions when they differ
and are unknown, unless one could make some very strong assumptions. Other
deconvolution methods that allow for heteroscedastic errors assume the errors
are normal [23, 16]. The methods we consider do not require the errors to be
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normal; we merely perform asymptotic analysis using a normal approximation
to the distribution of an average of many errors, which can be justified by the
central limit theorem.

We analyze the convergence rate of our proposed estimators in the measure
of mean squared error (mse) and also mean integrated squared error (mise). It is
well known that if the density function g is continuous, the standard estimator
(3) is consistent in quadratic mean. That is to say, mse(ĝ(x;h)) converges to
zero for all x ∈ R. It is also well known [18] that if g is twice continuously
differentiable such that g′′ is bounded and square integrable, mise converges
to zero at an optimal rate of n−4/5 where n here is the sample size. We will
show that our standard estimator (4) is consistent in quadratic mean and mise
converges to zero at an optimal rate of c−4/7 where c is the experiment budget.
This is the same rate that [25] computed for the case in which Z is univariate. We
also discuss the convergence of the bias-corrected version of our estimator and
show that mse optimally converges to zero at a rate of c−8/11. These optimal
rates of convergence depend on asymptotically optimal choices of the sample
sizes n and m and the bandwidth h.

These questions of optimal rates of convergence and the allocation of an ex-
periment budget c to sample sizes m and n have also been addressed in related
but distinct settings. [14], [15], [9], and [1] studied estimation of the distribution
function of a conditional expectation. We believe that density estimation is also
important because a density is more easily interpreted visually than a distribu-
tion function. Estimation of the distribution is rather different from estimation
of the density, because techniques such as kernel smoothing are not necessary.
[28] studied estimation of the variance of a conditional expectation.

Development of a bias-corrected estimator is another primary contribution
of the present paper. [11] review bias-correction in kernel density estimation.
The bias they address is caused by the kernel smoothing, while we attempt
to address the bias due to both kernel smoothing and noisy observations. We
implement a method similar to jackknife bias-correction [6].

Kernel smoothing methods require the selection of the bandwidth. The per-
formance of kernel smoothing is quite dependent on bandwidth selection, which
has received much attention [29]. [21] reviews some modern bandwidth selec-
tion methods in the context of local polynomial regression, a type of kernel
regression. One such method is the empirical-bias bandwidth selection (EBBS)
developed by [20]. In our setting, we must choose the bandwidth, but given an
experiment budget c, we must also choose the number n of samples of Z and
the number m of samples of X given each Z. Applying the ideas from EBBS,
we develop a data-driven method to select each of these parameters.

The rest of the paper is organized as follows. In Section 2 we formulate esti-
mators for the density of the conditional expectation and present convergence
results. In Section 3, we develop a data-based selection method for the band-
width and the sample sizes n and m, based on EBBS. We discuss the reasons for
choosing this method and present the algorithm. In Section 4, we then explore
the performance of the estimators for a simulated test case and for the sodium
measurement example.
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2. Estimating the density of the conditional expectation and
convergence results

First consider the standard estimator (4) where X̄m(Zi) is considered as an
observation of E(X|Zi) with measurement error. This standard estimator is
motivated by the standard estimator for standard kernel density estimation.
The measurement error results in additional smoothing beyond that comes from
kernel smoothing. A similar double smoothing was noted in [22]. He considered
the problem of local polynomial regression in which the covariates are measured
with error. The double smoothing increases the bias of our estimator given in
(4) as compared with the estimator (3). Specifically, the additional smoothing
results in an additional leading term in the bias expansion. This creates an
additional leading term in the mse and mise expansions given in Theorems 2
and 3 in Section 2.1, where we present convergence results and proofs for the
standard estimator. In Section 2.2 we consider a bias-corrected version. We
derive asymptotic expressions of the mse for the estimators and establish an
improvement in the optimal rate of convergence.

2.1. Convergence results: Standard estimator

In this section we study the error in the estimator f̂(x;m(c), n(c), h) as the
experiment budget c goes to infinity. For any fixed c, the number of internal
samples m, and the number of external samples n, must be chosen so that the
total cost is c. Note that m(c) and n(c) are thus functions of the experiment
budget c. We assume that m(c) → ∞ as c → ∞ so that X̄m(c)(z0) → E(X|z0)
almost surely. Assuming m(c) → ∞, δ1n(c)+δ2n(c)m(c) ≈ δ2n(c)m(c). One can
assume, by a selection of units, that δ2 = 1 without loss of generality. Then m(c)
and n(c) must be chosen to satisfy the asymptotic relationship m(c)n(c)/c → 1
as c → ∞.

The bandwidth h = h(c) is also a function of c. To keep the notation less
cumbersome, the dependence of m, n, and h on c will be suppressed in the
calculations.

We will present results concerning the convergence of the estimator as the
experiment budget c tends to ∞. We consider the following two error criteria.
For all x ∈ R, define the mean squared error (mse) of the estimator evaluated
at x as

mse(f̂(x;m,n, h)) = E
(
f̂(x;m,n, h)− f(x)

)2
.

Define the mean integrated squared error (mise) of the estimator as

mise(f̂(·;m,n, h)) = E

∫ (
f̂(x;m,n, h)− f(x)

)2
dx.

These error criteria are not without drawbacks (see [5]) but the mathematical
simplicity is appealing.

Before stating our results, we consider the distribution of the observations
(X̄m(Zi) : 1 ≤ i ≤ n) and in doing so, we will collect some of the assumptions
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needed for the results. Let N(α1, α2) denote a normally distributed random
variable with mean α1 and variance α2. For two random objects X and Y ,
define the notation X =d Y to mean X and Y are equal in distribution. Denote
μ(·) ≡ E(X|Z = ·) and σ2(·) ≡ var(X|Z = ·). Throughout this paper we assume
the following:

A1. Conditional on (Zi : 1 ≤ i ≤ n), X̄m(Zi) =d N(μ(Zi),m
−1σ2(Zi)) for

i = 1, . . . , n and (X̄m(Zi) : 1 ≤ i ≤ n) are conditionally independent.

This essentially implies that the internal samples X(Z) conditional on Z are
unbiased and normally distributed. Of course, if the assumptions of one of the
many versions of the central limit theorem hold, then for largem this assumption
is approximately true.

We now turn to the distribution of the observations (X̄m(Zi) : 1 ≤ i ≤ n),
which are i.i.d. Under Assumption A1,

X̄m(Zi) =d Yi + Si
1

m

m∑
j=1

Uij for i = 1, . . . , n,

where

(i) ((Y1, S1), . . . , (Yn, Sn)) are i.i.d. with (Yi, Si) =d (μ(Z), σ(Z));
(ii) (Uij : 1 ≤ i ≤ n, 1 ≤ j ≤ m) are i.i.d. with Uij =d N(0, 1).

Let Um
i = m−1/2

∑m
j=1 Uij so that for i = 1, . . . , n,

X̄m(Zi) =d Yi + Si
1

m

m∑
j=1

Uij = Yi +
Si√
m
Um
i .

Note that Um
i =d N(0, 1) for i = 1, . . . , n, and (Um

i : 1 ≤ i ≤ n) are i.i.d.
Let Fm denote the distribution function of X̄m(Zi). Assuming P(S = 0) = 0,

Fm(x) = P

(
Yi +

Si√
m
Um
i ≤ x

)
= P

(
Um
i ≤ (x− Yi)

√
m

Si

)
.

The following is also assumed throughout:

A2. For each y ∈ R such that f(y) > 0, the conditional density with respect to
Lebesgue measure of the conditional distribution P(σ(Z) ∈ · |μ(Z) = y)
exists. Denote this density g(·|y).

Since σ(Z) and μ(Z) are random variables we know that the regular conditional
distribution P(σ(Z) ∈ · |μ(Z) = y) exists for all y ∈ R. This assumption simply
requires that for each y ∈ R such that f(y) > 0, P(σ(Z) ∈ · |μ(Z) = y) is
absolutely continuous with respect to Lebesgue measure.

We believe that when Z is of dimension 2 or greater, there will be many cases
in which A2 is satisfied. By assuming A2 in this paper, we focus on the case in
which Z is of dimension 2 or greater. For univariate Z, [25] showed results for
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mise that are very similar to the ones presented here but for the sake of space,
we omit these results and proofs and refer the reader to [25].

Assuming A2,

Fm(x) = P

(
Um
i ≤ (x− Yi)

√
m

Si

)

=

∫ ∫
P

(
Um
i ≤ (x− y)

√
m

s

)
g(s|y)f(y) dsdy,

where g(·|y) can be defined arbitrarily for y ∈ R such that f(y) = 0. Let Φ and
φ denote the standard normal cumulative distribution function and density,
respectively. In this notation,

Fm(x) =

∫ ∫
Φ

(
(x− y)

√
m

s

)
g(s|y)f(y) dsdy

= E

(
Φ

(
(x− Y )

√
m

S

))
.

Assuming we can differentiate the RHS, and interchange the derivative and
expectation, we have that the density fm of the distribution function Fm exists
and is given by

fm(x) =

∫ ∫ √
m

s
φ

(
(x− y)

√
m

s

)
g(s|y)f(y) dsdy. (5)

A sufficient condition for the interchange is

A3.
∫∫

(1/s) g(s|y)f(y) dsdy < ∞,

which comes from a result given by [12] and [13]; see also [8], and Lemma 1 of
[24] for the application in the present context. Returning to the density of the
observations X̄m(Z) given in (5), the change of variable z = (x− y)

√
m gives

fm(x) =

∫ ∫
1

s
φ
(z
s

)
g(s|x− z√

m
)f(x− z√

m
) dsdz.

Suppose f(·) is continuous. For y such that f(y) = 0, suppose that g(·|y) can
be defined so that g(s|·) is continuous for all s ∈ R. We assume the following:

A4. For almost all y ∈ R, g(·|y) is nonnegative;
A5. For almost all y ∈ R, g(s|y) = 0 for s < 0.

The Assumptions A4 and A5 are certainly true for y such that f(y) > 0 since
in that case g(·|y) is a density for a nonnegative random variable. Under A4,
the order of integration can be changed so that

fm(x) =

∫ ∫
1

s
φ
(z
s

)
g(s|x− z√

m
)f(x− z√

m
) dz ds. (6)
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It will be useful to think in terms of the joint density of μ(Z) and σ(Z). Let
us denote this density by α. Of course

α(x, s) = g(s|x)f(x). (7)

Define for nonnegative integer k,

α(k+1)(x, s) =
d

dy
α(k)(y, s)

∣∣
y=x

, (8)

where α(0)(x, s) = α(x, s). Also define for nonnegative integer k,

g(k+1)(s|x) = d

dy
g(k)(s|y)

∣∣
y=x

,

where g0(s|x) = g(s|x).
For ease of notation we define the following set of Assumptions parameterized

by nonnegative integer k as A6(k).

1. f(·) is k times continuously differentiable;
2. for all s ∈ R, g(s|·) is k times continuously differentiable;
3. ∃Bf > 0 such that |f (j)(·)| ≤ Bf for j = 0, 1, . . . , k;
4. ∃Bg > 0 such that |g(j)(·|·)| ≤ Bg for j = 0, 1, . . . , k;
5. ∃BS > 0 such that σ2(·) ≤ BS everywhere.

Note that f (0) and g(0) are simply f and g, respectively, and when k = 0,
Assumptions 1 and 2 imply that f(·) and g(s|·) are continuous.

The following theorem gives sufficient conditions for the consistency in qua-
dratic mean for the estimator formulated in (4).

Theorem 1. Assume A1–A5, and A6(0). Also assume that

1. K is a bounded probability density;
2. m(c) → ∞, h(c) → 0, and n(c)h(c) → ∞, as c → ∞.

Then for all x ∈ R,
lim
c→∞

mse(f̂(x;m,n, h)) = 0.

A proof is given in the Appendix. (Appendix is presented as a supplementary
materials [26])

We now turn to the asymptotic expressions of mse and mise. More restrictive
assumptions are needed to compute these asymptotic expansions. For one thing,
it is assumed that the function f(·) and the set of functions {g(s|·) : s ∈ R} are
four times continuously differentiable.

For sequences of real numbers an and bn, we say that

an = o(bn) as n → ∞ iff lim
n→∞

an/bn = 0.

For sequences of real numbers an and bn, we say that

an = O(bn) as n → ∞ iff ∃C s.t. |an| ≤ C|bn| for n sufficiently large.
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Theorem 2. Assume A1–A5, and A6(4). Also assume

1. K is a bounded probability distribution function symmetric about zero
with finite second moment;

2. m(c) → ∞, n(c) → ∞, h(c) → 0, and n(c)h(c) → ∞ as c → ∞.

Then

mse(f̂(x;m,n, h)) =

(
h2 1

2
f ′′(x)

∫
u2K(u) du+

1

m

1

2

∫
s2α(2)(x, s) ds

)2

+
1

nh
f(x)

∫
K2(u) du+ o

((
h2 +

1

m

)2

+
1

nh

)
, (9)

where α is defined in (7) and (8).

Theorem 3. Assume A1–A5 and A6(4). Also assume

1. f ′′(·) is ultimately monotone, meaning that there exists a B > 0 such that
f ′′ is monotone on [B,∞) and monotone on (−∞,−B);

2. f (k)(·) is integrable for k = 1, 2, 3, 4;
3. K is a bounded probability density function symmetric about zero with

finite second moment;
4. m(c) → ∞, n(c) → ∞, h(c) → 0, and n(c)h(c) → ∞ as c → ∞.

Then

mise(f̂(·;m,n, h))

=

∫ (
h2 1

2

(∫
u2K(u) du

)
f ′′(x) +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

dx

+
1

nh

∫
K2(u) du+ o

((
h2 +

1

m

)2

+
1

nh

)
, (10)

where α is defined in (7) and (8).

Theorem 3 follows from Theorem 2 provided the o term in (9) is integrable.
Proofs of Theorems 2 and 3 are presented in the Appendix ([26]).

Compare (10) to the mise for standard kernel density estimation (e.g., [29]),

mise(ĝ(·;h)) =

∫ (
h2 1

2

(∫
u2K(u) du

)
g′′(x)

)2

dx+
1

nh

∫
K(u)2 du

+ o

(
h4 +

1

nh

)
. (11)

It is known that mise can be decomposed into integrated squared bias and
integrated variance. We get similar formulas for the standard kernel density
estimator ĝ. Note that the O(1/nh) terms in the mise expansions in (10) and
(11) are the same for both estimators. In the proof of Theorem 3 we show that
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this term is the leading term for the integrated variance. The remaining leading
terms in (10) and (11) are those of the integrated squared bias.

For our estimator f̂ , the bias itself can be further decomposed. Suppose that
the density of an observation X̄m(Z) exists and is given by fm(·). Then

bias(f̂(x;m,n, h)) = (E(f̂(x;m,n, h))− fm(x)) + (fm(x)− f(x)) (12)

The first component, E(f̂(x;m,n, h))−fm(x), is the bias due to kernel smooth-
ing, while the second component is the bias due to measurement error. Both
the standard kernel density estimator and our estimator are biased due to the
kernel smoothing, and the leading term of this bias for both estimators is O(h2).
However, due to measurement error our estimator has an additional bias whose
leading term is O(1/m), and this bias also depends on the distribution of the
conditional variance function σ2(·) through α.

The asymptotic mise for our estimator f̂ is

∫ (
h2 1

2

(∫
u2K(u)du

)
f ′′(x)+

1

m

1

2

∫
s2α(2)(x, s)ds

)2

dx+
1

nh

∫
K2(u)du.

(13)

By choosing m, n, and h to minimize this asymptotic mise, we can achieve the
optimal asymptotic convergence. Define

A =

√√√√√ ∫
β2(x)2 dx

2
∫
β1(x)2 dx

+
(
∫
β1(x)β2(x) dx)2

16(
∫
β1(x)2 dx)2

−
∫
β1(x)β2(x) dx

4
∫
β1(x)2 dx

,

where

β1(x) =
f ′′(x)

2

∫
u2K(u) du and β2(x) =

1

2

∫
s2α(2)(x, s) ds. (14)

Then the optimal m, n, and h, denoted m∗, n∗, and h∗, are

m∗ =

(
2A3

∫
β1(x)β2(x) dx+ 2A

∫
β2(x) dx∫

K2(u) du

)2/7

c2/7, (15)

n∗ =

( ∫
K2(u) du

2A3
∫
β1(x)β2(x) dx+ 2A

∫
β2(x) dx

)2/7

c5/7, and (16)

h∗ = A

( ∫
K2(u) du

2A3
∫
β1(x)β2(x) dx+ 2A

∫
β2(x) dx

)1/7

c−1/7. (17)

Substituting m∗, n∗, and h∗ into (13) shows that the optimal rate of convergence
is of the order c−4/7. In fact, when m, n, and h are chosen such that m is of
the order c2/7, n is of the order c5/7, and h is of the order c−1/7 the optimal
rate of convergence of mise is achieved. We note that for the case in which Z
is assumed to be univariate, the optimal rate of convergence is also c−4/7 [25].
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The constants in Equations (15–17) are unlikely to be tractable to estimate; the
main purpose of the result is to provide the optimal rate of convergence.

In standard kernel density estimation, the optimal rate of convergence is
c−4/5 ([29]), while the associated constants are often intractable. One of the
contributions of this paper is to provide the optimal rate of convergence of
our estimator given additional bias due to measurement error. The decrease
in the rate of convergence is a consequence of the additional bias. For each
of the n observations X̄m(Zi), we must use m internal samples to deal with
the measurement error bias, and m → ∞ as c → ∞. In the standard kernel
density estimation setting, each observation requires only one sample since there
is no measurement error. Note that although we phrased the optimal rate of
convergence in terms of mise, the same applies to the mse. So the optimal rate
of convergence of mse for our estimator f̂(x;m,n, h) is c−4/7.

A local kernel estimate can be constructed, based on local kernel density
estimation. It allows the bandwidth to be a function of the point at which the
density function is being estimated, i.e., the local estimator is constructed by
replacing h in Equation (4) with h(x). The mise convergence rate of the local
estimator is the same as that of the standard estimator, but the local estimator
can have better performance in practice. Results are available in [24].

2.2. A bias-corrected estimator

In this section, we introduce a bias-corrected estimator of the density of the
conditional expectation. We motivate the estimator with a discussion of the
jackknife bias-corrected estimator; see [6] for an introduction. We present some
results on the asymptotic bias and variance of the bias-corrected estimate and
show that the optimal rate of mse convergence is faster than for the standard
estimator.

The jackknife estimator can be thought of as an extrapolation from one esti-
mate back to another estimate that has nearly zero bias (e.g., [27]). To under-
stand this interpretation of the jackknife estimator, we turn to an example. A
similar example was presented in [27]. Suppose we want to estimate θ = g(μ)
where g is nonlinear and twice continuously differentiable. We are given i.i.d.
data {X1, . . . , Xm} drawn from a N(μ, σ2) distribution. We take our estimate,

denoted θ̂m, to be g(X̄m) where X̄m is the sample mean of the data. Under
integrability assumption on the error, we can use Taylor expansion to show that
for an estimate based on any sample size m,

E(θ̂m) ≈ θ +
1

m
β. (18)

We actually know that β = σ2g′′(μ)/2, but that is not needed for our discussion.

The point is that the bias, E(θ̂m) − θ, is approximately linear in the inverse

sample size m. Then if we know β and E(θ̂m) for some m, by extrapolating on
the line given in (18) back to 1/m = 0, we have a nearly unbiased estimate of
θ. The remaining bias is from the lower order terms in the Taylor expansion of
E(θ̂m).
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If we have an estimate of E(θ̂m), all we need is another estimate E(θ̂m̃) for

m̃ 
= m to estimate β. For the standard jackknife estimator, E(θ̂m) is estimated

with θ̂m and E(θ̂m−1) is estimated with θ̂(·) =
∑m

k=1 θ̂(k)/m where for k =

1, . . . ,m, θ̂(k), the leave-one-out estimator, is the estimator based on all the

data less Xk. The jackknife bias-corrected estimator θ̇ is then

θ̇ = θ̂m − (m− 1)(θ̂(·) − θ̂m) = mθ̂m − (m− 1)θ̂(·).

For our standard estimator (4), we know from Theorem 2 that

E(f̂(x;m,n, h)) ≈ f(x) + h2β1 +
1

m
β2, (19)

where β1 and β2 are defined in Equation (14). Here the bias is approximately
linear in the square of the bandwidth (h2) and the inverse of the internal sam-

ple size (1/m). Given an estimate of E(f̂(x;m,n, h)) for some m and h, we
would like to extrapolate back to 1/m = 0 and h2 = 0 on the plane specified
in (19).

Similar to the typical jackknife estimator, we take the standard estimate
f̂(x;m,n, h) as an approximation of E(f̂(x;m,n, h)). To determine β1 and β2

and thus extrapolate back to 1/m = 0 and h2 = 0, we need to estimate

E(f̂(x;m,n, h)) at two other pairs of (m,h). Alternatively, we can save our-

selves a bit of work by choosing only one other pair (m̃, h̃) such that (1/m̃, h̃2)
lies on the line determined by (0, 0) and (1/m, h2).

We could estimate E(f̂(x; m̃, n, h̃)) as the average of the leave-one-out es-
timators as is done for the typical jackknife estimator. This will require m
computations of the density estimator. As a computationally attractive alter-
native, consider instead taking m̃ = m/2 and h̃ =

√
2h and take the estimate

f̂(x; m̃, n, h̃) as an approximation of E(f̂(x; m̃, n, h̃)). Note that (1/m̃, h̃2) lies
on the line determined by (0, 0) and (1/m, h2).

Using the data points f̂(x;m,n, h) and f̂(x;m/2, n,
√
2h) and extrapolating

back to 1/m = 0 and h2 = 0 gives the bias-corrected estimator

ḟ(x;m,n, h) = 2f̂(x;m,n, h)− f̂(x;m/2, n,
√
2h). (20)

We emphasize that just like the leave-one-out jackknife estimator, the data
can be reused to estimate f̂(x;m/2, n,

√
2h). That is to say, the estimator

f̂(x;m/2, n,
√
2h) can be computed with the same data set with which f̂(x;m,n, h)

is computed less half of the internal samples. However in some cases, it would
be possible to generate a new data set to estimate f̂(x;m/2, n,

√
2h). For the

remainder of this section, we consider the asymptotic bias and variance of the
bias-corrected estimator given in (20). The results cover both the case where

the data is reused in computing f̂(x;m/2, n,
√
2h) and the case where a new

data set is generated.
Based on Equation (12), the bias of the estimate ḟ(x;m,n, h) can be ex-

pressed as
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bias(ḟ(x;m,n, h)) = E(ḟ(x;m,n, h))− f(x)

= 2
[
E(f̂(x;m,n, h))− f(x)

]
−

[
Ef̂(x;m/2, n0,

√
2h)− f(x)

]
= 2

[
(E(f̂(x;m,n, h))− fm(x)) + (fm(x)− f(x))

]
−
[
(E(f̂(x;m/2, n0,

√
2h))− fm/2(x)) + (fm/2(x)− f(x))

]
. (21)

From Lemma 6 in the Appendix ([26]),

E(f̂(x;m,n, h))− fm(x)) = h2 1

2
f (2)(x)

∫
u2K(u) du

+
h2

m

1

4

∫
s2α(4)(x, s) ds

∫
u2K(u) du+ h4 1

24
f (4)(x)

∫
u4K(u) du

+ o

(
h2

m
+ h4

)

and

E(f̂(x;m/2, n0,
√
2h)) = 2h2 1

2
f (2)(x)

∫
u2K(u) du

+ 4
h2

m

1

4

∫
s2α(4)(x, s) ds

∫
u2K(u) du+ 4h4 1

24
f (4)(x)

∫
u4K(u) du

+ o

(
h2

m
+ h4

)
.

From Lemma 5 in the Appendix ([26]),

fm(x)− f(x) =
1

m

1

2

∫
s2α(2)(x, s) ds+

1

m2

1

8

∫
s4α(4)(x, s) ds+ o

(
1

m2

)

and

fm/2(x)− f(x) = 2
1

m

1

2

∫
s2α(2)(x, s) ds+ 4

1

m2

1

8

∫
s4α(4)(x, s) ds+ o

(
1

m2

)
.

Substituting into (21) proves the following theorem.

Theorem 4. Assume A1–A5 and A6(6). Also assume

1. K is a bounded probability distribution function symmetric about zero
with finite fourth moment;

2. m → ∞ and h → 0 as c → ∞.

Then

bias(ḟ(x;m,n, h)) = −h4 1

12
f (4)(x)

∫
u4K(u) du

−h2

m

1

2

∫
s2α(4)(x, s) ds

∫
u2K(u) du

− 1

m2

1

4

∫
s4α(4)(x, s) ds+ o

((
h2 +

1

m

)2
)
.
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As for the variance of ḟ(x;m,n, h), note that from the proof of Theorem 2,

var(f̂(x;m,n, h)) =
1

nh
f(x)

∫
K2(u) du+ o

(
1

nh

)

and

var(f̂(x;m/2, n,
√
2h)) =

1√
2nh

f(x)

∫
K2(u) du+ o

(
1

nh

)
.

Also,

|cov(f̂(x;m,n, h), f̂(x;m/2, n,
√
2h))|

≤
√

var(f̂(x;m,n, h))var(f̂(x;m/2, n,
√
2h))

≤ 1

21/4
1

nh
f(x)

∫
K2(u) du+ o

(
1

nh

)
.

Then

var(ḟ(x;m,n, h)) = var(2f̂(x;m,n, h)− f̂(x;m/2, n,
√
2h))

= 4var(f̂(x;m,n, h)) + var(f̂(x;m/2, n,
√
2h))

− 4cov(f̂(x;m,n, h), f̂(x;m/2, n,
√
2h))

≤ 4
1

nh
f(x)

∫
K2(u) du+

1√
2nh

f(x)

∫
K2(u) du

+ 4
1

21/4
1

nh
f(x)

∫
K2(u) du+ o

(
1

nh

)

=

(
4 +

1

21/2
+

4

21/4

)
1

nh
f(x)

∫
K2(u) du+ o

(
1

nh

)
. (22)

This shows that var(ḟ(x;m,n, h)) is O( 1
nh ). Similarly,

var(ḟ(x;m,n, h)) ≥
(
4 +

1

21/2
− 4

21/4

)
1

nh
f(x)

∫
K2(u) du+ o

(
1

nh

)
. (23)

Since

4 +
1

21/2
− 4

21/4
≈ 1.34,

we conclude that the asymptotic variance of ḟ(x;m,n, h) is greater than the

asymptotic variance of the standard estimator f̂(x;m,n, h). Therefore, it is
likely the actual variance of the bias-corrected estimate is greater than the
variance for the standard estimate. This is a common theme for bias-corrected
estimates ([6]).

The above asymptotic bias and variance results for ḟ(x;m,n, h) imply that
if m, n, and h are chosen such that m is of the order c2/11, n is of the order
c9/11, and h is of the order c−1/11 the optimal rate of convergence of mse is
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obtained and that optimal rate is c−8/11. Recall the optimal rate of mse for the
standard estimator f̂(x;m,n, h) was c−4/7. Thus, the bias-correction leads to
improved convergence. But as we noted above, the variance is greater for the
bias-corrected estimate and this can adversely affect performance, especially for
modest sample sizes.

3. Estimation implementation and bandwidth selection

In this section, we address the implementation of our estimators for the density
of the conditional expectation discussed in Section 2 and study their perfor-
mance. Implementation requires the specification of a number of inputs. For
the standard kernel density estimator presented in (3), one must choose the
kernel K and the bandwidth h. For the estimators of the density of the condi-
tional expectation including the standard kernel density estimator (4), and the
bias-corrected estimator (20), one must choose K, h, as well as the number of
external samples n and the number of internal samples m.

We choose K to be the Epanechnikov kernel which is K(x) = 0.75(1 − x2)
I(|x| < 1). [7] showed this kernel was optimal in terms of minimizing the mise
for the standard kernel density estimator (3); see [29].

The rest of this section deals with the choice of the parameters m, n, and
h. In Section 3.1 we consider the selection of these parameters for the stan-
dard kernel density estimator (4). We present a data-based method to select
these parameters based on EBBS developed by [20]. We present the algorithm
and briefly discuss why we chose this method. In Section 3.2, the data-based
parameter selection method is applied to the bias-corrected estimator (20).

3.1. Standard estimator

In Section 2 we saw how to choose the bandwidth h, the number of internal
samples m, and the number of external samples n for the standard estimator
f̂(x;m,n, h) to obtain optimal convergence: see (15). However the expressions
for m, n, and h given in (15) involve unknowns such as f ′′(x), the second
derivative of the target density, and

∫
s2α(2)(x, s) ds where α(2) is defined in

(7) and (8) as the second derivative with respect to the first argument of the
function α(y, s) = g(s|y)f(y).

To implement the estimator f̂(x;m,n, h) in an optimal way, one could at-
tempt to estimate these unknown quantities and plug these estimates into the
expressions given in (15). This type of estimator is known as a plug-in estima-
tor ([29]). In fact it is quite doable to estimate the unknowns f and f ′′ needed
for the plug-in estimator. Other needed estimates, including an estimate of the
second derivative of α, appear very difficult to obtain.

To choose the parameters m, n, and h needed to implement the estimator
f̂(x;m,n, h) we turn from optimizing the asymptotic mise to optimizing an
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approximation of mise. Note that mise can be decomposed as

mise(f̂(·;m,n, h)) =

∫
bias2(f̂(x;m,n, h)) dx +

∫
var(f̂(x;m,n, h)) dx.

It was shown in the proof of Theorem 3 that∫
var(f̂(x;m,n, h)) dx =

1

nh

∫
K2(u) du+ o

(
1

nh

)
.

An approximation for the variance component in mise is the asymptotic approx-
imation,

1

nh

∫
K2(u) du,

which is readily available. Also in the proof of Theorem 3, it was shown that∫
bias2(f̂(x;m,n, h)) dx

=

∫ (
h2 1

2

(∫
u2K(u) du

)
f ′′(x) +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

dx

+o

((
h2 +

1

m

)2
)
.

As explained above, the asymptotic approximation∫ (
h2 1

2

(∫
u2K(u) du

)
f ′′(x) +

1

m

1

2

∫
s2α(2)(x, s) ds

)2

dx

is not immediately useful given the unknowns in the approximation. To approx-
imate the bias component in mise we will instead build and estimate a model of
bias for each x. Squaring the bias and numerically integrating will then provide
an empirical model of integrated squared bias. Adding the integrated variance
approximation to this gives an empirical model of mise which can then be op-
timized with respect to m, n, and h.

The idea of building and empirically estimating a model of bias to be used
in the selection of an estimator’s parameters was introduced in [20]. It is called
the empirical-bias bandwidth selection (EBBS) method, which is developed in
[20] for local polynomial regression. EBBS uses a model of bias suggested by
the asymptotic expression of the expected value of the estimator.

In our case, by Lemmas 5 and 6 in the Appendix ([26]),

E
(
f̂(x;m,n, h)

)
= f(x) + h2 1

2
f ′′(x)

∫
u2K(u) du+

1

m

1

2

∫
s2α(2)(x, s) ds

+o(h2 +
1

m
).

The asymptotic expression

E
(
f̂(x;m,n, h)

)
= f(x) + h2 1

2
f ′′(x)

∫
u2K(u) du+

1

m

1

2

∫
s2α(2)(x, s) ds, (24)
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suggests the following model:

E
(
f̂(x;m,n, h)

)
= β0(x) + β1(x)h

2 + β2(x)
1

m
. (25)

Here β0(x) approximately corresponds to f(x), the target density evaluated at

x. The bias of f̂(x;m,n, h) is then approximately given by

β1(x)h
2 + β2(x)

1

m
. (26)

The EBBS model of bias used in local polynomial regression is a polynomial
in h ([20, 22]). In our case the model of bias is polynomial in h as well as
1/m. Lemmas 5 and 6 in the Appendix ([26]) allow for more terms used in

the asymptotic expression of E
(
f̂(x;m,n, h)

)
given in (24) which would give

more terms in model (25). Such a model would be a better approximation of

E
(
f̂(x;m,n, h)

)
but would require the estimation of additional parameters. In

this paper, we use the model (25).
Though approximate, notice that the model of bias does capture the fact that

as h → 0 and 1/m → 0, bias tends to zero. Suppose that we can estimate the
model (25). This not only gives us an empirical model of bias that can be used
in selecting the needed parameters m, n, and h but also gives another estimator
which will be of some use. Extrapolating the estimated model to h = 1/m = 0
gives an approximately unbiased estimate of f(x). This approximately unbiased

estimate of f(x) is of course β̂0, the estimate of β0. Based on the discussion of

jackknife bias-correction, one can argue β̂0 is essentially a jackknife estimate.
For more on this see [22].

The estimation procedure of the model (25) at x0 for a given experiment
budget c is outlined in Appendix ([26]) 3.

3.2. Bias-corrected estimator

Now we turn to the implementation of the bias-corrected estimator presented
in Section 2.2. We use the same data to compute the estimators on the RHS.
We again would like to use an expression for asymptotic mise to guide the
modeling of mise. Recalling the decomposition of mise, we thus need asymptotic
expressions for integrated, squared bias and integrated variance. Theorem 4 gives
an asymptotic expression for bias. Let us assume that we can integrate squared
bias so that we have the asymptotic expression of integrated, squared bias∫ (

− h4 1

12
f (4)(x)

∫
u4K(u) du− h2

m

1

2

∫
s2α(4)(x, s) ds

∫
u2K(u) du

− 1

m2

1

4

∫
s4α(4)(x, s) ds

)2

dx.

This suggests that we model the expectation of ḟL(x;m,n, h) as

E
(
ḟL(x;m,n, h)

)
= β0(x) + β1(x)h

4 + β2(x)
h2

m
+ β3(x)

1

m2
.
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The bias of ḟL(x;m,n, h) is then approximately

β1(x)h
4 + β2(x)

h2

m
+ β3(x)

1

m2
. (27)

Let us also assume that the upper and lower bounds on variance given in (22)
and (23) integrate. Moreover, since we are reusing the data, assume that the

covariance of f̂L(x;m,n, h) and f̂L(x;m/2, n,
√
2h) is equal to the approximate

upper bound

1

21/4
1

nh
f(x)

∫
K2(u) du,

so that we can approximate the variance component in mise with the integrated
asymptotic expression from the lower bound of var(ḟL(x;m,n, h). This approx-
imation is (

4 +
1

21/2
− 4

21/4

)
1

nh

∫
K2(u) du. (28)

We thus have an approximation for the variance component of mise (28) and a
model for the bias (27). The tuning parameter values for standard estimators
mentioned in Appendix ([26]) 3 work well here.

4. Numerical experiments

In this section we examine the performance of the implementations discussed in
the previous section on the sodium measurement example, along with another
test case and a financial risk management example. To assess performance we
consider representative plots and the behavior of estimated mise.

4.1. Test case

In this two-dimensional test case, Z = (Z1, Z2) has a standard bivariate normal
distribution. Conditional on Z,

X(Z) =d N

(
Z1 + Z2,

(
1− 1

1 + 2−1/2|Z1 − Z2|

)2
)
.

Then the random variable E(X|Z) = Z1+Z2 is normally distributed with mean
0 and variance 2. This is a straightforward example in which all the assumptions
for Theorem 3 are satisfied. We consider this example mainly to numerically
verify that the rate of mise convergence for the standard estimator is c−4/7 as
suggested by Theorem 3.

In Figure 1, the standard density estimator is plotted for two different exper-
iment budgets along with the target density for the first test case. The figure
shows that, as expected, the performance of the estimator improves as the ex-
periment budget increases.
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Fig 1. The standard kernel density estimator for two different experiment budgets along with
the target density.

We now turn to mise convergence. For clarity, we no longer suppress the
dependence of the various estimators and parameters on the experiment budget
c. To estimate mise(c), mise at a given experiment budget c, we first replicate
the density estimator 50 times:

{f̂(·;m(c), n(c), h(c))k : k = 1, . . . , 50}.

We define integrated squared error (ise) as follows:

ise(c) =

∫
[f̂(x;m(c), n(c), h(c))− f(x)]2 dx.

For each k = 1, . . . , 50, we use numerical integration to compute

isek(c) =

∫
[f̂(x;m(c), n(c), h(c))k − f(x)]2 dx.

Our estimate for mise(c) is then

ˆmise(c) =
1

50

50∑
k=1

isek(c).

In Figure 2, we plot log(mise(c)) vs. log(c) at c = 218, 220, 222, 224 and the
least squares regression line for the standard estimator. The linearity of the plot
suggests that over the particular range of experiment budgets c, the estimator’s
mise(c) has the form mise(c) = V cγ for some constants V and γ. Suppose that

δ̂0 and δ̂1 are the estimated intercept and slope of the regression line plotted
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Fig 2. Plot of log(mise(c)) vs. log(c) at c = 218, 220, 222 for the standard kernel density
estimator.

in the figures. Then δ̂1 estimates γ and exp(δ̂0/δ̂1) estimates V . Given that
the optimal mise convergence rate is c−4/7 we expect that, asymptotically, γ =
−4/7 ≈ −0.57. The estimated intercept and slope in Figure 2 are −7.51 and
−0.62, respectively. So it appears that the estimator performs as expected.

4.2. Sodium measurement example

In this section, we return to the sodium measurement example described in
Section 1 and show that the bias-corrected estimator we proposed in Section
2.2 outperforms the standard estimator even when the experiment budget is
small.

Consider an experiment with m = 5 repeated sodium measurements for each
of n = 300 batches of ingredient having true sodium content Zi, i = 1, . . . , n. For
the purpose of assessing the performance of the estimators, we use simulation
to generate data for this example. In the simulation, The distribution of Z is a
three parameter lognormal distribution: lognormal(μ = 1.544, σ = 0.5, t = 2),
which has mean 7.307 and standard deviation 2.828. Note that parameters μ
and σ correspond to the mean and standard deviation of the variable’s natu-
ral logarithm, while t is the location parameter. For any i and j, we take the
measurement error Uij = Xij −Zi to be normally distributed with standard de-
viation 0.6 + 0.5Zi. The bias-corrected estimator significantly outperforms the
standard estimator in terms of mean integrated squared error: when the exper-
iment was repeated 5000 times, the estimators had mise of 0.0061 and 0.0103,
respectively.
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Fig 3. The true density, standard kernel-smoothing estimator, and bias-corrected kernel-
smoothing estimator, in the sodium measurement example. hks and hbcks are bandwidths
used for standard kernel-smoothing estimator, and bias-corrected kernel-smoothing estimator
respectively.

Figure 3 plots the bias-corrected estimator (solid curve) compared with the
standard estimator (dashed curve) for one simulated data set. The bias-corrected
estimator is much closer to the true density in the center of the distribution and
in the left tail. Although the bias-corrected estimator is less smooth than the
standard estimator in the right tail, this is mainly due to the presence of few
observations near extreme quantiles. In this situation, poor density estimation
in the tail is a typical problem for kernel density estimators [29].

4.3. Financial risk management example

In this section, we apply our bias-corrected estimator to an example in financial
risk management. This financial simulation example was used and described in
detail by [28]. The scenario Z = (S1, · · · , Ss) is an s-dimensional random vector,
representing a simulated time series of future stock prices. We want to know the
density of Y , the profit and loss (P&L) that would be earned by a particular
financial strategy in this scenario. The P&L in this example is

Y = (p0 +Δ0S0)e
rT +

s∑
k=1

(Δk −Δk−1)Ske
r(T−tk) − |Ss −Q|, (29)
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where p0, Δ0, S0, r, T , Q and t1, . . . , ts are known parameters, S1, · · · , Ss are
the simulated future stock prices that make up the scenario Z, and Δ1, . . . ,Δs

are amounts of stock that will be owned at the future times t1, . . . , ts. However,
Δ1, . . . ,Δs are unknown functions of Z. Therefore Y cannot be directly observed
based on simulating the scenario Z. However, Y can be observed with noise. To
get such an observation, X, we simulate ψ1, . . . , ψs conditional on Z, where each
ψk is an unbiased, noisy observation of Δk. This is possible because it is known
how to simulate a random variable ψk whose conditional expectation given Z is
Δk. Then

X = (p0 +Δ0S0)e
rT +

s∑
k=1

(ψk − ψk−1)Ske
r(T−tk) − |Ss −Q| (30)

and the P&L Y = E[X|Z]. The resulting simulation is a nested simulation: the
outer level of simulation samples the scenario Z = (S1, · · · , Ss), and the inner
level of simulation samples ψ1, . . . , ψs given Z and then computes X. The steps
in this simulation are:

• For i = 1, . . . , n, simulate scenario Zi = (Si1, · · · , Sis).

– For j = 1, · · · ,m, simulate ψij1, . . . , ψijs conditional on Zi and cal-
culate

Xij = (p0 +Δ0S0)e
rT +

s∑
k=1

(ψijk − ψi,j,k−1)Sike
r(T−tk) − |Sis −Q|.

Figure 4 plots the bias-corrected estimator (solid curve) compared with the
standard estimator (dashed curve) for one simulated data set. The bias-corrected
estimator outperforms the standard estimator on this data set where m = 40
and n = 5000. An inner-level sample size of 40 was found to be nearly optimal
for the purpose of [28], which was to estimate the variance of the P&L Y .

5. Conclusions

We proposed a bias-corrected estimator for the density of a conditional expecta-
tion, based on kernel smoothing. We derived results about the convergence rates
of this estimator and a standard kernel smoothing estimator; the bias-corrected
estimator has a superior convergence rate. Using the asymptotic analysis and
EBBS, we created algorithms for choosing the bandwidth and the sample sizes
given an experiment budget. When applied to a practical example with moderate
sample sizes, the bias-corrected estimator performed better than the standard
estimator.

Supplementary Material

Appendix to “Estimating the density of a conditional expectation”
(doi: 10.1214/16-EJS1121SUPP; .pdf).

http://dx.doi.org/10.1214/16-EJS1121SUPP
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Fig 4. The true density, standard kernel-smoothing estimator, and bias-corrected kernel-
smoothing estimator, in the P&L example. hks and hbcks are bandwidths used for standard
kernel-smoothing estimator, and bias-corrected kernel-smoothing estimator respectively.
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