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Abstract: This paper studies identifiability and convergence behaviors for
parameters of multiple types, including matrix-variate ones, that arise in
finite mixtures, and the effects of model fitting with extra mixing com-
ponents. We consider several notions of strong identifiability in a matrix-
variate setting, and use them to establish sharp inequalities relating the
distance of mixture densities to the Wasserstein distances of the corre-
sponding mixing measures. Characterization of identifiability is given for
a broad range of mixture models commonly employed in practice, includ-
ing location-covariance mixtures and location-covariance-shape mixtures,
for mixtures of symmetric densities, as well as some asymmetric ones. Min-
imax lower bounds and rates of convergence for the maximum likelihood
estimates are established for such classes, which are also confirmed by sim-
ulation studies.
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1. Introduction

Mixture models are a popular modeling tool for making inference about het-
erogeneous data [15, 18]. Under mixture modeling, data are viewed as samples
from a collection of unobserved or latent subpopulations, each positing its own
distribution and associated parameters. Learning about subpopulation-specific
parameters is essential to the understanding of the underlying heterogeneity.
Theoretical issues related to parameter estimation in mixture models, however,
remain poorly understood — as noted in a recent textbook [5] (pg. 571), “mix-
ture models are riddled with difficulties such as nonidentifiability”.

Research about parameter identifiability for mixture models goes back to
the early work of [22, 23, 26] and others, and continues to attract much inter-
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est [11, 10, 7, 1]. To address parameter estimation rates, a natural approach is
to study the behavior of mixing distributions that arise in the mixture models.
This approach is well-developed in the context of nonparametric deconvolu-
tion [3, 28, 8], but these results are confined to only a specific type of model —
location mixtures. Beyond location mixtures there have been far fewer results. In
particular, for finite mixture models, a notable contribution was made by Chen,
who proposed a notion of strong identifiability and established the convergence
of the mixing distribution for a class of over-fitted finite mixtures with scalar
parameters [4]. Over-fitted finite mixtures, as opposed to exact-fitted ones, are
mixtures that allow extra mixing components in their model specification, when
the actual number of mixing components is bounded by a known constant. More
recently, Nguyen showed that the convergence of the mixing distribution is nat-
urally understood in terms of Wasserstein distance metric [19]. He established
rates of convergence of mixing distributions for a number of finite and infinite
mixture models with multi-dimensional parameters — the case of finite mixtures
can be viewed as a generalization of Chen’s results. Rousseau and Mengersen
studied over-fitted mixtures in a Bayesian estimation setting [21]. They did not
study the convergence of all mixing parameters, focusing only on the mixing
probabilities associated with extra mixing components. Finally, we mention a
related literature in computer science, which focuses almost exclusively on the
analysis of computationally efficient procedures for clustering with exact-fitted
Gaussian mixtures (e.g., [6, 2, 13]).

Setting The goal of this paper is to establish rates of convergence for parame-
ters of multiple types, including matrix-variate parameters, that arise in a vari-
ety of finite mixture models. Assume that each subpopulation is distributed ac-
cording to a density function (with respect to Lebesgue measure on an Euclidean
space X ) that belongs to a known density class

{
f(x|θ,Σ), θ ∈ Θ ⊂ R

d1 ,Σ ∈ Ω

⊂ S++
d2

, x ∈ X
}
. Here, d1 ≥ 1, d2 ≥ 0, S++

d2
is the set of all d2 × d2 symmetric

positive definite matrices. A finite mixture density with k mixing components
can be defined in terms of f and a discrete mixing measure G =

∑k
i=1 piδ(θi,Σi)

with k support points as follows

pG(x) =

∫
f(x|θ,Σ)dG(θ,Σ) =

k∑
i=1

pif(x|θi,Σi).

Examples for f studied in this paper include the location-covariance family
(when d1 = d2 ≥ 1) under Gaussian or some elliptical families of distributions,
the location-covariance-shape family (when d1 > d2) under the generalized mul-
tivariate Gaussian, skew-Gaussian or the exponentially modified Student’s t-
distribution, and the location-rate-shape family (when d1 = 3, d2 = 0) under
Gamma or other distributions.

As shown by [19], the convergence of mixture model parameters can be mea-
sured in terms of a Wassertein distance on the space of mixing measures G.
Let G =

∑k
i=1 piδ(θi,Σi) and G0 =

∑k0

i=1 p
0
i δ(θ0

i ,Σ
0
i )

be two discrete probability
measures on Θ × Ω, which is equipped with metric ρ. Recall the Wasserstein
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distance of order r, for a given r ≥ 1 (cf. [25])

Wr(G,G0) =

⎛⎝inf
�q

∑
i,j

qijρ
r((θi,Σi), (θ

0
j ,Σ

0
j ))

⎞⎠1/r

,

where the infimum is taken over all joint probability distributions �q on [1, . . . , k]
× [1, . . . , k0] such that, when expressing �q as a k × k0 matrix, the marginal
constraints hold:

∑
j qij = pi and

∑
i qij = p0j .

To see how convergence of mixing measure Gn in Wasserstein distances is
translated to convergence of Gn’s atoms and probability masses, suppose that
a sequence of mixing measures Gn → G0 under Wr metric at a rate ωn = o(1).
If all Gn have the same number of atoms k = k0 as that of G0, then the set
of atoms of Gn converge to the k0 atoms of G0 at the same rate ωn under ρ
metric. If Gn have varying kn ∈ [k0, k] number of atoms, where k is a fixed
upper bound, then a subsequence of Gn can be constructed so that each atom
of G0 is a limit point of a certain subset of atoms of Gn — the convergence
to each such limit also happens at rate ωn. Some atoms of Gn may have limit
points that are not among G0’s atoms — the mass associated with those atoms
of Gn must vanish at the generally faster rate ωr

n (since r ≥ 1).

In order to establish the rates of convergence for the mixing measure G,
our strategy is to derive sharp bounds which relate the Wasserstein distance of
mixing measures G,G′ and a distance between corresponding mixture densities
pG, pG′ , such as the variational distance V (pG, pG′). It is relatively simple to
obtain upper bounds for the variational distance of mixing densities (V for
short) in terms of the Wasserstein distances Wr(G,G′) (shorthanded by Wr).
Establishing (sharp) lower bounds for V in terms of Wr is the main challenge.
Such bounds may not hold, due to a possible lack of identifiability of the mixing
measures: one may have pG = pG′ , so clearly V = 0 but G �= G′, so that Wr �= 0.

General theory of strong identifiability The classical identifiability con-
dition requires that pG = pG′ entail G = G′. This amounts to the linear indepen-
dence of elements f in the density class [23]. In order to establish quantitative
lower bounds on a distance of mixture densities, we employ several notions of
strong identifiability, extending from the definitions employed in [4] and [19] to
handle multiple parameter types, including matrix-variate parameters. There
are two kinds of strong identifiability. One such notion involves taking the first-
order derivatives of function f with respect to all parameters in the model, and
insisting that these quantities be linearly independent in a sense to be precisely
defined. This criterion will be called “strong identifiability in the first order”,
or simply first-order identifiability. When the second-order derivatives are also
involved, we obtain the second-order identifiability criterion. It is worth noting
that prior studies on parameter estimation rates tend to center primarily on the
second-order identifiability condition or something even stronger [4, 16, 21, 19].
We show that for exact-fitted mixtures, the first-order identifiability condition
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(along with additional and mild regularity conditions) suffices for obtaining that

V (pG, pG0) � W1(G,G0), (1)

when W1(G,G0) is sufficiently small. Moreover, for a broad range of density
classes, we also have V � W1, for which we actually obtain V (pG, pG0) �
W1(G,G0). A consequence of this fact is that for any estimation procedure that
admits the n−1/2 convergence rate for the mixture density under V distance,
the mixture model parameters also converge at the same rate under Euclidean
metric.

Turning to the over-fitted setting, second-order identifiability along with mild
regularity conditions would be sufficient for establishing that for any G that has
at most k support points where k ≥ k0 + 1 and k is fixed,

V (pG, pG0) � W 2
2 (G,G0). (2)

when W2(G,G0) is sufficiently small. The lower bound W 2
2 (G,G0) is sharp, i.e.,

we cannot improve the lower bound to W r
1 for any r < 2 (notably, W2 ≥ W1).

A consequence of this result is, take any standard estimation method (such as
the MLE) which yields the n−1/2 convergence rate for pG, the induced rate of
convergence for the mixing measureG is n−1/4 underW2. This means the mixing
probability mass converge at n−1/2 rate (which recovers the result of [21]), in
addition to having that the component parameters converge at n−1/4 rate.

We also show that there is a range of mixture models with varying parameters
of multiple types that satisfies the developed strong identifiability criteria. All
such models exhibit the same kinds of rate for parameter estimation. In particu-
lar, the second-order identifiability criterion (thus the first-order identifiability)
is satisfied by many density families f including the multivariate Student’s t-
distribution, the exponentially modified multivariate Student’s t-distribution.
Second-order identifiability also holds for several mixture models with multiple
types of (scalar) parameters. These results are presented in Section 3.2.

Convergence of MLE estimators and minimax lower bounds Assum-
ing that n-iid sample X1, . . . , Xn are generated according to pG0 and let Ĝn

be the MLE estimate of the mixing distribution G ranging among all discrete
probability distributions with at most k support points in Θ × Ω under the
over-fitted setting or among all discrete probability distributions with exactly
k0 support points in Θ × Ω under the exact-fitted setting. The inequalities (1)
and (2), along with the fact that these bounds are sharp enable us to easily es-
tablish the convergence rates of the mixing measures, and obtain minimax lower
bounds. Such results are stated in Theorem 4.2, Theorem 4.3, and Theorem 4.4.
In particular, we obtain the minimax lower bound n−1/δ under W1 distance for
the exact-fitted setting for any positive δ < 2. Under the over-fitted setting, the
minimax lower bound is n−1/δ under W2 distance for any positive δ < 4. The
MLE method can be shown to achieve both these rates, i.e., n−1/2 and n−1/4

up to a logarithm term, under exact-fitted and over-fitted setting, respectively.
Note, however, that these are pointwise convergence rates, i.e., the constants C1
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in Theorem 4.2 and Theorem 4.3 depend on G0. For a fixed G0, we think that
the MLE upper bound n−1/4 for the over-fitted setting is tight, but we do not
have a proof.

Summarizing, the technical contributions of this paper include the following:

(i) Convergence of parameters of multiple types, including matrix-variate pa-
rameters, for finite mixtures, under strong identifiability conditions.

(ii) A minimax lower bound, in the sense of Wasserstein distance W2, for
estimating mixing measures in an over-fitted setting. The maximum like-
lihood estimation method is shown to achieve this lower bound, up to a
logarithmic term, although the convergence is pointwise.

(iii) Characterization results showing the applicability of our theory and the
convergence rates to a fairly broad range of mixture models with param-
eters of multiple types, including matrix-variate ones.

(iv) Another noteworthy aspect of this work is that the settings of exact-fitted
and over-fitted mixtures are treated separately: the first-order identifiabil-
ity criterion is sufficient in the former setting, which attains convergence
in W1; while the second-order identifiability criterion is sufficient in the
latter, which achieves convergence in W2 metric.

Finally, we note in passing that both the first and second-order identifiability
are in some sense necessary in deriving the MLE convergence rate n−1/2 and
n−1/4 as described above. Models such as location-scale Gaussian mixtures,
shape-scale Gamma mixtures and location-scale-shape skew-Gaussian mixtures
do not satisfy either or both strong identifiability conditions — we call such
models “weakly identifiable”. It can be shown that such weakly identifiable
models exhibit a much slower convergence behavior than the standard rates
established in this paper. Such a theory is fundamentally different from the
strong identifiability theory, and will be reported elsewhere.

Paper organization The rest of the paper is organized as follows. Section 2
provides some preliminary backgrounds and facts. Section 3 presents a general
theory of strong identifiability, by addressing the exact-fitted and over-fitted set-
tings separately before providing a characterization of density classes for which
the general theories are applicable. Section 4.1 contains consequences of the
theory developed earlier – this includes minimax lower bounds and convergence
rates of maximum likelihood estimation. The theoretical bounds are illustrated
via simulations in Section 4.2. Self-contained proofs of the key theorems are
given in Section 5 while proofs of the remaining results are presented in the
Appendices.

Notation Given two densities p, q (with respect to Lebesgue measure μ), the
variational distance is given by V (p, q) = (1/2)

∫
|p − q|dμ. The Hellinger dis-

tance h is given by h2(p, q) = (1/2)
∫
(p1/2 − q1/2)2dμ.

As K,L ∈ N, the first derivative of real function g : RK×L → R of matrix Σ is
defined as a K×L matrix whose (i, j) element is ∂g/∂Σij . The second derivative

of g, denoted by ∂2g
∂Σ2 is a K2 ×L2 matrix made of KL blocks of K ×L matrix,
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whose (i, j)-block is given by ∂
∂Σ

(
∂g

∂Σij

)
. Additionally, as N ∈ N, for function

g2 : RN × R
K×L → R defined on (θ,Σ), the joint derivative between the vector

component and matrix component ∂2g2
∂θ∂Σ = ∂2g2

∂Σ∂θ is a (KN) × L matrix of KL

blocks for N -columns, whose (i, j)-block is given by ∂
∂θ

(
∂g2
∂Σij

)
.

Throughout the paper, for any symmetric matrix Σ ∈ R
d×d, λ1(Σ) and λd(Σ)

respectively denote its smallest and largest eigenvalue. Additionally, the expres-
sion “�” will be used to denote the inequality up to a constant multiple where
the value of the constant is fixed within our setting. We write an � bn if both
an � bn and an � bn hold.

2. Preliminaries

First of all, we need to define our notion of distances on the space of mix-
ing measures. In this paper, we restrict ourselves to the space of discrete mix-
ing measures with exactly k0 distinct support points on Θ × Ω, denoted by
Ek0(Θ × Ω), and the space of discrete mixing measures with at most k dis-
tinct support points on Θ × Ω, denoted by Ok(Θ × Ω). Consider a mixing

measure G =
∑k

i=1 piδ(θi,Σi), where p = (p1, p2, . . . , pk) denotes the propor-

tion vector. Likewise, let G′ =
∑k′

i=1 p
′
iδ(θ′

i,Σ
′
i)
. A coupling between �p and �p′ is

a joint distribution �q on [1 . . . , k] × [1, . . . , k′], which is expressed as a matrix

�q = (qij)1≤i≤k,1 ≤j≤k′ ∈ [0, 1]k×k′
and admits marginal constraints

∑k
i=1 qij =

p′j and
∑k′

j=1 qij = pi for any i = 1, 2, . . . , k and j = 1, 2, . . . , k′. We call �q a

coupling of �p and �p′, and use Q(�p, �p′) to denote the space of all such couplings.
As in [19], our tool for analyzing the identifiability and convergence of pa-

rameters in a mixture model is by adopting Wasserstein distances, which can
be defined as the optimal cost of moving masses from one probability measure
to another [25]. For any r ≥ 1, the r-th order Wasserstein distance between G
and G′ is given by

Wr(G,G′) =

(
inf

�q∈Q(�p,�p′)

∑
i,j

qij(‖θi − θ′j‖+ ‖Σi − Σ′
j‖)r

)1/r

.

In both occurrences in the above display, ‖ · ‖ denotes either the l2 norm for
elements in R

d or the entrywise l2 norm for matrices.
The central theme of the paper is the relationship between the Wasserstein

distances of mixing measures G,G′ and the distances of the corresponding mix-
ture densities pG, pG′ . Clearly, if G = G′ then pG = pG′ . Intuitively, if W1(G,G′)
or W2(G,G′) is small, so is a distance between pG and pG′ . This can be quan-
tified by establishing an upper bound for the distance of pG and pG′ in terms
of W1(G,G′) or W2(G,G′). There is a simple and general way to do this, by
accounting for the Lipschitz property of the density class and then appealing
to Jensen’s inequality. We will not go into such details and refer the readers
to [19] (Section 2). The followings are examples of mixture models that carry
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multiple types of parameter including the matrix-variate ones, along with the
aforementioned upper bounds.

Example 2.1 (Multivariate generalized Gaussian distribution [29]).

Let f(x|θ,m,Σ) = mΓ(d/2)
πd/2Γ(d/(2m))|Σ|1/2 exp(−[(x − θ)TΣ−1(x − θ)]m), where θ ∈

R
d,m > 0, and Σ ∈ S++

d . If Θ1 is a bounded subset of Rd, Θ2 =
{
m ∈ R

+ : 1 ≤
m ≤ m ≤ m

}
, and Ω =

{
Σ ∈ S++

d : λ ≤
√

λ1(Σ) ≤
√
λd(Σ) ≤ λ

}
, where

λ, λ > 0, then for any mixing measures G1, G2, we obtain h2(pG1 , pG2) �
W 2

2 (G1, G2) and V (pG1 , pG2) � W1(G1, G2).

Example 2.2 (Multivariate Student’s t-distribution [20]).

Let f(x|θ,Σ) = Cν

|Σ|1/2
(
ν + (x− θ)TΣ−1(x− θ)

)−(ν+d)/2
, where ν is a fixed pos-

itive degree of freedom and Cν = Γ((ν+d)/2)νν/2

Γ(ν/2)πd/2 . If Θ is a bounded subset of

R
d and Ω =

{
Σ ∈ S++

d : λ ≤
√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, then for any mixing

measures G1, G2, we obtain h2(pG1 , pG2) � W 2
2 (G1, G2) and V (pG1 , pG2) �

W1(G1, G2).

Example 2.3 (Exponentially modified multivariate Student’s t-distribution).
Let f(x|θ, λ,Σ) be the density of X = Y + Z, where Y follows the multivari-
ate t-distribution with location parameter θ, covariance matrix Σ, fixed positive
degree of freedom ν, and Z is distributed by the product of d independent expo-
nential distributions with combined shape parameter λ = (λ1, . . . , λd). If Θ is a

bounded subset of Rd×R
d
+ and Ω =

{
Σ ∈ S++

d : λ ≤
√

λ1(Σ) ≤
√

λd(Σ) ≤ λ
}
,

then for any mixing measures G1, G2, we have h2(pG1 , pG2) � W 2
2 (G1, G2) and

V (pG1 , pG2) � W1(G1, G2).

Example 2.4 (Modified Gaussian-Gamma distribution).
Let f(x|θ, α, β,Σ) be the density function of X = Y + Z, where Y is dis-
tributed by the multivariate Gaussian distribution with mean θ, covariance
matrix Σ, and Z is distributed by the product of independent Gamma dis-
tributions with combined shape vector α = (α1, . . . , αd) and combined rate
vector β = (β1, ..., βd). If Θ is a bounded subset of R

d × R
d
+ × R

d
+, Ω ={

Σ ∈ S++
d : λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, then for any mixing measuresG1, G2,

we have h2(pG1 , pG2) � V (pG1 , pG2) � W1(G1, G2).

3. General theory of strong identifiability

The objective of this section is to develop a general theory according to which a
small distance between mixture densities pG and pG′ entails a small Wasserstein
distance between mixing measures G and G′. The classical identifiability criteria
require that pG = pG′ entailG = G′, which is essentially equivalent to a linear in-
dependence requirement for the class of density family {f(x|θ,Σ)|θ ∈ Θ,Σ ∈ Ω}.
To obtain quantitative bounds, we shall need stronger notions of identifiability,
ones which involve higher order derivatives of the density function f , taken with
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respect to the mixture model parameters. The strength of this theory is that
it holds generally for a fairly broad range of mixture models, which allows for
the same bounds on the Wasserstein distances. This in turn leads to “standard”
rates of convergence for mixing measures.

3.1. Definitions and general identifiability bounds

Definition 3.1. The family {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the
first-order if f(x|θ,Σ) is differentiable in (θ,Σ) and the following holds

A1. For any finite k different pairs (θ1,Σ1), ..., (θk,Σk) ∈ Θ × Ω, if we have
αi ∈ R, βi ∈ R

d1 and symmetric matrices γi ∈ R
d2×d2 (for all i =

1, . . . , k) such that for almost all x

k∑
i=1

αif(x|θi,Σi) + βT
i

∂f

∂θ
(x|θi,Σi) + tr

(
∂f

∂Σ
(x|θi,Σi)

T γi

)
= 0,

then, αi = 0, βi = �0 ∈ R
d1 , γi = �0 ∈ R

d2×d2 for i = 1, . . . , k.

Remark The condition that γi is symmetric in Definition 3.1 is crucial, with-
out which the identifiability condition would fail for many classes of density.
Indeed, assume that ∂f

∂Σ (x|θi,Σi) are symmetric matrices for all i, which clearly
holds for elliptical distributions such as multivariate Gaussian, Student’s t-
distribution, and logistics distribution. Now, if we choose γi to be anti-symmetric
matrices with zero diagonal elements, αi = 0, βi = �0, then the equation in (A1)
holds even when γi �= �0 for all i.

Additionally, we say the family of densities f is uniformly Lipschitz up to the
first order if the following holds: there are positive constants δ1, δ2 such that for
any R1, R2, R3 > 0, γ1 ∈ R

d1 , γ2 ∈ R
d2×d2 , R1 ≤

√
λ1(Σ) ≤

√
λd2(Σ) ≤ R2,

‖θ‖ ≤ R3, θ1, θ2 ∈ Θ, Σ1,Σ2 ∈ Ω, there are positive constants C(R1, R2) and
C(R3) such that for all x ∈ X∣∣∣∣γT

1

(
∂f

∂θ
(x|θ1,Σ)−

∂f

∂θ
(x|θ2,Σ)

)∣∣∣∣ ≤ C(R1, R2)‖θ1 − θ2‖δ1‖γ1‖, (3)∣∣∣∣∣tr
((

∂f

∂Σ
(x|θ,Σ1)−

∂f

∂Σ
(x|θ,Σ2)

)T

γ2

)∣∣∣∣∣ ≤ C(R3)‖Σ1 − Σ2‖δ2‖γ2‖. (4)

First-order identifiability is sufficient for deriving a lower bound of V (pG, pG0)
in terms of W1(G,G0), under the exact-fitted setting: This is the setting where
G0 has exactly k0 support points lying in the interior of Θ× Ω:

Theorem 3.1. (Exact-fitted setting) Suppose that the density family f is
identifiable in the first order and admits a uniform Lipschitz property up to the
first order. Then there are positive constants ε0 and C0, both depending on G0,
such that as long as G ∈ Ek0(Θ × Ω), the set of mixing measures with exact
order k0, and W1(G,G0) ≤ ε0, we have

V (pG, pG0) ≥ C0W1(G,G0).
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Although no boundedness condition on Θ or Ω is required, this lower bound
is of a local nature, in the sense that it holds only for those G sufficiently close
to G0 by a Wassertein distance at most ε0, which again varies with G0. It is
possible to extend this type of bound to hold globally over a compact subset of
the space of mixing measures, under a mild regularity condition, as the following
corollary asserts:

Corollary 3.1. Suppose that all assumptions of Theorem 3.1 hold. Further-
more, there is a positive constant α > 0 such that for any G1, G2 ∈ Ek0(Θ×Ω),
we have V (pG1 , pG2) � Wα

1 (G1, G2). Then, for a fixed compact subset G of
Ek0(Θ× Ω), there is a positive constant C0 = C0(G0) such that

V (pG, pG0) ≥ C0W1(G,G0) for all G ∈ G.

We shall verify in the sequel that the classes of densities f described in
Examples 2.1, 2.2, and 2.3 are all identifiable in the first order. Combining with
the upper bounds for V , we arrive at a remarkable fact for these density classes,
that

V (pG, pG0) � W1(G,G0).

Moving to the over-fitted setting, where G0 has exactly k0 support points
lying in the interior of Θ × Ω, but k0 is unknown and only an upper bound
for k0 is given, a stronger identifiability condition is required. This condition
generalizes that of [4]:

Definition 3.2. The family {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the
second-order if f(x|θ,Σ) is twice differentiable in (θ,Σ) and the following
assumption holds

A2. For any finite k different pairs (θ1,Σ1), ..., (θk,Σk) ∈ Θ × Ω, if we have
αi ∈ R, βi, νi ∈ R

d1 , γi, ηi symmetric matrices in R
d2×d2 as i = 1, . . . , k

such that for almost all x

k∑
i=1

{
αif(x|θi,Σi) + βT

i

∂f

∂θ
(x|θi,Σi) + νTi

∂2f

∂θ2
(x|θi,Σi)νi +

tr

(
∂f

∂Σ
(x|θi,Σi)

T γi

)
+ 2νTi

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θi,Σi)

T ηi

))]
+

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θi,Σi)

T ηi

))T

ηi

)}
= 0,

then, αi = 0, βi = νi = �0 ∈ R
d1 , γi = ηi = �0 ∈ R

d2×d2 for i = 1, . . . , k.

In addition, we say the family of densities f is uniformly Lipschitz up to the
second order if the following holds: there are positive constants δ3, δ4 such that
for any R4, R5, R6 > 0, γ1 ∈ R

d1 , γ2 ∈ R
d2×d2 , R4 ≤

√
λ1(Σ) ≤

√
λd2(Σ) ≤ R5,
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‖θ‖ ≤ R6, θ1, θ2 ∈ Θ, Σ1,Σ2 ∈ Ω, there are positive constants C1 depending on
(R4, R5) and C2 depending on R6 such that for all x ∈ X

|γT
1 (

∂2f

∂θ2
(x|θ1,Σ)−

∂2f

∂θ2
(x|θ2,Σ))γ1| ≤ C1‖θ1 − θ2‖δ31 ‖γ1‖22,

∣∣∣∣∣tr
([

∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ,Σ1)

T γ2

))
− ∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ,Σ2)

T γ2

))]T
γ2

)∣∣∣∣∣ ≤
C2‖Σ1 − Σ2‖δ42 ‖γ2‖22.

Let k ≥ 2 and k0 ≥ 1 be fixed positive integers where k ≥ k0 + 1. G0 ∈ Ek0

while G varies in Ok. Then, we can establish the following results

Theorem 3.2. (Over-fitted setting)

(a) Assume the density family f is identifiable in the second order and admits
a uniform Lipschitz property up to the second order. Moreover, Θ is a
bounded subset of R

d1 and Ω is a subset of S++
d2

such that the largest
eigenvalues of elements of Ω are bounded above. Additionally, assume that
for each θ ∈ Θ, for each x ∈ X except a finite number of values in X , we
have limλ1(Σ)→0 f(x|θ,Σ) = 0. Then there are positive constants ε0 and
C0 depending on G0 such that as long as G ∈ Ok(Θ×Ω), the set of mixing
measures with their orders bounded above by k, and W2(G,G0) ≤ ε0, we
have

V (pG, pG0) ≥ C0W
2
2 (G,G0).

(b) (Optimality of bound for variational distance) Assume f is second-order
differentiable with respect to θ,Σ and all of its second derivatives are in-
tegrable uniformly for all θ,Σ. Then, for any 1 ≤ r < 2:

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
V (pG, pG0)/W

r
1 (G,G0) : W1(G,G0) ≤ ε

}
= 0.

(c) (Optimality of bound for Hellinger distance) Assume f is second-order
differentiable with respect to θ, Σ and for some sufficiently small c0 > 0,

sup
‖θ−θ′‖+‖ Σ−Σ′‖≤c0

∫
x∈X

(
∂2f

∂θα1∂Σα2
(x|θ,Σ)

)2

/f(x|θ′
,Σ

′
)dx < ∞

where α1 ∈ N
d1 , α2 ∈ N

d2×d2 in the partial derivative of f take any com-
bination such that |α1|+ |α2| = 2. Then, for any 1 ≤ r < 2:

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
h(pG, pG0)/W

r
1 (G,G0) : W1(G,G0) ≤ ε

}
= 0.

Here and elsewhere, ratio V/Wr is set to be ∞ if Wr(G,G0) = 0. Some remarks:
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(i) A version of part (a) for finite mixtures with multivariate parameters was
first given in [19] (Proposition 1 and Theorem 1). The original statement
of Nguyen’s Theorem 1 contains a mistake, as it claims something un-
necessarily stronger: V (pG1 , pG2)/W

2
2 (G1, G2) is bounded away from 0 as

both G1 and G2 are sufficiently close to G0 in the sense of W2. This is not
true, unless both G1 and G2 have the same number of support points as
G0.

1 This error can be corrected in the overfitted setting, by fixing G2

to G0, and allowing only G1 ≡ G to vary near G0. This is precisely our
current statement of part (a) stated for the more general matrix-variate
mixture models.

(ii) The condition limλ1(Σ)→0 f(x|θ,Σ) = 0 is important for the matrix-variate
parameter Σ. In particular, it is useful for addressing the scenario when the
smallest eigenvalue of matrix parameter Σ is not bounded away from 0. It
is simple to see that this condition is satisfied for the examples discussed in
the previous section. For instance, for the multivariate generalized Gaus-
sian distribution, it holds for each θ ∈ Θ, and x �= θ. Note also that this
condition can be removed if we additionally impose that all Σ ∈ Ω are
positive definite matrices whose eigenvalues are bounded away from 0.

(iii) Part (b) demonstrates the sharpness of the bound in part (a). In par-
ticular, we cannot improve the lower bound in part (a) to any quantity
W r

1 (G,G0) for any r < 2. For any estimation method that yields n−1/2

convergence rate under the Hellinger distance for pG, part (a) induces
n−1/4 convergence rate under W2 for G. A consequence of part (c) is a
minimax lower bound n−1/4 for estimating the mixing measure G. See
Section 4.1 for formal statements of such results.

(iv) It is also worth mentioning that the boundedness of Θ, as well as the
boundedness from above of the eigenvalues of elements of Ω are both
necessary conditions for the conclusion of part (a) to hold. Indeed, it is
possible to show that if one of these two conditions is not met, we are not
able to obtain the lower bound of V (pG, pG0) as established, because the
distance h ≥ V can vanish much faster than the distance Wr(G,G0), as
can be seen by:

Proposition 3.1. Let Θ be a subset of Rd1 and Ω = S++
d2

. Then for any r ≥ 1
and β > 0 we have

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
exp

(
1

W β
r (G,G0)

)
h(pG, pG0) : Wr(G,G0) ≤ ε

}
= 0.

Finally, as in the exact-fitted setting, to establish the bound V � W 2
2 in a

global manner, we simply add a compactness condition on the subset within
which G varies:

1A counterexample was pointed out to the second author by Elisabeth Gassiat, who at-
tributed it to Jonas Kahn. A similar error is also present in Lemma 2 of [4], which admits the
same correction described above.
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Corollary 3.2. Suppose that all assumptions of Theorem 3.2 (part (a)) hold.
Furthermore, there is a positive constant α ≤ 2 such that for any G1, G2 ∈
Ok(Θ × Ω), we have V (pG1 , pG2) � Wα

2 (G1, G2). Then, for a fixed compact
subset O of Ok(Θ× Ω) there is a positive constant C0 = C0(G0) such that

V (pG, pG0) ≥ C0W
2
2 (G,G0) for all G ∈ O.

A consequence of this result is, take any standard estimation method such as
the MLE, which yields the n−1/2 convergence rate for pG, the induced rate of
convergence for the mixing measure G is n−1/4 under W2. This also entails that
the mixing probability masses converge at the n−1/2 rate (which recovers the
result of [21]), in addition to having that the component parameters converge
at the n−1/4 rate.

3.2. Characterization of strong identifiability

In this subsection we identify a fairly broad range of density classes for which
the strong identifiability conditions developed previously hold either in the first
or the second order. Then we also present general results which show how strong
identifiablity conditions continue to be preserved under certain transformations
with respect to the parameter space. First, we consider univariate density func-
tions with parameters of multiple types:

Theorem 3.3. (Densities with multiple scalar parameters)

(a) Generalized univariate logistic densities: Let f(x|θ, σ) := 1
σf ((x− θ)/σ),

where f(x) = Γ(p+q)
Γ(p)Γ(q)

exp(px)
(1+exp(x))p+q , and p, q are fixed in N+. Then the

family {f(x|θ, σ), θ ∈ R, σ ∈ R+} is identifiable in the second order.
(b) Generalized Gumbel densities: Let f(x|θ, σ, λ) := 1

σf((x− θ)/σ, λ), where

f(x, λ) = λλ

Γ(λ) exp(−λ(x + exp(−x))) as λ > 0. Then we have the family

{f(x|θ, σ, λ), θ ∈ R, σ ∈ R+, λ ∈ R+} is identifiable in the second order.

(c) Weibull densities: Let f(x|ν, λ) = ν
λ

(
x
λ

)ν−1
exp

(
−
(
x
λ

)ν)
, for x ≥ 0, where

ν, λ > 0 are shape and scale parameters, respectively. Then the family
{f(x|ν, λ), ν ∈ R+, λ ∈ R+} is identifiable in the second order.

(d) Von Mises densities [12, 14, 17]: Let f(x|μ, κ) = 1
2πI0(κ)

exp(κ cos(x −
μ)).1{x∈[0,2π)}, where μ ∈ [0, 2π), κ > 0, and I0(κ) is the modified Bessel
function of order 0. Then the family {f(x|μ, κ), μ ∈ [0, 2π), κ ∈ R+} is
identifiable in the second order.

Next, we turn to the density function classes with matrix-variate parameter
spaces, as introduced in Section 2:

Theorem 3.4. (Densities with matrix-variate parameters)

(a) The family
{
f(x|θ,Σ,m), θ ∈ R

d,Σ ∈ S++
d ,m ≥ 1

}
of multivariate gener-

alized Gaussian distribution is identifiable in the first order.
(b) The family

{
f(x|θ,Σ), θ ∈ R

d,Σ ∈ S++
d

}
of multivariate t-distribution with

fixed odd degree of freedom is identifiable in the second order.
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(c) The family
{
f(x|θ,Σ, λ), θ ∈ R

d,Σ ∈ S++
d , λ ∈ R

d
+

}
of exponentially mod-

ified multivariate t-distribution with fixed odd degree of freedom is identi-
fiable in the second order.

(d) The family
{
f(x|θ,Σ, a, b), θ ∈ R

d,Σ ∈ S++
d , a ∈ R

d
+, b ∈ R

d
+

}
of modified

Gaussian-Gamma distribution is not identifiable in the first order.

These theorems are the matrix-variate or multiple parameter-type counter-
parts of results proven for density classes with a single scalar parameter [4]. As
the proofs of these results are technically involved, we present only the proof of
Theorem 3.4 in the Appendix. A useful insight one can draw from these proofs
is that the strong identifiability of these density classes are established by ex-
ploiting how the corresponding characteristic functions and moment generating
functions behave at infinity. Thus it can be concluded that the common feature
in establishing strong identifiability hinges on the smoothness of the density f
in question.

Some additional details: regarding part (a), as the class of multivariate Gaus-
sian distribution (m = 1) is not identifiable in the second order, the conclusion
of this part only holds for the first-order identifiability. However, if we impose
the constraint m > 1, the class of multivariate generalized Gaussian distribu-
tions is identifiable in the second order. The condition odd degree of freedom
in part (b) and (c) of Theorem 3.4 is mainly due to our proof technique. We
believe both (b) and (c) hold for any fixed positive degree of freedom, but do
not have a proof. Finally, the conclusion of part (d) is due to the fact that the
family of Gamma distributions is not identifiable in the first order.

The results of Theorem 3.4 shed light on which classes of distribution satisfy
the inequality being established in Theorem 3.1 and Theorem 3.2. A consequence
is the following: take any standard estimation method (such that the MLE)
which yields the n−1/2 convergence rate for pG, the induced rate of convergence
for the mixing measure G is n−1/2 under W1 for the exact-fitted setting or
n−1/4 under W2 for the over-fitted setting. From the definition of Wasserstein
distances, under the MLE, the mixing probabilities’ estimate converge at the
n−1/2 rate; while the component parameters converge at the rate n−1/2 for the
exact-fitted setting, and n−1/4 for the over-fitted setting.

Before ending this section, we state a result in response to a question posed
by Xuming He on strong identifiability in transformed parameter spaces. The
following theorem asserts that the first-order identifiability with respect to a
transformed parameter space is preserved under some regularity conditions of
the transformation operator. Let T be a bijective mapping from Θ∗ × Ω∗ to
Θ× Ω such that

T (η,Λ) = (T1(η,Λ), T2(η,Λ)) = (θ,Σ)

for all (η,Λ) ∈ Θ∗×Ω∗, where Θ∗ ⊂ R
d1 , Ω∗ ⊂ S++

d2
. Define the class of density

functions {g(x|η,Λ), η ∈ Θ∗,Λ ∈ Ω∗} by

g(x|η,Λ) := f(x|T (η,Λ)).
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Additionally, for any (η,Λ) ∈ Θ∗ × Ω∗, let J(η,Λ) ∈ R
(d1+d2

2)×(d1+d2
2) be the

modified Jacobian matrix of T (η,Λ), i.e. the usual Jacobian matrix when (η,Λ)
is taken as a d1 + d22 vector.

Theorem 3.5. Assume that {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the first
order. Then the class of density functions {g(x|η,Λ), η ∈ Θ∗,Λ ∈ Ω∗} is iden-
tifiable in the first order if and only if the modified Jacobian matrix J(η,Λ) is
non-singular for all (η,Λ) ∈ Θ∗ × Ω∗.

The conclusion of Theorem 3.5 still holds if we replace the first-order iden-
tifiability by the second-order identifiability. This type of results allows us to
construct more examples of strongly identifiable density classes.

As we have seen previously, strong identifiablity (either in the first or second
order) yields sharp lower bounds of V (pG, pG0) in terms of Wasserstein distances
Wr(G,G0). It is useful to know that in the transformed parameter space, one
may still enjoy the same inequality. Specifically, for any discrete probability
measure Q =

∑k0

i=1 piδ(ηi,Λi) ∈ Ek0(Θ
∗ × Ω∗), denote

p′Q(x) =

∫
g(x|η,Λ)dQ(η,Λ) =

k0∑
i=1

pig(x|ηi,Λi).

Let Q0 to be a fixed discrete probability measure on Ek0(Θ
∗ ×Ω∗), while prob-

ability measure Q varies in Ek0(Θ
∗ × Ω∗).

Corollary 3.3. Assume that the conditions of Theorem 3.5 hold. Further, sup-
pose that the first derivative of f in terms of θ,Σ and the first derivative of
T in terms of η,Λ are α-Hölder continuous and bounded where α > 0. Then
there are positive constants ε0 := ε0(Q0) and C0 := C0(Q0) such that as long as
Q ∈ Ek0(Θ

∗ × Ω∗) and W1(Q,Q0) ≤ ε0, we have

V (p′Q, p
′
Q0

) ≥ C0W1(Q,Q0).

Remark. If Θ and Ω are bounded sets, the condition on the boundedness of
the first derivative of f in terms of θ,Σ and the first derivative of g in terms
of η,Λ can be left out. Additionally, the restriction that these derivatives be
α-Hölder continuous can be relaxed to only that the first derivative of f and the
first derivative of g are α1-Hölder continuous and α2-Hölder continuous where
α1, α2 > 0 can be different. Finally, the conclusion of Corollary 3.3 still holds
for the lower bound W 2

2 (Q,Q0) if we impose the second-order identifiability on
the kernel density f as well as the additional structures on the second derivative
of T .

4. Minimax lower bounds, MLE rates and illustrations

4.1. Minimax lower bounds and MLE rates of convergence

Given n-iid sample X1, X2, ..., Xn distributed according to the mixture density
pG0 , where G0 is an unknown true mixing distribution with exactly k0 support
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points, and the class of densities {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is assumed known.
Given k ∈ N such that k ≥ k0 + 1. The support points of G0 lie in Θ × Ω.
In this section we shall assume that Θ is a compact subset of Rd1 and Ω ={
Σ ∈ S++

d2
: λ ≤

√
λ1(Σ) ≤

√
λd2(Σ) ≤ λ

}
, where 0 < λ, λ are known and d1 ≥

1, d2 ≥ 0. We denote Θ∗ = Θ×Ω. The maximum likelihood estimator for G0 in
the over-fitted mixture setting is given by

Ĝn = argmax
G∈Ok(Θ×Ω)

n∑
i=1

log(pG(Xi)).

For the exact-fitted mixture setting, Ok is replaced by Ek0 .
The inequalities established by Theorem 3.1 and Theorem 3.2 allow us to

translate existing results on convergence rates (under Hellinger distance) of
maximum likelihood density estimation to that of the mixing measure (under
Wasserstein distance metrics). Under standard assumptions, the convergence
rate for density estimation using finite mixture densities is (logn/n)1/2. Then it
follows that the convergence rate for the mixing measure under W1 distance in
the exact-fitted setting is also (logn/n)1/2. For the over-fitted setting, the rate
is (logn/n)1/4 under W2 distance.

To state such results formally, we need to introduce several standard notions,
which will allow us to appeal to a general convergence theorem for the MLE
(e.g., [24]). For any positive integer number k1, define several classes of mixture

densities Pk1(Θ
∗) = {pG : G ∈ Ok1(Θ

∗)}, Pk1(Θ
∗) =

{
pG+G0

2
: G ∈ Ok1(Θ

∗)
}
,

and P1/2

k1
(Θ∗) =

{(
pG+G0

2

)1/2

: G ∈ Ok1(Θ
∗)

}
. For any δ > 0, define the inter-

section with a Hellinger ball centered at pG0 via

P1/2

k1
(Θ∗, δ) =

{(
pG+G0

2

)1/2

∈ P1/2

k1
: h(pG+G0

2
, pG0) ≤ δ

}
.

The size of this set is captured by the entropy integral:

JB(δ,P
1/2

k1
(Θ∗, δ), μ) =

δ∫
δ2/213

H
1/2
B (u,P1/2

k1
(Θ∗, u), μ)du ∨ δ,

whereHB denotes the bracketing entropy of P1/2

k1
(Θ∗) under L2 distance (cf. [24]

for a definition of the bracket entropy).
Before arriving at the main results in this section, we state the result of

Theorem 7.4 of [24] with the adaption of notations as those in our paper

Theorem 4.1. Take Ψ(δ) ≥ JB(δ,P
1/2

k (Θ∗, δ), μ) in such a way that Ψ(δ)/δ2

is a non-increasing function of δ. Then, for a universal constant c and for

√
nδ2n ≥ cΨ(δn),
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we have for all δ ≥ δn

P (h(pGn , pG0) > δ) ≤ c exp

[
−nδ2

c2

]
.

Now, we are ready to state a general result on the MLE under the exact-fitted
mixture setting:

Theorem 4.2. (Exact-fitted mixtures) Assume that f satisfies the con-

ditions of Theorem 3.1. Take Ψ(δ) ≥ JB(δ,P
1/2

k0
(Θ∗, δ), μ) in such a way that

Ψ(δ)
δ2 is a non-increasing function of δ. Then for a universal constant c, constant

C1 = C1(Θ
∗), a non-negative sequence {δn} such that

√
nδ2n ≥ cΨ(δn),

and for all δ ≥ δn√
C1

, we have

P (W1(Ĝn, G0) > δ) ≤ c exp

(
−nC2

1δ
2

c2

)
.

Proof. By Theorem 3.1,

C1(Θ
∗)W 2

1 (G,G0) ≤ V 2(pG, pG0) ≤ 2h2(pG, pG0) for all G ∈ Ek0(Θ
∗), (5)

where C1(Θ
∗) is a positive constant depending only on Θ∗ and G0. Now, invok-

ing Theorem 4.1, as δ ≥ δn, there is a universal constant c > 0 such that

P (h(pĜn
, pG0) > δ) ≤ c exp

(
−nδ2

c2

)
. (6)

Combining (5) and (6), we readily achieve the conclusion of our theorem.

Using the same argument we arrive at a general convergence rate result of
the MLE under the over-fitted setting:

Theorem 4.3. (Over-fitted mixtures) Assume that f satisfies the conditions

in part (a) of Theorem 3.2. Take Ψ(δ) ≥ JB(δ,P
1/2

k (Θ∗, δ), μ) in such a way

that Ψ(δ)
δ2 is a non-increasing function of δ. Then for a universal constant c,

constant C1 = C1(Θ
∗), {δn} is a non-negative sequence such that

√
nδ2n ≥ cΨ(δn),

and for all δ ≥ δn√
C1

, we have

P (W2(Ĝn, G0) > δ1/2) ≤ c exp

(
−nC2

1δ
2

c2

)
.

To derive the concrete rates δn, one simply need to verify the conditions on
the bracket entropy integral JB for a given model class. As a concrete exam-
ple, the following results are concerned with the finite mixtures of multivariate
generalized Gaussian distributions.
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Corollary 4.1. (Mixtures of multivariate generalized Gaussian distri-
butions) Given Θ = [−an, an]

d × [m,m] where an ≤ L(log(n))γ as L is some
positive constant, γ > 0, and 1 < m ≤ m are two known positive numbers.
Let {f(x|θ,m,Σ)|(θ,m) ∈ Θ,Σ ∈ Ω} to be the class of multivariate generalized
Gaussian distributions.

(a) (Exact-fitted case) There holds P (W1(Ĝn, G0) > δn) � exp(−c log(n)),
where δn is a sufficiently large multiple of (log(n)/n)1/2 and c is positive
constant depending only on L, γ,m,m, λ, λ.

(b) (Over-fitted case) There holds P (W2(Ĝn, G0) > δ′n) � exp(−c log(n)),
where δ′n is a sufficiently large multiple of (log(n)/n)1/4 and c is positive
constant depending only on L, γ,m,m, λ, λ.

Remark (i) The condition m > 1 can be relaxed to m ≥ 1 under the exact-
fitted setting; however, it is crucial under the over-fitted setting that m > 1. In
fact, the location-covariance Gaussian mixtures (which correspond to m = 1)
have to be excluded from the class of generalized Gaussian mixtures for the
above results to hold. This is a consequence of the fact that the (sub)class
of location-covariance multivariate Gaussian distributions is not identifiable in
the second order. In fact, the failure to satisfy the second-order identifiability
leads to very slow convergence rate of the MLE under the over-fitted location-
scale Gaussian mixture setting, as we noted briefly in the introduction. (ii) The
conclusions of this corollary also hold for mixtures of multivariate Student’s t-
distribution as well as all the classes of distributions considered in Theorem 3.3
with suitable boundedness conditions on the parameter spaces.

Finally, we shall show that the convergence rates n−1/2 and n−1/4 for the
exact-fitted and over-fitted finite mixtures, respectively, are in fact minimax
lower bounds. Under the exact-fitted finite mixture setting, it is simple to es-
tablish the standard n−1/2 minimax lower bound:

inf
Ĝn∈Ek0

sup
G0∈Ek0

EpG0
W1(Ĝn, G0) � n−1/2,

where the infimum is taken over all possible sequences of estimate Ĝn based
on n-samples. Perhaps more interesting is the following minimax lower bound
result for the over-fitted mixture setting.

Theorem 4.4. (Minimax lower bound for over-fitted mixtures) If the
class of densities f satisfies condition (c) of Theorem 3.2, then for any positive
r < 4 and any n ≥ 1,

inf
Ĝn∈Ok

sup
G0∈Ok\Ok0−1

EpG0
W1(Ĝn, G0) � n−1/r.

Proof. The proof is almost immediate following a standard argument for estab-
lishing minimax lower bounds. Fix a G0 ∈ Ek0 and r ∈ [1, 2). Let C0 > 0 be any
fixed constant. According to Theorem 3.2, part (c), for any sufficiently small
ε > 0, there exists G′

0 ∈ Ok such that W1(G0, G
′
0) = 2ε and h(pG0 , pG′

0
) ≤ C0ε

r.



288 N. Ho and X. Nguyen

Applying Lemma 1 from [27], for any sequence of estimates Ĝn ranging in Ok,
we obtain that

sup
G∈{G0,G′

0}
EpG

W1(Ĝn, G) ≥ ε
(
1− V (pnG0

, pnG′
0
)
)
,

where pnG0
denotes the density of the n-iid sample X1, . . . , Xn. Now,

V (pnG0
, pnG′

0
) ≤ h(pnG0

, pnG′
0
)

=
√

1−
(
1− h2(pG0 , pG′

0
)
)n

≤
√

1− (1− C2
0 ε

2r)
n
.

As a consequence, we obtain

sup
G∈{G0,G′

0}
EpG

W1(Ĝn, G) ≥ ε

(
1−

√
1− (1− C2

0 ε
2r)

n
)
.

By choosing ε2r = 1
C2

0n
, the right hand side of the above inequality is bounded

below by C1ε � n−1/2r for any r < 2 where C1 is some positive constant. We
achieve the conclusion of our theorem. Noting that G0, G

′
0 ∈ Ok \ Ok0−1, this

concludes the proof of our theorem.

4.2. Illustrations

For the remainder of this section, we shall illustrate via simulations the strong
identifiability bounds established in Section 3 for several classes of distributions
with matrix-variate parameter space for which strong identifiability conditions
in both the first and second order hold. In addition, we also present some simu-
lations for the well-known location-scale Gaussian finite mixtures, which satisfy
the first-order identifiability but not the second-order identifiability.

Strong identifiability bounds The inequalities V � W1 for exact-fitted
mixtures and V � W 2

2 for over-fitted mixtures are illustrated for the class
of Student’s t-distributions and the class of multivariate generalized Gaussian
distributions, both of which satisfy first and second-order identifiability. See
Figure 1 and Figure 2. Here we plot h against W1 and W 2

2 , but note the relation
h ≥ V ≥ h2. The upper bounds of V and h in terms of W1 were given in
Section 2.

For details, we choose Θ = [−10, 10]2 for Student’s t-distribution (Gaussian
distribution) or Θ = [−10, 10]2 × [1.5, 5] for multivariate generalized Gaussian

distribution, Ω =
{
Σ ∈ S++

2 :
√
2 ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ 2

}
. Note that closed

interval [1.5, 5] is chosen for m to exclude Gaussian distributions, which cor-
responds to m = 1. Now, the true mixing probability measure G0 has exactly
k0 = 2 support points with locations θ01 = (−2, 2), θ02 = (−4, 4), covariances
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Fig 1. Mixture of Student’s t-distributions. Left: Exact-fitted setting. Right: Over-fitted set-
ting.

Fig 2. Mixture of multivariate generalized Gaussian distributions. Left: Exact-fitted setting.
Right: Over-fitted setting.

Σ0
1 =

(
9/4 1/5
1/5 13/6

)
, Σ0

2 =
(

5/2 2/5
2/5 7/3

)
, m0

1 = 2, m0
2 = 3 (for the setting of mul-

tivariate generalized Gaussian distribution), and p01 = 1/3, p02 = 2/3. 10000
random samples of discrete mixing measures G ∈ E2(Θ × Ω), 10000 samples
of G ∈ O3(Θ × Ω) were generated to construct these plots. Note that, since
we focus on obtaining the lower bound of Hellinger distance in terms of small
Wasserstein distances, we generate G by making small perturbations of G0 (that
is, adding small random noise ε to the mixing coefficients and support points of
G0).

It can be observed that both lower bounds and upper bounds match exactly
that of our theorems for strongly identifiable classes of distributions such as the
t-distribution and the generalized Gaussian distribution. Turning to mixtures of
location-covariance Gaussian distributions (Figure 3), the bounds

√
W1 � h �

W1 continue to hold under the exact-fitted setting, but under the over-fitted
setting it can be observed that the lower bound h � W 2

2 no longer holds. In
fact, if the Gaussian mixture is over-fitted by one extra component, it can be
shown that h � W 4

4 ≥ W 4
2 (see illustrations in the middle and right panels),

and that this bound is sharp. This has a drastic consequence on the convergence
rate of the mixing measure, which we discuss next.
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Fig 3. Mixture of location-scale Gaussian distributions, which satisfy first-order identifiablity
but not second-order identifiability condition. Left panel: Exact-fitted setting. Middle and right
panels are for over-fitted setting by one extra component. Right panel shows that h � W 2

2 no
longer holds as h → 0.

Fig 4. MLE rates for location-covariance mixtures of Gaussians. Left: Exact-fitted — W1 �
n−1/2. Right: Over-fitted by one — W4 � n−1/8.

Convergence rates of MLE First, we generate n-iid samples from a bivari-
ate location-covariance Gaussian mixture with three components with an arbi-
trarily fixed choice of G0. The true parameters for the mixing measure G0 are:
θ01 = (0, 3), θ02 = (1,−4), θ03 = (5, 2), Σ0

1 = ( 4.2824 1.7324
1.7324 0.81759 ), Σ

0
2 =

(
1.75 −1.25
−1.25 1.75

)
,

Σ0
3 = ( 1 0

0 4 ), and p01 = 0.3, p02 = 0.4, p03 = 0.3. The parameter spaces Θ,Ω are

identical to those of multivariate Student’s t-distribution setting. MLE Ĝn is
obtained by the EM algorithm as we assume that the data come from a mixture
of k Gaussians where k ≥ k0 = 3. See Figure 4 where the Wasserstein distances
between Ĝn and G0 are plotted against increasing sample size n (n ≤ 30000).
The error bars were obtained by running the experiment 7 times for each n.
The simulation results under the exact-fitted case match quite well with the
standard n−1/2 rate. If we fit the data to a mixture of k = k0 + 1 = 4 Gaus-
sian distributions, however, we observe empirically that the convergence rate
of W4(Ĝn, G0) (thus W2 distance) is almost n−1/8 up to a logarithmic term.
This result is much slower than the “standard” convergence rate n−1/4 under
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W2, should second-identifiability condition holds. A rigorous theory for weakly
identifiable mixture models such as location-covariance Gaussian mixtures will
be reported elsewhere.

5. Proofs of key theorems

In this section, we present self-contained proofs for two key theorems: Theo-
rem 3.1 for strongly identifiable mixtures in the exact-fitted setting and Theorem
3.2 for strongly identifiable mixtures in the over-fitted setting. These moderately
long proofs carry useful insights underlying the theory — they are organized in
a sequence of steps to help the reader. The proofs of the remaining results are
deferred to the Appendices.

5.1. Strong identifiability in exact-fitted mixtures

Proof of Theorem 3.1 It suffices to show that

lim
ε→0

inf

{
V (pG, pG0)/W1(G,G0)|W1(G,G0) ≤ ε

}
> 0, (7)

where the infimum is taken over all G ∈ Ek0(Θ× Ω).

Step 1 Suppose that (7) does not hold, which implies that we have a sequence

of Gn =
∑k0

i=1 p
n
i δ(θn

i ,Σn
i )

∈ Ek0(Θ×Ω) converging to G0 in the W1 distance such
that V (pGn , pG0)/W1(Gn, G0) → 0 as n → ∞. As W1(Gn, G0) → 0, the support
points of Gn must converge to that of G0. By permutation of the labels i, it
suffices to assume that for each i = 1, . . . , k0, (θ

n
i ,Σ

n
i ) → (θ0i ,Σ

0
i ). For each

pair (Gn, G0), let {qnij} denote the corresponding probabilities of the optimal
coupling for the pair (Gn, G0), so we can write:

W1(Gn, G0) =
∑

1≤i,j≤k0

qnij(‖θni − θ0j‖+ ‖Σn
i − Σ0

j‖).

Since (θni ,Σ
n
i ) → (θ0i ,Σ

0
i ) and Gn and G0 have the same number of support

points, it is an easy observation that for sufficiently large n, qnii = min(pni , p
0
i ).

And so,
∑

i 	=j q
n
ij =

∑k0

i=1 |pni −p0i |. Adopting the notations that Δθni := θni −θ0i ,

ΔΣn
i := Σn

i − Σ0
i , and Δpni := pni − p0i for all 1 ≤ i ≤ k0, we have

W1(Gn, G0) =

k0∑
i=1

qnii(‖Δθni ‖+ ‖ΔΣn
i ‖) +

∑
i 	=j

qnij(‖θni − θ0j‖+ ‖Σn
i − Σ0

j‖)

�
k0∑
i=1

pni (‖Δθni ‖+ ‖ΔΣn
i ‖) + |Δpni | =: d(Gn, G0).

The inequality in the above display is due to qnii ≤ pni , and the observation that
‖θni − θ0j‖, ‖Σn

i − Σ0
j‖ are bounded for all 1 ≤ i, j ≤ k0 for sufficiently large n.

Thus, we have V (pGn , pG0)/d(Gn, G0) → 0.
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Step 2 Now, consider the following important identity:

pGn(x)− pG0(x) =

k0∑
i=1

Δpni f(x|θ0i ,Σ0
i ) +

k0∑
i=1

pni (f(x|θni ,Σn
i )− f(x|θ0i ,Σ0

i )).

For each x, applying Taylor expansion to function f to the first order to obtain

k0∑
i=1

pni (f(x|θni ,Σn
i )− f(x|θ0i ,Σ0

i ) =

k0∑
i=1

pni

{
(Δθni )

T ∂f

∂θ
(x|θ0i ,Σ0

i ) +

tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
TΔΣn

i

)}
+Rn(x),

where Rn(x) = O
(∑k0

i=1 p
n
i (‖Δθni ‖1+δ1 + ‖ΔΣn

i ‖1+δ2)
)
, where the appearance

of δ1 and δ2 are due the assumed Lipschitz conditions, and the big-O constant
does not depend on x. It is clear that supx |Rn(x)/d(Gn, G0)| → 0 as n → ∞.

Denote An(x) =
∑k0

i=1 p
n
i

[
(Δθni )

T ∂f
∂θ (x|θ0i ,Σ0

i ) + tr
(

∂f
∂Σ (x|θ0i ,Σ0

i )
TΔΣn

i

)]
,

Bn(x) =
∑k

i=1 Δpni f(x|θ0i ,Σ0
i ). Then, we can rewrite

(pGn(x)− pG0(x))/d(Gn, G0) = (An(x) +Bn(x) +Rn(x))/d(Gn, G0).

Step 3 We see that An(x)/d(Gn, G0) and Bn(x)/d(Gn, G0) are linear combi-
nations of the scalar elements of f(x|θ,Σ), ∂f

∂θ (x|θ,Σ) and
∂f
∂Σ (x|θ,Σ) such that

the coefficients do not depend on x. We shall argue that not all such coefficients
in the linear combination converge to 0 as n → ∞. Indeed, if the opposite is
true, then the summation of the absolute values of these coefficients must also
tend to 0: { k0∑

i=1

|Δpni |+ pni (‖Δθni ‖1 + ‖ΔΣn
i ‖1)

}
/d(Gn, G) → 0.

Since we have the entrywise �1 and �2 norms are equivalent, the above entails{∑k0

i=1 |Δpni |+ pni (‖Δθni ‖+ ‖ΔΣn
i ‖)

}
/d(Gn, G0) → 0, which contradicts with

the definition of d(Gn, G0). As a consequence, we can find at least one coefficient
of the elements of An(x)/d(Gn, G0) or Bn(x)/d(Gn, G0) that does not vanish
as n → ∞.

Step 4 Let mn be the maximum of the absolute value of the scalar coefficients
of An(x)/d(Gn, G0), Bn(x)/d(Gn, G0) and dn = 1/mn, then dn is uniformly
bounded from above for all n. Thus, as n → ∞,

dnAn(x)/d(Gn, G0) →
k0∑
i=1

βT
i

∂f

∂θ
(x|θ0i ,Σ0

i ) + tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
T γi

)
,

dnBn(x)/d(Gn, G0) →
k0∑
i=1

αif(x|θ0i ,Σ0
i ),
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such that not all scalar elements of αi, βi and γi vanish. Moreover, γi are sym-
metric matrices because Σn

i are symmetric matrices for all n, i. Note that

dnV (pGn , pG0)/d(Gn, G0) =

∫
dn|pGn(x)− pG0(x)|/d(Gn, G0)

=

∫
dn|An(x) +Bn(x) +Rn(x)|/d(Gn, G0) dx → 0.

By Fatou’s lemma, the integrand in the above display vanishes for almost all x.
Thus, for almost all x

k0∑
i=1

αif(x|θ0i ,Σ0
i ) + βT

i

∂f

∂θ
(x|θ0i ,Σ0

i ) + tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
T γi

)
= 0.

By the first-order identifiability criteria of f , we have αi = 0, βi = �0 ∈ R
d1 , and

γi = �0 ∈ R
d2×d2 for all i = 1, 2, ..., k, which is a contradiction. Hence, (7) is

proved.

5.2. Strong identifiability in over-fitted mixtures

Proof of Theorem 3.2 (a) We only need to establish that

lim
ε→0

inf
G∈Ok(Θ)

{
sup
x∈X

|pG(x)− pG0(x)|/W 2
2 (G,G0) : W2(G,G0) ≤ ε

}
> 0. (8)

The conclusion of the theorem follows from an application of Fatou’s lemma in
the same manner as Step 4 in the proof of Theorem 3.1.

Step 1 Suppose that (8) does not hold, then we can find a sequence
Gn ∈ Ok(Θ) tending to G0 in W2 distance and supx∈X |pGn(x)− pG0(x)|/
W 2

2 (Gn, G0) → 0 as n → ∞. Since k is finite, there is some k∗ ∈ [k0, k] such that
there exists a subsequence of Gn having exactly k∗ support points. We cannot
have k∗ = k0, due to Theorem 3.1 and the fact that W 2

2 (Gn, G0) � W1(Gn, G0)
for all n. Thus, k0 + 1 ≤ k∗ ≤ k.

Write Gn =
∑k∗

i=1 p
n
i δ(θn

i ,Σn
i )

and G0 =
∑k0

i=1 p
0
i δ(θ0

i ,Σ
0
i )
. Since W2(Gn, G0) →

0, there exists a subsequence of Gn such that each support point (θ0i ,Σ
0
i ) of G0

is the limit of a subset of si ≥ 1 support points of Gn. There may also a subset
of support points of Gn whose limits are not among the support points of G0

— we assume there are m ≥ 0 such limit points. To avoid notational cluttering,
we replace the subsequence of Gn by the whole sequence {Gn}. By re-labeling
the support points, Gn can be expressed by

Gn =

k0+m∑
i=1

si∑
j=1

pnijδ(θn
ij ,Σ

n
ij)

W2−→ G0 =

k0+m∑
i=1

p0i δ(θ0
i ,Σ

0
i )
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where (θnij ,Σ
n
ij) → (θ0i ,Σ

0
i ) for each i = 1, . . . , k0 +m, j = 1, . . . , si, p

0
i = 0 for

i < k0, and we have that pni· :=
∑si

j=1 p
n
ij → p0i for all i. Moreover, the constraint

k0 + 1 ≤
∑k0+m

i=1 si ≤ k must hold.

We note that if matrix Σ is (strictly) positive definite whose maximum eigen-
value is bounded (from above) by constant M , then Σ is also bounded under the
entrywise �2 norm. However if Σ is only positive semidefinite, it can be singular
and its �2 norm potentially unbounded. In our context, for i ≥ k0+1 it is possi-
ble that the limiting matrices Σ0

i can be singular. It comes from the fact that the
some eigenvalues of Σn

ij can go to 0 as n → ∞, which implies det(Σn
ij) → 0 and

hence det(Σ0
i ) = 0. By re-labeling the support points, we may assume without

loss of generality that Σ0
k0+1, . . . ,Σ

0
k0+m1

are (strictly) positive definite matri-
ces and Σ0

k0+m1+1, . . . ,Σ
0
k0+m are singular and positive semidefinite matrices

for some m1 ∈ [0,m]. For those singular matrices, we shall make use of the
assumption that for each θ ∈ Θ, except a finite number of values of x ∈ X , we
have limλ1(Σ)→0 f(x|θ,Σ) = 0 and the fact that θnij as k0 +m1 +1 ≤ i ≤ k0 +m
will converge to at most m − m1 ≤ k − k0 limit points: accordingly, for all
x except a finite number of values in X , f(x|θnij ,Σn

ij) → 0 as n → ∞ for all

k0 +m1 + 1 ≤ i ≤ k0 +m, 1 ≤ j ≤ si. Here, we denote f(x|θ0i ,Σ0
i ) = 0 for all

k0 +m1 + 1 ≤ i ≤ k0 +m.

Step 2 Using shorthand notations Δθnij := θnij − θ0i , ΔΣn
ij := Σn

ij − Σ0
i for

i = 1, . . . , k0 +m1 and j = 1, . . . , si, it is simple to see that

W 2
2 (Gn, G0) � d(Gn, G0) :=

k0+m1∑
i=1

si∑
j=1

pnij(‖Δθnij‖2 + ‖ΔΣn
ij‖2) +

k0+m∑
i=1

∣∣pni. − p0i
∣∣,

because W 2
2 (Gn, G0) is the optimal transport cost with respect to �22, while

d(Gn, G0) corresponds to a multiple of the cost of a possibly non-optimal trans-
port plan, which is achieved by coupling the atoms (θnij ,Σ

n
ij) for j = 1, . . . , si

with (θ0i ,Σ
0
i ) by mass min(pni·, p

0
i ), while the remaining masses are coupled arbi-

trarily. From the assumption, supx∈X |pGn(x)− pG0(x)|/W 2
2 (Gn, G0) vanishes

in the limit, it also implies that supx∈X |pGn(x)− pG0(x)|/d(Gn, G0) → 0.

For each x, we make use of the key identity:

pGn(x)− pG0(x) =

k0+m1∑
i=1

si∑
j=1

pnij(f(x|θnij ,Σn
ij)− f(x|θ0i ,Σ0

i ))

+

k0+m1∑
i=1

(pni. − p0i )f(x|θ0i ,Σ0
i )

+

k0+m∑
i=k0+m1+1

si∑
j=1

pnijf(x|θnij ,Σn
ij)

:= An(x) +Bn(x) + Cn(x). (9)
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Step 3 By means of Taylor expansion up to the second order:

An(x) =

k0+m1∑
i=1

si∑
j=1

pnij(f(x|θnij ,Σn
ij)− f(x|θ0i ,Σ0

i )) =

k0+m1∑
i=1

∑
α

An
α1,α2

(θ0i ,Σ
0
i )

+Rn(x),

where α = (α1, α2) such that α1 + α2 ∈ {1, 2}. Specifically,

An
1,0(θ

0
i ,Σ

0
i ) =

si∑
j=1

pnij(Δθnij)
T ∂f

∂θ
(x|θ0i ,Σ0

i ),

An
0,1(θ

0
i ,Σ

0
i ) =

si∑
j=1

pnij tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
TΔΣn

ij

)
,

An
2,0(θ

0
i ,Σ

0
i ) =

1

2

si∑
j=1

pnij(Δθnij)
T ∂2f

∂θ2
(x|θ0i ,Σ0

i )Δθnij ,

An
0,2(θ

0
i ,Σ

0
i ) =

1

2

si∑
j=1

pnij tr

(
∂

∂Σ

(
tr

(
∂

∂Σ
(x|θ0i ,Σ0

i )
TΔΣn

ij

))T

ΔΣn
ij

)
,

An
1,1(θ

0
i ,Σ

0
i ) = 2

si∑
j=1

(Δθnij)
T

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
TΔΣn

ij

))]
.

In addition, Rn(x) = O

(∑k0+m1

i=1

∑si
j=1 p

n
ij(‖Δθnij‖2+δ + ‖ΔΣn

ij‖2+δ)

)
due to

the second-order Lipschitz condition. It is clear that supx |Rn(x)|/d(Gn, G0) →
0 as n → ∞.

Step 4 Write Dn := d(Gn, G0) for short. Note that (pGn(x) − pG0(x))/Dn

is a linear combination of the scalar elements of f(x|θ,Σ) and its derivatives
taken with respect to θ and Σ up to the second order, and evaluated at the
distinct pairs (θ0i ,Σ

0
i ) for i = 1, . . . , k0 + m. (To be specific, the elements

of f(x|θ,Σ), ∂f
∂θ (x|θ,Σ),

∂f
∂Σ (x|θ,Σ),

∂2f
∂θ2 (x|θ,Σ), ∂2f

∂θ2 (x|θ,Σ), ∂2f
∂Σ2 (x|θ,Σ), and

∂2f
∂θ∂Σ (x|θ,Σ)). In addition, the coefficients associated with these elements do
not depend on x. As in the proof of Theorem 3.1, we shall argue that not all
such coefficients vanish as n → ∞. Indeed, if this is not true, then by taking
the summation of all the absolute value of the coefficients associated with the
elements of ∂2f

∂θ2
l
as 1 ≤ l ≤ d1 and ∂2f

∂Σ2
uv

for 1 ≤ u, v ≤ d2, we obtain

k0+m1∑
i=1

si∑
j=1

pnij(‖Δθnij‖2 + ‖ΔΣij‖2)/Dn → 0.

Therefore,
∑k0+m

i=1 |pni. − p0i |/Dn → 1 as n → ∞. It implies that we should have
at least one coefficient associated with an element of f(x|θ,Σ) (appearing in
Bn(x)/Dn, Cn(x)/Dn) not converging to 0 as n → ∞, which is a contradiction.
As a consequence, not all the coefficients vanish to 0.
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Step 5 Let mn be the maximum of the absolute value of the aforementioned
coefficients. and set dn = 1/mn. Then, dn is uniformly bounded above when n
is sufficiently large. Therefore, as n → ∞, we obtain

dnBn(x)/Dn →
k0+m1∑
i=1

αif(x|θ0i ,Σ0
i ),

dn

k0+m1∑
i=1

An
1,0(θ

0
i ,Σ

0)/Dn →
k0+m1∑
i=1

βT
i

∂f

∂θ
(x|θ0i ,Σ0

i ),

dn

k0+m1∑
i=1

An
0,1(θ

0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
T γi

)
,

dn

k0+m1∑
i=1

An
2,0(θ

0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

νTij
∂2f

∂θ2
(x|θ0i ,Σ0

i )νij ,

dn

k0+m1∑
i=1

An
1,1(θ

0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

νTij

[
∂

∂θ

(
tr

(
∂

∂Σ
(x|θ0i ,Σ0

i )
T ηij

))]
,

dn

k0+m1∑
i=1

An
0,2(θ

0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
T ηij

))T

ηij

)
,

where αi ∈ R, βi, νi1, . . . , νisi ∈ R
d1 , γi, ηi1, . . . , ηisi are symmetric matrices in

R
d2×d2 for all 1 ≤ i ≤ k0 + m1, 1 ≤ j ≤ si. Additionally, dnCn(x)/Dn =

D−1
n

∑k0+m
i=k0+m1+1

∑si
j=1 dnp

n
ijf(x|θnij ,Σn

ij) → 0 due to the fact that for almost
all x, f(x|θnij ,Σn

ij) → 0 for all k0 + m1 + 1 ≤ i ≤ k0 + m, 1 ≤ j ≤ si and the
fact that dnp

n
ij/Dn ≤ 1 for all k0 + m1 + 1 ≤ i ≤ k0 + m, 1 ≤ j ≤ si. As a

consequence, we obtain for almost all x that

k0+m1∑
i=1

{
αif(x|θ0i ,Σ0

i ) + βT
i

∂f

∂θ
(x|θ0i ,Σ0

i ) +

si∑
j=1

νTij
∂2f

∂θ2
(x|θ0i ,Σ0

i )νij +

tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
T γi

)
+ 2

si∑
j=1

νTij

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
T ηij

))]
+

si∑
j=1

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ0i ,Σ0

i )
T ηij

))T

ηij

)}
= 0. (10)

Now, in this paragraph we will argue that not all coefficients in (10) go to
0 as n → ∞. There are two scenarios. Case 1: If mn, the maximum of all the
coefficients considered in Step 4, does not lie in the set

{
pnij/Dn

}
as k0+m1+1 ≤

i ≤ k0 +m, 1 ≤ j ≤ si for infinitely many n. Then, it indicates that at least one
coefficient in (10) should be 1. Our observation is proved. Case 2: Otherwise, mn

lies in the set
{
pnij/Dn

}
as k0+m1+1 ≤ i ≤ k0+m, 1 ≤ j ≤ si for infinitely many

n. This means that we can find two indices i∗ ∈ [k0+m1+1, k0+m], j∗ ∈ [1, si∗ ]
such that mn = pni∗j∗/Dn. Assume now that all of the coefficents in (10) vanish
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to 0. Therefore, dn|pni. − p0i |/Dn = |pni. − p0i |/pni∗j∗ → 0 for all 1 ≤ i ≤ k0 +m1.

Since we have pni∗j∗ ≤
∑k0+m

i=k0+m1+1

∑si
j=1 p

n
ij ≤

∑k0+m1

i=1 |pni. − p0i |, this leads to
|pni. − p0i |/

∑k0+m1

i=1 |pni. − p0i | → 0 for all 1 ≤ i ≤ k0 +m1 as n → ∞, which is a
contradiction. Our observation is proved.

Therefore, at least one coefficient in (10) is different from 0. However, from the
second-order identifiability of {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω}, we obtain αi = 0, βi =
νi1 = . . . = νisi = �0 ∈ R

d1 , γi = ηi1 = . . . = ηisi = �0 ∈ R
d2×d2 for all

1 ≤ i ≤ k0 +m1, which is a contradiction. This concludes the proof of Eq. (8)
and that of the theorem.

(b) Recall G0 =
∑k0

i=1 p
0
i δ(θ0

i ,Σ
0
i )
. Construct a sequence of probability mea-

sures Gn having exactly k0+1 support points as follows:Gn =
∑k0+1

i=1 pni δ(θn
i ,Σn

i )
,

where θn1 = θ01 − 1
n
�1d1 , θ

n
2 = θ01 + 1

n
�1d1 ,Σ

n
1 = Σ0

1 − 1
nId2 and Σn

2 = Σ0
1 +

1
nId2 .

Here, Id2 denotes the identity matrix in R
d2×d2 and �1n a vector with all elements

being equal to 1. In addition, (θni+1,Σ
n
i+1) = (θ0i ,Σ

0
i ) for all i = 2, . . . , k0. Also,

pn1 = pn2 =
p0
1

2 and pni+1 = p0i for all i = 2, . . . , k0. It is simple to verify that

En := W r
1 (Gn, G0) =

(p0
1)

r

2r (‖θn1 − θ01‖+ ‖θn2 − θ02‖+ ‖Σn
1 −Σ0

1‖+ ‖Σn
2 −Σ0

1‖)r =
(p0

1)
r

2r (
√
d1 +

√
d2)

r 1
nr � 1

nr .

By means of Taylor’s expansion up to the first order, we get that as n → ∞

V (pGn , pG0) �
∫

x∈X

∣∣∣∣ 2∑
i=1

∑
α1,α2

(Δθn1i)
α1(ΔΣn

1i)
α2

∂f

∂θα1∂Σα2
(x|θ01,Σ0

1) +R1(x)

∣∣∣∣ dx
=

∫
x∈X

|R1(x)| dx,

where α1 ∈ N
d1 , α2 ∈ N

d2×d2 in the sum such that |α1| + |α2| = 1, R1(x) is
Taylor expansion’s remainder. The second equality in the above equation is due
to

∑2
i=1 (Δθn1i)

α1(ΔΣn
1i)

α2 = 0 for each α1, α2 such that |α1| + |α2| = 1. Since
f is second-order differentiable with respect to θ,Σ, R1(x) takes the form

R1(x) =

2∑
i=1

∑
|α|=2

2

α!
(Δθn1i)

α1(ΔΣn
1i)

α2 ×

×
1∫

0

(1− t)
∂2f

∂θα1∂Σα2
(x|θ01 + tΔθn1i,Σ

0
1 + tΔΣn

1i)dt,

where α = (α1, α2). Note that,
∑2

i=1 |Δn
1i|α1 |ΔΣn

1i|α2 = O(n−2). Additionally,

from the hypothesis, supt∈[0,1]

∫
x∈X

∣∣∣ ∂2f
∂θα1∂Σα2

(x|θ01 + tΔθn1i,Σ
0
1 + tΔΣn

1i)
∣∣∣dx <

∞. It follows that
∫
|R1(x)| dx = O(n−2). So for any r < 2, V (pGn , pG0) =

o(W r
1 (Gn, G0)). This concludes the proof.
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(c) Continuing with the same sequence Gn constructed in part (b), we have

h2(pGn , pG0) ≤
1

2p01

∫
x∈X

(pGn(x)− pG0(x))
2

f(x|θ01,Σ0
1)

dx �
∫

x∈X

R2
1(x)

f(x|θ01,Σ0
1)

dx.

where first inequality is due to
√
pGn(x)+

√
pG0(x) >

√
pG0(x) >

√
p01f(x|θ01,Σ0

1)
and the second inequality is because of Taylor expansion taken to the first order.
The proof proceeds in the same manner as that of part (b).

Appendix

In this appendix, we give proofs of the following results: Theorem 3.4 regarding
the characterization of strong identifiability in mixture models with matrix-
variate parameters and most of the remained propositions and corollaries. For
the transparency of our argument, the proofs for Theorem 3.4 are restricted to
only first-order identifiability. The proof techniques are similar for the second-
order identifiability. The proof of Theorem 3.3, which concerns the characteri-
zation of strong identifiability in multiple scalar parameters, issomewhat similar
to that of Theorem 3.4 and therefore is omitted. Several easy proofs are also
omitted. They include that of Theorem 3.5, which follows from an application of
chain rule. Proof of Corollary 3.3 follows immediately from the triangle inequal-
ity. Proof of Corollary 4.1 relies on calculations of the bracket entropy integral,
which is a straightforward extension of the argument of [9] to the multivariate
setting.

6. Proofs of other results

6.1. Extension to the whole domain in exact-fitted mixtures

Proof of Corollary 3.1 By Theorem 3.1, there are positive constants ε =
ε(G0) and C0 = C0(G0) such that V (pG, pG0) ≥ C0W1(G,G0) when
W1(G,G0) ≤ ε. It remains to show that infG∈G:W1(G,G0)>ε V (pG, pG0)/W1(G,G0) >
0. Assume the contrary, then we can find a sequence ofGn ∈ G andW1(Gn, G0) >

ε such that
V (pGn ,pG0

)

W1(Gn,G0)
→ 0 as n → ∞. Since G is a compact set, we can

find G′ ∈ G and W1(G
′, G0) > ε such that Gn → G′ under W1 metric. It

implies that W1(Gn, G0) → W1(G
′, G0) as n → ∞. As G′ �≡ G0, we have

limn→∞ W1(Gn, G0) > 0. As a consequence, V (pGn , pG0) → 0 as n → ∞.

From the hypothesis, V (pGn , pG′) ≤ C(Θ,Ω)Wα
1 (Gn, G

′), so V (pGn , pG′) → 0
as W1(Gn, G

′) → 0. Thus, V (pG′ , pG0) = 0 or equivalently pG0 = pG′ almost
surely. From the first-order identifiability of {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω}, it implies
that G′ ≡ G0, which is a contradiction. This completes the proof.
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6.2. The importance of boundedness conditions in the over-fitted
setting

Proof of Proposition 3.1 We choose Gn =
∑k0+1

i=1 pni δ(θn
i ,Σn

i )
∈ Ok(Θ × Ω)

such that (θni ,Σ
n
i ) = (θ0i ,Σ

0
i ) for i = 1, . . . , k0, θ

n
k0+1 = θ01, Σ

n
k0+1 = Σ0

1 +
exp(n/r)

nα Id2 where α = 1
2β . Additionally, p

n
1 = p01 − exp(−n), pni = p0i for all

2 ≤ i ≤ k0, and pnk0+1 = exp(−n). With this construction, we can check that

W β
r (G,G0) = d

β/2
2 /

√
n. Now, as h2(pGn , pG0) � V (pGn , pG0), we have

exp

(
2

W β
r (Gn, G0)

)
h2(pG, pG0) � exp

(
−n+

2
√
n

d
β/2
2

)
×∫

x∈X

|f(x|θ01,Σn
k0+1)− f(x|θ01,Σ0

1)|dx,

which converges to 0 as n → ∞. The conclusion of our proposition is proved.

6.3. Characterization of strong identifiability

Proof of Theorem 3.4 Here, we only present the proof for part (a) and part
(b). The proofs for part (c) and (d) are somewhat similar and omitted.

(a) Assume that for given k ≥ 1 and k different pairs (θ1,Σ1,m1), . . . ,
(θk,Σk,mk), we can find αj ∈ R, βj ∈ R

d, symmetric matrices γj ∈ R
d×d,

and ηj ∈ R, for j = 1, . . . , k such that:

k∑
j=1

αjf(x|θj ,Σj ,mj) + βT
j

∂f

∂θ
(x|θj ,Σj ,mj) + tr

(
∂f

∂Σ
(x|θj ,Σj ,mj)

T γj

)
+ηj

∂f

∂m
(x|θj ,Σj ,mj) = 0,

Substituting the first derivatives of f to get

k∑
j=1

{
α′
j+

(
(β′

j)
T (x− θj) + (x− θj)

T γ′
j(x− θj)

)
×

[
(x− θj)

TΣ−1
j (x− θj)

]mj−1

+ η′j log[(x− θj)
TΣ−1

j (x− θj)]

}
×

exp

(
−
[
(x− θj)

TΣ−1
j (x− θj)

]mj
)

= 0, (11)

where

α′
j =

2αjmjΓ(d/2)−mjΓ(d/2) tr(Σ
−1
j γj) + 2ηjΓ(d/2)

(
1− d

2mj
ψ

(
d

2mj

))
2πd/2Γ(d/(2mj))|Σj |1/2

,
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β′
j =

2m2
jΓ(d/2)

πd/2Γ(d/(2mj))|Σj |1/2
Σ−1

j βj , γ′
j =

m2
jΓ(d/2)

πd/2Γ(d/(2mj))|Σj |1/2
Σ−1

j γjΣ
−1
j ,

and η′j =
−mjηjΓ(d/2)

πd/2Γ(d/(2mj))|Σj |1/2
.

Without loss of generality, assume m1 ≤ m2 ≤ . . . ≤ mk. Let i ∈ [1, k] be the
maximum index such that m1 = mi. As the tuples (θi,Σi,mi) are distinct, so
are the pairs (θ1,Σ1), . . . , (θi,Σi). In what follows, we denote x = x1x

′ where
x1 is scalar and x′ ∈ R

d. Define

ai = (x′)T γ′
ix

′, bi =
[
(β′

i)
T − 2θTi γ

′
i

]
x′, ci = θTi γ

′
iθi − (β′

i)
T θi,

di = (x′)TΣ−1
i x′, ei = −2(x′)TΣ−1

i θi, fi = θTi Σ
−1
i θi.

Borrowing a technique from [26], since (θ1,Σ1), . . . , (θi,Σi) are distinct, we have
two possibilities:

Possibility 1 If Σj are the same for all 1 ≤ j ≤ i, then θ1, . . . , θi are distinct.
For any i < j, denote Δij = θi−θj . Now, if x

′ /∈
⋃

1≤i<j≤i

{
u ∈ R

d : uTΔij = 0
}
,

which is a finite union of hyperplanes, then (x′)T θ1, . . . , (x
′)T θi are distinct.

Hence, if we choose x′ ∈ R
d lying outside this union of hyperplanes, we will

have ((x′)T θ1, (x
′)TΣ1x

′), . . . , ((x′)T θi, (x
′)TΣix

′) are distinct.

Possibility 2 If Σj are not the same for all 1 ≤ j ≤ i, then we assume without
loss of generality that Σ1, . . . ,Σm are the only distinct matrices from Σ1, . . . ,Σi,
where m ≤ i. Denote δij = Σi−Σj as 1 ≤ i < j ≤ m, then as x′ does not belong
to

⋃
1≤i<j≤m

{
u ∈ R

d : uT δiju = 0
}
, we will have (x′)TΣ1x

′, . . . , (x′)TΣmx′ are

distinct. Therefore, if x′ does not belong to
⋃

1≤i<j≤m

{
u ∈ R

d : uT δiju = 0
}
,

which is a finite union of conics, then we have ((x′)T θ1, (x
′)TΣ1x

′), . . . , ((x′)T θm,
(x′)TΣmx′) are distinct. Additionally, for any θj where m + 1 ≤ j ≤ i that
shares the same Σi where 1 ≤ i ≤ m, using the argument in the first case,
we can choose x′ outside a finite hyperplane such that these (x′)T θj are again
distinct. Hence, for x′ lying outside a finite union of conics and hyperplanes,
((x′)T θ1, (x

′)TΣ1x
′), . . . , ((x′)T θi, (x

′)TΣix
′) are all different.

From these two cases, we can find a setD, which is a finite union of conics and
hyperplanes, such that as x′ /∈ D, ((x′)T θ1, (x

′)TΣ1x
′), . . . ((x′)T θi, (x

′)TΣix
′)

are distinct. Thus, (di, ei) are different as 1 ≤ i ≤ i.

Choose di1 = min1≤i≤i {di}. Denote J =
{
1 ≤ i ≤ i : di = di1

}
. Choose 1 ≤

i2 ≤ i such that ei2 = maxi∈J {ei}. Now, we define for all 1 ≤ i ≤ k that

Ai(x1) = α′
i + (aix

2
1 + bix1 + ci)(dix

2
1 + eix1 + fi)

mi−1 +

η′i log(dix
2
1 + eix1 + fi).

Multiplying both sides of (11) with exp−(di2x
2
1 + ei2x1 + fi2)

mi2 , we get
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Ai2(x1) +
∑
j 	=i2

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
= 0. (12)

Note that if j ∈ J\{i2}, dj = di2 , mj = mi2 , and ej > ei2 . So,

(di2x
2
1 + ei2x1 + fi2)

mi2 − (djx
2
1 + ejx1 + fj)

mj � −x1 as x1 is large enough.

This implies that when x1 → ∞,

B1(x1) :=
∑

j 	=J\{i2}
Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.

On the other hand, if j /∈ J and 1 ≤ j ≤ i, then dj > di2 and mi2 = mj . So,

(di2x
2
1 + ei2x1 + fi2)

mi2 − (djx
2
1 + ejx1 + fj)

mj � −x
2mi2
1 as x1 is large.

This implies that when x1 → ∞,

B2(x1) :=
∑
j /∈J,

1≤j≤i

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.

Otherwise, if j > i, then mj > mi2 . So,

(di2x
2
1 + ei2x1 + fi2)

mi2 − (djx
2
1 + ejx1 + fj)

mj � −x
2mj

1 .

As a result,

B3(x1) :=
∑
j>i

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.

Now, by letting x1 → ∞,∑
j 	=i2

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)

mi2 − (djx
2
1 + ejx1 + fj)

mj

]
=

A1(x) +A2(x) +A3(x) → 0.

(13)
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Combining (12) and (13), we obtain that as x1 → ∞, Ai2(x1) → 0. The
only possibility for this result to happen is ai2 = bi2 = η′i2 = 0. Or, equiv-

alently, (x′)T γ′
i2
x′ =

[
(β′

i)
T − 2θTi2γ

′
i2

]
x′ = 0. If γ′

i2
�= 0, we can choose the

element x′ /∈ D lying outside the hyperplane
{
u ∈ R

d : uT γ′
i2
u = 0

}
. It means

that (x′)T γ′
i2
x′ �= 0, which is a contradiction. Therefore, γ′

i2
= 0. It implies

that (β′
i2
)Tx′ = 0. If β′

i2
�= 0, we can choose x′ /∈ D such that (β′

i2
)Tx′ �= 0.

Hence, β′
i2

= 0. With these results, α′
i2

= 0. Overall, we obtain α′
i2

= β′
i2

=
γ′
i2

= η′i2 = 0. Repeating the same argument to the remaining parameters
α′
j , β

′
j , γ

′
j , η

′
j , we get α′

j = β′
j = γ′

j = η′j = 0 for 1 ≤ j ≤ k. It is also equivalent
that αj = βj = γj = ηj = 0 for all 1 ≤ j ≤ k. This concludes the proof of part
(a) of our theorem.
(b) Consider that for given k ≥ 1 and k different pairs (θ1,Σ1), ..., (θk,Σk),
where θj ∈ R

d, Σj ∈ S++
d for all 1 ≤ j ≤ k, we can find αj ∈ R, βj ∈ R

d, and
symmetric matrices γj ∈ R

d×d such that:

k∑
j=1

αjf(x|θj ,Σj) + βT
j

∂f

∂θ
(x|θj ,Σj) + tr(

∂f

∂Σ
(x|θj ,Σj)

T γj) = 0. (14)

Multiplying both sides with exp(itTx) and taking the integral in R
d, after direct

calculations, the above equation can be rewritten as

k∑
j=1

[ ∫
Rd

(
α′
j exp(i(Σ

1/2
j t)Tx)

(ν + ‖x‖2)(ν+d)/2
+

exp(i(Σ
1/2
j t)Tx)(β′

j)
Tx

(ν + ‖x‖2)(ν+d+2)/2
+

exp(i(Σ
1/2
j t)Tx)xTMjx

(ν + ‖x‖2)(ν+d+2)/2

)
dx

]
exp(itT θj) = 0, (15)

where α′
j = αj −

tr(Σ−1
j γj)

2 , β′
j =

(ν+d)
2 Σ−1/2βj , and Mj =

ν+d
2 Σ

−1/2
j γjΣ

−1/2
j .

To simplify the left hand side of equation (15), it is sufficient to calculate the

following quantities A =
∫
Rd

exp(itT x)
(ν+‖x‖2)(ν+d)/2 dx, B =

∫
Rd

exp(itTx)(β′)T x
(ν+‖x‖2)(ν+d+2)/2 dx, and

C =
∫
Rd

exp(itT x)xTMx
(ν+‖x‖2)(ν+d+2)/2 dx, where β′ ∈ R

d and M = (Mij) ∈ R
d×d.

In fact, by using an orthogonal transformation x = O.z, where O ∈ R
d×d and

its first column to be ( t1
‖t‖ , ...,

td
‖t‖ )

T , we can verify that exp(itTx) = exp(i‖t‖z1),
‖x‖2 = ‖z‖2, and dx = | det(O)|dz = dz and then we obtain the following
results:

A =

∫
Rd

exp(i‖t‖z1)
(ν + ‖z‖2)(ν+d)/2

dz

=

∫
R

exp(i‖t‖z1)
∫
R

...

∫
R

1

(ν + ‖z‖2)(ν+d)/2
dzddzd−1...dz1

= C1A1(‖t‖),

where C1 =
∏d

j=2

∫
R

1
(1+z2)(ν+j)/2 dz and A1(t

′) =
∫
R

exp(i|t′|z)
(v+z2)(ν+1)/2 dz for any t′ ∈
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R. Hence, for all 1 ≤ j ≤ k∫
Rd

exp(i(Σ
1/2
j t)Tx)

(ν + ‖x‖2)(ν+d)/2
dx = C1A1(‖Σ1/2

j t‖). (16)

Turning to B and C, by the same line of calculations we obtain

B =

⎛⎝ d∑
j=1

Oj1β
′
j

⎞⎠∫
Rd

exp(ittz1)z1
(ν + ‖z‖2)(ν+d+2)/2

dz

=

⎛⎝ d∑
j=1

Oj1β
′
j

⎞⎠C2A2(‖t‖)

=
C2(β

′)T tA2(‖t‖)
‖t‖ .

where C2 =
∏d

j=2

∫
R

1
(1+z2)(ν+2+j)/2 dz andA2(t

′) =
∫
R

exp(i|t′|z)z
(ν+z2)(ν+3)/2 dz for any t

′ ∈
R.

C = C3(

d∑
j=1

Mjj)A1(‖t‖) + (
∑
jl

MjlOj1Ol1)(C2A3(‖t‖)− C3A1(‖t‖))

= C3(

d∑
j=1

Mjj)A1(‖t‖) +
1

‖t‖2 (
∑
j,l

Mjltjtl)(C2A3(‖t‖)− C3A1(‖t‖)).

where we can define C3 =
∫
R

z2

(1+z2)(ν+4)/2 dz
∏k

j=3

∫
R

1
(1+z2)(ν+2+j)/2 dz and

A3(t
′) =

∫
R

exp(i|t′|z)z2

(ν+z2)(ν+3)/2 dz for any t′ ∈ R. Thus, for all 1 ≤ j ≤ d∫
Rd

exp(i(Σ
1/2
j t)Tx)(β′

j)
Tx

(ν + ‖x‖2)(ν+d+2)/2
dx =

C2(β
′
j)

TΣ
1/2
j tA2(‖Σ1/2

j t‖)
‖t‖ . (17)

∫
Rd

exp(i(Σ
1/2
j t)Tx)xTMjx

(ν + ‖x‖2)(ν+d+2)/2
dx =

1

‖Σ1/2
j t‖2

(
∑
u,v

M j
uv[Σ

1/2
j t]u[Σ

1/2
j t]v)×

×(C2A3(‖Σ1/2
j t‖)− C3A1(‖Σ1/2

j t‖)) + C3(

d∑
l=1

M j
ll)A1(‖Σ1/2

j t‖), (18)

whereM j
uv indicates the element at u-th row and v-th column ofMj and [Σ

1/2
j t]u

simply means the u-th component of Σ
1/2
j t.

As a consequence, by combining (16), (17), and (18), we can rewrite (15) as:

k∑
j=1

[
α′
jA1(‖Σ1/2

j t‖) + C2

(Σ
1/2
j t)Tβ′

j

‖Σ1/2
j t‖

A2(‖Σ1/2
j t‖) +
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C3(

d∑
l=1

M j
ll)A1(‖Σ1/2

j t‖) +
(∑

u,v

M j
uv

[Σ
1/2
j t]u[Σ

1/2
j t]v

‖Σ1/2
j t‖2

)
(C2A3(‖Σ1/2

j t‖) −

C3A1(‖Σ1/2
j t‖))

]
exp(itT θj) = 0.

Define t = t1t
′, where t1 ∈ R and t′ ∈ R

d. By using the same argument
as in the case of the multivariate generalized Gaussian distribution, we can
find D to be the finite union of conics and hyperplanes such that as t′ /∈ D,
((t′)T θ1, (t

′)TΣ1t
′), ...((t′)T θk, (t

′)TΣkt
′) are pairwise distinct. By denoting θ′j =

(t′)T θj , σj = (t′)TΣjt
′, we can rewrite the above equation as:

k∑
j=1

[
α′
jA1(σj |t1|) + C2

t1(Σ
1/2
j t′)Tβ′

j

|t1|σj
A2(σj |t1|) + C3(

d∑
l=1

M j
ll)A1(σj |t1|) +

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

)
(C2A3(σj |t1|)− C3A1(σj |t1|)

]
exp(iθ′jt1) = 0.

Since A2(σj |t1|) = (i|t1|)A1(σj |t1|), the above equation can be rewritten as:

k∑
j=1

[(
α′
j + C3(

d∑
l=1

M j
ll)− C3

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

))
| ×

×A1(σj |t1|) + C2

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

)
A3(σj |t1|) +

C2(it1)
(Σ

1/2
j t′)Tβ′

j

σj
A1(σj |t1|)

]
exp(iθ′jt1) = 0. (19)

As ν is an odd number, we assume ν = 2l − 1. By using a classical result in
complex analysis, we obtain for any m ∈ N that

+∞∫
−∞

exp(i|t1|z)
(z2 + ν)m

dz =
2π exp(−|t1|

√
2l − 1)

(2
√
2l − 1)2m−1

⎡⎣ m∑
j=1

(
2m− 1− j

m− j

)
(2|t1|

√
2l − 1)j−1

(j − 1)!

⎤⎦ .

It means that we can write A1(t1) = C4 exp(−|t1|
√
2l − 1)

∑l−1
u=0 au|t1|u, where

C4 = 2π
(2

√
2l−1)2l−1 , au =

(
2l−u−2
l−u−1

) (2
√
2l−1)u

u! . Simultaneously, asA3(t1) = A1(t1)−
ν
∫
R

exp(i|t1|z)
(ν+z2)(ν+3)/2 dz, we can write

A3(t1) = C4 exp(−|t1|
√
2l − 1)

l∑
u=0

bu|t1|u,

where bu =
[(

2l−u−2
l−u−1

)
− 1

4

(
2l−u
l−u

)] (2
√
2l−1)u

u! as 0 ≤ u ≤ l−1, and bl = −1
4
(2

√
2l−1)l

l! .

It is not hard to notice that a0, al−1, bl �= 0.
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Now, for all t1 ∈ R, equation (19) can be rewritten as:

k∑
j=1

[(
α

′′

j + β
′′

j (it1)
) l−1∑

u=0

auσ
u
j |t1|u + γ

′′

j

l∑
u=0

buσ
u
j |t1|u

]
×

exp
(
itθ′j − σj

√
2l − 1|t1|

)
= 0,

where we have α
′′

j = α′
j + C3(

∑d
l=1 M

j
ll) − C3(

∑
u,v M

j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

), β
′′

j =

C2
(Σ

1/2
j t′)T β′

j

σj
, and γ

′′

j = C2(
∑

u,v M
j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

). The above equation yields

that for all t1 ≥ 0

k∑
j=1

[(
α

′′

j + β
′′

j (it1)
) l−1∑

u=0

auσ
u
j t

u
1 + γ

′′

j

l∑
u=0

buσ
u
j t

u
1

]
×

exp
(
it1θ

′
j − σj

√
2l − 1t1

)
= 0. (20)

Using the Laplace transformation on both sides of (20) and denoting cj =
σj

√
2l − 1−iθ′j as 1 ≤ j ≤ k, we obtain that as Re(s) > max1≤j≤k

{
−σj

√
2l − 1

}
k∑

j=1

α
′′

j

l−1∑
u=0

u!auσ
u
j

(s+ cj)u+1
+ iβ

′′

j

l∑
u=1

u!au−1σ
u−1
j

(s+ cj)u+1
+

γ
′′

j

l∑
u=0

u!buσ
u
j

(s+ cj)u+1
= 0. (21)

Without loss of generality, we assume that σ1 ≤ σ2 ≤ ... ≤ σk. It demon-
strates that −σ1

√
2l − 1 = max1≤j≤k

{
−σj

√
2l − 1

}
. Denote aju = auσ

u
j and

bju = buσ
u
j for all u. By multiplying both sides of (21) with (s + c1)

l+1, as

Re(s) > −σ1

√
2l − 1 and s → −c1, we obtain |iβ′′

1 l!a
1
l−1 + γ

′′

1 bll!b
1
l | = 0 or

equivalently β
′′

1 = γ
′′

1 = 0 since a1l−1, b
1
l �= 0. Likewise, multiply both sides of

(21) with (s+c1)
l and using the same argument, as s → −c1, we obtain α

′′

1 = 0.
Overall, we obtain α

′′

1 = β
′′

1 = γ
′′

1 = 0. Continue in this fashion until we get
α

′′

j = β
′′

j = γ
′′

j = 0 for all 1 ≤ j ≤ k or equivalently αj = βj = γj = 0 for all
1 ≤ j ≤ k.

As a consequence, for all 1 ≤ j ≤ k, we have

α′
j + C3(

d∑
l=1

M j
ll)− C3(

∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

) = 0,
(Σ

1/2
j t′)Tβ′

j

σj
= 0,

and
∑

u,v M
j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

= 0. Since we have
∑

u,v M
j
uv[Σ

1/2
j t′]u[Σ

1/2
j t′]v =

(t′)TΣ
1/2
j MjΣ

1/2
j t′ = (t′)T γjt

′, it is equivalent that

α′
j + C3(

d∑
l=1

M j
ll) = 0, (t′)TΣ

1/2
j β′

j = 0, and (t′)T γjt
′ = 0.
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By the same argument as that of part (a), we readily obtain that α′
j = 0,

β′
j = 0 ∈ R

d, and γj = 0 ∈ R
d×d. From the formation of α′

j , β
′
j , it follows that

αj = 0, βj = 0 ∈ R
d, and γj = 0 ∈ R

d×d for all 1 ≤ j ≤ k. We achieve the
conclusion of part (b) of our theorem.
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