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Abstract

We establish Gaussian-type upper bounds on the heat kernel for a continuous-time ran-
dom walk on a graph with unbounded weights under an integrability assumption. For
the proof we use Davies’ perturbation method, where we show a maximal inequality
for the perturbed heat kernel via Moser iteration.
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1 Introduction

A well known theorem by Delmotte [12] states that Gaussian bounds on the heat
kernel hold for random walks on locally finite graphs, provided the jump rates are
uniformly elliptic, that is the transition probabilities are uniformly bounded and bounded
away from zero. In a recent work [15], Folz showed Gaussian upper bounds for the heat
kernel of continuous-time, elliptic random walks with arbitrary speed measure under
the assumption that on-diagonal upper bounds for the heat kernel at two points are
given and the speed measure is uniformly bounded from below. In the present paper
we relax the uniform ellipticity condition and show a Gaussian-type upper bound for
constant-speed and variable-speed random walks with unbounded jump rates satisfying
a certain integrability condition.

1.1 Setting and result

Let G = (V,E) be an infinite, connected, locally finite graph with vertex set V and
(non-oriented) edge set E. We will write x ∼ y if {x, y} ∈ E. The graph G is endowed with
the counting measure, i.e. the measure of A ⊂ V is simply the number |A| of elements in
A. Further, we denote by B(x, r) the closed ball with center x and radius r with respect
to the natural graph distance d, that is B(x, r) := {y ∈ V | d(x, y) ≤ r}.
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Heat kernel estimates for random walks with degenerate weights

For a given set B ⊂ V , we define the relative internal boundary of A ⊂ B by

∂BA :=
{
x ∈ A

∣∣ ∃ y ∈ B \A s.th. {x, y} ∈ E
}

and we simply write ∂A instead of ∂VA. Throughout the paper we will make the following
assumption on G.

Assumption 1.1. The graph G satisfies the following conditions:

(i) volume regularity of order d for large balls: there exists d ≥ 2 and Creg ∈ (0,∞)

such that for all x ∈ V there exists N1(x) <∞ with

C−1
reg n

d ≤ |B(x, n)| ≤ Creg n
d ∀n ≥ N1(x). (1.1)

(ii) local Sobolev inequality (S1
d′) for large balls: there exists d′ ≥ d and CS1 ∈ (0,∞)

such that for all x ∈ V the following holds. There exists N2(x) <∞ such that for
all n ≥ N2(x),

( ∑
y∈B(x,n)

|u(y)|
d′
d′−1

)d′−1
d′

≤ CS1
n1− d

d′
∑

y∨z∈B(x,n)
{y,z}∈E

∣∣u(y)− u(z)
∣∣ (1.2)

for all u : V → R with suppu ⊂ B(x, n).

Remark 1.2. The Euclidean lattice, (Zd, Ed), satisfies the Assumption 1.1 with d′ = d

and N1(x) = N2(x) = 1.

Remark 1.3. It was recently shown in [18], that the infinite cluster of a supercritical
Bernoulli percolation satisfies the Assumption 1.1 for some d′ > d.

Remark 1.4. The following strong isoperimetric inequality for large balls is sufficient
for the local Sobolev inequality (S1

d′) to hold. That is, for all n large enough,

|∂A| ≥ Ciso |A|(d−1)/d, ∀A ⊂ B(x, n) s.th. |A| ≥ nθ, (1.3)

where θ = (d′ − d)/(d′ − 1), see [13].

Consider a family of positive weights ω = {ω(e) ∈ (0,∞) : e ∈ E}. With an abuse
of notation we also denote the conductance matrix by ω, that is for x, y ∈ V we set
ω(x, y) = ω(y, x) = ω({x, y}) if {x, y} ∈ E and ω(x, y) = 0 otherwise. We also refer to ω(e)

as the conductance of the edge e. Let us further define measures µω and νω on V by

µω(x) :=
∑
y∼x

ω(x, y) and νω(x) :=
∑
y∼x

1

ω(x, y)
.

For any fixed ω we consider a continuous time Markov chain, Y = {Yt : t ≥ 0}, on V with
generator Lω ≡ LωC acting on bounded functions f : V → R as

(
Lωf)(x) =

1

µω(x)

∑
y∼x

ω(x, y)
(
f(y)− f(x)

)
. (1.4)

Let us stress the fact that the Markov chain, Y , is reversible with respect to the measure
µω. Setting pω(x, y) := ω(x, y)/µω(x), this stochastic process waits at x an exponential
time with mean 1 and chooses its next position y with probability pω(x, y). Since the law
of the waiting times does not depend on the location, Y is also called the constant speed
random walk (CSRW).
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Another natural choice for a random walk that jumps from x to y with probability
pω(x, y) is the variable speed random walk (VSRW) X = {Xt : t ≥ 0}, which waits at x an
exponential time with mean 1/µ(x), with generator given by(

LωVf)(x) =
∑
y∼x

ω(x, y)
(
f(y)− f(x)

)
= µω(x)

(
LωCf)(x).

We recall that the VSRW X is reversible with respect to the counting measure and that
the CSRW and the VSRW are time-changes of each other. More precisely, Yt = Xat

for t ≥ 0, where at := inf{s ≥ 0 : As > t} denotes the right continuous inverse of the
functional

At =

∫ t

0

µω(Xs) ds, t ≥ 0.

We denote by Pωx the law of the process X or Y , respectively, starting at the vertex x ∈ V .
For x, y ∈ V and t ≥ 0 let qω(t, x, y) and pω(t, x, y) be the transition densities of Y and X
with respect to the reversible measures (or the heat kernels associated with LωC and LωV),
i.e.

qω(t, x, y) :=
Pωx
[
Yt = y

]
µω(y)

, pω(t, x, y) := Pωx
[
Xt = y

]
.

For any non-empty, finite A ⊂ V and p ∈ [1,∞), we introduce space-averaged `p-norms
on functions f : A→ R by the usual formula

∥∥f∥∥
p,A

:=

(
1

|A|
∑
x∈A
|f(x)|p

)1/p

and
∥∥f∥∥∞,A := max

x∈A
|f(x)|.

Further, for any x ∈ V we set

µ̄p(x) := lim sup
n→∞

∥∥µω∥∥
p,B(x,n)

and ν̄q(x) := lim sup
n→∞

∥∥νω∥∥
q,B(x,n)

.

For our main results we need to make the following assumption on the integrability of
the conductances.

Assumption 1.5. There exist p, q ∈ (1,∞] with

1

p
+

1

q
<

2

d′
(1.5)

such that

µ̄p := sup
x∈V

µ̄(x) < ∞ and ν̄q := sup
x∈V

ν̄(x) < ∞.

In particular, for every x ∈ V there exists N(x) ≡ N(x, ω) such that

sup
n≥N(x)

∥∥µω∥∥
p,B(x,n)

≤ 2µ̄p(x) and sup
n≥N(x)

∥∥νω∥∥
q,B(x,n)

≤ 2ν̄q(x).

Our aim is to continue the program initiated in [2, 3]. In [2] we showed a quenched
invariance principle for the random walks X and Y on the integer lattice Zd under
ergodic, degenerate random conductances satisfying a certain moment condition so that
Assumption 1.5 is fulfilled (cf. Remark 1.8 below). In [3] we established elliptic and
parabolic Harnack inequalities for the generators, from which a local limit theorem for
the heat kernel were deduced. In this paper we prove Gaussian-type upper bound on the
heat kernels. Let us first consider the CSRW.
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Theorem 1.6. Suppose that Assumption 1.5 holds. Then, there exist constants ci =

ci(d, p, q, µ̄p, ν̄q) such that for any given t and x with
√
t ≥ N(x) ∨ 2(N1(x) ∨N2(x)) and

all y ∈ V the following hold.

(i) If d(x, y) ≤ c1t then

qω(t, x, y) ≤ c2 t
−d/2 exp

(
− c3d(x, y)2/t

)
.

(ii) If d(x, y) ≥ c1t then

qω(t, x, y) ≤ c2 t
−d/2 exp

(
− c4d(x, y)(1 ∨ log(d(x, y)/t))

)
.

Remark 1.7. Note that the moment condition on νω can be improved by imposing a
moment condition on νω̄ for some weight ω̄ provided the corresponding Dirichlet forms
are comparable, that is∑

x,y∈V
ω̄(x, y)

(
f(x)− f(y)

)2 ≤ ∑
x,y∈V

ω(x, y)
(
f(x)− f(y)

)2
. (1.6)

In particular, notice that for any t > 0 and

ω̄(x, y) =
1

t
µω(x) qω(t, x, y)µω(y) or ω̄(x, y) =

1

t
µω(x) pω(t, x, y)

the inequality (1.6) holds true. Hence, it suffices that a moment condition on the heat
kernel is satisfied, cf. [3, Section 6].

One well-established model which naturally fulfills our assumptions is the random
conductance model on Zd.

Remark 1.8. Consider the d-dimensional Euclidean lattice Zd, d ≥ 2, and let Ed be the
set of all non-oriented nearest neighbour bonds, i.e. Ed := {{x, y} : x, y ∈ Zd, |x− y| = 1}.
Then, (Zd, Ed) satisfies the Assumption 1.1 as pointed out in Remark 1.2. Further, let P
be a probability measure on the measurable space (Ω,F) =

(
REd+ ,B(R+)⊗Ed

)
and write

E for the expectation with respect to P. The space shift by z ∈ Zd is the map τz : Ω→ Ω

defined by (τzω)(x, y) := ω(x+ z, y + z) for all {x, y} ∈ Ed. Now assume that P satisfies
the following conditions.

(i) P is ergodic with respect to translations of Zd, i.e. P ◦ τ−1
x = P for all x ∈ Zd and

P[A] ∈ {0, 1} for any A ∈ F such that τx(A) = A for all x ∈ Zd.

(ii) There exist p, q ∈ (1,∞] satisfying 1/p+ 1/q < 2/d such that

E
[
ω(e)p

]
< ∞ and E

[
ω(e)−q

]
< ∞ (1.7)

for any e ∈ Ed.

Then, the spatial ergodic theorem gives that for P-a.e. ω,

lim
n→∞

∥∥µω∥∥p
p,B(n)

= E
[
µω(0)p

]
< ∞ and lim

n→∞

∥∥νω∥∥q
q,B(n)

= E
[
νω(0)q

]
< ∞.

In particular, Assumption 1.5 is fulfilled in this case and therefore for P-a.e. ω the upper
estimates on qωt (x, y) in Theorem 1.6 hold. Unfortunately, we cannot provide any control
on the size of {Nω(x) : x ∈ V } in the context of general ergodic environments, as we
would need some information on the speed of convergence in the ergodic theorem, which
is not available in this general framework unless we make additional mixing assumptions.

It has been been shown in [3, Theorem 5.4] that the moment condition in (1.7) is
optimal for a local limit theorem to hold. In particular, this moment condition is also
necessary for both upper and lower Gaussian near-diagonal bounds to be satisfied.
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Next we state the upper bounds on the heat kernel pω(t, x, y) of the VSRW. For that
purpose we need to introduce the so called chemical distance dω defined by

dω(x, y) := inf
γ

{
lγ−1∑
i=0

1 ∧ ω(zi, zi+1)−1/2

}
,

where the infimum is taken over all paths γ = (z0, . . . , zlγ ) connecting x and y. Note that
dω is a metric which is adapted to the transition rates of the random walk.

We denote by B̃(x, r) the closed ball with center x and radius r with respect to dω,
that is B̃(x, r) := {y ∈ V | dω(x, y) ≤ r}. Notice that dω(x, y) ≤ d(x, y) for all x, y ∈ V and
therefore B(x, r) ⊆ B̃(x, r) for all x ∈ V and r > 0. Moreover, for any x ∈ V we define

µ̃p(x) := lim sup
n→∞

∥∥µω∥∥
p,B̃(x,n)

and ν̃q(x) := lim sup
n→∞

∥∥νω∥∥
q,B̃(x,n)

.

For the VSRW we impose the following assumption on the conductances that is similar
to Assumption 1.5 in the CSRW case.

Assumption 1.9. There exist p, q ∈ (1,∞] with

1

p
+

1

q
<

2

d′
(1.8)

such that

µ̃p := sup
x∈V

µ̃(x) < ∞ and ν̃q := sup
x∈V

ν̃(x) < ∞.

In particular, for every x ∈ V there exists Ñ(x) ≡ Ñ(x, ω) such that

sup
n≥Ñ(x)

∥∥µω∥∥
p,B̃(x,n)

≤ 2µ̃p(x), and sup
n≥Ñ(x)

∥∥νω∥∥
q,B̃(x,n)

≤ 2ν̃q(x).

Theorem 1.10. Suppose that Assumption 1.9 holds. Then, there exist constants ci =

ci(d, p, q, µ̃p, ν̃q) such that for any given t and x with
√
t ≥ Ñ(x) ∨ 2(N1(x) ∨N2(x)) and

all y ∈ V the following hold.

(i) If dω(x, y) ≤ c5t then

pω(t, x, y) ≤ c6 t
−d/2 exp

(
− c7dω(x, y)2/t

)
.

(ii) If dω(x, y) ≥ c5t then

pω(t, x, y) ≤ c6 t
−d/2 exp

(
− c8dω(x, y)(1 ∨ log(dω(x, y)/t))

)
.

As already mentioned in the beginning, for random walks on weighted graphs Gaus-
sian type estimates on the heat kernel have been proven by Delmotte [12] in the case,
where the conductances are uniformly elliptic, i.e. c−1 ≤ ω(e) ≤ c, e ∈ E, for some c ≥ 1.
However, Gaussian bounds do not hold in general as under i.i.d. conductances with fat
tails at zero the heat kernel decay may be sub-diffusive due to a trapping phenomenon –
see [7, 8].

On the other hand, in the symmetric setting it is well known that on-diagonal estimates
are equivalent to a Nash inequality of the type(∑

x∈V
|f(x)|2

)1+2/d′

≤ CNash

( ∑
x,y∈V

ω(x, y)
(
f(x)− f(y)

)2)(∑
x∈V

|f(x)|

)4/d′

,
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see [9, Theorem 2.1]. In particular, such a Nash inequality holds on Zd with d′ = d

and thus for the conductance model with conductances that are uniformly bounded
away from zero. However, in the general unbounded case no such Nash inequality is
available. Recently, an anchored version of the Nash inequality has been introduced
by Mourrat and Otto in [17] for a random conductance model on Zd with conductances
unbounded from below but bounded from above. In particular, they obtain on-diagonal
upper bounds under a suitable moment condition that are very similar to the one stated
in Assumption 1.5. Remarkably, their results extend to degenerate time-dependent
conductances.

For the VSRW with conductances that are only uniformly bounded away from zero,
Gaussian off-diagonal bounds have been proven in [6, Theorems 2.19 and 3.3]. In this
setting, upper bounds have also been obtained in [16, Theorem 10.1]. However, the
distance function that appears in the upper estimates for the VSRW in [6, 15, 16] and
in Theorem 1.10 above is the chemical distance which can be quite different from the
graph metric as the following example shows.

Example 1.11. Let {Zk : k ∈ Z} be a collection of i.i.d. random variables on a probability
space (Ω,F ,P), taking values in [1,∞) with tail behaviour P

[
Z1 > u

]
∼ u−α as u→∞

for α > 1. We fix a constant cZ > 0 and u0 > 0 such that P
[
Z1 > u

]
= (cZu)−α for all

u ≥ u0. As underlying graph we take the two-dimensional Euclidean lattice Z2. Let e1,
e2 be the canonical basis vectors of R2 and for any x ∈ Z2 we write xi, i = 1, 2, for its
coordinates. Consider an ergodic environment of random conductances defined by

ω(x, y) :=

{
1, if x− y = ±e2,

Zx2 , if x− y = ±e1.

That is, all edges in vertical direction (meaning e2 direction) have conductance 1, while
the conductances on edges in horizontal direction are random, constant along each
line, but independent between different lines. Note that this example can be easily
generalised to arbitrary dimensions d ≥ 2.

In this example the chemical distance becomes much smaller than the Euclidean
distance as stated in the following lemma whose proof will be given in Appendix A.

Lemma 1.12. For δ ∈ (0, 1) and P-a.e. ω there exists 0 < cZ(α, δ) < CZ(α, δ) < ∞ and
L0 = L0(ω) <∞ such that for all L ≥ L0,

cZ (lnL)−(1+δ)/(2α+1) L2α/(2α+1) ≤ dω(0, Le1) ≤ CZ(lnL)δ/2α L2α/(2α+1). (1.9)

On the other hand, it is shown in [6] that in the case of i.i.d. conductances the
chemical distance dω(x, y) can be compared with the graph distance d(x, y) provided
that d(x, y) is large enough.

Remark 1.13. In view of Theorem 1.10 (i) for the choice t = L one would get an upper
bound given by

pωt (0, te1) ≤ C exp(−c t(2α−1−ε)/(2α+1))

for any ε > 0 and L > L0(ω). However, this estimate is not optimal and does not match
with a lower bound. The correct order is of the form

c exp(−c t(3α−1+ε)/(3α+1)) ≤ pωt (0, te1) ≤ C exp(−c t(3α−1−ε)/(3α+1)),

which will be proven in an upcoming paper by the second author and R. Fukushima.

Clearly, one would also like to establish corresponding lower bounds. It is well
known that Gaussian lower and upper bounds on the heat kernel are equivalent to a
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parabolic Harnack inequality in many situations, for instance in the case of uniformly
elliptic conductances, see [12]. Recently, this equivalence has also been established on
locally irregular graphs in [5]. In our context such a parabolic Harnack inequality has
been recently proven in [3]. Unfortunately, due to the special structure of the Harnack
constant in [3], in particular its dependence on ‖µω‖p,B(x,n) and ‖νω‖q,B(x,n), we cannot
directly deduce off-diagonal Gaussian lower bounds from it. More precisely, in order to
get effective Gaussian off-diagonal bounds using the established chaining argument (see
e.g. [4]), one needs to apply the Harnack inequality on a number of balls with radius n
having a distance of order n2. In general, the ergodic theorem does not give the required
uniform control on the convergence of space-averages of stationary random variables
over such balls (see [1]).

Moreover, in the setting of VSRW with conductances unbounded from above but
uniformly bounded from below the chaining technique would yield off-diagonal Gaussian
lower bound with respect to the usual graph metric d instead of the chemical distance dω.
Therefore, the problem to find matching upper and lower off-diagonal Gaussian bounds
for general random conductance models remains open.

1.2 The method

A technique that turned out to perform quite well in order to prove the Gaussian
upper bound in Theorem 1.6, is known as Davies’ method in the literature (see e.g.
[10, 11, 9]). In contrast to the chaining argument mentioned above the main advantage
of Davies’ technique is that we only need to apply the ergodic theorem (or Assumption 1.5,
respectively) on balls with one fixed center point x0.

We now briefly sketch the idea of Davies’ method. Instead of studying the original
semigroup {Pt : t ≥ 0} which is generating the random walk Y , that is(

Ptf
)
(x) =

∑
y∈V

µω(y) qω(t, x, y) f(y),

Davies suggests to consider the semigroup {Pψt : t ≥ 0} given by(
Pψt f

)
(x) = eψ(x)

(
Pt(e

−ψf)
)
(x),

with generator (
Lψf

)
(x) = eψ(x)

(
Lω(e−ψf)

)
(x),

for a suitable class of test functions ψ. Clearly, this semigroup has a kernel which is
given by eψ(x)qω(t, x, y)e−ψ(y) and satisfies the heat equation ∂tv − Lψv = 0. Note that
Pψt is symmetric with respect to the measure e−2ψµω.

In the classical setting of symmetric Markov semigroups whose generator is a sec-
ond order elliptic operator, the Nash inequality and equivalently Gaussian on-diagonal
estimates do hold. Then, Davies used the classical Leibniz rule to derive a bound on the
kernel of {Pψt : t ≥ 0}, which can be rewritten as

q(t, x, y) ≤ c t−d/2 eψ(y)−ψ(x)+tΓ(ψ),

where Γ denotes the carré du champ operator. Finally, by varying over ψ Gaussian upper
bounds can be obtained. For further details we refer to [9]. The method has also been
used to obtain the Gaussian upper bounds in [12].

In our setting, where the conductances are unbounded from below, we do not have
a Nash inequality available. Therefore, we follow an approach used by Zhikov in [19],
where some upper bounds for the solution kernel of certain degenerate Cauchy problems
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on Rd are obtained. More precisely, we use Moser’s iteration technique to show a
maximal inequality for solution of ∂tv − Lψv = 0 and combine it with Davies’ method.
Similarly to [9], where Davies’ method has been carried out for processes generated by
non-local Dirichlet forms, one difficulty is the absence of a Leibniz rule in the discrete
setting of a graph. In [3] we already established a Moser iteration scheme and a maximal
inequality for solutions of the original heat equation ∂tu−Lωu = 0, so we adapt here the
arguments in [3] to deal with the perturbed semigroup {Pψt : t ≥ 0}.

The rest of the paper is organised as follows. In Section 2 we prove Theorem 1.6
and in Section 3 we explain how the proof of Theorem 1.6 needs to be modified in order
to obtain Theorem 1.10. The appendix contains the proof of Lemma 1.12 as well as a
collection of some elementary estimates needed in the proofs. Throughout the paper we
write c to denote a positive constant which may change on each appearance. Constants
denoted Ci will be the same through each argument.

2 Gaussian upper bounds for the CSRW

This section is devoted to the proof of Theorem 1.6. It is convenient to introduce
a potential theoretic setup. First of all, for f : V → R and F : E → R we define the
operators ∇f : E → R and ∇∗F : V → R by

∇f(e) := f(e+)− f(e−), and ∇∗F (x) :=
∑

e:e+= x

F (e) −
∑

e:e−= x

F (e),

where for each non-oriented edge e ∈ E we specify one of its two endpoints as its
initial vertex e+ and the other one as its terminal vertex e−. Nothing of what will follow
depend on the particular choice. Since for all f ∈ `2(V ) and F ∈ `2(E) it holds that〈
∇f, F

〉
`2(E)

=
〈
f,∇∗F

〉
`2(V )

, ∇∗ can be seen as the adjoint of ∇. For f : V → R and
F : E → R we also define the products f · F and F · f by(

f · F
)
(e) := f(e−)F (e) and

(
F · f

)
(e) := f(e+)F (e).

Then, the discrete analog of the product rule can be written as

∇(fg) =
(
g · ∇f

)
+
(
∇g · f

)
= av(f)∇g + av(g)∇f, (2.1)

where av(f)(e) := 1
2 (f(e+)+f(e−)). On the weighted Hilbert space `2(V, µω) the Dirichlet

form or energy associated to Lω is given by

Eω(f, g) :=
〈
f,−Lωg

〉
`2(V,µω)

=
〈
∇f, ω∇g

〉
`2(E)

=
〈
1,dΓω(f, g)

〉
`2(E)

, (2.2)

where dΓω(f, g) := ω∇f∇g and we set Eω(f) := Eω(f, f). For a given function η : B ⊂
V → R, we denote by Eωη2(u) the Dirichlet form where ω(e) is replaced by av(η2)ω(e) for
e ∈ E.

2.1 A-priori estimate for the perturbed Cauchy problem

We consider now the Cauchy problem{
∂tu− Lωu = 0,

u(t = 0, · ) = f,
(2.3)

and for any positive function φ on V such that φ, φ−1 ∈ `∞(V ) we define the operator Lωφ
acting on bounded functions g : V → R as

(Lωφ g)(x) := φ(x)(Lωφ−1g)(x).
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Lemma 2.1. Suppose that f ∈ `2(V, µω) and u solves the corresponding Cauchy problem
(2.3). Further, set v(t, x) := φ(x)u(t, x) for a positive function φ on V such that φ, φ−1 ∈
`∞(V ). Then ∥∥v(t, · )

∥∥
`
2
(V,µω)

≤ eh(φ)t
∥∥φf∥∥

`
2
(V,µω)

, (2.4)

where

h(φ) := max
e∈E

(
φ(e+)

φ(e−)
+
φ(e−)

φ(e+)
− 2

)
.

Proof. We start by observing that the function v, defined above, solves the Cauchy
problem ∂tv − Lωφ v = 0 with initial condition v(0, ·) = φf . As a first step, we show that
for all g ∈ `2(V, µω), 〈

g,−Lωφ g
〉
`2(V,µω)

≥ −h(φ)
∥∥g∥∥2

`
2
(V,µω)

. (2.5)

But, an application of the product rule (2.1) yields〈
g,−Lωφ g

〉
`2(V,µω)

=
〈
∇(φ g), ω∇(φ−1g)

〉
`2(E)

=
〈

av(φ) av(φ−1),dΓω(g, g)
〉
`2(E)

+
〈

av(g)2,dΓω(φ, φ−1)
〉
`2(E)

+
〈

av(g), av(φ)dΓω(g, φ−1) + av(φ−1)dΓω(φ, g)
〉
`2(E)

≥
〈

av(g)2,dΓω(φ, φ−1)
〉
`2(E)

, (2.6)

where we exploit the fact that, for any e ∈ E,

av(φ−1)(e)(∇φ)(e) =
1

2

(
φ(e+)

φ(e−)
− φ(e−)

φ(e+)

)
= − av(φ)(e)(∇φ−1)(e),

av(φ−1)(e) av(φ)(e) =
1

4

(
φ(e+)

φ(e−)
+
φ(e−)

φ(e+)
+ 2

)
≥ 1.

(2.7)

Note that dΓω(φ, φ−1) ≤ 0. Then, since maxe∈E
∣∣(∇φ)(e)(∇φ−1)(e)

∣∣ = h(φ) and av(g)2 ≤
av(g2) by Jensen’s inequality, the claim (2.5) follows. Thus, setting vt(x) := v(t, x), we
have for any t ≥ 0,

∂t
∥∥vt∥∥2

`
2
(V,µω)

= 2
〈
vt,Lωφvt

〉
`2(V,µω)

(2.5)
≤ 2h(φ)

∥∥vt∥∥2

`
2
(V,µω)

.

Solving this differential inequality gives immediately (2.4).

2.2 Maximal inequality for the perturbed Cauchy problem

Our next aim is to derive a maximal inequality for the function v. For that purpose
we will adapt the arguments given in [3, Section 4] and set up a Moser iteration scheme.
For any non-empty, finite B ⊂ V and p ∈ [1,∞), we introduce a space-averaged norm on
functions f : B → R by

∥∥f∥∥
p,B,µω

:=

(
1

|B|
∑
x∈B

µω(x) |f(x)|p
)1/p

.

Lemma 2.2. Suppose that Q = I ×B, where I = [s1, s2] ⊂ R is an interval and B ⊂ V is
finite and connected, and consider a function η on V with

supp η ⊂ B, 0 ≤ η ≤ 1 and η ≡ 0 on ∂B.
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For a given φ > 0 with φ, φ−1 ∈ `∞(V ), let vt ≥ 0 be a solution of ∂tv − Lωφv ≤ 0 on Q.
Then, there exists C1 <∞ such that for all α ≥ 1,

d

dt

∥∥(ηvαt )
∥∥2

2,B,µω
+
Eωη2(vαt )

|B|
≤ C1 α

2A(φ)2
(

1 +
∥∥∇η∥∥2

`
∞

(E)

)∥∥vαt ∥∥2

2,B,µω
, (2.8)

where A(φ) := maxe∈E av(φ)(e) av(φ−1)(e).

Proof. Since ∂tv − Lωφv ≤ 0 on Q we have for every t ∈ I and α ≥ 1,

1

2α

d

dt

∥∥(ηvαt )
∥∥2

`
2
(V,µω)

≤
〈
η2v2α−1

t ,Lωφvt
〉
`2(V,µω)

= −
〈
∇(η2φ v2α−1

t ), ω∇(φ−1vt)
〉
`2(E)

. (2.9)

By applying the product rule (2.1), we obtain〈
∇(η2φ v2α−1

t ), ω∇(φ−1vt)
〉
`2(E)

=
〈

av(η2),dΓω(φ v2α−1
t , φ−1vt)

〉
`2(E)

+
〈

av(φ v2α−1
t ),dΓω(η2, φ−1vt)

〉
`2(E)

=: T1 + T2.

First, we derive a lower bound for T1. Recall that dΓω(φ, φ−1) ≤ 0. In view of (2.7), an
expansion of dΓω(φ v2α−1

t , φ−1vt) by means of the product rule (2.1) yields

dΓω(φ v2α−1
t , φ−1vt) ≥

2α− 1

α2
dΓω(vαt , v

α
t ) + av(v2α

t ) dΓω(φ, φ−1)

− 2(α− 1)

α
av(vαt ) av(φ)

∣∣dΓω(vαt , φ
−1)
∣∣, (2.10)

where we used the fact that for any α > 1/2,

dΓω(v2α−1
t , vt)

(B.1)
≥ 2α− 1

α
dΓω(vαt , v

α
t ),

and that by Hölder’s inequality, av(vα1
t ) av(vα2

t ) ≤ av(vα1+α2
t ) for any α1, α2 ≥ 0. More-

over, we used that∣∣ av(vt)(e)∇v2α−1
t (e)− av(v2α−1

t )(e)∇vt(e)
∣∣

=
∣∣v2α−1
t (e+)vt(e

−)− v2α−1
t (e−)vt(e

+)
∣∣ (B.2)
≤ 2(α− 1)

α

∣∣ av(vαt )(e)∇vαt (e)
∣∣

for all e ∈ E. In view of (2.7) note that

1 ≤ A(φ) and h(φ)A(φ) =
1

4
h(φ2) ≤ A(φ2) ≤ A(φ)2. (2.11)

Thus, an application of Young’s inequality, that reads |ab| ≤ 1
2 (a2/ε+ε b2), with ε = 4(α−1)

to the last term in (2.10) results in

T1 ≥
(

2α− 1

α2
− 1

4α

)
Eωη2(vαt ) − 4αA(φ)2 |B|

∥∥vαt ∥∥2

2,B,µω
.

Next we consider the term T2. Since av(φ v2α−1
t ) ≤ 2 av(φ) av(v2α−1

t ), we obtain by
expanding dΓω(η2, φ−1vt) by means of the product rule (2.1) that

av(φ v2α−1
t ) dΓω(η2, φ−1vt) ≥ − 8 av(φ) av(φ−1) av(η) av(vαt )

∣∣dΓω(η, vαt )
∣∣

− 2 av(v2α) av(φ) av(η)
∣∣dΓω(η, φ−1)

∣∣, (2.12)
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where we used the fact that for any α ≥ 1/2,

av(v2α−1
t )

∣∣dΓω(η, vt)
∣∣ (B.3)
≤ 4 av(vαt )

∣∣dΓω(η, vαt )
∣∣.

Thus, by applying Young’s inequality with ε = 16α to the first term on the right-hand side
of (2.12) we obtain that for any α ≥ 1,

T2 ≥ −
1

4α
Eωη2(vαt ) −

(
64αA(φ)2

∥∥∇η∥∥2

`
∞

(E)
+ 2A(φ)

∥∥∇η∥∥
`
∞

(E)

)
|B|
∥∥vαt ∥∥2

2,B,µω

≥ − 1

4α
Eωη2(vαt ) − 65αA(φ)2

(
1 +

∥∥∇η∥∥2

`
∞

(E)

)
|B|
∥∥vαt ∥∥2

2,B,µω
,

where we used that av(φ) |∇φ−1| ≤
√
A(φ)h(φ). Hence, there exists a constant c < ∞

such that

T1 + T2 ≥
1

2α
Eωη2(vαt , v

α
t ) − c

2
αA(φ)2

(
1 +

∥∥∇η∥∥2

`
∞

(E)

)
|B|
∥∥vαt ∥∥2

2,B,µω
. (2.13)

In view of (2.9) the assertion follows.

As an easy consequence we obtain now the analogue to [3, Lemma 4.1].

Corollary 2.3. Under the assumptions of Lemma 2.2 consider a function ζ : R → R

satisfying supp ζ ⊂ I, 0 ≤ ζ ≤ 1 and ζ(s1) = 0. Then, for all α ≥ 1,∫
I

ζ(t)
Eωη2(vαt )

|B|
dt ≤ C1 α

2A(φ)2
(

1 +
∥∥∇η∥∥2

`
∞

(E)
+
∥∥ζ ′∥∥

L∞(I)

) ∫
I

∥∥v2α
t

∥∥
1,B,µω

dt

(2.14)

and

max
t∈I

(
ζ(t)

∥∥(η vαt )2
∥∥

1,B,µω

)
≤ C1 α

2A(φ)2
(

1 +
∥∥∇η∥∥2

`
∞

(E)
+
∥∥ζ ′∥∥

L∞(I)

) ∫
I

∥∥v2α
t

∥∥
1,B,µω

dt. (2.15)

Proof. By multiplying both sides of (2.8) with ζ(t) and integrating the resulting inequality
over [s1, s] for any s ∈ I, we get

ζ(s)
∥∥(η vαs )2

∥∥
1,B,µω

+

∫ s

s1

ζ(t)
Eωη2(vαt )

|B|
dt

≤ C1 α
2A(φ)2

(
1 +

∥∥∇η∥∥2

`
∞

(E)
+
∥∥ζ ′∥∥

L∞(I)

) ∫
I

∥∥v2α
t

∥∥
1,B,µω

dt. (2.16)

Thus, by neglecting the first term on the left-hand side of (2.16), (2.14) is immediate,
whereas (2.15) follows once we neglect the second term on the left-hand side of (2.16).

For any x0 ∈ V , θ ∈ (0, 1) and n ≥ 1, we write Q(x0, n) ≡ [0, θn2]×B(x0, n). Further,
we consider a family of intervals {Iσ : σ ∈ [0, 1]}, i.e.

Iσ :=
[(

1− σ
)
s′, (1− σ)s′′ + σθn2

]
interpolating between the intervals [0, θn2] and [s′, s′′], where s′ = εθn2 and s′′ = (1−ε)θn2

for any fixed ε ∈ (0, 1/4). Moreover, set Q(x0, σn) := Iσ ×B(x0, σn). (This corresponds to
the notation in [3, Section 4] with the choice t0 = 0, but with an additional parameter θ.)
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In addition, for any sets I and B as in Lemma 2.2 let us introduce a Lp-norm on functions
u : R× V → R by

∥∥u∥∥
p,I×B,µω :=

(
1

|I|

∫
I

∥∥ut∥∥pp,B,µω dt

)1
p

,

where ut = u(t, .), t ∈ R. From now on we consider a function φ of the form

φ(x) = eψ(x), x ∈ V, (2.17)

for some function ψ satisfying ψ,ψ−1 ∈ `∞(V ) and ∇ψ ∈ `∞(E) to be chosen later. Set
λ := ‖∇ψ‖`∞(E). Then, in view of (2.7) above note that

A(φ) =
1

2
‖ cosh(∇ψ) + 1‖∞ ≤ cosh(λ). (2.18)

The Moser iteration can now be carried out as in [3, Proposition 4.2].

Proposition 2.4. For a given φ as in (2.17) let v > 0 be such that ∂tv − Lωφv ≤ 0 on
Q(x0, n) for n ≥ 2(N1(x0) ∨N2(x0)). Then, for any p, q ∈ (1,∞] with

1

p
+

1

q
<

2

d′

there exists C2 ≡ C2(d, q, ε) such that for all β ≥ 1 and for all 1/2 ≤ σ′ < σ ≤ 1,

∥∥v∥∥
2β,Q(x0,σ

′n),µω
≤ C2

(
mµ,ν(n)F (n, λ, θ)

(σ − σ′)2

)κ∥∥v∥∥
2,Q(x0,σn),µω

, (2.19)

where

κ :=
1

2

(p− 1)/p

2/d′ − (p−1 + q−1)
, mµ,ν(n) :=

(
1 ∨

∥∥µω∥∥
p,B(x0,n)

)(
1 ∨

∥∥νω∥∥
q,B(x0,n)

)
,

F (n, λ, θ) := cosh2(λ)
(
n2 + θ−1

)
.

Proof. We proceed as in the proof of [3, Proposition 4.2], which is based on the Sobolev
inequality in [2, Proposition 3.5]. In order to lighten notation, we set B(n) ≡ B(x0, n).
Consider a sequence {B(σkn)}k of balls with radius σkn centered at x0, where

σk = σ′ + 2−k(σ − σ′) and τk = 2−k−1(σ − σ′), k = 0, 1, . . .

and a sequence {ηk}k of cut-off functions in space such that supp ηk ⊂ B(σkn), ηk ≡ 1

on B(σk+1n), ηk ≡ 0 on ∂B(σkn) and
∥∥∇ηk∥∥`∞(E)

≤ 1/τkn. Further, let {ζk}k be a

sequence of cut-off functions in time, i.e. ζk ∈ C∞(R), supp ζk ⊂ Iσk , ζk ≡ 1 on Iσk+1
,

ζk((1 − σk)s′) = 0 and
∥∥ζ ′k∥∥L∞([0,θn2])

≤ 8/τkθn
2. Finally set αk = (1 + (ρ − p∗)/ρ)k with

ρ = qd/
(
q(d− 2) + d′

)
from the Sobolev inequality in [2]. Since 1/p+ 1/q < 2/d′ we have

ρ > p∗ and therefore αk ≥ 1 for every k ∈ N0. Now with these choices the equations
(2.14) and (2.15) become∫

Iσk+1

Eω
η2
k
(vαkt )

|B(σkn)|
dt ≤ c

(
αk
τkn

)2

F (n, λ, θ)

∫
Iσk

∥∥v2αk
t

∥∥
1,B(σkn),µω

dt

and

max
t∈Iσk+1

∥∥(η vαt )2
∥∥

1,B(σkn),µω
≤ c

(
αk
τkn

)2

F (n, λ, θ)

∫
Iσk

∥∥v2αk
t

∥∥
1,B(σkn),µω

dt,

where we also used (2.18) and τk ≤ 1. The claim follows now line by line from the Moser
iteration in the proof of [3, Proposition 4.2]. Note that we may start the iteration at k = 1

as α1 < 2, so we can choose κ = 1
2

∑∞
k=1 1/αk.
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Finally, we deduce the maximal inequality for v (cf. [3, Corollary 4.3 (ii)]).

Corollary 2.5. Suppose that the assumptions of the Proposition 2.4 are satisfied. In
addition, assume that v > 0 solves ∂tv − Lωφv = 0 on Q(x0, n). Then, there exists
C3 = C3(d, q, ε) such that

max
(t,x)∈Q(x0,σ′n)

v(t, x) ≤ C3

(
mµ,ν(n)

(σ − σ′)2

)κ+1

F (n, λ, θ)κ
∥∥v∥∥

2,Q(x0,σn),µω
. (2.20)

Proof. We shall show that for β′ large enough there exists c <∞ which is independent
of n such that

max
(t,x)∈Q(x0,σ′n)

v(t, x) ≤ c

(
1 ∨

∥∥νω∥∥
1,B(x0,n)

(σ − σ′)2

) ∥∥v∥∥
2β′,Q(x0,σ̄n),µω

, (2.21)

where σ̄ = (σ′ + σ)/2. Then Proposition 2.4 will immediately give the claim. First note
that for any (t, x) ∈ Q(x0, n),

∂tv(t, x) =
(
Lωφ v(t, ·)

)
(x) = φ(x)

(
Lω φ−1v(t, ·)

)
(x) ≥ −v(t, x),

which implies that v(t2, x) ≥ e−(t2−t1) v(t1, x) for every t1, t2 ∈ Iσ with t1 < t2 and
x ∈ B(σn). Now, choose (t∗, x∗) ∈ Q(x0, σ

′n) in such a way that

v(t∗, x∗) = max
(t,x)∈Q(x0,σ′n)

v(t, x).

Then for every t ∈ I ′ := [t∗, (1− σ̄)s′′+ σ̄θn2] ⊂ Iσ̄ we have that v(t, x∗) ≥ e−(t−t∗) v(t∗, x∗).
This implies∫

Iσ̄

∥∥vt∥∥β′β′,B(x0,σ̄n)
dt ≥ 1

|B(x0, σ̄n)|

∫
I′
v(t, x∗)

β′ dt ≥ c
1− e−β

′|I′|

β′|B(x0, n)|
v(t∗, x∗)

β′ .

Recall that s′ = θn2/8. Hence, |I ′| ≥ 1
2ε(σ − σ′) θn2. Thus, for all n large enough,

we have that 1 − e−β
′|I′| ≥ 1/2. Choosing β′ = |B(x0, n)| · θn2, an application of the

Cauchy-Schwarz inequality yields∥∥v∥∥
2β′,Q(x0,σ̄n),µω

∥∥νω∥∥ 1
2β′

1,B(x0,σ̄n) ≥
∥∥v∥∥

β′,Q(x0,σ̄n)

≥ c
(
σ − σ′

) 1
β′ max

(t,x)∈Q(x0,σ′n)
v(t, x),

for some c ∈ (0,∞). Here, we used that
∥∥1/µω

∥∥
1,B(x0,σ̄n)

≤
∥∥νω∥∥

1,B(x0,σ̄n)
. This completes

the proof of (2.21).

Corollary 2.6. Under the assumptions of Corollary 2.5 there exists C4 = C4(d, q, ε) such
that

max
(t,x)∈Q(x0,n/2)

v(t, x) ≤ C4m
κ+1
µ,ν (n) θ−κ e2h(φ)(1−ε)θn2

n−d/2
∥∥φf∥∥

`
2
(V,µω)

.

Proof. Choosing σ′ = 1/2 and σ = 1 we combine Corollary 2.5 with the a-priori estimate
in (2.4) to obtain

max
(t,x)∈Q(x0,n/2)

v(t, x) ≤ cmµ,ν(n)κ+1 F (n, λ, θ)κ eh(φ)θn2

n−d/2
∥∥φf∥∥

`
2
(V,µω)

.

Recall that F (n, λ, θ) = cosh2(λ)
(
n2 + θ−1

)
. Further, by exploiting the definition of h(φ)

we get that h(φ) = 2 ‖ cosh(∇ψ)− 1‖`∞(E) = 2 cosh(λ)− 2. Hence,(
θ F (n, λ, θ)

)κ
e−(1−2ε)h(φ)θn2

≤ c, ∀n ≥ 1, λ > 0, θ ∈ (0, 1),

and the claim follows.
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2.3 Heat kernel bounds

We now return to the Cauchy problem (2.3).

Proposition 2.7. Suppose that Assumption 1.5 holds and let x0 ∈ V be fixed. Then, for
any given x ∈ V and t with

√
t ≥ N(x0)∨ 2(N1(x0)∨N2(x0)) the solution u of the Cauchy

problem in (2.3) satisfies

|u(t, x)| ≤ C5 t
−d/2

∑
y∈V

(
1 +

d(x0, x)√
t

)γ(
1 +

d(x0, y)√
t

)γ
eψ(y)−ψ(x)+2h(φ)t f(y)µω(y)

with γ := 2κ− d/2 and C5 = C5(d, p, q, µ̄p, ν̄q).

Proof. We will mainly follow the proof of Theorem 1.1 in [19]. Recall that ε ∈ (0, 1/4) is
arbitrary, so we choose now for instance ε := 1/8. By Assumption 1.5 we have

mµ,ν(n) ≤ 4
(
1 ∨ µ̄p

)(
1 ∨ ν̄q

)
for all n ≥ N(x0).

Next, for any given x ∈ V and t as in the statement we choose n and θ in such a way that
(t, x) ∈ Q(x0, n/2) (for this purpose we need the additional parameter θ). We set

n =
⌈
2d(x0, x) +

√
8t/7

⌉
≥ N(x0) ∨ 2

(
N1(x0) ∨N2(x0)

)
and θ := t/ 7

8n
2 so that t = 7

8θn
2 = s′′ and (t, x) ∈ Q(x0, n/2). Then, Corollary 2.6 implies

that

eψ(x)u(t, x) ≤ c t−κ e2h(φ)t nγ
∥∥eψf

∥∥
`
2
(V,µω)

.

This can be rewritten as∥∥b−1(t, ·)Pψt
(
eψf

)∥∥
`
∞

(V,µω)
≤ c r(t)

∥∥eψf
∥∥
`
2
(V,µω)

, (2.22)

where Pψt g := eψ Pt(e
−ψg) and

r(t) =: t−κ e2h(φ)t, b(t, x) :=

(
2 d(x0, x) +

√
8
7 t

)γ
.

Notice that P−ψt is the adjoint of Pψt in `2(V, µω). Since h(φ) remains unchanged if we
replace ψ by −ψ, (2.22) also holds true for ψ replaced by −ψ. Therefore, we get by
duality that for all g ∈ `1(V, µω),∥∥Pψt (b−1(t, ·)g

)∥∥
`
2
(V,µω)

≤ c r(t)
∥∥g∥∥

`
1
(V,µω)

. (2.23)

Since b(t/2, x) ≤ b(t, x),∥∥b−1(t, ·) eψPtf
∥∥
`
∞

(V,µω)
≤
∥∥b−1(t/2, ·) eψPt/2

(
Pt/2f

)∥∥
`
∞

(V,µω)

(2.22)
≤ c r(t/2)

∥∥eψ Pt/2f
∥∥
`
2
(V,µω)

(2.23)
≤ c2 r(t/2)2

∥∥eψ b(t/2, ·)f
∥∥
`
1
(V,µω)

.

Hence,

|u(t, x)| ≤ c t−2κ e2h(φ)t−ψ(x)
(
d(x0, x) +

√
t
)γ ∑
y∈V

(
d(x0, y) +

√
t
)γ

eψ(y)f(y)µω(y),

which is the claim since γ = 2κ− d/2.
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Heat kernel estimates for random walks with degenerate weights

Proof of Theorem 1.6. We apply Proposition 2.7 on the heat kernel qω(t, x, y), that is
f = 1{y}/µ

ω(y), which yields

qω(t, x, y) ≤ C5 t
−d/2

(
1 +

d(x0, x)√
t

)γ(
1 +

d(x0, y)√
t

)γ
eψ(y)−ψ(x)+2h(φ)t.

We now optimize over φ = eψ. Let

ψ(u) := −λ min
{
d(x, u), d(x, y)

}
.

Since h(φ) = 2(cosh(λ)− 1) this gives

exp
(
ψ(y)− ψ(x) + 2h(φ)t

)
= exp

(
− λ d(x, y) + 2 t

(
eλ + e−λ − 2

))
= exp

(
d(x, y)

(
− λ+

2t

d(x, y)

(
eλ + e−λ − 2

)))
.

So if

F (s) = inf
λ>0

(
− λ+ (2s)−1

(
eλ + e−λ − 2

))
,

then

qω(t, x, y) ≤ c t−d/2
(

1 +
d(x0, x)√

t

)γ(
1 +

d(x0, y)√
t

)γ
exp

(
d(x, y)F

(
d(x, y)

4t

))
. (2.24)

We have

F (s) = s−1
(
(1 + ss)1/2 − 1

)
− log

(
s+ (1 + s2)1/2

)
and also F (s) ≤ −s/2(1 − s2/10) for s > 0 (see [6] and [11, page 70]). Hence, if s ≤ 3,
then F (s) ≤ −s/20 while if s ≥ e, then

F (s) ≤ 1− log(2s) = − log(2s/e).

Now, by choosing x = x0 and substituting in (2.24) we obtain that there exist suitable
constants c1, . . . , c4 such that if d(x0, y) ≤ c1t then

qω(t, x0, y) ≤ c2 t
−d/2

(
1 +

d(x0, y)√
t

)γ
exp
(
−2c3 d(x0, y)2/t

)
and if d(x0, y) ≥ c1t then

qω(t, x0, y) ≤ c2 t
−d/2

(
1 +

d(x0, y)√
t

)γ
exp
(
−2c4d(x0, y)

(
1 ∨ log(d(x0, y)/t)

))
.

Finally, since(
1 +

d(x0, y)√
t

)γ
exp
(
−c3d(x0, y)2/t

)
≤ sup

z≥0
(1 + z)γ e−c3z

2

≤ c,

and (
1 +

d(x0, y)√
t

)γ
exp
(
−c4d(x0, y)

(
1 ∨ log(d(x0, y)/t)

))
≤
(

1 + d(x0, y)

)γ
exp
(
−c4d(x0, y)

)
≤ sup

z≥0
(1 + z)γ e−c4z ≤ c,

after adapting the constant c2 we obtain the result.
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3 Gaussian upper bounds for the VSRW

Theorem 1.10 can be proven essentially along the lines of the proof of Theorem 1.6
above. For the reader’s convenience we explain the main adjustments in this section.

For any non-empty, finite B ⊂ V , any interval I ⊂ R and p, q ∈ [1,∞), we introduce a
space-averaged and a space-time averaged norm on functions f : B → R and u : I ×B →
R, respectively, by

∥∥f∥∥
p,B

:=

(
1

|B|
∑
x∈B
|f(x)|p

)1/p
and

∥∥u∥∥
p,q,I×B :=

(
1

|I|

∫
I

∥∥ut∥∥qp,B dt

)1/q
,

where ut = u(t, .), t ∈ R. Consider now the Cauchy problem for the operator LωV,{
∂tu− LωVu = 0,

u(t = 0, · ) = f.
(3.1)

With a slight abuse of notation, for any positive function φ on V such that φ, φ−1 ∈ `∞(V )

let (Lωφ g)(x) := φ(x)(LωVφ−1g)(x) acting on bounded functions g : V → R. The a-priori
estimate in (2.4) now reads as follows.

Lemma 3.1. Suppose that f ∈ `2(V ) and u solves the Cauchy problem (3.1). Set
v(t, x) := φ(x)u(t, x) for a positive function φ on V such that φ, φ−1 ∈ `∞(V ). Then∥∥v(t, · )

∥∥
`
2
(V )
≤ eh̃ω(φ)t

∥∥φf∥∥
`
2
(V )

, (3.2)

where

h̃ω(φ) := max
e∈E

(
1 ∨ ω(e)

)(φ(e+)

φ(e−)
+
φ(e−)

φ(e+)
− 2

)
.

Proof. This can be proven similarly as Lemma 2.1.

Lemma 3.2. Let Q, η, ζ, φ and A(φ) be as in Lemma 2.2 and Corollary 2.3 and let vt ≥ 0

satisfy ∂tv − Lωφv ≤ 0. Then, there exists C6 <∞ such that for all α ≥ 1,

max
t∈I

(
ζ(t)

∥∥(η vαt )2
∥∥

1,B

)
+

∫
I

ζ(t)
Eωη2(vαt )

|B|
dt

≤ C6 α
2A(φ)2

(
1 ∨

∥∥µω∥∥
p,B

)(
1 +

∥∥∇η∥∥2

`
∞

(E)
+
∥∥ζ ′∥∥

L∞(I)

) ∫
I

∥∥v2α
t

∥∥
p∗,B

dt,

(3.3)

where p∗ := p/(p− 1).

Proof. Equation (2.13) can be obtained by the same arguments as in Lemma 2.2, and by
applying Hölder’s inequality on

∥∥v2α
t

∥∥
1,B,µω

we get

d

dt

∥∥(ηvαt )
∥∥2

2,B
+
Eωη2(vαt , v

α
t )

|B|
≤ c α2A(φ)2

∥∥µω∥∥
p,B

(
1 +

∥∥∇η∥∥2

`
∞

(E)

)∥∥v2α
t

∥∥
p∗,B

.

By multiplying both sides with ζ(t) and integrating over [s1, s] for any s ∈ I, we get

ζ(s)
∥∥(η vαs )2

∥∥
1,B

+

∫ s

s1

ζ(t)
Eωη2(vαt )

|B|
dt −

∥∥ζ ′∥∥
L∞(I)

∫
I

∥∥v2α
t

∥∥
1,B

dt

≤ c α2A(φ)2
∥∥µω∥∥

p,B

(
1 +

∥∥∇η∥∥2

`
∞

(E)

) ∫
I

∥∥v2α
t

∥∥
p∗,B

dt.

Since by Jensen’s inequality ‖v2α
t ‖1,B ≤ ‖v2α

t ‖p∗,B for every t, the claim follows.
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Heat kernel estimates for random walks with degenerate weights

From now on we will again consider a function φ of the form eψ. Set

λ1 = λ1(ω) := max
e∈E

(
1 ∨ ω(e)

)1/2∣∣∇ψ(e)
∣∣.

Then, since cosh(x) ≥ 1 + 1
2x

2 for all x ∈ R we have

h̃ω(φ) = 2 max
e∈E

{(
1 ∨ ω(e)

)(
cosh(∇ψ)− 1

)}
≥ λ2

1. (3.4)

Similarly as in the previous section note that by monotonicity

A(φ) ≤ cosh(λ1). (3.5)

For any x0 ∈ V , θ ∈ (0, 1) and n ≥ 1 let {Iσ : σ ∈ [0, 1]} still be defined as below
Corollary 2.3. Further, we set Q̃(x0, σn) := Iσ × B̃(x0, σn). By Moser iteration we obtain
the following maximal inequality for perturbed solutions of the Cauchy problem (3.1).

Proposition 3.3. Let v > 0 be such that ∂tv−Lωφv = 0 on Q̃(x0, n) for any n ≥ 2(N1(x0)∨
N2(x0)). Then, for any p, q ∈ (1,∞] with

1

p
+

1

q
<

2

d′

there exists C7 ≡ C7(d, q, ε) and κ = κ(d′, p, q) such that

max
(t,x)∈Q̃(x0,n/2)

v(t, x) ≤ C7 m̃
κ+1
µ,ν (n) θ−κ e2h̃ω(φ)(1−ε)θn2

n−d/2
∥∥φf∥∥

`
2
(V )

, (3.6)

with m̃µ,ν(n) :=
(
1 ∨ ‖µω‖p,B̃(x0,n)

)(
1 ∨ ‖νω‖q,B̃(x0,n)

)
.

Proof. As in the proof of Proposition 2.4 above we will basically follow the arguments
of [3, Proposition 4.2]. We choose the same cut-off function {ηk}k and {ζk}k as before,
but we set α = 1/p∗ + 1/ρ∗ and αk = αk, where ρ∗ is the Hölder-conjugate of ρ =

qd/(q(d− 2) + d′). Note that for any p, q ∈ (1,∞] for which 1/p+ 1/q < 2/d′ is satisfied,
α = 1/p∗ + 1/ρ∗ > 1 and therefore αk ≥ 1 for every k ∈ N0. Now, by Hölder’s inequality
we have that∥∥v2αk

∥∥
αp∗,α,Q̃(x0,σk+1n)

≤
(

1

|Iσk+1
|

∫
Iσk+1

∥∥v2αk
t

∥∥α−1

1,B̃(σk+1n)

∥∥v2αk
t

∥∥
ρ,B̃(σk+1n)

dt

)1/α

≤
(

max
t∈Iσk+1

∥∥v2αk
t

∥∥
1,B̃(σk+1n)

)1−1/α(
1

|Iσk+1
|

∫
Iσk+1

∥∥(vαkt ηk)2
∥∥
ρ,B̃(σkn)

dt

)1/α
.

By the Sobolev inequality in [2, Proposition 3.5] the integrand can be estimated from
above by∥∥(vαkt ηk)2

∥∥
ρ,B̃(σkn)

≤ CS n
2
∥∥νω∥∥

q,B̃(σkn)

(
Eω
η2
k

(
vαkt
)

|B̃(σkn)|
+

1

(τkn)2

∥∥µω∥∥
p,B̃(σkn)

∥∥v2αk
t

∥∥
p∗,B̃(σkn)

)
.

Recall that F (n, λ, θ) = cosh2(λ)
(
n2 + θ−1

)
. Then, we obtain from (3.3)∫

Iσk+1

Eω
η2
k
(vαkt )

|B̃(σkn)|
dt ≤ c

(
αk
τk

)2
m̃µ,ν(n)F (n, λ1, θ)

∥∥v2αk
t

∥∥
p∗,1,Q(x0,σkn)
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and

max
t∈Iσk+1

∥∥(η vαt )2
∥∥

1,B̃(σkn)
≤ c

(
αk
τk

)2
m̃µ,ν(n)F (n, λ1, θ)

∥∥v2αk
t

∥∥
p∗,1,Q(x0,σkn)

where we also used (3.5) and τk ≤ 1. Combining the estimates above yields

∥∥v∥∥
2αk+1p∗,2αk+1,Q̃(x0,σk+1n)

≤

(
c
m̃µ,ν(n)F (n, λ1, θ)

(σ − σ′)2

)1/2αk∥∥v∥∥
2αkp∗,2αk,Q̃(x0,σkn)

for some c <∞where we used that τk ≤ 1 and |Iσk |/|Iσk+1
| = σk/σk+1 ≤ 2. Now following

line by line the proofs of Proposition 4.2 and Corollary 4.3 in [3] (cf. Corollary 2.5 above)
we obtain

max
(t,x)∈Q̃(x0,σ′n)

v(t, x) ≤ c

(
m̃µ,ν(n)

(σ − σ′)2

)κ+1

F (n, λ1, θ)
κ
∥∥v∥∥

2,2,Q̃(x0,σn)
.

Now we choose σ′ = 1/2 and σ = 1. Recall that B(x0, n) ⊆ B̃(x0, n). In particular,∥∥φf∥∥2

2,B̃(x0,n)
≤ 1

|B(x0, n)|
∥∥φf∥∥

`
2
(V )
≤ Creg n

−d ∥∥φf∥∥
`
2
(V )

.

Hence, by the a-priori estimate in (3.2) we obtain

max
(t,x)∈Q̃(x0,n/2)

v(t, x) ≤ c m̃µ,ν(n)κ+1 F (n, λ1, θ)
κ eh̃ω(φ)θn2

n−d/2
∥∥φf∥∥

`
2
(V )

.

Recall that h̃ω(φ) ≥ λ2
1 by (3.4). Then, note that for all n ≥ 1, λ1 > 0, θ ∈ (0, 1),(

θ F (n, λ1, θ)
)κ

e−(1−2ε)h̃ω(φ)θn2

≤
(
θ F (n, λ1, θ)

)κ
e−(1−2ε)λ2

1θn
2

≤ c,

and the claim follows.

Proposition 3.4. Suppose that Assumption 1.9 holds and let x0 ∈ V be fixed. Then, for
any given x ∈ V and t with

√
t ≥ Ñ(x0)∨ 2(N1(x0)∨N2(x0)) the solution u of the Cauchy

problem in (3.1) satisfies

|u(t, x)| ≤ C8 t
−d/2

∑
y∈V

(
1 +

dω(x0, x)√
t

)γ(
1 +

dω(x0, y)√
t

)γ
eψ(y)−ψ(x)+2h̃ω(φ)t f(y)

with γ := 2κ− d/2 and C8 = C8(d, p, q, µ̃p, ν̃q).

Proof. Given (3.6) this follows by the same arguments as in Proposition 2.7. Note that
one needs to work with the chemical distance dω instead of the graph distance.

Proof of Theorem 1.10. We apply Proposition 3.4 on the heat kernel pω(t, x, y), that is
f = 1{y}, which yields

pω(t, x, y) ≤ C8 t
−d/2

(
1 +

dω(x0, x)√
t

)γ(
1 +

dω(x0, y)√
t

)γ
eψ(y)−ψ(x)+2h̃ω(φ)t.

Now we again optimize over φ = eψ. Let

ψ(u) := −λ2 min
{
dω(x, u), dω(x, y)

}
, λ2 > 0.

Notice that for this choice of φ we have λ1 ≤ λ2. Since a
(

cosh(x)− 1
)
≤ cosh(

√
ax) for

all x ∈ R for any a ≥ 1 this implies

h̃ω(φ) = 2 max
e∈E

{(
1 ∨ ω(e)

)(
cosh(∇ψ)− 1)

}
≤ 2

(
cosh(λ1)− 1

)
=
(

cosh(λ2)− 1
)
.

The claim follows now by the same arguments as in the proof of Theorem 1.6 above.

EJP 21 (2016), paper 33.
Page 18/21

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4382
http://www.imstat.org/ejp/


Heat kernel estimates for random walks with degenerate weights

A Proof of Lemma 1.12

Proof. Set u1(k) =
(
k−1

2 /(ln k−1
2 )δ

)1/α
and u2(k) =

(
k−1

2 (ln k−1
2 )1+δ

)1/α
. Obviously, the

sequences {u1(k) : k ≥ 7} and {u2(k) : k ≥ 3} are non-decreasing and it holds that
kP[Z1 > u1(k)]→∞ as k tends to∞. Moreover, an elementary computation shows that

∞∑
k=1

P
[
Z1 > u2(k)

]
≤ 2k0 + 2

∞∑
k=1

1

k(ln k)1+δ
< ∞

and

∞∑
k=1

P
[
Z1 > u1(k)

]
exp

(
−kP

[
Z1 > u1(k)

])
≤ 2k0 + 2

∞∑
k=1

(ln k)δ

k
e−(ln k)δ/2 < ∞,

where k0 is chosen such that k−α/2 ≤ P[Z1 > k] ≤ 2k−α for all k ≥ k0. Thus, we conclude
from [14, Theorem 3.5.1 and 3.5.2] that for P-a.e. ω there exists L0 = L0(ω) such that
for all k ≥ L0,

u1(2k + 1) =
(
k/(ln k)δ

)1/α ≤ max
−k≤i≤k

Zi ≤
(
k (ln k)1+δ

)1/α
= u2(2k + 1). (A.1)

In order to get an upper bound on the chemical distance dω(0, Le1) we consider the
path γ0,Le1 = (z0, . . . , zl) with length l = 2L∗ + L, where L∗ := argmax−Lε≤i≤Lε Zi and
ε = 2α/(2α + 1) that is chosen as follows. Starting at the origin, the path γ0,Le1 goes
first |L∗| steps in vertical direction to (0, L∗), then it goes L steps in horizontal direction
to (L,L∗) and finally it goes again |L∗| steps in vertical direction to Le1, i.e. for the
horizontal direction the path chooses the line with an e2-coordinate in (−Lε, Lε) which
has maximal conductance. Hence, for L ≥ L0,

dω
(
0, Le1

)
≤

l−1∑
j=0

(
1 ∨ ω(zj , zj+1)

)−1/2 ≤ 2Lε + L
(

max
−Lε≤i≤Lε

Zi

)−1/2

≤ 2Lε + Lu1(2Lε + 1)−1/2 ≤ 2Lε + L1−ε/2α (logL)δ/2α

for which we conclude the claimed upper bound, since ε = 2α/(2α+ 1).
In order to prove the lower bound, let Γ0,Le1(k) be the set of all paths γ0,Le1 starting

at the origin and ending at Le1 such that maxz∈γ0,Le1
|z · e2| = k. Then,

dω(0, Le1) = inf
k∈N

inf
γ∈Γ0,Le1

(k)

∑
(z,z′)∈γ

1 ∧ ω(z, z′)−1/2

≥ inf
k∈N

2k + L
(

max
−(k∨L0)≤i≤(k∨L0)

Zi

)−1/2

≥ inf
k∈N

2k + L
(

(k ∨ L0)
(

ln(k ∨ L0)
)1+δ

)−1/2α

.

Set L∗ = (L/(lnL)(1+δ)/(2α))2α/(2α+1). Notice that for L ≥ L0 there exist constants
0 < c < C < ∞ such that the minimum is attained at a unique point k∗ ∈ [cL∗, CL∗].
Thus, there exists a constant cZ ≡ cZ(α, δ) > 0 such that

dω(0, Le1) ≥ cZk∗ ≥ cZ (lnL)−(1+δ)/(2α+1) L2α/(2α+1),

which completes the proof of the lower bound.
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B Technical estimates

In this section we collect some technical estimates needed in the proofs.

Lemma B.1. (i) For all a, b ≥ 0 and any α > 1/2,

(
aα − bα

)2 ≤ ∣∣∣∣ α2

2α− 1

∣∣∣∣ (a− b) (a2α−1 − b2α−1
)
. (B.1)

(ii) For a, b ≥ 0 and any α ≥ 1,∣∣a2α−1b − ab2α−1
∣∣ ≤ (

1− 1

α

) ∣∣a2α − b2α
∣∣ (B.2)

(iii) For all a, b ≥ 0 and any α ≥ 1/2,(
a2α−1 + b2α−1

) ∣∣a− b∣∣ ≤ 4
∣∣aα − bα∣∣ (aα + bα

)
. (B.3)

Proof. For the proof of statements (i) and (iii) we refer to [2, Lemma A.1].
(ii) The statement is trivial for a = b so we may assume that 0 ≤ a < b and set z := a/b.

Then, (B.2) is equivalent to

z2α−1 − z
1− z2α

≤ 1− 1

α
, ∀ z ∈ [0, 1).

But this follows from the fact that the left hand side is increasing in z and converges to
1− 1

α as z → 1.
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