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1. Introduction

Minka [8] and Minka and Winn [9] describe a general prescription for approx-
imate inference in hierarchical Bayesian models known as expectation propaga-
tion, building on earlier work on topics such as assumed density filtering (e.g.
Maybeck [6]) and loopy belief propagation (e.g. Frey and MacKay [3]). Expecta-
tion propagation is used to achieve fast deterministic inference in the Infer.NET
software platform (Minka et al. [10]). Infer.NET also supports mean field vari-
ational Bayes (e.g. Wainwright and Jordan [14]) using the variational message
passing formulation (Winn and Bishop [18]), for achieving similar aims. A small
number of numerical studies (e.g. Minka [7]) have shown that expectation prop-
agation is often more accurate than mean field variational Bayes.

Despite these developments, expectation propagation is virtually unknown in
mainstream Statistics. Prescriptions such as those given in Minka [8] and Minka
and Winn [9] use concepts such as factor graphs, message passing and Kullback-
Leibler projection; which are unfamiliar to most statisticians. Our main contri-
bution in this article is to obtain the explicit form of expectation propagation
for a specific statistical model. By “explicit” we mean that a programmer could
readily implement an expectation propagation fitting and inference algorithm
based on the formulae given in Sections 2 and 4. We also avoid use of any aux-
iliary approximations – following Minka [8] and Minka and Winn [9] exactly.
With succinctness in mind, we choose a particularly simple statistical scenario:
Bayesian inference based on Normal random sample. Despite its simplicity, 12
pages of algebra, given in Appendix A, are required to derive the explicit forms
fromMinka [8]. Our contributions allow statistical analysts to see exactly what is
involved in deriving and implementing expectation propagation. Zoeter and Hes-
kes [19] provided details on expectation propagation for a stochastic volatility
model. However, they used a least squares approximation to (Inverse) Gamma
density projection, whereas we do this projection exactly via our Result 2.
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As mentioned above, a prescription for expectation propagation for general
Bayesian models is given in Minka [8]. This prescription involves: (1) specifying
a product density form for approximating the joint posterior density function
of the model parameters, latent and auxiliary variables, (2) forming the factor
graph based on the model and the product density form, (3) computing mes-
sages for passing between the factors and nodes of the factor graph. The boxed
algorithm at the end of Section 6 of Minka [8], together with his equations
(54) and (83), is the formulation of expectation propagation that we use in this
article.

In Section 2 we provide some preliminary definitions and results. Section 3
contains a summary of expectation propagation for general models. The center-
piece of the article is Section 4 in which we give the explicit form of expectation
propagation for a Normal random sample model. In Section 5 we perform some
comparisons with mean field variational Bayes approximate inference for the
same model. A simulation study shows expectation propagation to usually be
the more accurate of the two, although this has to be traded off against a much
larger algebraic and computational overhead. All derivations are in Appendix A.

2. Preliminary definitions and results

The explicit form of expectation propagation for (4.2) under (4.4) depends on
several definitions and results, which we lay out in this section.

2.1. Non-analytic function definitions

The following integral-defined functions are required:

A(p, q, r, s, t, u) ≡
∫ ∞

−∞

xp exp(qx− rx2) dx

(x2 + sx+ t)u
,

p ≥ 0, q ∈ R, r > 0, s ∈ R, t > 1
4 s

2, u > 0

and

B(p, q, r, s, t, u) ≡
∫ ∞

−∞

xp exp{qx− rex − sex/(t+ ex)} dx
(t+ ex)u

,

p ≥ 0, q ∈ R, r > 0, s ≥ 0, t > 0, u > 0.

(2.1)

Appendix B of Wand et al. [17] describes stable and efficient computation of
functions of this type via quadrature. To avoid overflow and underflow, it is im-
portant to work with log |A(p, q, r, s, t, u)| and sign(A(p, q, r, s, t, u)) rather than
A(p, q, r, s, t, u) itself. The same applies to computations involving the function
B(p, q, r, s, t, u).

The only other non-analytic function required for algorithm specification is

(log−digamma)−1(x), x > 0, (2.2)
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the inverse of the function

(log−digamma)(x) ≡ log(x)− digamma(x), x > 0

with digamma(x) ≡ d
dx log{Γ(x)}. This raises the question of existence and

uniqueness of (2.2) over R
+ ≡ {x ∈ R : x > 0}. The following theorem shows

that (2.2) is well-defined:

Theorem 1. The function log−digamma is a bijective mapping from R
+ onto

R
+.

A proof of Theorem 1 is given in Appendix A.1.
The monotonicity and smoothness of the function log−digamma means that

(log−digamma)−1 can be computed rapidly via Newton-Raphson iteration.
Good starting values can be obtained from

1/(2x) < (log−digamma)(x) < 1/x, x > 0.

However it is worth noting that computation of (log−digamma)(x) via subtrac-
tion can have round-off error problems for very large x, and lead to zero being
returned erroneously. The R language (R Development Core Team [11]) function
logmdigamma(), in the package statmod (Smyth [12]), overcomes this problem
and accurately computes (log−digamma)(x) for an input x > 0. In the simula-
tions described in Section 5 we work with logmdigamma() in our computation
of (log−digamma)−1.

2.2. Distributional definitions and natural parametrization

The model specification and inference algorithms can be done in terms of two
distributional families, the Normal distribution and the Inverse Gamma distri-
bution.

The Normal distribution with mean μ and variance σ2 > 0, denoted by
N(μ, σ2), has corresponding density function

p(x) = (2πσ2)−1/2 exp{−(x− μ)2/(2σ2)}. (2.3)

The Inverse Gamma distribution with shape parameter κ > 0 and rate param-
eter λ > 0, denoted by IG(κ, λ), has corresponding density function

p(x) = {λκ/Γ(κ)}x−κ−1 exp(−λ/x), x > 0. (2.4)

Each of (2.3) and (2.4) are exponential family density functions, since they can
be written in the form

p(x) = exp{T (x)Tη −A(η) +B(x)}

where T (x) is the natural statistic and η is the natural parameter. For (2.3) we
have

T (x) =

[
x
x2

]
, η ≡

[
η1
η2

]
=

[
μ/σ2

−1/(2σ2)

]
, A(η) = − η21

4η2
− 1

2 log(−2η2)
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Fig 1. Kullback Leibler projections of p(x) = 1, 1 < x < 2, (left panel) and p(x) =
2x exp(−x2), x > 0, (right panel) onto the Normal and Inverse Gamma families.

and B(x) = −1
2 log(2π). For (2.4) we have

T (x) =

[
log(x)
1/x

]
, η ≡

[
η1
η2

]
=

[
−κ− 1
−λ

]
,

A(η) = log Γ(−η1 − 1) + (η1 + 1) log(−η2)

and B(x) = 0.
The inverse mappings from the natural parameters to the common parame-

ters are [
μ
σ2

]
≡
[

−η1/(2η2)
−1/(2η2)

]
and

[
κ
λ

]
≡
[

−η1 − 1
−η2

]
.

2.3. Kullback-Leibler divergence and projection

For arbitrary density functions p1 and p2 on R
d,

KL(p1 ‖ p2) ≡
∫
Rd

p1(x) log
{
p1(x)/p2(x)

}
dx

denotes the Kullback-Leibler divergence of p2 from p1. Note that KL(p1 ‖ p2) ≥ 0
for any p1 and p2 and that, in general, KL(p1 ‖ p2) �= KL(p2 ‖ p1).

Intrinsic to expectation propagation is the notion of Kullback-Leibler pro-
jection. Let Q be a family of univariate density functions. Then the Kullback-
Leibler projection of the univariate density function p onto Q is given by

proj[ p ] ≡ argmin
q∈Q

KL(p ‖ q) (2.5)

In the case where Q is an exponential family of density functions (2.5) sim-
plifies to a convenient moment-matching problem. Suppose that

Q = {q : q(x) = exp{T (x)Tη −A(η) +B(x)}, η ∈ H}
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where H is the space of allowable values of η. Then substitution into (2.5) leads
to

proj[ p ] = exp{T (x)Tη∗ −A(η∗) +B(x)}

where η∗ ≡ argmin
η∈H

{
A(η)− ηT

∫ ∞

−∞
T (x) p(x) dx

}
.

However, an exponential family result that equates the derivative vector of
A(η) with the expectation of the natural statistic leads to η∗ being the solution
to ∫ ∞

−∞
T (x) p(x) dx =

∫ ∞

−∞
T (x) exp{T (x)Tη −A(η) +B(x)} dx. (2.6)

In other words, η∗ is chosen so that p and proj[ p ] have the same natural statistic
moments. With relatively little algebra we then obtain:

Result 1. Let x be non-degenerate random variable for which E(x2) exists and
with density function p. The Kullback-Leibler projection of p onto the Normal
family is the N(μ∗, (σ∗)2) density function where

μ∗ = E(x) and (σ2)∗ = E(x2)− (μ∗)2.

Result 2. Let x be a positive-valued non-degenerate random variable for which
E(1/x) and E{log(x)} exist and with density function p. The Kullback-Leibler
projection of p onto the Inverse Gamma family is the IG (κ∗, λ∗) density function
where

κ∗ = (log−digamma)−1
(
log E(1/x) + E{log(x)}

)
and λ∗ = κ∗/E(1/x).

Figure 1 provides illustration of Kullback-Leibler projection onto the Nor-
mal and Inverse Gamma families. The left-hand panel shows the projections of
p(x) = 1, 1 < x < 2, the density function of the Uniform distribution on (1, 2).
The input function for the right-hand panel is p(x) = 2x exp(−x2), x > 0, the
Weibull density function with shape parameter 2.

3. Expectation propagation in general

We first describe expectation propagation for general Bayesian statistical models
with observed data D and parameter vector θ. Consider approximations to the
joint posterior density function p(θ|D) that have generic form

p(θ|D) ≈
M∏
i=1

q∗(θi)

where
{θ1, . . . ,θM} (3.1)
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is some partition of θ and the q∗(θi)s are chosen to optimize a particular
functional closeness criterion. For example, taking the q∗(θi)s to minimize the
Kullback-Leibler divergence of p(θ|D) from a product density over the elements
of (3.1),

KL

(
M∏
i=1

q(θi)

∥∥∥∥∥ p(θ|D)

)
,

corresponds to mean field variational Bayes and the q∗s can be obtained using
a convex optimization scheme (e.g. Section 10.1.1, Bishop [2]). Variational mes-
sage passing solves the mean field variational Bayes optimization problem via
iteratively updating messages on a factor graph as described in Minka [8] and
Minka and Winn [9]. Expectation propagation is driven by the reverse Kullback-
Leibler divergence

KL

(
p(θ|D)

∥∥∥∥∥
M∏
i=1

q(θi)

)
. (3.2)

The challenges of minimizing (3.2) are discussed in Section 6 of Minka [8]. The
approximate inference method known as belief propagation (Frey and MacKay
[3] ) is based on (3.2) but leads to very complex approximating density functions.

Expectation propagation overcomes the complexity problem of belief propa-
gation via Kullback-Leibler projection onto exponential density functions. Minka
[8] develops a strategy for approximate minimization of (3.2) for general p(θ|D)

and
∏M

i=1 q(θi) in terms of messages passed on an appropriate factor graph.
We now provide details. A convenient notation for subsets S of {1, . . . ,M} is

θS ≡ {θi : i ∈ S}.

Given the partition (3.1), the joint density function of θ and D is expressible
as

p(θ,D) =
∏N

j=1 fj
(
θSj

)
for subsets Sj of {1, . . . ,M}
and factors fj , 1 ≤ j ≤ N .

(3.3)

For example, if p(θ,D) is based on a directed acyclic graphical model with
nodes θ1, . . . ,θM and D then

p(θ,D) =

{
M∏
i=1

p(θi|parents of θi)

}
p(D| parents of D) (3.4)

is an N = M + 1 example of (3.3) with fj , 1 ≤ j ≤ M , corresponding to
density function of θj conditional on its parents and fM+1 corresponding to
the likelihood. Each factor is a function of the subset of (3.1) corresponding
to parental relationships in the directed acyclic graph. Further factorization of
(3.4) may be possible.

The factor graph in Figure 2 shows an M = 9, N = 11 example of (3.3). The
edges link each factor to the stochastic nodes on which the factor depends.
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Fig 2. A factor graph corresponding to a Bayesian model with stochastic nodes θ1, . . . , θ9 and
factors f1, . . . , f11.

The following notation is useful for describing the Minka [8] and Minka and
Winn [9] expectation propagation algorithm:

neighbors(j) = {1 ≤ i ≤ M : θi is a neighbor of fj}

Examples of this notation for the Figure 2 factor graph are

neighbors(1) = {1}, neighbors(2) = {1, 2, 9} and neighbors(3) = {6, 7, 8, 9}.

According to this notation, p(θ,D) =
∏N

j=1 fj(θneighbors(j)). For each 1 ≤ i ≤
M and 1 ≤ j ≤ N , the expectation propagation stochastic node to factor
message updates are

mθi→ fj (θi) ←−
∏

j′ �=j: i∈neighbors(j′)

mfj′→θi(θi) (3.5)

and the factor to stochastic node updates are

mfj→θi(θi) ←−

proj

⎡
⎢⎣

Z−1mθi→ fj (θi)

×
∫
f j(θneighbors(j))

∏
i′∈neighbors(j)\{i}

mθi′→fj (θi′) dθneighbors(j)\{i}

⎤
⎥⎦

mθi→ fj (θi)

(3.6)

where Z is the normalizing factor that ensures that the function of θi inside the
proj[·] is a density function. The normalizing factor in (3.6) involves summation
if some of the θi′ have discrete components. The proj[·] in (3.6) denotes Kullback-
Leibler projection onto an appropriate exponential family of density functions.
The appropriate family is driven by conjugacy constraints. If neighbors(j) = {i}
then (3.6) reduces to

mfj→θi(θi) ←−
proj

[
mθi→ fj (θi)fj(θi)/Z

]
mθi→ fj (θi)

. (3.7)
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If fj(θi) is proportional to an exponential density function and mθi→ fj (θi) is
initialized to be in the same family as fj(θi) then (3.7) becomes mfj→θi(θi) =
fj(θi). As the stochastic node to factor messages get updated using (3.5) similar
conjugacy contraints drive the choice of the family for the proj[·] operator for
other mfj→θi updates. Upon convergence of the messages, the Kullback-Leibler
optimal q-densities are obtained via

q∗(θi) ∝
∏

j:i∈neighbors(j)

mfj→θi(θi). (3.8)

A reasonable stopping criterion is the approximate marginal log-likelihood
having a negligible relative change. An approximate marginal log-likelihood ex-
pression for general factor graphs is given in Appendix B of Minka and Winn
[9], with justification from the arguments of Section 4.4 of Minka [8]. In terms
of the notation of this section, the expression is:

log{∼p(D; q)} =

M∑
i=1

log sθi +
N∑
j=1

log sfj (3.9)

where

sθi ≡
∫ ∏

j:i∈neighbors(j)

mfj→θi(θi) dθi (3.10)

and

sfj ≡

∫
f j(θneighbors(j))

∏
i∈neighbors(j)

mθi→fj (θi) dθneighbors(j)

∫ ∏
i∈neighbors(j)

mθi→fj (θi)mfj→θi(θi) dθneighbors(j)

. (3.11)

This stopping criterion is not necessarily monotone, nor is convergence guar-
anteed (e.g. Bishop [2], Section 10.7). However, employment of damping strate-
gies often leads to successful convergence (e.g. Minka [8]).

4. Expectation propagation for a normal random sample model

The general form of expectation propagation as described in the previous section
is rather abstract. The actual computational steps are difficult to glean from
expressions such as (3.5) and (3.6). We now focus on a specific simple Bayesian
statistical model and make the updates as concrete as possible. Nevertheless,
the updates are still complicated and require several pages of derivation which
we provide in Appendix A.

We consider the following Bayesian Normal random sample model:

xi |μ, σ2 independently distributed N(μ, σ2), 1 ≤ i ≤ n,

μ ∼ N(μμ, σ
2
μ), σ ∼ Half-Cauchy(A).

(4.1)
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Fig 3. Factor graph corresponding to (4.2) with stochastic nodes according to product restric-
tion (4.4).

where μμ ∈ R, σμ > 0 and A > 0 are user-specified hyperparameters. The
Half-Cauchy(A) prior on σ corresponds to its density function being p(σ) =
{2/(π A)}/{1 + (σ/A)2}, σ > 0. However,

σ ∼ Half-Cauchy(A) is equivalent to σ2|a ∼ IG( 12 , 1/a), a ∼ IG(12 , 1/A
2)

where IG(κ, λ) denotes the Inverse Gamma distribution with shape parameter
κ > 0 and rate parameter λ > 0, with full definition given in Section 2.2.
Therefore, an equivalent model to (4.1) is:

xi |μ, σ2 independently distributed N(μ, σ2), 1 ≤ i ≤ n,

μ ∼ N(μμ, σ
2
μ), σ2| a ∼ IG( 12 , 1/a), a ∼ IG(12 , 1/A

2).
(4.2)

Model (4.2) better lends itself to expectation propagation-based inference be-
cause all of the messages are in the Normal and Inverse Gamma families, and
we work with it from now onwards.

The joint density function of the observed data vector x ≡ (x1, . . . , xn) and
stochastic variables in (4.2) is

p(x, μ, σ2, a) = p(x|μ, σ2) p(σ2| a) p(μ) p(a) (4.3)

where, for example,

p(x|μ, σ2) ≡ (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − μ)2

}
.

We will derive the expectation propagation approximation to the joint poste-
rior density function p(μ, σ2, a |x), denoted by q(μ, σ2, a), under the following
product density restriction:

q(μ, σ2, a) = q(μ) q(σ2) q(a). (4.4)

The relevant factor graph is shown in Figure 3. Notice that there is a circular
node corresponding to each q-density factor on the right-hand side of (4.4). The
solid square nodes correspond to the factors in (4.3) An edge connects each
factor with the stochastic nodes that are included in that factor. Figure 3 is
crucial to expectation propagation approximate inference for (4.2) as described
in Minka [8].
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With the function definitions of Appendix A.4 in place, the expectation prop-
agation iteration algorithm boils down to updating the natural parameter vec-
tors of messages between neighboring nodes on the factor graph in Figure 3. For
example, the message from p(x|μ, σ2) to μ is of the form

mp(x|μ, σ2) → μ(μ) ∝ exp

{[
μ
μ2

]T
ηp(x|μ, σ2) → μ

}

for some 2 × 1 vector ηp(x|μ, σ2) → μ. Details are given in Appendix A.5.3. We

initialize mp(x|μ, σ2) → μ(μ) to be the N(0, 1) density function in μ, correspond-

ing to ηp(x|μ, σ2) → μ being set to [0 − 1
2 ]

T . The Inverse Gamma messages are

initialized at the IG(1, 1) density, which corresponds to their natural parameter
vectors being set to [−2 − 1]T .

The stopping criterion involves the approximate marginal log-likelihood, de-
noted here by log{∼p(x; q)}. In Appendix A.5.9 we derive an expression for

log{∼p(x; q)} in terms of the non-analytic functions given in Section 2.1.

The expectation propagation approximations to p(μ|x) and p(σ2|x) are, re-
spectively, q∗(μ) and q∗(σ2) where

q∗(μ) is the N
(
− ηq(μ), 1/(2ηq(μ), 2),−1/(2ηq(μ), 2)

)
density function in μ

and

q∗(σ2) is the IG
(
− ηq(σ2), 1 − 1,−ηq(σ2), 2

)
density function in σ2.

The boxed algorithm in Section 6 of Minka [8] also accommodates the possibility
of applying a damping step-size 0 ≤ ε < 1, for the factor to stochastic node
messages. We did not find this to be necessary for the simple model at hand
and set ε = 0 here, with convergence always achieved in our evaluation studies
(Section 5).

Code for Algorithm 1 in the R language [11] is available on the web-site where
this article resides.

5. Evaluation of accuracy

We conducted a simulation study to evaluate the inferential accuracy of Algo-
rithm 1, as well as its relative accuracy compared with mean field variational
Bayes. The accuracy of q∗(μ) is quantified via

accuracy{q∗(μ)} ≡ 100

(
1− 1

2

∫ ∞

−∞
| q∗(μ)− p(μ |x)| dμ

)
%. (5.1)

An analogous definition applies to accuracy{q∗(σ2)}. This accuracy measure-
ment has the advantage of being transformation invariant and ranging over
0%–100%.
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Algorithm 1 Expectation propagation algorithm for determining the natural pa-
rameter vectors ηq(μ), ηq(σ2) and ηq(a) of the optimal density functions q∗(μ),

q∗(σ2) and q∗(a) for approximate Bayesian inference in the Normal random
sample model (4.2).

Inputs: x1, . . . , xn; μμ ∈ R, σ2
μ > 0, A > 0.

Obtain
∑n

i=1 xi and
∑n

i=1 x2
i .

Initialize:

ηp(μ) → μ ←−

⎡
⎣ μμ

σ2
μ

− 1
2σ2

μ

⎤
⎦ ; ηp(a) → a ←−

[
− 3

2

− 1
A2

]

ηp(x|μ, σ2) → μ ←−
[

0

− 1
2

]
; ηp(x|μ, σ2) → σ2 ←−

[
−2

−1

]

ηp(σ2| a) → σ2 ←−
[

−2

−1

]
; ηp(σ2| a) → a ←−

[
−2

−1

]

Cycle:

ημ → p(μ) ←− ηp(x|μ, σ2) → μ

ημ → p(x|μ, σ2) ←− ηp(μ) → μ

ησ2 → p(x|μ, σ2) ←− ηp(σ2| a) → σ2

ηp(x|μ, σ2) → μ ←− GN

⎛
⎜⎝ημ → p(x|μ, σ2),ησ2 → p(x|μ, σ2);

⎡
⎢⎣

n∑n
i=1xi∑n
i=1x

2
i

⎤
⎥⎦
⎞
⎟⎠

ηp(x|μ, σ2) → σ2 ←− GIG1

⎛
⎜⎝ησ2 → p(x|μ, σ2),ημ → p(x|μ, σ2);

⎡
⎢⎣

n∑n
i=1xi∑n
i=1x

2
i

⎤
⎥⎦
⎞
⎟⎠

ησ2 → p(σ2| a) ←− ηp(x|μ, σ2) → σ2

ηa → p(σ2| a) ←− ηp(a) → a

ηp(σ2| a) → σ2 ←− GIG2
(
ησ2 → p(σ2| a),ηa → p(σ2| a); 3

)
ηp(σ2| a) → a ←− GIG2

(
ηa → p(σ2| a),ησ2 → p(σ2| a); 1

)
ηa → p(a) ←− ηp(σ2| a) → a

until the relative change in log∼p(x; q) is negligible.

ηq(μ) ←− ηp(μ) → μ +ηp(x|μ, σ2) → μ

ηq(σ2) ←− ηp(x|μ, σ2) → σ2 +ηp(σ2| a) → σ2

ηq(a) ←− ηp(σ2| a) → a +ηp(a) → a
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Fig 4. Comparison among the expectation propagation approximate posterior density func-
tions, mean field variational Bayes approximate density functions and the ‘exact’ Markov
chain Monte Carlo-based posterior density function. The data correspond to the first n = 25
replication from the Normal random sample simulation study described in the text. The left
panel is concerned with inference for μ based on p(μ|x). The right panel is concerned with
inference for σ2 based on p(σ2|x). The vertical lines show the true values of μ and σ2 from
which the data were generated. The accuracy values are as defined by (5.1).

The sample sizes in the simulation study were

n ∈ {25, 50, 100, 500, 1000, 5000}.

For each sample size we replicated 100 random samples from the standard
Normal distribution and obtained the expectation propagation approximations
q∗(μ) and q∗(σ2) under model (4.2) with the hyperparameters set to be μμ = 0,
σμ = A = 105. We also obtained the mean field variational Bayes approxima-
tions using the special case of Algorithm 1 in Luts et al. [5] with X set to
the n × 1 vector of ones, y replaced by x and β replaced by μ. Exact com-
putation of p(μ |x) and p(σ2 |x) is numerically challenging so we instead used
binned kernel density estimation with direct plug-in bandwidth selection, as
facilitated in the R package KernSmooth (Wand and Ripley [16]), applied to
1 million Markov chain Monte Carlo samples, following a burnin of size 1000.
The R package rstan (Stan Development Team [13]) was used for Markov chain
Monte Carlo. The very high sample size on which the kernel density estimates
are based guarantees very good approximation of the required posterior density
functions.

Figure 4 shows the ‘exact’ posterior density functions p(μ |x) and p(σ2 |x),
their expectation propagation approximations q∗(μ) and q∗(σ2), and their mean
field variational Bayes approximations, for the first replication from the simu-
lation study with n = 25.

Summaries of accuracy scores of q∗(μ) and q∗(σ2) for all 100 replications
are provided by the side-by-side boxplots of Figure 5. The accuracies are seen
to be uniformly above 97% and mainly between 99% and 100%. This repre-
sents excellent performance for an approximate inference procedure. In Figure 6
we summarize the difference in accuracy of expectation propagation compared
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Fig 5. Boxplots of accuracy values of expectation propagation obtained from the simulation
study described in the text. The left panel summarizes accuracy values of q∗(μ). The right
panel summarizes accuracy values of q∗(σ2).

Fig 6. Boxplots of the improvement in the accuracy of expectation propagation compared with
mean field variational Bayes obtained from the simulation study described in the text. The
boxplots are obtained from the subtracting the accuracy of the mean field variational Bayes
(MFVB) approximate posterior density function from the accuracy of the expectation propa-
gation (EP) approximate posterior density function based on the same sample. The left panel
summarizes improvement in accuracy of q∗(μ). The right panel summarizes improvement in
accuracy of q∗(σ2).

with mean field variational Bayes. The boxplots in the left panel are obtained
by subtracting the accuracy of mean field variational Bayes, based on the ana-
logue of (5.1), from the accuracy of q∗(μ) for approximations based on the
same sample in the simulation study. For low to moderate sample sizes ex-
pectation propagation is seen to be less accurate than mean field variational
Bayes regarding inference for μ. For n = 500 there is a slight advantage of
expectation propagation, but the differences diminish to zero as the sample
size increases into the thousands. In the case of inference for σ2, expectation
propagation is 1–2 percentage points better than mean field variational Bayes
for low to moderate samples. This advantage subsides for sample sizes in the
thousands.
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Table 1

Mean (standard deviation) computing times in seconds for expectation propagation and
mean field variational Bayes for the simulation study described in text

sample times for expec. times for mean field
size propagation variational Bayes
25 5.17 (0.372) 0.00081 (0.000394)
50 4.94 (0.347) 0.00084 (0.000368)

100 4.88 (0.331) 0.00088 (0.000383)
500 4.88 (0.349) 0.00096 (0.000374)

1000 4.88 (0.411) 0.00126 (0.000441)
5000 4.89 (0.371) 0.00309 (0.000473)

Expectation propagation is seen to have a slight edge over mean field varia-
tional Bayes because of the improvement it offers for inference concerning σ2.
This finding is in keeping with the simulation studies of Minka [7] and Bakker
and Heskes[1] where versions of expectation propagation were shown to outper-
form variational approximations in specific contexts.

We also kept track of computational times and Table 1 provides summaries.
The timings correspond to running 100 iterations of both expectation propaga-
tion and mean field variational Bayes in Version 3.2.0 of R [11] on a MacBook Air
laptop with 8 gigabytes of random access memory and 1.7 gigahertz processor.
As expected mean field variational Bayes is much faster since it involves purely
algebraic updates, whereas expectation propagation requires time-consuming
quadrature. Since both approaches depend only on the sum and sum of squares
sufficient statistics the changes in computing time for higher sample sizes is neg-
ligible. Expectation propagation is slightly slower for n = 25, which is probably
due to the numerical integrals being slower to converge in this more difficult low
data situation.

6. Conclusions

We have carried out a concrete study of expectation propagation for a specific
statistical model. The algorithm in Section 4 shows precisely what is involved
for practical implementation. For the Bayesian Normal random sample model
with Half-Cauchy standard deviation prior expectation propagation is shown to
provide excellent accuracy, and offers improvements over mean field variational
Bayes for larger sample sizes. This improvement in accuracy needs to be traded
off against computational complexity. Expectation propagation requires several
numerical integration evaluations whereas mean field variational Bayes involves
simple arithmetic computations, as listed in Algorithm 1 of Luts et al. [5].

Appendix A: Appendix: Proofs and derivations

A.1. Proof of Theorem 1

From Lemma 1 of Guo and Qi [4]

log(x)− 1

x
< digamma(x) < log(x)− 1

2x
for all x > 0 (A.1)
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and
1

x
+

1

2x2
< trigamma(x) <

1

x
+

1

x2
for all x > 0 (A.2)

where trigamma(x) ≡ d
dxdigamma(x). From (A.1) it follows that

(log−digamma)(x) >
1

2x
for all x > 0,

implying that log−digamma is a mapping from R
+ to R

+. Next note that

d

dx
(log−digamma)(x) =

1

x
− trigamma(x) < − 1

2x2
< 0 for all x > 0

where we have used (A.2). Hence log−digamma is strictly monotonically de-
creasing on R

+. Lastly, a rearrangement of (A.1) is

1

2x
< (log−digamma)(x) <

1

x
for all x > 0

which leads immediately to

lim
x→∞

(log−digamma)(x) = 0 and lim
x→0+

(log−digamma)(x) = +∞.

Therefore log−digamma is a one-to-one function that maps R+ onto R
+.

A.2. Derivation of Result 1

In the case of projection onto the Normal family, (10) becomes∫ ∞

−∞

[
x
x2

]
p(x) dx =

[
μ

μ2 + σ2

]
which corresponds to the system of equations

E(x) = μ
E(x2) = μ2 + σ2.

(A.3)

The optimal parameters μ∗ and (σ2)∗ are the solutions of (A.3). The solution
is easily found to be

μ∗ = E(x)
(σ2)∗ = E(x2)− (μ∗).

A.3. Derivation of Result 2

In the case of projection onto the Inverse Gamma family, (10) becomes∫ ∞

−∞

[
log(x)
1/x

]
p(x) dx =

[
log(λ)− digamma(κ)

κ/λ

]
which corresponds to the system of equations

E{log(x)} = log(λ)− digamma(κ)
E(1/x) = κ/λ.

(A.4)
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The optimal parameters κ∗ and λ∗ are the solutions of (A.4). The second equa-
tion of (A.4) gives the relationship

λ∗ = κ∗/E(1/x).

and substitution into the first equation of (A.4) leads to

E{log(x)} = log(κ∗/E(1/x))− digamma(κ∗)

= (log−digamma)(κ∗)− log(E(1/x)).

Hence
(log−digamma)(κ∗) = log(E(1/x)) + E{log(x)}

and Result 2 immediately follows.

A.4. Further function definitions

The following functions, which depend on the integral functions A and B defined
in Section 2.1, are useful for describing the expectation propagation updates:

α

⎛
⎝k,

[
a1
a2

]
,

[
b1
b2

]
,

⎡
⎣ c1

c2
c3

⎤
⎦
⎞
⎠ ≡

A
(
k, a1,−a2,

−2c2
c1

,
c3 − 2b2

c1
,
c1 − 2b1 − 2

2

)

and

β

⎛
⎝k, �, v, w,

[
a1
a2

]
,

[
b1
b2

]
,

⎡
⎣ c1

c2
c3

⎤
⎦
⎞
⎠ ≡

B
(
k,

�+ c1 − 1

2
− a1,

c1c3 − c22
2c1

− a2,−b2

(
c2
c1

+
b1
2b2

)2

, v, w

)
.

Then let

g(�, v, w,a, b, c) ≡ (log−digamma)−1

(
log

{
β(0, �+ 1, v, w,a, b, c)

β(0, �− 1, v, w,a, b, c)

}

− β(1, �− 1, v, w,a, b, c)

β(0, �− 1, v, w,a, b, c)

)
,

GN (a, b; c) ≡[
α(2,a, b, c)

α(0,a, b, c)
−
{
α(1,a, b, c)

α(0,a, b, c)

}2
]−1 [

α(1,a, b, c)/α(0,a, b, c)
−1/2

]
− a,



Explicit form of expectation propagation 567

GIG1

⎛
⎝a,

[
b1
b2

]
;

⎡
⎣ c1

c2
c3

⎤
⎦
⎞
⎠ ≡

⎡
⎢⎣

−1− g(0,−2b2/c1,
1
2 ,a, b, c)

−g(0,−2b2/c1,
1
2 ,a, b, c)β(0,−1,−2b2/c1,

1
2 ,a, b, c)

β(0, 1,−2b2/c1,
1
2 ,a, b, c)

⎤
⎥⎦− a

and

GIG2

(
a,

[
b1
b2

]
; k

)
≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1− g

⎛
⎝k − 2,−b2, 1− k/2− b1,a,

[
0
b2

]
,

⎡
⎣ 2

0
0

⎤
⎦
⎞
⎠

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−g

⎛
⎝k − 2,−b2, 1− k/2− b1,a,

[
0
b2

]
,

⎡
⎣ 2

0
0

⎤
⎦
⎞
⎠

×β

⎛
⎝0, k − 3,−b2, 1− k/2− b1,a,

[
0
b2

]
,

⎡
⎣ 2

0
0

⎤
⎦
⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

β

⎛
⎝0, k − 1,−b2, 1− k/2− b1,a,

[
0
b2

]
,

⎡
⎣ 2

0
0

⎤
⎦
⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− a.

For stable computation of the fractions appearing in the above expressions it
is imperative to work with logarithms. For example,

α(1,a, b, c)

α(0,a, b, c)
= sign{α(1,a, b, c)} exp[log |α(1,a, b, c)| − log{α(0,a, b, c)}].

The numerator and denominator components each depend of versions of the
function log |A(p, q, r, s, t, u)| which, as discussed in Section 2.1, can be com-
puted accurately using the strategy given in Appendix B of Wand et al. [17].

A.5. Derivation of Algorithm 1

Under product restriction (4.4) expectation propagation for the Normal random
sample model is driven by minimization of

KL
(
q(μ)q(σ2) q(a)

∥∥∥ p(μ, σ2, a|x)
)

From (3.7) we have

mp(μ) → μ(μ) ∝
proj

[
mμ → p(μ)(μ) exp

{[
μ
μ2

]T [
μμ/σ

2
μ

−1/(2σ2
μ)

]}/
Z

]

mμ → p(μ)(μ)
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where Z is the normalizing factor such that the function of μ inside the proj[·]
is a density function. Conjugacy of

mμ → p(μ)(μ) with exp

{[
μ
μ2

]T [
μμ/σ

2
μ

−1/(2σ2
μ)

]}

implies that mμ → p(μ)(μ) is proportional to a Normal density function which,

in turn implies that mp(μ) → μ(μ) is proportional to a Normal density func-

tion. Application of the updates (3.5) and (3.6) and enforcement of conjugacy
constraints leads to:

messages involving μ are proportional to Normal density

functions and messages involving σ2 and a are
proportional to Inverse Gamma density functions.

(A.5)

Under (A.5) we then have the messages between neighboring nodes on the factor
graph in Figure 1 assuming the following forms:

mp(μ) → μ(μ) = exp

{[
μ
μ2

]T
ηp(μ) → μ

}
,

mμ → p(μ)(μ) = exp

{[
μ
μ2

]T
ημ → p(μ)

}
,

mμ → p(x|μ, σ2)(μ) = exp

{[
μ
μ2

]T
ημ → p(x|μ, σ2)

}
,

mp(x|μ, σ2) → μ(μ) = exp

{[
μ
μ2

]T
ηp(x|μ, σ2) → μ

}
,

mp(x|μ, σ2) → σ2(σ2) = exp

{[
log(σ2)
1/σ2

]T
ηp(x|μ, σ2) → σ2

}
,

mσ2 → p(x|μ, σ2)(σ
2) = exp

{[
log(σ2)
1/σ2

]T
ησ2 → p(x|μ, σ2)

}
,

mσ2 → p(σ2| a)(σ
2) = exp

{[
log(σ2)
1/σ2

]T
ησ2 → p(σ2| a)

}
,

mp(σ2| a) → σ2(σ2) = exp

{[
log(σ2)
1/σ2

]T
ηp(σ2| a) → σ2

}
,

mp(σ2| a) → a(a) = exp

{[
log(a)
1/a

]T
ηp(σ2| a) → a

}
,

ma → p(σ2| a)(a) = exp

{[
log(a)
1/a

]T
ηa → p(σ2| a)

}
,

ma → p(a)(a) = exp

{[
log(a)
1/a

]T
ηa → p(a)

}

and mp(a) → a(a) = exp

{[
log(a)
1/a

]T
ηp(a) → a

}

(A.6)
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where, for example, ηp(μ) → μ is the natural parameter vector of mp(μ) → μ(μ).
This notation has the advantage of making it easy to match a natural parameter
vector with its corresponding message. However, it is cumbersome to use in the
derivations of the updates and we also adopt the following abbreviated notation
for some of the natural parameters:

η� ≡ ημ → p(x|μ, σ2), η# ≡ ησ2 → p(x|μ, σ2),

η⊗ ≡ ησ2 → p(σ2| a) and η� ≡ ηa → p(σ2| a).

Additional useful notation is

AN

([
η1
η2

])
≡ −1

4 (η
2
1/η2)− 1

2 log(−2η2),

and AIG

([
η1
η2

])
≡ log Γ(−η1 − 1)− (−η1 − 1) log(−η2)

(A.7)

for the log-partition functions of the Normal and Inverse Gamma density func-
tions with natural parameters η1 and η2. Also, we define

x ≡ 1

n

n∑
i=1

xi, ‖x‖2 ≡
n∑

i=1

x2
i and s2 ≡ 1

n− 1

n∑
i=1

(xi − x)2.

Expectation propagation for the Normal random sample model reduces to up-
dating the density functions in (A.6) which, in turn, reduces to updating each
of their natural parameter vectors.

The stochastic node to factor message updates are very simple, and are sum-
marized in Appendix A.5.1. The factor to stochastic node message updates are
quite involved, and Appendices A.5.2–A.5.7 describe their derivations based on
(3.6).

A.5.1. Derivations of stochastic node to factor message updates

The messages from stochastic nodes to factors have much simpler update deriva-
tions, based on (54) of Minka [8]. For example, the message from σ2 to p(x|μ, σ2)
is proportional to the product of the factor to σ2 messages other than the mes-
sage passed from p(x|μ, σ2). The only other factor neighboring σ2 is p(σ2|a),
so we get

mσ2 → p(x|μ, σ2)(σ
2) = mp(σ2| a) → σ2(σ2).

This implies that the update for the mσ2 → p(x|μ, σ2)(σ
2) natural parameter

should be
ησ2 → p(x|μ, σ2) ←− ηp(σ2| a) → σ2 .

Similarly, the natural parameter updates for stochastic node to factor messages
are

ημ → p(μ) ←− ηp(x|μ, σ2) → μ, ημ → p(x|μ, σ2) ←− ηp(μ) → μ
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ησ2 → p(σ2| a) ←− ηp(x|μ, σ2) → σ2 , ηa → p(σ2| a) ←− ηp(a) → a

and
ηa → p(a) ←− ηp(σ2| a) → a.

A.5.2. Derivation of the mp(μ) → μ(μ) update

From (3.6),

mp(μ) → μ(μ) ∝
proj[mμ → p(μ)(μ) p(μ)/Z]

mμ → p(μ)(μ)
.

Then, from (A.6),

mμ → p(μ)(μ) p(μ) ∝ exp

{[
μ
μ2

]T (
ημ → p(μ) +

[
μμ/σ

2
μ

−1/(2σ2
μ)

])}
.

Since mμ → p(μ)(μ) p(μ) is proportional to a Normal density function, its pro-
jection onto the Normal family is the same function up to multiplicative factors.
Hence

proj[mμ → p(μ)(μ) p(μ)] ∝ exp

{[
μ
μ2

]T (
ημ → p(μ) +

[
μμ/σ

2
μ

−1/(2σ2
μ)

])}

and so, dividing by mμ → p(μ)(μ), we get

mp(μ) → μ(μ) = exp

{[
μ
μ2

]T [
μμ/σ

2
μ

−1/(2σ2
μ)

]}
.

Hence

ηp(μ) → μ =

[
μμ/σ

2
μ

−1/(2σ2
μ)

]
which remains constant throughout the iterations.

A.5.3. Derivation of the mp(x|μ, σ2) → μ(μ) update

Equation (3.6) applied to the message mp(x|μ, σ2) → μ(μ) is

mp(x|μ, σ2) → μ(μ) ∝
proj

[
m

μ → p(x|μ, σ2)
(μ)

∫ ∞
0

p(x|μ,σ2)m
σ2 → p(x|μ, σ2)

(σ2)dσ2/Z

]
m

μ → p(x|μ, σ2)
(μ) .

(A.8)

Then the integral in (A.8) is∫ ∞

0

p(x|μ, σ2)mσ2 → p(x|μ, σ2)(σ
2) dσ2
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=

∫ ∞

0

(2πσ2)−n/2 exp
{
−‖x− 1μ‖2/(2σ2)

}
exp

⎧⎨
⎩
[

log σ2

1/σ2

]T

η#

⎫⎬
⎭ dσ2

= (2π)−n/2

∫ ∞

0

exp

{[
log σ2

1/σ2

]T ([ −n/2
−‖x− 1μ‖2/2

]
+ η#

)}
dσ2

∝ exp

{
AIG

([
−n/2

−‖x− 1μ‖2/2

]
+ η#

)}

∝
(
‖x− 1μ‖2

2
− η#

2

)−n/2+η#
1
+1

.

Noting that

mμ → p(x|μ, σ2)(μ) = exp

{[
μ
μ2

]T
η�

}
,

the density function inside the proj operator in (A.8)

p•(μ) ≡
exp

(
η�
1μ+ η�

2μ
2
)

Z•
(
μ2 − 2xμ+

‖x‖2−2η#
2

n

)n
2 −η#

1 −1
.

where Z• is the normalizing factor. From Result 1, the projection of p• onto the
family of Normal density functions is the N(μ∗

•, (σ
2)∗•) density function where

μ∗
• =

∫∞
−∞ μ p•(μ) dμ and (σ2)∗• =

∫∞
−∞(μ2)p•(μ) dμ− (μ∗

•)
2. (A.9)

The integrals in (A.9) can be presented in terms of the function A, defined in
equation (5), as follows:

∫∞
−∞ μ p•(μ) dμ=

A
(
1,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1
−2

2

)
A
(
0,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1 −2

2

)

and
∫∞
−∞(μ2)p•(μ) dμ=

A
(
2,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1
−2

2

)
A
(
0,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1 −2

2

)
where (c1, c2, c3) = (n,

∑n
i=1 xi,

∑n
i=1 x

2
i ). Since the natural parameter vector

of proj[p•] is [
μ∗
•/(σ

2)∗•

−1/{2(σ2)∗•}

]
,

(A.8) can be expressed as:

mp(x|μ, σ2) → μ(μ) = exp

{[
μ
μ2

]T
ηp(x|μ, σ2) → μ

}
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where

ηp(x|μ, σ2) → μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎨
⎪⎩

A
(
1,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1
−2

2

)
A
(
0,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1 −2

2

)
⎫⎪⎬
⎪⎭
/

⎡
⎢⎣A

(
2,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1
−2

2

)
A
(
0,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1 −2

2

)−

−

⎧⎪⎨
⎪⎩
⎧⎪⎨
⎪⎩

A
(
1,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1
−2

2

)
A
(
0,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1 −2

2

)
⎫⎪⎬
⎪⎭
⎫⎪⎬
⎪⎭

2⎤
⎥⎦

−1
2

/
⎡
⎢⎣A

(
2,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1
−2

2

)
A
(
0,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1 −2

2

)−

−

⎧⎪⎨
⎪⎩
⎧⎪⎨
⎪⎩

A
(
1,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1
−2

2

)
A
(
0,η�

1,−η�
2,−2c2

c1
,
c3−2η#

2

c1
,
c1−2η#

1 −2

2

)
⎫⎪⎬
⎪⎭
⎫⎪⎬
⎪⎭

2⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− η�

= GN (η�,η#; c1, c2, c3).

Therefore, updates of mμ → p(x|μ, σ2)(μ) correspond to the natural parameter

update

ηp(x|μ, σ2) → μ ←− GN

(
ημ → p(x|μ, σ2),ησ2 → p(x|μ, σ2);n,

n∑
i=1

xi,

n∑
i=1

x2
i

)
.

A.5.4. Derivation of the mp(σ2| a) → σ2(σ2) update

From (3.6),

mp(σ2| a) → σ2(σ2) ∝
proj

[
Z−1mσ2 → p(σ2| a)(σ

2)

×
∫∞
0

p(σ2|a)ma → p(σ2| a)(a) da

]

mσ2 → p(σ2| a)(σ
2)

. (A.10)

The integral in (A.10) is∫ ∞

0

p(σ2|a)ma → p(σ2| a)(a) da
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=

∫ ∞

0

(1/a)
1
2

Γ( 12 )
(σ2)−

1
2−1 exp{−1/(aσ2)} exp

{[
log(a)
1/a

]T
η�

}
da

= Γ( 12 )
−1 (σ2)−3/2

∫ ∞

0

exp

{[
log(a)
1/a

]T ([ −1/2
−1/σ2

]
+ η�

)}
da

∝ (σ2)−3/2 exp

{
AIG

([
−1/2
−1/σ2

]
+ η�

)}

∝ (σ2)−3/2

(
1

σ2
− η�

2

) 1
2+η

�
1

.

Since

mσ2 → p(σ2| a)(σ
2) = exp

{[
log(σ2)
1/σ2

]T
η⊗

}

the density function inside the proj operator in (A.10) is

p◦(σ
2) ≡ (σ2)η

⊗
1
−3/2

(
1

σ2
− η�

2

) 1
2+η

�
1

exp(η⊗
2 /σ

2)/Z◦, σ2 > 0,

where Z◦ is the normalizing factor. From Result 2, proj[p◦] is the IG(κ∗
◦, λ

∗
◦)

density function where

κ∗
◦ =(log−digamma)−1

(
log

{∫∞
0

( 1
σ2 )p◦(σ

2) dσ2
}

+
∫∞
0

log(σ2)p◦(σ
2) dσ2

)
and

λ∗
◦ =κ∗

◦

/∫∞
0

(1/σ2)p◦(σ
2) dσ2.

(A.11)

Using the change of variable σ2 = e−x and straightforward algebra, the integrals
in (A.11) can be expressed in terms of the B function, defined at equation (5),
as follows: ∫ ∞

0

(1/σ2)p◦(σ
2) dσ2 =

B(0, 32 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−1

2 − η�
1 )

B(0, 12 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−1

2 − η�
1 )

and

∫ ∞

0

log(σ2) p◦(σ
2) dσ2 =

−B(1, 1
2 − η⊗

1 ,−η⊗
2 , 0,−η�

2 ,−1
2 − η�

1 )

B(0, 1
2 − η⊗

1 ,−η⊗
2 , 0,−η�

2 ,−1
2 − η�

1 )
.

Noting that the natural parameter vector of proj[p◦] is [−κ∗
◦ − 1 − λ∗

◦]
T the

message from p(σ2|a) to σ2 is

mp(σ2| a) → σ2(σ2) = exp

{[
log(σ2)
1/σ2

]T
ηp(σ2| a) → σ2

}
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where

ηp(σ2| a) → σ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(log−digamma)−1

{
log

(
B(0, 3

2 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−1

2 − η�
1 )

B(0, 1
2 − η⊗

1 ,−η⊗
2 , 0,−η�

2 ,−1
2 − η�

1 )

)

−
B(1, 1

2 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−1

2 − η�
1 )

B(0, 1
2 − η⊗

1 ,−η⊗
2 , 0,−η�

2 ,−1
2 − η�

1 )

}
− 1

(log−digamma)−1

{
log

(
B(0, 32 − η⊗

1 ,−η⊗
2 , 0,−η�

2 ,−1
2 − η�

1 )

B(0, 12 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−1

2 − η�
1 )

)

−
B(1, 1

2 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−1

2 − η�
1 )

B(0, 1
2 − η⊗

1 ,−η⊗
2 , 0,−η�

2 ,−1
2 − η�

1 )

}

×
B(0, 1

2 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−1

2 − η�
1 )

B(0, 3
2 − η⊗

1 ,−η⊗
2 , 0,−η�

2 ,−1
2 − η�

1 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− η⊗

= GIG2(η⊗,η�; 3) = GIG2(ησ2 → p(σ2| a),ηa → p(σ2| a); 3).

Therefore, updates of mp(σ2| a) → σ2(σ2) correspond to the natural parameter

update
ηp(σ2| a) → σ2 ←− GIG2(ησ2 → p(σ2| a),ηa → p(σ2| a); 3).

A.5.5. Derivation of the mp(x|μ, σ2) → σ2(σ2) update

The message from p(x |μ, σ2) to σ2 is, according to (3.6),

mp(x|μ, σ2) → σ2(σ2) ∝

proj

[
Z−1mσ2 → p(x|μ, σ2)(σ

2)

×
∫∞
−∞ p(x|μ, σ2)mμ → p(x|μ, σ2)(μ) dμ

]

mσ2 → p(x|μ, σ2)(σ
2)

.

(A.12)

First note that

p(x |μ, σ2) = n−1/2(2πσ2)(1−n)/2 exp

{
−(n− 1)s2

2σ2

}
{2π(σ2/n)}−1/2

× exp

{
−(μ− x)2

2(σ2/n)

}

and

mμ → p(x|μ, σ2)(μ) ∝ {2π(σ�)2}−1/2 exp

{
−(μ− μ�)2

2(σ�)2

}
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where μ� = −η�1/(2η
�
1) and (σ�)2 = −1/(2η�1). Then by (A.2) of Wand and

Jones [15],∫ ∞

−∞
p(x|μ, σ2) {2π(σ�)2}−1/2 exp

{
−(μ− μ�)2

2(σ�)2

}
dμ

= n−1/2(2πσ2)(1−n)/2 exp

{
−(n− 1)s2

2σ2

}
[2π{(σ2/n) + (σ�)2}]−1/2

× exp

{
−(x− μ�)2

2{(σ2/n) + (σ�)2}

}
.

Using the fact that

mσ2 → p(x|μ, σ2)(σ
2) = exp

{[
log(σ2)
1/σ2

]T
η#

}
,

the function inside the proj operator in (A.12) is then

p
(σ
2) ≡ 1

Z

(σ2)η

#
1
+(1−n)/2 exp

{
η#
2 − 1

2 (n− 1)s2

σ2

}

×
(
σ2 − n

2η�
2

)−1/2

exp

⎧⎪⎨
⎪⎩

−n
(
x+

η�
1

2η�
2

)2

2(σ2 − n
2η�

2

)

⎫⎪⎬
⎪⎭ , σ2 > 0,

where Z
 is the normalizing factor. Kullback-Leibler projection of p
 onto the
Inverse Gamma family of density functions requires the integrals∫ ∞

0

log(σ2) p
(σ
2) dσ2 and

∫ ∞

0

(1/σ2) p
(σ
2) dσ2.

Via the change of variable σ2 = e−x and some algebra, these integrals may be
written in terms of the B function as follows:∫ ∞

0

log(σ2) p
(σ
2) dσ2

=

−B
(
1, 1

2 (n− 1)− η#
1 ,

1
2 (n− 1)s2 − η#

2 ,−η�
2

(
x+

η�
1

2η�
2

)2

,
−2η�

2

n , 1
2

)

B
(
0, 1

2 (n− 1)− η#
1 ,

1
2 (n− 1)s2 − η#

2 ,−η�
2

(
x+

η�
1

2η�
2

)2

,
−2η�

2

n , 1
2

)

and ∫ ∞

0

(1/σ2) p
(σ
2) dσ2

=

B
(
0, 1

2 (n+ 1)− η#
1 ,

1
2 (n− 1)s2 − η#

2 ,−η�
2

(
x+

η�
1

2η�
2

)2

,
−2η�

2

n , 1
2

)

B
(
0, 1

2 (n− 1)− η#
1 ,

1
2 (n− 1)s2 − η#

2 ,−η�
2

(
x+

η�
1

2η�
2

)2

,
−2η�

2

n , 1
2

) .
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Arguments similar to those used in Appendix A.5.4, which involve Kullback-
Leibler projection of p◦ onto the Inverse Gamma family of density functions,
lead to the natural parameter update

ηp(x|μ, σ2) → σ2 ←− GIG1

(
ησ2 → p(x|μ, σ2),ημ → p(x|μ, σ2);n,

n∑
i=1

xi,

n∑
i=1

x2
i

)
.

A.5.6. Derivation of the mp(σ2| a) → a(a) update

Equation (3.6) gives

mp(σ2| a) → a(a) ∝

proj
[
ma → p(σ2| a)(a)

∫∞
0

p(σ2|a)mσ2 → p(σ2| a)(σ
2) dσ2/Z

]
ma → p(σ2| a)(a)

.

Arguments analogous to those given in the derivation of mp(σ2| a) → σ2(σ2) lead
to

mp(σ2| a) → a(a) = exp

{[
log(a)
1/a

]T
ηp(σ2| a) → a

}

with natural parameter update

ηp(σ2| a) → a ←− GIG2(ηa → p(σ2| a),ησ2 → p(σ2| a); 1).

A.5.7. Derivation of the mp(a) → a(a) update

Using arguments similar to those used in Appendix A.5.2,

mp(a) → a(a) ∝
proj[ma → p(a)(a) p(a)/Z]

ma → p(a)(a)

∝ p(a) ∝ exp

{[
log(a)
1/a

]T [ −3/2
−1/A2

]}
.

Hence

ηp(a) → a =

[
−3/2
−1/A2

]
which remains constant throughout the iterations.

A.5.8. Derivation of q-density construction

On convergence of the messages, the optimal q-densities for each of μ, σ2 and a
can be found via equation (44) of Minka and Winn [9].
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Specifically

q(μ) ∝ mp(μ) → μ(μ)mp(x|μ, σ2) → μ(μ),

q(σ2) ∝ mp(x|μ, σ2) → σ2(σ2)mp(σ2| a) → σ2(σ2)

and q(a) ∝ mp(σ2| a) → a(a)mp(a) → a(a).

These lead to

q(μ) ∝ exp

{[
μ
μ2

]T (
ηp(μ) → μ + ηp(x|μ, σ2) → μ

)}
,

q(σ2) ∝ exp

{[
log(σ2)
1/σ2

]T (
ηp(x|μ, σ2) → σ2 + ηp(σ2| a) → σ2

)}

and q(a) ∝ exp

{[
log(a)
1/a

]T (
ηp(σ2| a) → a + ηp(a) → a

)}

and the optimal q-density functions follow immediately.

A.5.9. Derivation of the approximate log-likelihood expression

For the factor graph depicted in Figure 1, the approximate marginal log-likeli-
hood expression (3.9) is

log{∼p(x; q)} = log sp(μ) + log sμ + log sp(x |μ,σ2) + log sσ2

+ log sp(σ2 | a) + log sa + log sp(a)
(A.13)

where sμ, sσ2 and sa are given by (3.10) and sp(μ), sp(x |μ,σ2) and sp(σ2 | a) are
given by (3.11).

We first treat the terms corresponding to the stochastic nodes μ, σ2 and a.
From (46) of Minka and Winn [9],

sμ =
∫∞
−∞mp(μ) → μ(μ)mp(x|μ, σ2) → μ(μ)dμ

=
∫∞
−∞ exp

{[
μ
μ2

]T (
ηp(μ) → μ + ηp(x|μ, σ2) → μ

)}
dμ

(A.14)

which leads to

log sμ = AN

(
ηp(μ) → μ + ηp(x|μ, σ2) → μ

)
− 1

2 log(2π)

Analogous arguments result in

log sσ2 = AIG

(
ηp(x|μ, σ2) → σ2 + ηp(σ2| a) → σ2

)
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and
log sa = AIG

(
ηp(a) → a + ηp(σ2| a) → a

)
.

Recall that the functions AN and AIG are defined at (A.7).
The first term in (A.13) corresponding to a factor is, according to (48) of

Minka and Winn [9],

sp(μ) =

∫∞
−∞mμ → p(μ)(μ) p(μ) dμ∫∞

−∞mμ → p(μ)(μ)mp(μ) → μ(μ) dμ
= 1 (A.15)

where we have used mp(μ) → μ(μ) = p(μ). Hence log sp(μ) = 0.

The expression for sp(a) is similar in nature to (A.15), and leads to sp(a) = 1,
which implies that log sp(a) = 0.

Next is sp(x|μ,σ2) which, according to (48) of Minka and Winn [9], has loga-
rithm

log sp(x|μ,σ2) =

log
{∫∞

−∞
∫∞
0

mμ → p(x|μ, σ2)(μ)mσ2 → p(x|μ, σ2)(σ
2) p(x|μ, σ2) d σ2 dμ

}
− log

{∫∞
−∞mμ → p(x|μ, σ2)(μ)mp(x|μ, σ2) → μ(μ) dμ

}
− log

{∫∞
0

mσ2 → p(x|μ, σ2)(σ
2)mp(x|μ, σ2) → σ2(σ2) dσ2

}
.

(A.16)
From arguments given in Appendix A.5.3∫ ∞

0

mσ2 → p(x|μ, σ2)(σ
2) p(x|μ, σ2)d σ2

= (2π)−n/2 exp

{
AIG

([
−n/2

−‖x− 1μ‖2/2

]
+ η#

)}
.

Hence,

log

{∫ ∞

−∞

∫ ∞

0

mμ → p(x|μ, σ2)(μ)mσ2 → p(x|μ, σ2)(σ
2) p(x|μ, σ2) d σ2 dμ

}

= −n

2
log(2π)− log

[∫ ∞

−∞
exp

{[
μ
μ2

]T
η�

}

× exp

{
AIG

([
−n/2

−‖x− 1μ‖2/2

]
+ η#

)}
dμ

]

= −n+ 1

2
log(2π)− log

{
Γ
(

n
2 − η#

1 − 1
)}

+ log

⎧⎨
⎩α

⎛
⎝η#,η�;

⎡
⎣ n∑n

i=1 xi∑n
i=1 x

2
i

⎤
⎦
⎞
⎠
⎫⎬
⎭
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where we have used algebra similar to that used in Appendix A.5.3. Substitution
of this expression into (A.16) and simplification of the second and third terms,
analogous to (A.14), then leads to

log sp(x|μ,σ2) =−n+ 1

2
log(2π)− log

{
Γ
(

n
2 − η#

1 − 1
)}

+ log

⎧⎨
⎩α

⎛
⎝η#,η�;

⎡
⎣ n∑n

i=1 xi∑n
i=1 x

2
i

⎤
⎦
⎞
⎠
⎫⎬
⎭

−AN

(
η� + ηp(x|μ, σ2) → μ

)
−AIG

(
η# + ηp(x|μ, σ2) → σ2

)
.

The remaining term in (A.13) is

log sp(σ2| a) =

log
{∫∞

0

∫∞
0

mσ2 → p(σ2| a)(σ
2)ma → p(σ2| a)(a) p(σ

2| a)d a d σ2
}

− log
{∫∞

0
mσ2 → p(σ2| a)(σ

2)mp(σ2| a) → σ2(σ2) dσ2
}

− log
{∫∞

0
ma → p(σ2| a)(a)mp(σ2| a) → a(a) da

}
.

(A.17)

Applying the algebraic steps used in Appendix A.5.4 to the first term of (A.17)
results in

log

{∫ ∞

0

∫ ∞

0

mσ2 → p(σ2| a)(σ
2)ma → p(σ2| a)(a) p(σ

2| a)d a d σ2

}
=

− log{Γ(−η�
1 − 1

2 )}+ log{B(0, 12 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−η�

1 − 1
2 )}.

Substitution into (A.17) and simplification of the second and third terms gives

log sp(σ2| a) = −1
2 log(π)− log{Γ(−η�

1 − 1
2 )}

+ log{B(0, 12 − η⊗
1 ,−η⊗

2 , 0,−η�
2 ,−η�

1 − 1
2 )}

−AIG(η⊗ + ηp(σ2| a) → σ2)−AIG(η� + ηp(σ2| a) → a).

Adding each of the simplified expressions for the terms in (A.13) we obtain

log{∼p(x; q)}=−1
2 (n+ 2) log(2π)− 1

2 log(π)

− log
{
Γ
(

n
2 − ησ2 → p(x|μ, σ2), 1 − 1

)}
− log

{
Γ(−ηa → p(σ2| a), 1 − 1

2 )
}

+AN

(
ηp(μ) → μ + ηp(x|μ, σ2) → μ

)
+AIG

(
ηp(x|μ, σ2) → σ2 + ηp(σ2| a) → σ2

)
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+AIG

(
ηp(a) → a + ηp(σ2| a) → a

)
−AN

(
ημ → p(x|μ, σ2) + ηp(x|μ, σ2) → μ

)
−AIG

(
ησ2 → p(x|μ, σ2) + ηp(x|μ, σ2) → σ2

)
−AIG

(
ηa → p(σ2| a) + ηp(σ2| a) → a

)
−AIG

(
ησ2 → p(σ2| a) + ηp(σ2| a) → σ2

)

+ log

⎧⎨
⎩α

⎛
⎝ησ2 → p(x|μ, σ2),ημ → p(x|μ, σ2);

⎡
⎣ n∑n

i=1 xi∑n
i=1 x

2
i

⎤
⎦
⎞
⎠
⎫⎬
⎭

+ log{B(0, 12 − ησ2 → p(σ2| a), 1,−ησ2 → p(σ2| a), 2, 0,

−ηa → p(σ2| a), 2,−ηa → p(σ2| a), 1 − 1
2 )}.
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