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Branching diffusion with particle interactions
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Abstract

A d-dimensional branching diffusion, Z, is investigated, where the linear attraction
or repulsion between particles is competing with an Ornstein-Uhlenbeck drift, with
parameter b (we take b > 0 for inward O-U and b < 0 for outward O-U). This work
has been motivated by [4], where a similar model was studied, but without the drift
component.

We show that the large time behavior of the system depends on the interaction
and the drift in a nontrivial way. Our method provides, inter alia, the SLLN for the
non-interactive branching (inward) O-U process.

First, regardless of attraction (γ > 0) or repulsion (γ < 0), a.s., as t → ∞, the
center of mass of Zt converges to the origin when b > 0, while escapes to infinity
exponentially fast (rate |b|) when b < 0.

We then analyze Z as viewed from the center of mass, and finally, for the system
as a whole, we provide a number of results and conjectures regarding the long term
behavior of the system; some of these are scaling limits, while some others concern
local extinction.
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1 Introduction: Branching motion with drift and self-interaction

1.1 Model

We consider a branching diffusion in Rd, where the motion component is an Ornstein-
Uhlenbeck (O-U) process, and dyadic branching occurs in each time unit. (Dyadic
branching means precisely two offspring.) In addition, we introduce interaction between
particles, namely either attraction or repulsion.
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Branching diffusion with interactions

Let Z denote the process and Zit the ith particle1 in time [m,m + 1), where m =

0, 1, 2, .... As branching is unit time, in the time interval [m,m+ 1) there are 2m particles
in total. Without interaction from other particles, Zit is an Ornstein-Uhlenbeck process
with drift parameter b ∈ R, corresponding to the elliptic operator

1

2
∆− bx · ∇

on Rd. (Note the negative sign of the drift. It is somewhat unusual, but it fits our setup
better, because of the sign of the interaction parameter γ, introduced below.) If b > 0,
then we have an ‘inward’ O-U process; if b < 0, then we have an ‘outward’ O-U process.
If b = 0, then it is a Brownian motion.

As far as the aforementioned interaction is concerned, let us fix the interaction
parameter γ 6= 0. We assume that the ith particle Zit , on the time interval [m,m + 1),
‘feels’ a drift caused by attraction/repulsion of all other particles as

1

2m

2m∑
j=1

γ · (Zjt − ·) dt,

and so Zit satisfies the following stochastic differential equation:

dZit = dW i,m
t − bZit dt+

1

2m

2m∑
j=1

γ · (Zjt − Zit) dt.

If γ > 0, then this means that particles attract each other, whereas if γ < 0, then this
means that they repel each other.

In the stochastic differential equation above, the {W i,m
t }1≤i≤2m are independent

Brownian motions on [m,m+ 1). In other words, the infinitesimal generator of the ith
particle in the time interval is

1

2
∆ +

 1

2m

2m∑
j=1

γ · (Zjt − x)− bx

 · ∇.
Notation. Throughout the paper, the symbol

w⇒ (or just⇒) will denote weak convergence
of finite measures; the symbol

v⇒ will denote vague convergence. By a bounded rational
rectangle we will mean a set B ⊂ Rd of the form B = I1 × I2 × · · · × Id, where Ii
is a bounded interval with rational endpoints for each 1 ≤ i ≤ d. The family of all
bounded rational rectangles will be denoted by R. The symbol X ⊕ Y will denote the
independent sum of the random variables X and Y . As usual, N (µ, σ2) will denote
the normal distribution with mean µ and variance σ2; Leb will denote d-dimensional
Lebesgue measure. Finally, for z ∈ R, bzc will denote the largest integer which is less
than or equal to z.

The following criterion will be used in the paper; we omit the standard proof, which
follows from the Portmanteau Theorem and the well known condition in Theorem 2.2 in
[3].

Lemma 1.1 (Weak convergence). Let µ1, µ2, ... and µ be probability measures on Rd and
µ� Leb. Then µn ⇒ µ if and only if limn→∞ µn(B) = µ(B) for all B ∈ R.

1.2 Motivation

This paper has been motivated by [4], where a similar model was studied. There the
motion was Brownian motion (b = 0), and it has been shown that the center of the system

1We can use an arbitrary labeling, as long as it is independent of the spatial motion.
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Branching diffusion with interactions

is a Brownian motion, being slowed down such that it tends to a ‘terminal position’ N
almost surely, and N is a d-dimensional, normally distributed random variable, with mean
zero. If P x denotes the probability conditioned on N = x, x ∈ Rd, then the following
theorem was demonstrated for γ > 0 (attraction):

2−nZn(dy)⇒
(γ
π

)d/2
exp

(
−γ|y − x|2

)
dy, P x − a.s.,

as n → ∞, for almost all x ∈ Rd, where Z(dy) denotes the discrete measure-valued
process corresponding to the interacting branching particle system. For γ < 0, a
conjecture was stated.

A similar model for superdiffusions has been introduced and studied by H. Gill
recently [6] and results analogous to those in [4], were obtained. The toolsets used in
the two papers are very different though. Gill’s paper utilizes the so-called historical
calculus of E. Perkins.

It should be mentioned that, although our original motivation was to analyze the
compound effect of the drift and the interaction, it turns out that our method yields an
elementary proof for the Strong Law of Large Numbers for the case of a non-interactive
branching (inward) Ornstein-Uhlenbeck process as well. See Example 7.5.

Finally, for classical results on limit theorems for branching particle systems (without
interaction), see the fundamental monograph [1], and the more recent article [5].

1.3 Existence and uniqueness

In this section, we show the existence and uniqueness for this system (process).
Actually, it is easy to see2 that we only need to show that, given the initial value in time
interval [m,m+ 1), the system exists and is unique.

Now, in the time interval [m,m + 1), we can look at the 2m interacting particles
(diffusions) as a single 2md−dimensional Brownian motion with a drift d : R2md → R2md

defined as

d(x1, x2, · · · , xd−1, xd, · · · , x2md) := γ(β1, β2, · · · , βd−1, βd, · · · , β2md)
T ,

where βk = 2−mγ(xk + xd+k + · · ·+ x(2m−1)d+k)− (γ + b)xk. Here k − k is a multiple of d

and 0 < k ≤ d. As the drift d is Lipschitz, the existence and uniqueness of our system
follows from the uniqueness/existence theorem for stochastic differential equations in
several dimensions.

1.4 Summary of our results

In this paper, we will provide the following results/conjectures.

Case 1: b > 0, b+ γ > 0: As n→∞,

2−nZn(dy)
w⇒
(
γ + b

π

)d/2
exp(−(γ + b)|y|2) dy, a.s.

Case 2: b > 0, b+ γ = 0: Then

(2π)d/2nd/22−nZn(dy)
v⇒ Leb, a.s.

Case 3: b > 0, b + γ < 0: We will conjecture that if log 2
d ≤ |b + γ|, then Z suffers local

extinction, while if log 2
d > |b+ γ|, then

2−ned|b+γ|nZn(dy)
v⇒ Leb, a.s.

2Otherwise use ‘concatenating’ for the processes.
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Branching diffusion with interactions

Case 4: b < 0 (outward O-U process): In the attractive (γ > 0) case, we will show that
Zn(dy)

v⇒ 0 a.s. (local extinction), irrespective of the relationship between γ and |b|; the
repulsive case is still open.

2 The center of mass

Definition 2.1 (COM). For t ∈ [m,m + 1), there are 2m particles, denoted by {Zit}, i =

1, 2, · · · , 2m, moving in space. Hence, letting m := btc, we define the center of mass
(COM) as

Zt :=
1

2m

2m∑
1

Zit .

In this section we are going to show that as t→∞:

(1) if b > 0, then the center of mass converges to the origin, no matter if attraction or
repulsion holds;

(2) if b < 0, then it will tend to infinity with ‘speed’ e−bt.

The significance of this result is that the attraction/repulsion for Zit is given by

1

2m

2m∑
j=1

γ(Zjt − Zit) dt = γ(Zt − Zit) dt,

where Zt is as above. Hence, one can replace the interaction between particles by the
interaction with the center of mass. Therefore, as a first step, we will study the large
time behavior of the center of mass Zt.

Before stating our first result, we note that in this section, we will be interested in a.s.
and L2 convergence of the COM. Since it is easy to see that these limits can be verified
coordinate-wise, we assume d = 1 for this section. (The reader should keep in mind that
the results work for any d ≥ 1.)

Our main results here will concern the behavior of the COM in the attractive/repulsive
case. But we need some preliminary lemmas first. Below we give two results regarding
a general, one-dimensional stochastic differential equation{

dXt = β(t)dWt − bXt dt,

X0 = 0 a.s.,
(2.1)

where we assume that b > 0 and that β(·) > 0 is locally Lipschitz. Here β(t) can be
considered a time change of the Brownian part. We assume that β(t) converges to 0 as
t→∞, that is that the Brownian motion is slowing down completely. We then want to
determine the limiting distribution.

Lemma 2.2 (Convergence to zero). Let X be the solution of (2.1).
(a) If limt→∞ β(t) = 0, then limt→∞Xt = 0 in L2.
(b) Assume in addition, that β(t) is decreasing in t, and that

∞∑
m=1

mβ2(m) <∞.

Then limt→∞Xt = 0 a.s.

Proof. (a) Assume, that Xt = X(t) is of the form X(t) = X1(t)X2(t), with X1(0) = 0 and
X1, X2 being of finite variation. Keeping the product rule for dX(t) in mind, set

X2(t)dX1(t) = β(t)dWt
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Branching diffusion with interactions

and

X1(t) dX2(t) = −bX(t) dt = −bX1(t)X2(t) dt,

that is, dX2(t) = −bX2(t) dt.
We obtain X2(t) = Ce−bt, C 6= 0, and thus dX1(t) = C−1β(t)ebtdWt. Then X(t) :=

e−bt
t∫

0

β(s)ebs dWs satisfies (2.1); by uniqueness, it is in fact the solution to the equation.

Since Xt is centered Gaussian, the claim is tantamount to

Var(Xt) = e−2bt

t∫
0

β2(s)e2bsds→ 0

(use Itô-isometry). Let lim
t→∞

t∫
0

β2(s)e2bsds = ∞ (otherwise the statement is trivial), and

use L’Hospital’s rule:

lim
t→∞

Var(Xt) = lim
t→∞

t∫
0

β2(s)e2bsds

e2bt
= lim
t→∞

β2(t)

2b
= 0.

(b) We need to show that for any ε > 0, we have

P (sup{|Xt| : m ≤ t < m+ 1} > ε, i.o.) = 0.

Let

Am := {sup{|Xt| : m ≤ t < m+ 1} > ε}.

Then, by the Borel-Cantelli lemma, it is sufficient to show that

∞∑
m=1

P (Am) <∞. (2.2)

Denote Yt := ebtXt =
t∫

0

β(s)ebs dWs, and note that Yt is a martingale as it is an Itô

integral. Thus |Yt| is a submartingale.
We have P (Am) < P (sup{|Yt| : m ≤ t < m+ 1} > εebm). By Doob’s inequality,

P (sup{|Yt| : m ≤ t < m+ 1} > εebm) <
E(|Ym+1|2)

ε2e2bm
.

As E(Yt) = 0, we have

E(|Yt|2) = Var(Yt) =

t∫
0

β2(s)e2bsds,

and thus

E(|Ym+1|2)

ε2e2bm
=

m+1∫
0

β2(s)e2bsds

ε2e2bm
.

It remains to prove that
∞∑
m=1

e−2bm

m+1∫
0

β2(s)e2bsds <∞.
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Branching diffusion with interactions

For e−2bm
m+1∫

0

β2(s)e2bsds, we break up the expression into two parts:

e−2bm

m+1∫
0

β2(s)e2bsds

= e−2bm

(m+1)/2∫
0

β2(s)e2bsds+ e−2bm

m+1∫
(m+1)/2

β2(s)e2bsds =: Im1 + Im2 .

We show now that both
∞∑
m=1

Im1 and
∞∑
m=1

Im2 are finite.

Im1 summable:

Im1 = e−b(m−1)

(m+1)/2∫
0

β2(s)e2bs−bm−bds ≤ e−(m−1)

(m+1)/2∫
0

β2(s)ds.

As β decreases to 0, there is a constant C such that β(s) < C for all s ≥ 0. Then
(m+1)/2∫

0

β2(s)ds < C2(m+ 1)/2. For large m, m− 1 > (m+ 1)/2, and so

Im1 ≤ C2e−b(m−1)(m− 1),

yielding that
∞∑
m=1

Im1 ≤ C2
∞∑
m=0

me−bm = C2(eb + e−b − 2)−1 <∞.

Im2 summable:

Im2 = e−2bm

m+1∫
(m+1)/2

β2(s)e2bsds ≤ e2b

m+1∫
(m+1)/2

β2(s)ds

≤ e2b(m+ 1)/2 · β2((m+ 1)/2).

Note that (m+ 1)/2 ≤ 2b(m+ 1)/2c for m ≥ 1, and, since β is a decreasing function, one
has

∞∑
m=1

Im2 ≤
∞∑
m=1

e2b(m+ 1)/2 · β2((m+ 1)/2)

≤ 2e2b
∞∑
m=1

b(m+ 1)/2cβ2(b(m+ 1)/2c) ≤ 4e2b
∞∑
n=1

nβ2(n).

Since, by assumption,
∞∑
m=1

mβ2(m) <∞, we have
∞∑
m=1

Im2 <∞.

Since Im1 and Im2 are summable, the summability condition (2.2) indeed holds.

Next, we describe the evolution of the COM using a stochastic differential equation.

Lemma 2.3 (SDE for COM). On [0,∞), the process Z satisfies the stochastic differential
equation dZt = β(t)dWt − bZt dt with β(t) := 2−m/2, for t ∈ [m,m + 1), where W is a
standard Brownian motion. Consequently,

Zt = e−bt
∫ t

0

β(s)ebsdWs. (2.3)
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Branching diffusion with interactions

Proof. Consider the time interval [m,m + 1), and recall the definition of the center of

mass: Zt = 2−m
2m∑
i=1

Zi,mt . For each i, the particle Zi,mt ’s motion satisfies the stochastic

differential equation

dZi,mt = dW i,m
t +

γ2−m
2m∑
j=1

(Zj,mt − Zi,mt )− bZi,mt

 dt,

where γ is the interaction coefficient, and b is the drift part of the Brownian motion. In
our case, we consider b > 0.

Taking averages on both sides, the center of mass Zt will thus satisfy

dZt = 2−m
2m∑
i=1

dW i,m
t − bZt dt.

As the Brownian components of different particles are independent, Brownian scaling
yields that

2−m
2m∑
i=1

dW i,m
t = 2−m/2dW̃t,

where W̃t is standard Brownian motion in the time interval [m,m+ 1). We thus have

dZt = 2−m/2dW̃t − bZt dt.

Hence, in the time interval [m,m+ 1), we have an Ornstein-Uhlenbeck process, while
on [0,∞), the process Z satisfies the general stochastic differential equation in the
statement.

After these preparations, we now turn to the attractive case.

Theorem 2.4 (COM; Attraction). If b > 0, then limt→∞ Zt = 0 a.s.

Proof. Recall the stochastic differential equation satisfied by COM. In order to prove the
theorem, it is sufficient to check that the conditions of Lemma 2.2 are satisfied.

Clearly, β is decreasing and locally Lipschitz, as β(t) = 2−m/2 for t ∈ [m,m+ 1), and
furthermore,

∞∑
m=1

mβ2(m) =

∞∑
m=1

m2−m <∞.

Thus, limt→∞ Zt = 0 a.s.

For the repulsive case (b < 0), we have the following theorem.

Theorem 2.5 (Exponential escape of the COM for repulsion). For b < 0, lim
t→∞

ebtZt = N
a.s., where N is a normal variable with mean zero and

Var(N ) =
1− e2b

|b|(2− e2b)
· Id.

(Here Id is the identity matrix.)
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Branching diffusion with interactions

Proof. By the independence of the coordinate processes, it is enough to consider d = 1.
In order to show the existence of the limit and to identify it, we are going to utilize the
Dambis-Dubins-Schwarz Theorem. We will use the shorthand Xt := ebtZt.

More precisely, we are going to show that there exists a Brownian motion B on the
same probability space where Z is defined, such that Xt = Bs(t), P -a.s. Here t 7→ s(t)

is a deterministic time-change of t, mapping [0,∞) to a finite interval, satisfying that
limt→∞ s(t) = T, where

T = T (b) :=
1− e2b

|b|(2− e2b)
. (2.4)

Let 〈U〉 denote the increasing process for a process U . It then follows that

lim
t→∞

Xt = lim
t→∞

B〈X〉t = B lim
t→∞

〈X〉t = BT .

To achieve all these, recall first that by (2.3), Xt =
t∫

0

β(s)ebs dWs, and thus, it is a

continuous martingale. Therefore by the Dambis-Dubins-Schwarz Theorem (see e.g.
Theorem V.1.6 in [8]), Xt is a time-changed Brownian motion:

Xt = B〈X〉t , a.s.

Since the increasing process is deterministic in this case, we have that

s(t) := 〈X〉t = Var(Xt) =

t∫
0

β2(s)e2bs ds,

where β(s) := 2−m/2 for s ∈ [m,m+ 1). Thus, Xt = Bs(t), almost surely, and furthermore,

lim
t→∞

s(t) =

∞∑
m=0

m+1∫
m

2−me2bs ds =

∞∑
m=0

2−m · e
2b(m+1) − e2bm

2b
.

To evaluate the infinite sum, one can use Abel’s (summation by part) formula, which
leads to:

lim
t→∞

s(t) =

∞∑
m=0

2−m · e
2b(m+1) − e2bm

2b
=

e2b − 1

b(2− e2b)
= T,

completing the proof.

We note that without the Dambis-Dubins-Schwarz Theorem, much more elementary,
standard arguments still prove the existence of the almost sure limit, but only along
certain ‘discrete time skeletons.’

Remark 2.6 (Exponential speed of COM). As lim
t→∞

ebtZt exists a.s. and e|b|t → ∞, the

point Zt will tend to infinity, almost surely, with ‘speed’ e|b|t in the sense that Zt ≈ e|b|t ·N .
Furthermore, even in higher dimensions, it is clear by symmetry considerations that the
angular component of Zt will be uniformly distributed.

Finally, it is easy to see that lim
b→0

T (b) = 2, in accordance with the already studied

drift-less case. �

3 The system as viewed from the center (‘relative system’)

Having described the motion of the center of mass Zt, in order to study the whole system,
we need to investigate the ‘relative system’, that is the system as viewed from Zt.
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Branching diffusion with interactions

Definition 3.1 (Relative system). Denote Y it := Zit − Zt. The particle system {Y it }2
btc

i=1

will be called the relative system, or the system, as viewed from the center of mass.

We focus on the behavior of the relative system in this section. We will use the
shorthand σ2

m := 1− 2−m.
First, we want to determine the stochastic differential equation for Y it . It can be

obtained by direct computation, as follows. Fixing the time interval [m,m + 1), recall
that for each i, the particle Zi,mt ’s motion satisfies

dZi,mt = dW i,m
t +

γ2−m
2m∑
j=1

(Zj,mt − Zi,mt )− bZi,mt

 dt,

while Zt satisfies that

dZt = 2−m
2m∑
i=1

dW i,m
t − bZt dt.

Subtracting the second equation from the first, one has

dY it = d(Zit − Zt) =

σ2
mdW i,m

t +
∑
j 6=i

−2−mdW j,m
t +

(
γZt − γZi,mt − bZi,mt + bZt

)
dt =

σ2
mdW i,m

t +
∑
j 6=i

−2−mdW j,m
t − (γ + b)Y it dt.

As {W i,m
t } are independent standard Brownian motions, a short computation shows that

σ2
mW

i,m
t

⊕
j 6=i−2−mW j,m

t is a Brownian motion with variance σ2
mt at time t > 0. Hence,

dY it = σmdW̃ i
t − (γ + b)Y it dt,

where W̃ i
t is a driving standard Brownian motion for Y it , such that

σmW̃
i
t = σ2

mW
i,m
t

⊕
j 6=i

−2−mW j,m
t .

When t→∞, (i.e., m→∞), the process Y i will asymptotically satisfy the equation

dY it = dW̃ i
t − (γ + b)Y it dt, (3.1)

yielding that, for large times, the motion of Y it is very close to the one governed by (3.1),
namely, an

(i) inward O-U process, if γ + b > 0;

(ii) outward O-U process, if γ + b < 0;

(iii) Brownian motion, if γ + b = 0.

As a next step, we need to study the correlation between the particles of {Y it } for
t > 0. As

∑
i W̃

i
t = 0, they are obviously not independent.

First we determine the ‘degree of freedom’ of {W̃ i
t }. Similarly to [4], one can show

that the degree of freedom of {W̃ i
t } is 2m − 1. To explain what this means, fix m ≥ 1 and

for t ∈ [m,m+ 1) let Yt := (Y 1
t , ..., Y

2m

t )T , where ()T denotes transposed. (This is a vector
of length 2m where each component itself is a d-dimensional vector; one can actually
view it as a 2m × d matrix too.) We then have

dYt = σmdW̃
(m)
t − γYtdt,
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Branching diffusion with interactions

where

W̃ (m) =
(
W̃m,1, ..., W̃m,2m

)T
and

W̃m,i
τ = σ−1

m

Wm,i
τ − 2−m

2m⊕
j=1

Wm,j
τ

 , i = 1, 2, ..., 2m

are mean zero, correlated Brownian motions.
Just like in subsection 1.3, here we can also consider Y as a single 2md-dimensional

diffusion. Each of its components is an Ornstein-Uhlenbeck process with asymptotically
unit diffusion coefficient.

By independence, it is enough to consider the d = 1 case.
Let us first describe the distribution of W̃ (m)

t for t ≥ 0 fixed. Recall that {Wm,i
s , s ≥

0; i = 1, 2, ..., 2m} are independent Brownian motions. By definition, W̃ (m)
t is a 2m-

dimensional multivariate normal:

W̃
(m)
t = σ−1

m ·



1− 2−m −2−m ... − 2−m

−2−m 1− 2−m ... − 2−m

.

.

.

−2−m −2−m ... 1− 2−m

W
(m)
t

=: σ−1
m A(m)W

(m)
t ,

where W (m)
t = (Wm,1

t , ...,Wm,2m

t )T , yielding

dYt = A(m)dW
(m)
t − γYtdt.

Since we are viewing the system from the center of mass, W̃ (m)
t is a singular multivariate

normal and thus Y is a degenerate diffusion. The ‘true’ dimension of W̃ (m)
t is rank(A(m)).

Then the same argument as in [4], yields that rank(A(m)) = 2m − 1, and the above
comment about the degrees of freedom should be understood in this sense.

Moreover, the driving Brownian motions {W̃ i
t } will be exactly the same as in [4], and

thus they have asymptotically vanishing correlation (see Remark 12 in [4]).
The relative system thus coincides with the drift-less one in [4], if γ is replaced by

γ + b.

4 A useful transformation: the process Z∆

We first make an important observation, making the last sentence of the previous
section more general: we notice that γ and b are ‘interchangeable’ in the following sense.

Lemma 4.1 (Interchangeable coefficients). Suppose that we have two branching particle
systems, and Y and Y represent the relative systems for them. Denote by b1, γ1 and
b2, γ2 the corresponding coefficients of Y and Y. (Here γi = 0 is allowed.) Assume that
b1 + γ1 = b2 + γ2. Then the laws of Y and Y are the same.

Proof. Fix m ≥ 0 and i = 1, 2, · · · , 2m. Then Y i and Yi satisfy the same stochastic
differential equation

dY it = (1− 2−m)1/2dW̃ i
t − γY it dt

in the interval t ∈ [m,m + 1), where γ = b1 + γ1 = b2 + γ2. Thus, the fact that single
particles have the same law in the two systems, follows by induction, along with the
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existence and uniqueness of the solution for stochastic differential equations. (We know
that for m = 0 they start with the same initial value.)

The fact that even the joint distributions of the two particle systems agree, follows the
same way as we proved existence and uniqueness for the model in subsection 1.3, except
that now the independent driving Brownian motions must be replaced by σ−1

m A(m)W
(m)
t

in [m,m + 1) (recall (3.2)). Since the piecewise Lipschitz-ness of the coefficients is
preserved, the existence and uniqueness theorem is still in force.

We now define a transformation which plays a crucial role in this paper.

Definition 4.2 (∆-transformation). Consider Z with γ and b given and let Z = Z∆ be
another system with parameters

γ∆ := γ −∆;

b∆ := b+ ∆.

Since b+ γ = b∆ + γ∆, we know by Lemma 4.1 that the corresponding relative systems
Y and Y have the same law.

Consider Z and Z on the same probability space. Then

Zt(B) = Yt(B − Zt)
d
= Yt(B − Zt) = Zt(B − (Zt −Zt)), (4.1)

for B ⊂ Rd Borel and t ≥ 0. In fact,

Z has the same law as the process t 7→ Zt(· −Dt), (4.2)

where Dt := Zt −Zt. The behavior of Dt for large times depends on the signs of b and
b+ γ. E.g. if they are both positive, then Dt tends to the origin almost surely.

In particular, with appropriate transformations we can ‘knock out’ either the interac-
tion or the O-U drift:

(a) Representation with non-interactive system: pick ∆ := γ. That is, let the
non-interactive process Z correspond to γ∆ = 0 and b∆ := b + γ. Then (4.2) gives a
remarkable link between the interactive and the non-interactive models. This connection
is reminiscent of the one found in [6] (see Remark 3.2 there).

(b) Eliminating the O-U drift: pick ∆ := −b. That is, the motion component of Z∆

is just a Brownian motion, similarly to [4]. Then (4.2) gives a link between our model
and the drift-less one studied in [4].

5 Outline of the strategy of the rest of the proofs

In light of the previous section, we could choose to base the analysis of the relative
system on the corresponding result in [4] when b+ γ > 0 (by eliminating the drift – see
part (b) in the previous section), or on the results on the global system in Example 11 of
[5] when b+ γ < 0 (by eliminating the interaction – see part (a) in the previous section).

In the second case, we should handle the problem that the setting is different in [5]
in that the branching is not unit time but rather exponential.

On top of that, the method of the proof in both [4] and [5] requires the introduction
of two non-trivial auxiliary functions, related to the model.

Instead of choosing one of the paths alluded to above, we decided to give a completely
elementary proof in the next section for the Strong Law for the relative system in our
case, when b + γ > 0. It does not use the complicated machinery of [4] or [5], and it
is done in unit time. The proof only uses some calculations involving the most recent
common ancestors of particles and some covariance estimates.

In particular, it gives a new, elementary proof for the Strong Law for the global
system, for the case of a non-interactive branching (inward) Ornstein-Uhlenbeck process.
See Example 7.5.
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6 Proof of SLLN for the relative system when b+ γ > 0

6.1 General comments

Recall that σ2
m := 1− 2−m, and that for the relative system Y ,

dY it = σmdW̃ i
t − (b+ γ)Y it dt

for i = 1, 2, 3, · · · , 2m in the interval t ∈ [m,m+ 1). Recall also that

σmdW̃ i
t = σ2

mdW i,m
t

⊕
j 6=i

−2−mdW j,m
t .

Assuming b + γ > 0, our goal is to find limm→∞
1

2m

2m∑
i=1

Y it (B) for a generic Borel set

B ⊂ Rd. (Here, we consider Yt as a random measure, and that is why we may write
Y it (B) = 1B(Y it ), i = 1, 2, 3, · · · , 2m.) For d = 1, this will be achieved in Theorem 6.11
and subsequently, it will be upgraded to higher dimensions; before these, we will prove
several preparatory results.

Remark 6.1 (Integer vs. continuous times). When taking the limit, we will just consider
integer times. This is somewhat weaker than considering continuous times, however,
since the model is about unit time branching, we did not have sufficient motivation to go
into the technical details as to how one upgrades the limit along integer times to a limit
along continuous times. (There are existing techniques though, going back to the work
of Asmussen and Hering, see [1, 5].) �

As mentioned above, for simplicity we will first treat d = 1, and then show that the
main result we got also works for higher dimensions.

Next, let us sketch our strategy of the investigation:

(1) Find the correlation between the particle positions Y im, 1 ≤ i ≤ 2m;m ≥ 1.

(2) Use the correlations in (1) to control the correlation between Y im(B), where B ⊂ Rd.
(3) Establish the Strong Law of Large Numbers for Y , that is, find a measurable

function f ≥ 0 such that for B ⊂ Rd Borel,

lim
m→∞

1

2m

2m∑
i=1

Y im(B) =

∫
B

f(x) dx a.s.

Assumption 6.2 (No drift). In this section, when studying the relative system, we will
assume that b = 0 and γ > 0. We can do this without the loss of generality, since given γ
and b, one may apply a ∆-transformation with ∆ := −b, that is, eliminate the O-U drift.
Then b∆ = 0 and γ∆ = b+ γ, and Y and Y have the same law by Lemma 4.1.

6.2 Crucial estimates

Now let us focus on the distribution of the random variables Y it , 1 ≤ i ≤ 2btc, t ≥ 0. Since
dY it = σmdW̃ i

t − γY it dt, and since for the general differential equation

dYt = a dWt − rYt dt

(a, r > 0), with initial value Y0, the solution is

Yt = e−rt

 t∫
0

ersd(aWs) + Y0

 ,
EJP 21 (2016), paper 67.

Page 12/25
http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4782
http://www.imstat.org/ejp/


Branching diffusion with interactions

it follows, by conditioning on Y im, that

Y im+1 = e−γ

 m+1∫
m

eγ(s−m)d(σmW̃
i
s) + Y im

 a.s.

We know that {W̃ i
s}0≤s<1 is a Brownian motion on the time interval [m,m+ 1] and that it

is independent of Y im. Also, by symmetry, the distributions of Y it and Y jt are the same, so
we will just write Y it .

We thus have Y im+1 = e−γ(Y im
⊕
Xi
m), where

Xi
m =

m+1∫
m

eγ(s−m)d(σmW̃
i
s) (6.1)

is a normal variable with distribution N
(
0, σ2

m(2γ)−1
(
e2γ − 1

))
, and Y i0 = 0. Note that

Y im and Xi
m (or more generally, Xm and Ym) are independent, as Xm is defined by a

stochastic integral on [m,m+ 1].

Proposition 6.3 (Variance; single particle). For any integer m ≥ 0,

Var(Y im+1) = σ2(Y im+1) =
e2γ − 1

2γ
e−2mγ

(
1− e2mγ

1− e2γ
−

1− ( 1
2e

2γ)m

2− e2γ

)
.

Proof. Since Ym+1 = e−γ(Ym
⊕
Xm) and Y0 = 0, we can compute the variance of Ym+1

using recursion, due to the independence of Ym and Xm. First, we have

σ2(Ym+1) = e−2γ
(
σ2(Ym) + σ2(Xm)

)
= e−2γ

(
σ2(Ym) +

1

2γ

(
1− 1

2m

)
(e2γ − 1)

)
,

and σ2(Y0) = 0.
Thus, for convenience, we denote am := σ2(Ym) and

bm := σ2(Xm) =
1

2γ

(
1− 1

2m

)(
e2γ − 1

)
.

Since am+1 = e−2γ(am + bm), we have the following recursion:

am+1 = e−2γ(e−2γ(am−1 + bm−1) + bm)

= (e−2γ)2am−1 + (e−2γ)2bm−1 + e−2γbm

= (e−2γ)3am−2 + (e−2γ)3bm−2 + (e−2γ)2bm−1 + e−2γbm

= (e−2γ)m+1a0 + (e−2γ)m+1b0

+ · · ·+ (e−2γ)3bm−2 + (e−2γ)2bm−1 + e−2γbm.

Using that a0 = b0 = 0, summation leads to

am+1 =
e2γ − 1

2γ
e−2mγ

[
1− e2mγ

1− e2γ
−

1− ( 1
2e

2γ)m

2− e2γ

]
, m ≥ 1.

Using the definition of am+1, the proof is complete.

We now need to analyze the covariance between Y im and Y jm for 1 ≤ i, j ≤ 2m and
m ≥ 1. Here the notion of the most recent common ancestor (MRCA) becomes important.
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Definition 6.4 (MRCA). Consider m ≥ 0 and the particles Y im, Y
j
m, 1 ≤ i 6= j ≤ 2m. A

common ancestor is a particle considered at some integer time interval [a− 1, a) with
0 < a < m, which is an ancestor to both Y im and Y jm. The MRCA of the particles is a
common ancestor such that a is maximal. This a is then called the splitting time of the
particles.

Note that in this definition, we consider particles living in different time intervals
[m,m+ 1) as different particles.

As different pairs of particles (Y im, Y
j
m) with different MRCA’s may have different

covariances, we need to take into account the MRCA of (Y im, Y
j
m). Hence, with splitting

time a > 0, we will write (Y im,a, Y
j
m,a) for (Y im, Y

j
m).

Theorem 6.5 (Covariance bound). For i, j,m ∈ N with m ≥ 1 and 1 ≤ i 6= j ≤ 2m,

Cov(Y jm,a, Y
i
m,a) < Cm(e−2γ(m−a) + 2−m),

where C is a constant which only depends on γ.

Proof. Since Y im+1 = e−γ(Y im
⊕
Xi
m) for any ‘relative particle,’ it follows by recursion

that

Y im = e−γ(m−a)Y ia +

m−1∑
n=a

e−γ(m−n)Xi
n.

Here Xi
n is the process as in (6.1) on the unit time interval [n, n + 1]. From the pre-

ceding formula we can easily compute Cov(Y im, Y
j
m), once we know the corresponding

Cov(Xi
n, X

j
n) for n = a, a + 1, ...,m − 1. For the ith particle (i can be replaced by j, of

course),

Xi
n =

n+1∫
n

eγ(s−n)d(σmW̃
i
s),

where σnW̃
i
s = − 1

2n

⊕
k 6=iW

k
s ⊕ σ2

nW
i
s and {W k

s , k = 1, 2, 3, · · · , 2n}, as well as W̃ i are
standard independent Brownian motions on the unit time interval [n, n+ 1].

Using that the {W k
s , k = 1, 2, · · · , 2n} are independent, Cov(Xi

n, X
j
n) can now be

computed. Indeed, the stochastic integrals Xi
n, X

j
n are just linear combinations of the

stochastic integrals Ak :=
n+1∫
n

eγ(s−n) dW k
s , k = 1, 2, 3, · · · , that is,

Xi
n = − 1

2n

∑
k 6=iAk + σnAi;

Xj
n = − 1

2n

∑
k 6=j Ak + σnAj .

Note that, by the Itô-isometry,

Var(Ak) =
e2γ − 1

2γ
.

Therefore, using the independence of the Ak’s,

Cov(Xi
n, X

j
n)

= Cov

− 1

2n

∑
k 6=i

Ak +

(
1− 1

2n

)
Ai,−

1

2n

∑
k 6=j

Ak +

(
1− 1

2n

)
Aj


=

1

22n

∑
k 6=i,j

Var(Ak)− 1

2n

(
1− 1

2n

)
Var(Ai)−

1

2n

(
1− 1

2n

)
Var(Aj)
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=

(
1

22n
(2n − 2)− 2

2n

(
1− 1

2n

))
e2γ − 1

2γ

= − 1

2n
e2γ − 1

2γ
. (6.2)

Since Y im = e−γ(m−a)Y ia +
m−1∑
n=a

e−γ(m−n)Xi
n, and the {Xi

k} are independent for different

k’s and finally, since Y ia = Y ja , it follows that3

Cov(Y im, Y
j
m) = e−2γ(m−a)Var(Y ia ) +

m−1∑
k=a

e−2γ(m−k)Cov(Xi
k, X

j
k). (6.3)

According to Proposition 6.3,

Var(Y ia ) =
e2γ − 1

2γ
e−2γ(a−1)

[
1− e2γ(a−1)

1− e2γ
−

1− ( 1
2e

2γ)a−1

2− e2γ

]
.

Using this along with (6.2) and (6.3), one obtains that

Cov(Y im, Y
j
m) =

e2γ − 1

2γ

(
e−2γ(m−1)

[
1− e2γ(a−1)

1− e2γ
−

1− ( 1
2e

2γ)a−1

2− e2γ

]

+

m−1∑
k=a

e−2γ(m−k)

(
− 1

2k

))
.

It then follows that

Cov(Y im, Y
j
m) < C0(I1 + I2),

where

I1 = e−2γ(m−1)

[
1− e2γ(a−1)

1− e2γ
−

1− ( 1
2e

2γ)a−1

2− e2γ

]
,

I2 =

m−1∑
k=a

e−2γ(m−k)

(
− 1

2k

)
,

and C0 = C0(γ) := e2γ−1
2γ . As γ > 0, one has |I1| < C1e

−2γ(m−a), where C1 is a constant

which only depends on γ. Moreover, I2 = e−2mγ
m−1∑
k=a

(
−( e

2γ

2 )k
)
. Then, by an easy

computation,

|I2| < C2

(
me−2mγ +

1

2m

)
,

were C2 is also a constant which only depends on γ.

Hence, Cov(Y im, Y
j
m) is bounded from above by

C0

(
C1e

−2γ(m−a) + C2

(
me−2mγ +

1

2m

))
< Cm(e−2γ(m−a) + 2−m),

where C is a constant that only depends on γ.

3In this formula, i > 2k may occur. Then Xi
k stands for the normal variable associated with the ancestor of i

at time k. The definition is similar to that of Xi
n.
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Recall that our goal is to prove the existence of lim
m→∞

2−m
2m∑
i=1

1B(Y im) for Borel sets

B ⊂ Rd and identify them. To achieve this, we will use the Borel-Cantelli Lemma in con-

junction with the Chebyshev inequality, and so we need to estimate Var

(
2−m

2m∑
i=1

1B(Y im)

)
.

Clearly,

Var

(
2m∑
i=1

1B(Y im)

)
=

2m∑
i=1

Var(1B(Y im)) +

2m∑
i=1

2m∑
j=1

i6=j

Cov(1B(Y im), 1B(Y jm)),

and

Var(1B(Y im)) = P (Y im ∈ B)− P 2(Y im ∈ B) ≤ 1/4.

We need to compute Cov(1B(Y im), 1B(Y jm)) for i 6= j, and in order to do that, we need to
analyze the splitting time (still denoted by a) for the particles Y im and Y jm. The following
lemma on joint normal distribution will be useful.

Lemma 6.6 (Covariance for indicators). Let (X,Y ) be a joint normal vector such that its
marginals X and Y are standard normal, and denote ρ := Cov(X,Y ). Then there exists
an absolute constant C > 0 such that

Cov(1B(X), 1B(Y )) ≤ C|ρ|

holds for all Borel sets B ⊂ R and all |ρ| < 1/2.

Proof. Plugging in the joint and marginal densities

1

2π
√

1− ρ2
e
− x

2+y2+2ρxy

2(1−ρ2) and
1√
2π

e−
x2

2 ,

one obtains

ψ(ρ,B) := Cov(1B(X), 1B(Y ))

= P (X ∈ B, Y ∈ B)− P (X ∈ B) · P (Y ∈ B)

=
1

2π

∫∫
B×B

1√
1− ρ2

e
− x

2+y2+2ρxy

2(1−ρ2) − e
−x2−y2

2 dxdy

=:
1

2π

∫∫
B×B

f(x, y, ρ) dxdy.

Clearly, ψ(0, B) = 0. Since f ∈ C∞(R×R× (−1/2, 1/2)),

ψ′(ρ,B) =
1

2π

∫∫
B×B

∂f(x, y, ρ)

∂ρ
dxdy,

where
∂f(x, y, ρ)

∂ρ
= e
− x

2+y2+2ρxy

2(1−ρ2) ·

(
ρ

(1− ρ2)
3
2

− 1√
1− ρ2

k(x, y, ρ)

4(1− ρ2)2

)
,

with k(x, y, ρ) := 2xy2(1 − ρ2) + 4ρ(x2 + y2 + 2ρxy). For |ρ| ≤ 1
2 , we have x2+y2

2 ≤
x2 + y2 + 2ρxy, i.e. x2 + y2 + 4ρxy ≥ 0, and thus,

exp

{
−x

2 + y2 + 2ρxy

2(1− ρ2)

}
≤ exp

{
−x

2 + y2

4

}
.
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Also, k(x, y, ρ) ≤ 2(x2 +y2)+2(2(x2 +y2)) ≤ 6(x2 +y2). Hence, with some C > 0 constant,∣∣∣∣∂f(x, y, ρ)

∂ρ

∣∣∣∣ ≤ Ce− x2+y2

4 (1 + x2 + y2), ∀|ρ| ≤ 1/2.

Consequently,

|ψ′(ρ,B)| ≤ 1
2π

∫∫
B×B Ce

− x
2+y2

4 (1 + x2 + y2) dxdy

≤ 1
2π

∫∫
R×R Ce

− x
2+y2

4 (1 + x2 + y2) dxdy

≤ C
∫∞

0
e−r

2/4 r(r2 + 1)dr =: C ′ <∞,

yielding

|ψ(ρ,B)| =

∣∣∣∣∣∣
ρ∫

0

ψ′(s,B)ds

∣∣∣∣∣∣ ≤
|ρ|∫
0

|ψ′(s,B)|ds ≤ C ′|ρ|.

Remark 6.7. More generally, let both X and Y be N (0, σ2)-distributed. If (X,Y ) is joint
normal with Cov(X,Y ) = ρ, then we can scale X and Y to use Lemma 6.6. Indeed, Xσ
and Y

σ are then standard normal variables, and Cov(Xσ ,
Y
σ ) = ρ

σ2 . From Lemma 6.6, if
|ρ|
σ2 < 1/2 (2|ρ| < σ2), then

Cov(1B(X), 1B(Y )) = Cov

(
1B
σ

(
X

σ

)
, 1B

σ

(
Y

σ

))
≤ C|ρ|

σ2
. (6.1)

�
Returning to the question of covariances with splitting time a, note that {Y im} are

linear combinations of a number of underlying Brownian motions; hence (Y im, Y
j
m) will be

joint normal. From Theorem 6.5, we know that Cov(Y im, Y
j
m) ≤ C(γ)m(e−2γ(m−a) + 2−m).

From (6.1), we then have the following corollary.

Corollary 6.8. With some constant C > 0 (that depends only on γ),

Cov
(
1B(Y im), 1B(Y jm)

)
≤ Cm(e−2γ(m−a) + 2−m)

σ2(Y im)
,

provided 2m(e−2γ(m−a) + 2−m) < σ2(Y im). (Of course, σ2(Y im) = σ2(Y jm).)

Remark 6.9. From Proposition 6.3, it follows that lim
m→∞

σ2(Y im) = 1
2γ . Therefore, if we

write a(m) in place of a, and limm→∞(m − a(m)) = ∞, then the condition in Corollary
6.8 will always be true for large enough m’s. �

6.3 Strong Law for the relative system

First we need a technical (but very simple) lemma that shows that it will be sufficient
to handle the one dimensional case.

Lemma 6.10 (Control by coordinates). Consider an open rectangle B in Rd, that is,
B = B1 × B2 × B3 · · · × Bd, where Bi is an open interval in R for i = 1, 2, ..., d. Let
X = (X1, X2, · · · , Xd) and Y = (Y1, Y2, · · · , Yd) be two random vectors in Rd satisfying
that the pairs (X1, Y1), (X2, Y2), ..., (Xd, Yd) are independent. Then

|Cov(1B(X), 1B(Y ))| ≤
d∑
i=1

|Cov(1Bi(Xi), 1Bi(Yi))|.
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Proof. One has

Cov(1B(X), 1B(Y ))

= P (X ∈ B, Y ∈ B)− P (X ∈ B)P (Y ∈ B)

= P (X1 ∈ B1, · · · , Xd ∈ Bd, Y1 ∈ B1, · · · , Yd ∈ Bd)
− P (X1 ∈ B1, · · · , Xd ∈ Bd)P (Y1 ∈ B1, · · · , Yd ∈ Bd).

Using the assumption,

P (X1 ∈ B1, · · · ,Xd ∈ Bd)
= P (X1 ∈ B1)P (X2 ∈ B2) · · ·P (Xd ∈ Bd);

P (Y1 ∈ B1, · · · ,Yd ∈ Bd)
= P (Y1 ∈ B1)P (Y2 ∈ B2) · · ·P (Yd ∈ Bd),

and

P (X1 ∈ B1, · · · , Xd ∈ Bd, Y1 ∈ B1, · · · , Yd ∈ Bd)
= P (X1 ∈ B1, Y1 ∈ B1)P (X2 ∈ B2, Y2 ∈ B2) · · ·P (Xd ∈ Bd, Yd ∈ Bd).

Using the shorthands ai := P (Xi ∈ Bi, Yi ∈ Bi), bi := P (Xi ∈ Bi)P (Yi ∈ Bi), one has
Cov(1Bi(Xi), 1Bi(Yi)) = ai − bi, and from the computation above,

Cov(1B(X), 1B(Y )) = a1a2 · · · ad − b1b2 · · · bd.

Therefore the statement becomes

|a1a2 · · · ad − b1b2 · · · bd| ≤ |a1 − b1|+ |a2 − b2|+ · · ·+ |ad − bd|.

Use that 0 ≤ ai ≤ 1 and 0 ≤ bi ≤ 1 and induction on d as follows. The statement is true
for d = 1, and if it is true for some d ≥ 1, then

|a1a2 · · · adad+1 − b1b2 · · · bdbd+1|
=|(a1a2 · · · ad − · · · − b1b2 · · · bd)ad+1 + (ad+1 − bd+1)b1b2...bd|
≤|(a1a2 · · · ad − · · · − b1b2 · · · bd)ad+1|+ |(ad+1 − bd+1)b1b2...bd|
≤|(a1a2 · · · ad − · · · − b1b2 · · · bd)|+ |ad+1 − bd+1|
≤|a1 − b1|+ |a2 − b2|+ · · ·+ |ad − bd|+ |ad+1 − bd+1|,

and so it is also true for d+ 1.

Now we are ready to prove the strong law.

Theorem 6.11 (SLLN). Assume that γ + b > 0 and let B ⊂ Rd be a Borel set. Then,
almost surely,

lim
m→∞

(
2−m

2m∑
i=1

1B(Y im)− P (Y 1
m ∈ B)

)
= 0.

Note: Here, of course limm→∞ P (Y 1
m ∈ B) exists. That is, similarly to [4],

lim
m→∞

2−mYm(dy) = f(y) dy a.s. in the weak topology, where f is the density for

N
(

0, 1
2γ Id

)
in Rd. (Since the labeling is independent of the spatial positions, Y 1

m is

just a generic particle.)
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Proof. First, because of Assumption 6.2 and Lemma 6.10, we may and will assume that
d = 1, b = 0 and γ > 0.

Now, we need to show that for any ε > 0, a.s., only finitely many of the events

Am :=

{∣∣∣∣∣2−m
2m∑
i=1

1B(Y im)− E(1B(Y 1
m))

∣∣∣∣∣ > ε

}

will occur. By the Borel-Cantelli Lemma and Chebyshev’s inequality, it is enough to show
that

∞∑
1

P (Am) ≤ ε−2
∞∑
1

Var

(
2−m

2m∑
i=1

1B(Y im)

)
<∞.

(Note that E

(
2−m

2m∑
i=1

1B(Y im)

)
= E(1B(Y 1

m)).) Thus, it remains to show that

∞∑
m=1

Var

(
2−m

2m∑
i=1

1B(Y im)

)
<∞. (6.2)

To this end, note that

Var

(
2−m

2m∑
i=1

1B(Y im)

)
= 1

22m

( 2m∑
i=1

Var(1B(Y im)) (6.3)

+
∑2m

i=1

∑2m

j=1i 6=j
Cov(1B(Y im), 1B(Y jm))

)
.

Since Var(1B(Y im)) ≤ 1/2− 1/4 = 1/4, we have

Var

(
2−m

2m∑
i=1

1B(Y im)

)
≤ 1

22m

2m

4
+ 2m

∑
j 6=i

Cov(1B(Y im), 1B(Y jm))

 ,

for a fixed i, since the roles of i and j are symmetric.
Hence, one needs to analyze

∑
j 6=i

Cov(1B(Y im), 1B(Y jm)) for a fixed i. We know that

Cov(1B(Y im), 1B(Y jm)) depends on the time a when the MRCA of these particles splits. We
thus need to distinguish between ‘close relatives’ and other pairs.

Notice that there are 2k particles which have the MRCA at time m− k with Y im. From
Theorem 6.5, we know that

Cov(Y jm, Y
i
m) < Cm(e−2γ(m−a) + 2−m),

if the MRCA of i and j is a. If a = a(m) = m/2, (or just m − a tends to ∞), then the
righthand side converges to zero as m→∞. As already seen, lim

m→∞
Var(Y im) = 1

2γ , and

so we may apply Lemma 6.6 and the remark following it for a = a(m) ≤ m
2 and large m.

That is, we could choose a large N such that for all m > N , the condition

Cov(Y im, Y
j
m)

Var(Y im)
≤ 1

2
, (6.4)

is satisfied.
Now, the important point is that the majority of particle-pairs have a ≤ m/2, that is,

they are not ‘close’ relatives. Indeed, the number of pairs with a > m/2 (close relatives)
is 2m(1 + 2 + 4 + · · ·+ 2b

m−1
2 c), which is bounded from above by 2m+m

2 +1.

As we know, for any pair, we have Cov(Y im, Y
j
m) ≤ Var(Y im) ≤ 1

4 . Thus, for all of those
pairs with a > m/2, the total covariance will be controlled by 2m+m

2 +1 · 1
4 = 2m+m

2 −1.
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Moreover, as discussed above, for the pairs with a ≤ m/2, we may apply Lemma 6.6 and
the remark following it, yielding

∑
j 6=i

Cov(1B(Y im), 1B(Y jm)) ≤
m−1∑

k=bm+1
2 c

2kCm(e−2γk + 2−m)

≤ Cm
m−1∑
k=1

((
2

e2γ

)k
+ 2k−m

)
,

where C only depends on N, γ,B. Consequently,

Var

(
2−m

2m∑
i=1

1B(Y im)

)

≤ 1

4× 2m
+

2
m
2 −1

2m
+
Cm

2m

(
1− ( 2

e2γ )m

1− 2
e2γ

+ (1− 2−m)

)
≤ C1m

2m
+
C2m

e2γm
+
C3m

2

2m
+

1

2
m
2 +1

≤ C0m

e2γm
+
C0m

2

2m
+

1

2
m
2 +1

.

Here C0 is a constant which only depends onN, γ,B. Given that γ > 0 and the three terms
on the righthand side are all summable in m, (6.2) holds and the proof is complete.

7 The distribution of the particle system

Now we have collected enough information to describe the large time behavior the
system as a whole.

7.1 Preparation

Below we describe the system’s behavior as it depends on the parameters γ, b. The
statements about the large time behavior of the branching particle system will follow
from the behavior of the center of mass (Theorem 2.4 and Theorem 2.5), that of the
relative system (Theorem 6.11), and finally, from the following proposition.

Proposition 7.1 (Independence). The tail σ-algebra T of Z is independent of the relative
system Y .

Proof. The proof of this proposition is exactly the same as the corresponding proof of
Lemma 14 in [4].

Recall that Z(dy) denotes the discrete measure-valued process corresponding to the
interacting branching system. The following notion will be important.

Definition 7.2 (Local extinction). We say that Z suffers local extinction, if

Zn(dy)
v⇒ 0, as n→∞, a.s. (7.1)

Since Z is a discrete particle system, (7.1) is tantamount to the property that for all
B ⊂ Rd ball, there exists an almost surely finite random time TB such that

P (Zn(B) = 0, ∀n ≥ TB) = 1.
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7.2 Inward drift in the motion component

We now turn to the first results about the behavior of Z, starting with the case of an
inward drift (b > 0). In fact, we distinguish between three further sub-cases.

Case 1: b > 0, b+ γ > 0.
As we have demonstrated, the center of mass converges to zero as t → ∞, and the
relative system will become an inward O-U process with parameter γ + b. Putting
Theorem 6.11 together with the a.s. converge of the COM (Theorem 2.4), and finally,
with Proposition 7.1, we arrive at the following conclusion.

Theorem 7.3 (Inward drift, weak repulsion or attraction). Assume that b > 0, and b+γ > 0.
Then

2−nZn(dy)⇒
(
γ + b

π

)d/2
exp(−(γ + b)|y|2) dy,

almost surely.

Remark 7.4. Since R is a countable family, the weak limit in the previous theorem is
actually equivalent to the statement that for all B ∈ R,

lim
n→∞

2−nZn(B) =

∫
B

(
γ + b

π

)d/2
exp(−(γ + b)|y|2) dy, a.s.

(See Lemma 1.1.) �
Example 7.5 (Non-interactive branching O-U process). Consider the case γ = 0, b > 0,
that is, the case of a non-interacting branching (inward) O-U process with parameter b.
The proof goes through in this case as well, and we obtain that for all B ∈ R,

lim
n→∞

2−nZn(B) =

∫
B

(
b

π

)d/2
exp(−b|y|2) dy, a.s.,

complementing the exponential-clock results in [5].

Case 2: b > 0, b+ γ = 0.

Theorem 7.6 (Inward drift, balanced by repulsion). In this case,

lim
n→∞

Cnd/22−nZn(dy) = Leb a.s., (7.2)

where C := (2π)d/2.

Proof. The proof is based on an argument which ‘switches off’ the interaction. In order
to accomplish this, we are going to utilize the lemma on interchangeability (Lemma 4.1).
Namely, we match the relative system with that of another system without interaction.

This other system is the one with b = γ = 0 (branching Brownian motion without
interaction). As far as the behavior of this second system is concerned, it is well known
(see [9, 2]), that (7.2) holds.

Even though in [9, 2], the decomposition into COM and a relative system was not
considered, we do that now. Doing so is useful, because by Lemma 4.1, the relative
system is the same for the two processes, even though the behavior of the COM is not:
for the original system it converges to the origin almost surely (Theorem 2.4), and for
the non-interacting BBM it has an almost sure (Gaussian) limit (see [4]).

Now use the fact that Leb is translation invariant. In both systems, one has

Zt(B) = Yt(B + Zt),
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hence

Cnd/22−nZn(B) = Cnd/22−nYn(B + Zn).

By conditioning on the almost sure limit of Zn, and using Proposition 7.1, the translation
invariance of the Lebesgue measure yields (7.2) for the relative system in the b = γ = 0

case.
But then, by Lemma 4.1, the same holds for the relative system in the original

model. Since the COM converges to the origin almost surely for the original model,
using Proposition 7.1, we conclude that the scaling limit (7.2) also holds for the original
system.

Case 3: b > 0, b+ γ < 0.

As the relative system behaves asymptotically like an outward O-U process, we have a
conjecture similar to the one in [4]. In our case, however, the center of mass tends to 0

as t→∞. Thus, the conjecture will take the following form:

Conjecture 7.7 (Inward drift, strong repulsion). The following dichotomy holds for the
long term behavior of the process:

1. If log 2
d ≤ |b+ γ|, then Z suffers local extinction.

2. If log 2
d > |b+ γ|, then almost surely,

2−ned|b+γ|nZn(dy)
v⇒ Leb.

Remark 7.8. The intuitive explanation of the dichotomy in the conjecture is as follows.
Even though the motion has a strong inward component (forcing the center of mass
to tend to the origin, according to Theorem 2.4), this is offset by the even stronger
repulsion term.

This combined effect is then competing with the mass creation (the ‘rate’ of mass
creation in this case can be taken log 2): if mass creation is stronger, then the Law
of Large Numbers is still in force; otherwise the mass creation is no longer able to
compensate the fact that particles are ‘being pushed away.’ �

7.3 Outward drift in the motion component

This case is more difficult than the case of the inward drift. The result below is quite
natural once the decomposition of the process (COM plus relative system) is established,
however, it may be somewhat surprising if one is just given the definition of the model
with the pairwise particle interactions.

Case 4: b < 0 (Outward drift)
In this case, according to Theorem 2.5, the center of mass converges to infinity a.s.

as t→∞, and so the question is, intuitively, whether this effect will be compensated by
the large number of particles.

The next result says that for outward drift and attraction, the system always ex-
hibits local extinction, irrespective of the relationship between the drift size |b| and the
attraction parameter γ.

Theorem 7.9 (Outward drift with attraction). For b < 0 and γ > 0, Z suffers local
extinction:

Zn(dy)
v⇒ 0 a.s.

Remark 7.10. As far as the relative system’s behavior is concerned, that is of course
given by Theorem 6.11. �
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Proof. The proof is based on comparing the speed of the COM with that of the relative
system. Let M rel

t denote the radius of the smallest ball containing the support of Yt for
t ≥ 0. It is clear that the relation

lim
t→∞

M rel
t

|Zt|
= 0 a.s., (7.3)

proven below, implies local extinction; we will verify it by distinguishing between three
sub-cases.

(a) When b = γ = 0, the non-interactive branching Brownian motion will be denoted by
Z (b = γ = 0). Let Y non-int be the relative system for Z and let Mnon-int

t be the radius
of the smallest ball containing the support of Y non-int.

Using the Borel-Cantelli lemma, and then bounding the union by the sum, for
c >
√

2 log 2 we obtain

P (Zn(Rd \B(0, cn)) > 0 i.o.) = 0.

Indeed, this follows from the fact that∑
n

2n∑
i=1

P (Zin(Rd \B(0, cn)) > 0) <∞,

which, in turn, follows from the estimate4

P (Zin(Rd \B(0, cn)) > 0) = exp(−c2n/2 + o(n)),

where {Zin; 1 ≤ i ≤ 2n} are the particles forming Zn.

(The asymptotic ‘speed of the support’ of Z is actually exactly
√

2 log 2, but we don’t
need this fact here. Cf. [7].)

We now claim that b+ γ = 0 implies

M rel
t = O(t), t→∞, a.s. (7.4)

Indeed, recall that by ∆-transform invariance, Y
d
=Y non-int. But Mnon-int

t = O(t), as
t→∞ a.s., because it is well known that

max{|z| | z ∈ supp(Zt)} = O(t) a.s.,

and because of the existence of limt→∞Zt a.s.

Turning back to Z, if b+ γ = 0, then (7.4) and the fact that Zt escapes to infinity
exponentially fast (according to our Theorem 2.5) yields (7.3).

(b) If b + γ > 0, then by ∆-transform invariance, for the relative system, we may
assume that it is non-interacting and the particles are performing inward Ornstein-
Uhlenbeck motions with parameter b+ γ > 0. The proof is then the same as in (a),
given that P (Zin(Rd \B(0, cn)) > 0) is even smaller now.

(c) Finally, for the case when b+ γ < 0 and γ > 0, we still have (7.3). To see this, recall
first that the logarithmic escape rate of Zt is −bt. On the other hand, a calculation
similar5 to the one in Example 11 in [5] reveals that the logarithmic rate of spread
of the relative system is −(b+ γ)t, which yields (7.3). (Since the probability that
at least one particle is present in a set B is trivially dominated by the expected
particle number in that set, that is, P (Zn(B) > 0) ≤ E(Zn(B)), the calculation
reduces to computing certain expectations. In our case it is even easier than in [5],
as the total population size is deterministic.)

4Use Brownian scaling and the Gaussian upper tail estimate.
5There the clock is exponential, whereas here it is unit time.
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Hence, in all three cases, local extinction occurs.

We conclude with posing an open problem:

Open problem (Outward drift with repulsion). Describe the large-time behavior of the
relative/global system for b, γ < 0. (As far as the relative system’s behavior is concerned,
the conjecture is the same as in Conjecture 7.7.)

8 The behavior of Z for a drift b(·) bounded between positive con-
stants

So far we have been working under the assumption that the drift is linear: b(x) = bx.
Assume now instead, that the drift satisfies that

0 < a < b(x) < b.

For simplicity, we still start with d = 1. Given that

dZit = dW i
t + b(Zit) dt+

1

2m

2m∑
j=1

γ(Zjt − Zit) dt,

the motion of the center of mass Zt satisfies the equation

dZt =
1

2m

2m∑
i=1

dW i
t +

1

2m

2m∑
i=1

b(Zit) dt.

As a < b(x) < b, we know that a < 1
2m

∑2m

i=1 b(Z
i
t) < b. We thus have

1

2m

2m∑
i=1

dW i
t + a dt < dZt <

1

2m

2m∑
i=1

dW i
t + b dt.

Integration on both sides yields

1

2m

2m∑
i=1

W i
t + at < Zt <

1

2m

2m∑
i=1

W i
t + bt.

Since (as we have discussed previously) 1
2m

∑2m

i=1W
i
t is a Brownian motion being slowed

down, and b > a > 0, the center Zt will tend to +∞ with an ‘essentially constant speed’
a.s. (For a < b(x) < b < 0, it tends to −∞ with essentially constant speed a.s.) More
precisely, we have the following result.

Theorem 8.1 (Positive, constant-like drift). Assume that the drift satisfies 0 < a < b(x) <

b. Then, almost surely,

0 < a < lim inf
t→∞

t−1Zt ≤ lim sup
t→∞

t−1Zt < b.

Finally, a similar result holds for d > 1, when replacing Zt with |Zt|, as one can
consider the statement coordinate-wise.
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