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Transience/recurrence and growth rates for diffusion
processes in time-dependent regions
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Abstract

Let K ⊂ Rd, d ≥ 2, be a smooth, bounded domain satisfying 0 ∈ K, and let f(t), t ≥ 0,
be a smooth, continuous, nondecreasing function satisfying f(0) > 1. Define Dt =

f(t)K ⊂ Rd. Consider a diffusion process corresponding to the generator 1
2
∆ +

b(x)∇ in the time-dependent region D̄t with normal reflection at the time-dependent
boundary. Consider also the one-dimensional diffusion process corresponding to
the generator 1

2
d2

dx2 + B(x) d
dx

on the time-dependent region [1, f(t)] with reflection
at the boundary. We give precise conditions for transience/recurrence of the one-
dimensional process in terms of the growth rates of B(x) and f(t). In the recurrent
case, we also investigate positive recurrence, and in the transient case, we also
consider the asymptotic growth rate of the process. Using the one-dimensional results,
we give conditions for transience/recurrence of the multi-dimensional process in terms
of the growth rates of B+(r), B−(r) and f(t), where B+(r) = max|x|=r b(x) · x

|x| and

B−(r) = min|x|=r b(x) · x
|x| .
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1 Introduction and statement of results

Let K ⊂ Rd, d ≥ 2, be a bounded domain with C3-boundary satisfying 0 ∈ K, and
let f(t), t ≥ 0, be a continuous, nondecreasing C3-function satisfying f(0) > 1. Define
Dt = f(t)K ⊂ Rd. It is known that one can define a Brownian motion X(t) with normal
reflection at the boundary in the time-dependent region {(x, t) : x ∈ D̄t, t ≥ 0}. More
precisely, one has for 0 ≤ s < t,

X(t) = X(s) +W (t)−W (s) +

∫ t

s

1∂Du(X(u))n(u,X(u))dLu,

Lt =

∫ t

s

1∂Du(X(u))dLu,

*Technion–Israel Institute of Technology, Haifa, Israel E-mail: pinsky@math.technion.ac.il

http://www.imstat.org/ejp/
http://dx.doi.org/10.1214/16-EJP4355


Transience/recurrence for diffusion processes in time-dependent regions

where W (·) is a Brownian motion, n(u, x) is the unit inward normal to Du at x ∈ ∂Du

and Lu is the local time up to time u of X(·) at the time-dependent boundary. See [1].

The process X(t) is recurrent if, with probability one, X(t) ∈ K at arbitrarily large
times t, and is transient if, with probability zero, X(t) ∈ K at arbitrarily large times t. As
with non-degenerate diffusion processes in unrestricted space, transience is equivalent
to limt→∞ |X(t)| = ∞ with probability one. It is simple to see that the definitions are
independent of the starting point and the starting time of the process. In a recent
paper [2], it was shown that for d ≥ 3, if

∫∞ 1
fd(t)

dt <∞, then the process is transient,

while if
∫∞ 1

fd(t)
dt = ∞, and an additional technical condition is fulfilled, then the

process is recurrent. The additional technical condition is that either K is a ball, or
that

∫∞
0

(f ′)2(t)dt <∞. In particular, this result indicates that if for sufficiently large t,
f(t) = cta, for some c > 0, then the process is transient if a > 1

d and recurrent if a ≤ 1
d .

The paper [2] also studies the analogous problem for simple, symmetric random walk in
growing domains.

In this paper we study the transience/recurrence dichotomy in the case that the
Brownian motion is replaced by a diffusion process; namely, Brownian motion with a
locally bounded drift b(x). That is, the generator of the process when it is away from the
boundary is 1

2∆ + b(x)∇ instead of 1
2∆. Using the Cameron-Martin-Girsanov change-of-

measure formula, or alternatively in the case of a Lipschitz drift, by a direct construction
as in [1], one can show that the diffusion process in the time-dependent region can be
defined. We will show how the strength of the radial component, b(x) · x|x| , of the drift,

and the growth rate of the region–via f(t)–affect the transience/recurrence dichotomy.

In fact, we will prove a transience/recurrence dichotomy for a one-dimensional
process. Our result for the multi-dimensional case will follow readily from the one-
dimensional result along with results in [2]. Let f(t) be as in the first paragraph. Consider

the diffusion process corresponding to the generator 1
2
d2

dx2 +B(x) d
dx , where B is locally

bounded, in the time-dependent region [1, f(t)] with reflection at the endpoint x = 1 (for
all times) and at the endpoint f(t) at time t. If B(x) = k

x , the process is a Bessel process.
When this process is considered on [1,∞) with reflection at 1, it is recurrent for k ≤ 1

2

and transient for k > 1
2 . In particular, it is the radial part of a d-dimensional Brownian

motion when k = d−1
2 . The result of [2] noted above can presumably be slightly modified

to show that for k > 1
2 , the process on the time dependent region [1, f(t)] with reflection

at the endpoints is transient or recurrent according to whether
∫∞ 1

f2k+1(t)
dt < ∞ or∫∞ 1

f2k+1(t)
dt =∞. In this paper we consider drifts that are on a larger order than 1

x . We
will prove the following theorem concerning transience/recurrence.

Theorem 1.1. Consider the diffusion process corresponding to the generator 1
2
d2

dx2 +

B(x) d
dx in the time-dependent region [1, f(t)], with reflection at both the fixed endpoint

and the time-dependent one. Let γ > −1 and b, c > 0.

i. Assume that

B(x) ≤ bxγ , for sufficiently large x,

f(t) ≤ c(log t)
1

1+γ , for sufficiently large t.

If
2bc1+γ

1 + γ
< 1, or

2bc1+γ

1 + γ
= 1 and γ ≥ −1

2
,

then the process is recurrent.

ii. Assume that

B(x) ≥ bxγ , for sufficiently large x,

f(t) ≥ c(log t)
1

1+γ , for sufficiently large t.

EJP 21 (2016), paper 46.
Page 2/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4355
http://www.imstat.org/ejp/
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If
2bc1+γ

1 + γ
> 1,

then the process is transient.

Remark. We expect that the process is also recurrent in part (i) if 2bc1+γ

1+γ = 1 and

γ ∈ (−1,− 1
2 ).

Using Theorem 1.1, we will prove the following result for the multi-dimensional
process.

Theorem 1.2. Consider the diffusion process corresponding to the generator 1
2∆+b(x)∇

in the time-dependent region D̄(t) = f(t)K̄ ⊂ Rd, with reflection at the boundary, where
K and f are as in the first paragraph. Let

B+(r) = max
|x|=r

b(x) · x
|x|
, B−(r) = min

|x|=r
b(x) · x

|x|
,

and let
rad +(K) = max(|x| : x ∈ ∂K), rad−(K) = min(|x| : x ∈ ∂K).

Let γ > −1 and b, c > 0.
i. Assume that

B+(r) ≤ brγ , for sufficiently large r,

f(t) ≤ c

rad +(K)
(log t)

1
1+γ , for sufficiently large t.

(1.1)

Also assume either that K is a ball or that
∫∞
0

(f ′)2(t)dt <∞.
If

2bc1+γ

1 + γ
< 1, or

2bc1+γ

1 + γ
= 1, d = 2 and γ ≥ 0,

then the process is recurrent.
ii. Assume that

B−(r) ≥ brγ , for sufficiently large r,

f(t) ≥ c

rad−(K)
(log t)

1
1+γ , for sufficiently large t.

(1.2)

If
2bc1+γ

1 + γ
> 1,

then the process is transient.

Remark 1. We expect that the process is recurrent in part (i) when 2bc1+γ

1+γ = 1, for all
values of γ > −1 and d ≥ 2.

Remark 2. If f(t) = C(log t)
1

1+γ , for all large t, where C > 0 and γ > −1, then the
condition

∫∞
0

(f ′)2(t)dt <∞ in part (i) is satisfied.

In the recurrent case, it is natural to consider positive recurrence, which we define
as follows: the one-dimensional process above is positive recurrent if starting from x > 1,
the expected value of the first hitting time of 1 is finite, while the multi-dimensional
process defined above is positive recurrent if starting from a point x 6∈ K̄, the expected
value of the first hitting time of K̄ is finite. It is simple to see that this definition is
independent of the starting point and the starting time of the process. We have the
following theorem regarding positive recurrence of the one-dimensional process.
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Theorem 1.3. Under the conditions of part (i) of Theorem 1.1 or Theorem 1.2, the
process is positive recurrent if

2bc1+γ

1 + γ
< 1.

Remark. The proof of Theorem 1.3 relies heavily on the estimates in the proof of part
(i) of Theorem 1.1. We suspect that in the borderline cases, when 2bc1+γ

1+γ = 1, the process
is never positive recurrent. However, the estimates in the proof of part (ii) of Theorem
1.1 don’t go quite far enough to prove this.

In the transient case, it is natural to consider the asymptotic growth rate of the
process. It is known that the process X(t) corresponding to the generator 1

2
d2

dx2 + bxγ d
dx

on [1,∞) with reflection at 1 grows a.s. on the order t
1

1−γ if γ ∈ (−1, 1). (In fact, the

solutions x̂(t) to the differential equation x′ = bxγ satisfy limt→∞
x̂(t)

t
1

1−γ
= (b(1 − γ))

1
1−γ ,

and it is not hard to show that X(t) satisfies limt→∞
X(t)

t
1

1−γ
= (b(1−γ)

1
1−γ a.s.) The process

grows a.s. exponentially if γ = 1, and explodes a.s. if γ > 1 [5]. From this it is clear that
the one-dimensional process X(t) with B(x) = bxγ on the time-dependent region [1, f(t)]

satisfies

X(t) = f(t) for arbitrarily large t a.s.,

and consequently,

lim sup
t→∞

X(t)

f(t)
= 1 a.s., (1.3)

if f(t) = o(t
1

1−γ ) and γ ∈ (−1, 1), if f(t) grows sub-exponentially and γ = 1, and with
no restrictions on f if γ > 1. The next theorem treats the behavior of lim inft→∞

X(t)
f(t)

in what turns out to be the delicate case that B(x) = bxγ and f(t) = c(log t)
1

1+γ , with
2bc1+γ

1+γ > 1. (Recall from Theorem 1.1 that if 2bc1+γ

1+γ < 1, then the process is recurrent
and thus lim inft→∞X(t) = 1.) We restrict to γ ∈ (−1, 1) for technical reasons, but we
suspect that the following result also holds for γ ≥ 1.

Theorem 1.4. Consider the diffusion process corresponding to the generator 1
2
d2

dx2 +

B(x) d
dx in the time-dependent region [1, f(t)], with reflection at both the fixed endpoint

and the time-dependent one. Let γ ∈ (−1, 1) and b, c > 0. Assume that for sufficiently
large x, t,

B(x) = bxγ ,

f(t) = c(log t)
1

1+γ ,

where
2bc1+γ

1 + γ
> 1.

Then

lim inf
t→∞

X(t)

f(t)
=
(
1− 1 + γ

2bc1+γ
) 1

1+γ a.s.

We now consider the asymptotic growth behavior in the case that B(x) = xγ , γ ∈
(−1, 1), and that f(t) is on a larger order than (log t)

1
1+γ , but on a smaller order than t

1
1−γ .

(Recall from the paragraph preceding Theorem 1.4 that this latter order is the order on
which the process would grow if it lived on [1,∞) rather than on the time-dependent
region.) For simplicity we will assume that f(t) = (log t)l, with l > 1

1+γ , or that f(t) = tl,

with l ∈ (0, 1
1−γ ). (We have dispensed with the coefficients b and c because here they no

longer play a role at the level of asymptotic behavior we investigate.)

EJP 21 (2016), paper 46.
Page 4/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4355
http://www.imstat.org/ejp/


Transience/recurrence for diffusion processes in time-dependent regions

Theorem 1.5. Consider the diffusion process corresponding to the generator 1
2
d2

dx2 +

B(x) d
dx in the time-dependent region [1, f(t)], with reflection at both the fixed endpoint

and the time-dependent one. Let γ ∈ (−1, 1). Assume that

B(x) = xγ .

i. Assume that for t ≥ 2,

f(t) = (log t)l, with l >
1

1 + γ
.

Then

lim
t→∞

X(t)

f(t)
= 1 a.s.

ii. Assume that

f(t) = tl, with l ∈ (0,
1

1− γ
).

Let

q0 =

{
0, if γ ≥ 0;

−lγ, if γ ∈ (−1, 0).

Then

lim sup
t→∞

f(t)−X(t)

tq
= 0 a.s. for q > q0, (1.4)

and

lim sup
t→∞

f(t)−X(t)

tq0
=∞ a.s., when γ ∈ (−1, 0]. (1.5)

In particular (in light of (1.3)),

lim
t→∞

X(t)

f(t)
= 1 a.s.

Remark. Note in particular that for b(x) = xγ and f(t) = tl, if γ ∈ [0, 1), then the
deviation of X(t) from f(t) as t→∞ is o(tq), for any q > 0, while if γ ∈ (−1, 0), then this
deviation is o(tq) for q > −lγ, but not for q = −lγ.

In section 2 we prove several auxiliary results which will be needed for the proofs.
The proofs of Theorem 1.1–1.5 are given in sections 3–7 respectively.

Throughout the paper, the following notation will be employed:

Let X(t) denote a canonical, continuous real-valued path, and let Tα = inf{t ≥ 0 :

X(t) = α}. Let

Lbxγ =
1

2

d2

dx2
+ bxγ

d

dx
.

Let P bx
γ ;Ref←:β

x and Ebx
γ ;Ref←:β

x denote probabilities and expectations for the diffusion
process corresponding to Lbxγ on [1, β], starting from x ∈ [1, β], with reflection at β and
stopped at 1, and let P bx

γ ;Ref→:α
x and Ebx

γ ;Ref→:α
x denote probabilities and expectations

for the diffusion process corresponding to Lbxγ on [α,∞), starting from x ∈ [α,∞), with
reflection at α. We note that this latter diffusion is explosive if γ > 1, but we will only
be considering it until time Tβ for some β > α. We will sometimes work with a constant
drift, which we will denote by D (instead of bxγ with γ = 0), in which case D will replace
bxγ in all of the above notation.
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2 Auxiliary results

In this section we prove four propositions. The first three of them are used explicitly
in the proof of Theorem 1.1, and implicitly in many of the other theorems, since many of
the calculations in the proof of Theorem 1.1 are used in the proofs of the other theorems.
Proposition 2.4 is used only for the proof of (1.5) in Theorem 1.5.

Proposition 2.1. For α ∈ [1, β],

Ebx
γ ;Ref←:β

x exp(λTα) ≤ 2, for x ∈ [α, β] and λ ≤ λ̂(α, β), (2.1)

where
λ̂(α, β) = exp

(
−
(
2 + 2bmax(αγ , βγ)

)
(β − α)

)
. (2.2)

Proof. Of course, it suffices to work with λ ≥ 0. Consider the function

u(x) = 2− exp(−r(x− α)), α ≤ x ≤ β, (2.3)

where r > 0. Then

exp(r(x− α))(Lbxγ + λ)u = −1

2
r2 + rbxγ − λ+ 2λ exp(r(x− α)), x ∈ [α, β]. (2.4)

For λ ≥ 0,

sup
x∈[α,β]

(
− 1

2
r2 + rbxγ − λ+ 2λ exp(r(x− α))

)
≤

− 1

2
r2 + rbmax(αγ , βγ)− λ+ 2λ exp(r(β − α)).

Thus, we have (Lbxγ + λ)u ≤ 0 on [α, β] if

0 ≤ λ ≤
r
(
r
2 − bmax(αγ , βγ)

)
2 exp(r(β − α))− 1

.

Choosing
r = 2 + 2bmax(αγ , βγ),

it follows that the right hand side of the above inequality is greater than λ̂(α, β). We have
thus shown that there exists a positive function u on [α, β] satisfying (Lbxγ + λ̂(α, β))u ≤ 0

in [α, β] and u′(β) ≥ 0. By the criticality theory of second order elliptic operators [6,
chapter 4], [4], it follows that the principal eigenvalue for −Lbxγ on (α, β) with the
Dirichlet boundary condition at α and the Neumann boundary condition at β is larger
than λ̂(α, β). By the Feynman-Kac formula, when λ is less than the aforementioned
principal eigenvalue, the function uλ(x) ≡ Ebx

γ ;Ref←:β
x exp(λTα) satisfies the boundary-

value problem (Lbxγ + λ)u = 0 in (α, β), u(α) = 1 and u′(β) = 0. Since λ is smaller than
the principal eigenvalue, it follows from the generalized maximum principal [6, chapter
3], [4] that uλ ≤ u, if u satisfies (L + λ)u ≤ 0 in [α, β], u(α) ≥ 1 and u′(β) ≥ 0. The
calculation above showed that u as defined in (2.3), with r = 2 + 2bmax(αγ , βγ), satisfies
these requirements; thus in particular, (2.1) holds.

Proposition 2.2. For 1 ≤ x < β,

ED;Ref→:1
x exp(

D2

2
Tβ) =

exp(D(β − 1))

1 +D(β − 1)

(
1 +D(x− 1)

)
exp

(
−D(x− 1)

)
. (2.5)

Proof. The function

u(x) =
exp(D(β − 1))

1 +D(β − 1)

(
1 +D(x− 1)

)
exp

(
−D(x− 1)

)
EJP 21 (2016), paper 46.
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solves the boundary value problem (LD + D2

2 )u = 0 in (1, β) with u′(1) = 0 and u(β) = 1.
Since u > 0, it follows again from the criticality theory of elliptic operators that the
principal eigenvalue of −LD on (1, β) with the Neumann boundary condition at 1 and the

Dirichlet boundary condition at β is greater than D2

2 . Thus, ED;Ref→:1
x exp(D

2

2 Tβ) < ∞
and by the Feynman-Kac formula, this function of x ∈ [1, β] solves the above boundary
value problem, and consequently coincides with u.

Proposition 2.3. For λ > 0 and 1 < α < β,

ED;Ref←:β
β exp(−λTα) =

2
√
D2 + 2λ e−2D(β−α)

(−D +
√
D2 + 2λ ) e(−D+

√
D2+2λ )(β−α) + (D +

√
D2 + 2λ ) e(−D−

√
D2+2λ )(β−α)

.

Proof. By the Feynman-Kac formula, ED;Ref←:β
x exp(−λTα), for x ∈ [α, β], solves the

boundary value problem (LD − λ)u = 0 in (α, β), with u(α) = 1 and u′(β) = 0. The
solution of this linear equation is given by

u(x) =
r1e
−r1(β−α)er2(x−α) + r2e

r2(β−α)e−r1(x−α)

r2er2(β−α) + r1e−r1(β−α)
,

where r1 = D +
√
D2 + 2λ and r2 = −D +

√
D2 + 2λ. Substituting x = β completes the

proof.

Proposition 2.4.

Ebx
γ ;Ref→:α

x exp(λτβ) ≤ 2, for x ∈ [α, β] and λ ≤ λ̄, (2.6)

where λ̄ = bmin(αγ ,βγ)
(2e−1)(β−α) .

Proof. The proof is similar to that of Proposition 2.1. By the Feynman-Kac formula,
when λ is less than the principal eigenvalue for the operator Lbxγ on (α, β) with the
Neumann boundary condition at α and the Dirichlet boundary condition at β, the function
uλ(x) ≡ Ebxγ ;Ref→:α

x exp(λτβ) solves the equation (Lbxγ + λ)u = 0 in (α, β), u′(α) = 0 and
u(β) = 1. Also, if u > 0 satisfies (Lbxγ + λ)u ≤ 0 in (α, β), u′(α) ≤ 0 and u(β) ≥ 1, then λ
is smaller than the principal eigenvalue and uλ ≤ u. We look for such a function u in the
form u(x) = 2 − exp

(
− r(β − x)

)
, where r > 0. Note then that u(β) = 1, u′(α) ≤ 0 and

1 ≤ u ≤ 2 on [α, β]. We have

exp
(
r(β − x)

)(
Lbxγ + λ

)
u = (−1

2
r2 − bxγr − λ) + 2λ exp

(
r(β − x)

)
.

It follows readily that if

λ ≤
1
2r

2 + brmin(αγ , βγ)

2 exp(r(β − α))− 1
, (2.7)

then (Lbxγ + λ)u ≤ 0 on [α, β]. With the choice r = 1
β−α in (2.7), it is clear that λ̄ in

the statement of the proposition is smaller than the right hand side of (2.7). Thus,
uλ(x) ≤ u(x) ≤ 2, for λ ≤ λ̄.

3 Proof of Theorem 1.1

We will denote probabilities for the process staring from 1 at time 0 by P1. Let
Ft = σ(X(s), 0 ≤ s ≤ t) denote the standard filtration on real-valued continuous paths
X(t). By standard comparison results and the fact that the transience/recurrence
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dichotomy is not affected by a bounded change in the drift over a compact set, we may
assume that

B(x) = bxγ , for all x ≥ 1, f(t) =

{
2, t ∈ [0, exp

(
( 2
c )1+γ

)
];

c(log t)
1

1+γ , t > exp
(
( 2
c )1+γ

)
.

(3.1)

Proof of (i). Let j0 = [( 2
c )1+γ ] + 1. Let tj = ej . Then f(tj) = cj

1
1+γ , for j ≥ j0. For

j ≥ j0, let Aj+1 denote the event that the process hits 1 at some time t ∈ [tj , tj+1]. The
conditional version of the Borel-Cantelli lemma [3] shows that if

∞∑
j=j0

P1(Aj+1|Ftj ) =∞, a.s., (3.2)

then P1(Aj i.o.) = 1, and thus the process is recurrent. Thus, to show recurrence, it
suffices to show (3.2).

Since up to time tj , the largest the process can be is f(tj), and since up to time tj+1

the time-dependent region is contained in [1, f(tj+1)], it follows by comparison that

P1(Aj+1|Ftj ) ≥ P
bxγ ;Ref←:f(tj+1)

f(tj)
(T1 ≤ tj+1 − tj) a.s. (3.3)

We estimate the right hand side of (3.3). Let σ(j)
0 = 0, κ(j)i = inf{t ≥ σ(j)

i−1 : X(t) = f(tj+1)}
and σ(j)

i = inf{t > κ
(j)
i : X(t) = f(tj)}, j ≥ j0, i = 1, 2, . . .. For any lj ∈ N,

{T1 < σ
(j)
lj
} − {σ(j)

lj
> tj+1 − tj} ⊂ {T1 ≤ tj+1 − tj}.

Also, it follows by the strong Markov property that

P
bxγ ;Ref←:f(tj+1)

f(tj)
(T1 < σ

(j)
lj

) = 1−
(
P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < T1)

)lj
.

Thus

P
bxγ ;Ref←:f(tj+1)

f(tj)
(T1 ≤ tj+1 − tj) ≥ 1−

(
P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < T1)

)lj−
P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> tj+1 − tj).
(3.4)

From (3.2)–(3.4), we will obtain P1(Aj i.o.) = 1, and thus recurrence, if we can select
{lj}∞j=1 such that

∞∑
j=j0

(
1−

(
P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < T1)

)lj)
=∞, (3.5)

and
∞∑
j=j0

P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> tj+1 − tj) <∞. (3.6)

Let

φ(x) =

∫ ∞
x

exp(−
∫ t

0

2bsγds)dt =

∫ ∞
x

exp(−2bt1+γ

1 + γ
)dt, x ≥ 1. (3.7)

Since Lφ = 0, it follows by standard probabilistic potential theory [6, chapter 5] that

P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < T1) =

φ(1)− φ(f(tj))

φ(1)− φ(f(tj+1))
= 1− φ(f(tj))− φ(f(tj+1))

φ(1)− φ(f(tj+1))
. (3.8)
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Transience/recurrence for diffusion processes in time-dependent regions

Applying L’Hôpital’s rule shows that

lim
x→∞

∫∞
x

exp(− 2bt1+γ

1+γ )dt

x−γ exp(− 2bx1+γ

1+γ )
=

1

2b
;

thus,

φ(x) ∼ 1

2b
x−γ exp(−2bx1+γ

1 + γ
), as x→∞. (3.9)

Using the fact that (1 − t)l ≤ exp(−lt) ≤ 1 − lt + 1
2 (lt)2 ≤ 1 − 1

2 lt, if l, t ≥ 0 and lt ≤ 1,
along with (3.8), we have

1−
(
P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < T1)

)lj ≥ 1

2
lj
φ(f(tj))− φ(f(tj+1))

φ(1)− φ(f(tj+1))
,

for sufficiently large j, if lim
j→∞

ljφ(f(tj)) = 0.
(3.10)

Using (3.9) along with the facts that f(x) = c(log x)
1

1+γ and tj = ej , it follows that there
exists a K0 ∈ (0, 1) such that φ(f(tj+1)) ≤ K0φ(f(tj)) for all large j. Thus,

φ(f(tj))− φ(f(tj+1))

φ(1)− φ(f(tj+1))
≥ K1φ(f(tj)) ≥ K2 j

− γ
1+γ exp(−2bc1+γ

1 + γ
j),

for sufficiently large j,

(3.11)

for constants K1,K2 > 0. From (3.10) and (3.11), it follows that (3.5) will hold if we
define lj ∈ N by

lj = [
1

j
1

1+γ log j
exp(

2bc1+γ

1 + γ
j)], (3.12)

since then the general term, 1−
(
P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < T1)

)lj , in (3.5) will be on the

order at least 1
j log j .

With lj chosen as above, we now analyze P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> tj+1 − tj) and show

that (3.6) holds. By the strong Markov property, σ(j)
lj

=
∑lj
i=1Xi +

∑lj
i=1 Yi, where

{Xi}∞i=1 is an IID sequence distributed according to Tf(tj+1) under P bx
γ ;Ref→:1

f(tj)
, {Yi}∞i=1 is

an IID sequence distributed according to Tf(tj) under P
bxγ ;Ref←:f(tj+1)

f(tj+1)
, and the two IID

sequences are independent of one another. By Markov’s inequality,

P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> t) ≤ exp(−λt)Ebx
γ ;Ref←:f(tj+1)

f(tj)
exp(λσ

(j)
lj

) =

exp(−λt)
(
Ebx

γ ;Ref→:1
f(tj)

exp(λTf(tj+1))
)lj(

E
bxγ ;Ref←:f(tj+1)

f(tj+1)
exp(λTf(tj))

)lj
,

(3.13)

for any λ > 0.
By Proposition 2.1,

E
bxγ ;Ref←:f(tj+1)

f(tj+1)
exp(λTf(tj)) ≤ 2, for λ ≤ λ̂(f(tj), f(tj+1)), (3.14)

where λ̂(·, ·) is as in (2.2). Using the fact that f(tj) = cj
1

1+γ , it is easy to check that there
exists a λ̂0 > 0 such that

λ̂(f(tj), f(tj+1)) ≥ λ̂0, for all j ≥ j0. (3.15)

By comparison,

Ebx
γ ;Ref→:1

f(tj)
exp(λTf(tj+1)) ≤ E

Dj ;Ref→:1

f(tj)
exp(λTf(tj+1)), (3.16)
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Transience/recurrence for diffusion processes in time-dependent regions

if
Dj ≤ min

x∈[1,f(tj+1)]
bxγ .

If γ ≥ 0, choose Dj = min(b,
√

2λ̂0 ), for all j ≥ j0; thus,
D2
j

2 ≤ λ̂0. If γ ∈ (−1, 0), choose

Dj = b(f(tj+1))γ = bcγ(j + 1)
γ

1+γ . With these choices of Dj , we have for all γ > −1,

D2
j

2
≤ λ̂0, for sufficiently large j. (3.17)

It is easy to check that if one substitutes D = Dj , x = f(tj) = c(log j)
1

1+γ and β =

f(tj+1) = c(log(j + 1))
1

1+γ in the expression on the right hand side of (2.5) in Proposition
2.2, the resulting expression is bounded in j. Letting M > 1 be an upper bound, it
follows that

E
Dj ;Ref→:1

f(tj)
exp(

D2
j

2
Tf(tj+1)) ≤M. (3.18)

Noting that tj+1 − tj = ej+1 − ej ≥ ej , and choosing λ =
D2
j

2 in (3.13), it follows from
(3.13)–(3.18) that

P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> tj+1 − tj) ≤ exp(−
D2
j

2
ej)(2M)lj , for sufficiently large j. (3.19)

Recalling lj from (3.12), we conclude from (3.19) that

P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> tj+1 − tj) ≤ exp(−
D2
j

2
ej)(2M)j

− 1
1+γ (log j)−1 exp( 2bc1+γ

1+γ j) =

exp(−
D2
j

2
ej) exp

(
j−

1
1+γ (log j)−1e

2bc1+γ

1+γ j log 2M
)
, for sufficiently large j.

(3.20)

Recalling that Dj is equal to a positive constant, if γ ≥ 0, and that Dj is on the order

j
γ

1+γ , if γ < 0, it follows that the right hand side of (3.20) is summable in j if 2bc1+γ

1+γ < 1,

or if 2bc1+γ

1+γ = 1 and γ ≥ − 1
2 . Thus (3.6) holds for this range of b, c and γ. This completes

the proof of (i).

Proof of (ii). Let j1 = [exp
(
( 2
c )1+γ

)
] + 1. Then f(j) = c(log j)

1
1+γ , for j ≥ j1. For j ≥ j1, let

Bj be the event that the process hits 1 sometime between the first time it hits f(j) and
the first time it hits f(j + 1): Bj = {X(t) = 1 for some t ∈ (Tf(j), Tf(j+1))}. If we show
that

∞∑
j=j1

P1(Bj) <∞, (3.21)

then by the Borel-Cantelli lemma it will follow that P1(Bj i.o.) = 0, and consequently the
process is transient.

To prove (3.21), we need to use different methods depending on whether γ ≤ 0

or γ > 0. We begin with the case γ ≤ 0. To consider whether or not the event Bj
occurs, we first wait until time Tf(j). Of course, necessarily, Tf(j) ≥ j, since f(j) is
not accessible to the process before time j. Since we may have Tf(j) < j + 1, the
point f(j + 1) may not be accessible to the process at time Tf(j), however, if we wait
one unit of time, then after that, the point f(j + 1) certainly will be accessible, since
Tf(j) + 1 ≥ j+ 1. Let Mj < f(j)− 1. Now if in that one unit of time, the process never got
to the level f(j)−Mj , then by comparison, the probability of Bj occurring is no more

than P bx
γ ;Ref←:f(j+1)

f(j)−Mj
(T1 < Tf(j+1)) (because after this one unit of time the process will

be at a position greater than or equal to f(j) −Mj). By comparison with the process
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Transience/recurrence for diffusion processes in time-dependent regions

that is reflected at the fixed point f(j), the probability that the process got to the level

f(j)−Mj in that one unit of time is bounded from above by P bx
γ ;Ref←:f(j)

f(j) (Tf(j)−Mj
≤ 1).

From these considerations, we conclude that

P1(Bj) ≤ P bx
γ ;Ref←:f(j+1)

f(j)−Mj
(T1 < Tf(j+1)) + P

bxγ ;Ref←:f(j)
f(j) (Tf(j)−Mj

≤ 1). (3.22)

Similar to (3.8), we have

P
bxγ ;Ref←:f(j+1)
f(j)−Mj

(T1 < Tf(j+1)) =
φ(f(j)−Mj)− φ(f(j + 1))

φ(1)− φ(f(j + 1))
. (3.23)

For ε ∈ (0, 1) to be chosen later sufficiently small, choose Mj = εf(j). Recall that

f(j) = c(log j)
1

1+γ . Then from (3.9) we have

φ(f(j)−Mj) = φ
(
c(1− ε)(log j)

1
1+γ
)
∼

1

2b

(
c(1− ε)(log j)

1
1+γ
)−γ

exp
(
− 2b(c(1− ε))1+γ log j

1 + γ

)
=

1

2b

(
c(1− ε)(log j)

1
1+γ
)−γ

j−
2b(c(1−ε))1+γ

1+γ .

(3.24)

Since by assumption, 2bc1+γ

1+γ > 1, we can select ε ∈ (0, 1) such that 2b(c(1−ε))1+γ
1+γ > 1. With

such a choice of ε, it follows from (3.23) and (3.24) that

∞∑
j=j1

P
bxγ ;Ref←:f(j+1)
f(j)−Mj

(T1 < Tf(j+1)) <∞. (3.25)

We now estimate P bx
γ ;Ref←:f(j)

f(j) (Tf(j)−Mj
≤ 1), where Mj = εf(j), with ε as above. By

comparison, we have

P
bxγ ;Ref←:f(j)
f(j) (Tf(j)−Mj

≤ 1) ≤ PDj ;Ref←,f(j)
f(j) (Tf(j)−Mj

≤ 1), (3.26)

where Dj is equal to the minimum of the original drift on the interval [f(j)−Mj , f(j)];
that is,

Dj = bcγ(log j)
γ

1+γ .

By Markov’s inequality, we have for λ > 0,

P
Dj ;Ref←,f(j)
f(j) (Tf(j)−Mj

≤ 1) ≤ exp(λ)E
Dj ;Ref←,f(j)
f(j) exp(−λTf(j)−Mj

). (3.27)

Using Proposition 2.3 with α = f(j)−Mj , β = f(j) and D = Dj , we have

E
Dj ;Ref←:f(j)

f(j) exp(−λTf(j)−Mj
) =

2
√
D2
j + 2λ e−2DjMj

(−Dj +
√
D2
j + 2λ ) e(−Dj+

√
D2
j+2λ )Mj + (Dj +

√
D2
j + 2λ ) e(−Dj−

√
D2
j+2λ )Mj

.
(3.28)

If γ < 0, then limj→∞Dj = 0 and Mj →∞, and it follows from (3.28) that

E
Dj ;Ref←:f(j)

f(j) exp(−λTf(j)−Mj
) ≤ K exp(−

√
2λMj), (3.29)

for some K > 0. If γ = 0, then Dj = b, for all j, and we have from (3.28),

E
Dj ;Ref←:f(j)

f(j) exp(−λTf(j)−Mj
) ∼ 2

√
b2 + 2λ

−b+
√
b2 + 2λ

exp
(
− (b+ (

√
b2 + 2λ )Mj

)
,

as j →∞.
(3.30)
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Transience/recurrence for diffusion processes in time-dependent regions

Since Mj = εc(log j)
1

1+γ , it follows from (3.29) and (3.30) that

∞∑
j=j1

E
Dj ;Ref←:f(j)

f(j) exp(−λTf(j)−Mj
) <∞, (3.31)

for all choices of λ > 0 in the case γ < 0, and for sufficiently large λ in the case γ = 0.
Thus, we conclude from (3.31) and (3.27) that

∞∑
j=j1

P
Dj ;Ref←,f(j)
f(j) (Tf(j)−Mj

≤ 1) <∞. (3.32)

Now (3.21) follows from (3.22), (3.25) and (3.32).
We now turn to the case that γ > 0. Let ζj+1 = inf{t ≥ j + 1 : X(t) ≥ f(j)}. Since the

process cannot reach f(j + 1) before time j + 1, it follows that Tf(j) ≤ ζj+1 ≤ Tf(j+1).
Let Cj = {X(t) = 1 for some t ∈ (Tf(j), ζj+1)}, and let Gj = {X(t) = 1 for some t ∈
(ζj+1, Tf(j+1))}. Then Bj = Cj ∪Gj; thus,

P1(Bj) ≤ P1(Cj) + P1(Gj). (3.33)

Since the right hand endpoint of the region is larger than or equal to f(tj+1) at all

times t ≥ ζj+1, it follows by comparison that P1(Gj) ≤ P
bxγ ;Ref←:f(j+1)
f(j) (T1 < Tf(j+1)).

Thus, similar to (3.8) we have

P1(Gj) ≤
φ(f(j))− φ(f(j + 1))

φ(1)− φ(f(j + 1))
. (3.34)

As in (3.24), but with ε = 0, we have

φ(f(j)) ∼ 1

2b

(
c(log j)

1
1+γ
)−γ

j−
2bc1+γ

1+γ . (3.35)

From (3.34), (3.35) and the fact that 2bc1+γ

1+γ > 1, it follows that

∞∑
j=j1

P1(Gj) <∞. (3.36)

For any sj , we have the estimate

P1(Cj) ≤ P bx
γ ;Ref←:f(j)

f(j) (T1 ≤ sj + 1) + P b;Ref→:1
1 (Tf(j) > sj). (3.37)

Here is the explanation for the above estimate. To check whether or not the event
Cj occurs, one waits until time Tf(j), at which time the process has first reached f(j).
Of course Tf(j) ≥ j. If in fact, Tf(j) ≥ j + 1, then ζj+1 = Tf(j) and Cj does not occur.
Otherwise, one watches the process between time Tf(j) and time j + 1. If the process
hit 1 in this time interval, whose length is no more than 1, then Cj occurs. (Note that
during this interval of time, the right hand boundary for reflection is always at least
f(j).) Otherwise, Cj has not yet occurred, but one continues to watch the process after
time j + 1 until the first time the process is again greater than or equal to f(j). If the
process reaches 1 in this interval, then Cj occurs, while if not, then we conclude that Cj
did not occur. (Note that if X(j + 1) ≥ f(j), then the length of this final time interval is
0.) The random variable denoting the length of this final time interval is stochastically
dominated by the random variable Tf(j) under P b;Ref→:1

1 , since the actually drift is always
larger than or equal to b everywhere, and the actual starting point of the process at
the beginning of this final time interval is certainly greater than or equal to 1. In the
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Transience/recurrence for diffusion processes in time-dependent regions

estimate (3.37), one should think of sj as a possible value for the length of this final time
interval.

We first estimate P b;Ref→:1
1 (Tf(j) > sj), the second term on the right hand side of

(3.37). By Markov’s inequality, for any λ > 0,

P b;Ref→:1
1 (Tf(j) > sj) ≤ exp(−λsj)Eb;Ref→:1

1 exp(λTf(j)). (3.38)

Applying Proposition 2.2 with D = b, x = 1 and β = f(j) = c(log j)
1

1+γ , we have

Eb;Ref→:1
1 exp(

b2

2
Tf(j)) =

exp
(
b
(
c(log j)

1
1+γ − 1

))
1 + b(c(log j)

1
1+γ − 1)

. (3.39)

Letting

sj =
4

b2
log j, (3.40)

it follows from (3.38) with λ = b2

2 , (3.39) and the fact that γ > 0 that

∞∑
j=j1

P b;Ref→:1
1 (Tf(j) > sj) <∞. (3.41)

We now estimate P
bxγ ;Ref←:f(j)
f(j) (T1 ≤ sj + 1), the first term on the right hand side

of (3.37), where sj has now been defined in (3.40). Note that by the strong Markov

property, T1 = T[f(tj)] +
∑[f(tj)]
i=2 (Ti − Ti−1), where {Ti − Ti−1}

[f(tj)]
i=2 and T[f(tj)] are inde-

pendent random variables under P bx
γ ;Ref←:f(j)

f(j) , and Ti−Ti−1 is distributed as Ti−1 under

P
bxγ ;Ref←:f(j)
i . Let {Xi}[f(j)]i=2 be independent random variables with Xi distributed as T1

under PDi;Ref←:2
2 , where

Di = b(i− 1)γ . (3.42)

We will use the generic P and E for calculating probabilities and expectations for the
Xi. Note that Di is the minimum of the original drift on the interval [i− 1, i]. Also note

that when one considers Ti−1 under P bx
γ ;Ref←:f(j)

i , the process gets reflected at f(j),
which is to the right of the starting point i, while when one considers T1 under PDi;Ref←:2

2 ,
the process gets reflected at its starting point. Thus, by comparison, it follows that
the distribution of Ti − Ti−1 under P bx

γ ;Ref←:f(j)
i dominates the distribution of Xi, and

consequently, the distribution of T1 under P bx
γ ;Ref←:f(j)

f(j) dominates the distribution of∑[f(j)]
i=2 Xi. Thus, we have

P
bxγ ;Ref←:f(j)
f(j) (T1 ≤ sj + 1) ≤ P (

[f(j)]∑
i=2

Xi ≤ sj + 1). (3.43)

By Markov’s inequality, we have for any λ > 0,

P (

[f(j)]∑
i=2

Xi ≤ sj + 1) ≤ exp(λ(sj + 1))E exp(−λ
[f(j)]∑
i=2

Xi) =

exp(λ(sj + 1))

[f(j)]∏
i=2

EDi;Ref←:2
2 exp(−λT1).

(3.44)

Applying Proposition 2.3 with α = 1, β = 2 and D = Di, we have

EDi;Ref←:2
2 exp(−λT1) =

2
√
D2
i + 2λ e−2Di

(−Di +
√
D2
i + 2λ ) e(−Di+

√
D2
i+2λ ) + (Di +

√
D2
i + 2λ ) e(−Di−

√
D2
i+2λ )

.
(3.45)
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Transience/recurrence for diffusion processes in time-dependent regions

For fixed λ > 0, −Di +
√
D2
i + 2λ ∼ λ

Di
, as Di →∞. Thus, (3.45) yields

EDi;Ref←:2
2 exp(−λT1) ∼ 2D2

i

λ
exp(−2Di), as Di →∞. (3.46)

From (3.42) and (3.46), it follows that there exists a K0 > 0 such that

[f(j)]∏
i=2

EDi;Ref←:2
2 exp(−λT1) ≤

[f(j)]∏
i=2

2D2
iK0

λ
exp(−2Di) =

[f(j)]−1∏
i=1

2K0b
2i2γ

λ
exp(−2biγ).

(3.47)

We have
[f(j)]−1∏
i=1

i2γ ≤ (f(j))2γf(j) =
(
c(log j)

1
1+γ
)2γc(log j) 1

1+γ

. (3.48)

Also, for some Cγ > 0,

[f(j)]−1∑
i=1

iγ ≥ (f(j))1+γ

1 + γ
− Cγ(f(j))γ =

c1+γ log j

1 + γ
− Cγcγ(log j)

γ
1+γ ;

thus,
[f(j)]−1∏
i=1

exp(−2biγ) ≤ exp
(
2bCγc

γ(log j)
γ

1+γ
)
j−

2bc1+γ

1+γ . (3.49)

Then from (3.43), (3.44), and (3.47)–(3.49), we have

P
bxγ ;Ref←:f(j)
f(j) (T1 ≤ sj + 1) ≤ exp(λ(sj + 1))×

(1 ∨ 2K0b
2

λ
)c(log j)

1
1+γ (

c(log j)
1

1+γ
)2γc(log j) 1

1+γ

exp
(
2bCγc

γ(log j)
γ

1+γ
)
j−

2bc1+γ

1+γ .
(3.50)

From (3.40), sj = 4
b2 log j; so exp(λ(sj + 1)) = eλj

4λ
b2 . By assumption, 2bc1+γ

1+γ > 1. Thus,

choosing λ > 0 sufficiently small so that 4
b2λ−

2bc1+γ

1+γ < −1, and recalling that γ > 0, it
follows from (3.50) that

∞∑
j=j1

P
bxγ ;Ref←:f(j)
f(j) (T1 ≤ sj + 1) <∞. (3.51)

(To see this easily, it is useful to convert the long expression on the right hand side of
(3.50) to exponential form, similar to what was done in the equality in (3.20).) From
(3.37), (3.41) and (3.51) we conclude that

∞∑
j=j1

P1(Cj) <∞. (3.52)

Now (3.33), (3.36) and (3.52) give (3.21) and complete the proof of the theorem. �

4 Proof of Theorem 1.2

First we prove Theorem 1.2 in the case that K is a ball. The part of the operator
1
2∆ + b · ∇ involving radial derivatives is 1

2
d2

dr2 + (d−12r + b(x) · x|x| )
d
dr . Of course, in general,

b(x) · x|x| depends not only on the radial component r = |x| of x, but also on the spherical
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Transience/recurrence for diffusion processes in time-dependent regions

component x
|x| . Let B+(r) = max|x|=r b(x) · x|x| and B−(r) = min|x|=r b(x) · x|x| . Then by

comparison, if the multi-dimensional process with radial drift B+(|x|) · x|x| is recurrent, so

is the one with drift b(x), and if the multi-dimensional process with radial drift B−(|x|)· x|x|
is transient, so is the one with drift b(x). In the case of a radial drift B(|x|) · x|x| , with K a

ball, so that Dt = f(t)K is a ball, the question of transience/recurrence is equivalent to
the question of transience/recurrence considered in Theorem 1.1 with drift B(x) + d−1

2x

and with Dt =
(
1, rad(K) f(t)

)
, where rad(K) is the radius of K. Thus, if B(r) ≡ B+(r)

and f(t) satisfy the inequalities (1.1) in part (i) of Theorem 1.2 with 2bc1+γ

1+γ < 1, then

the multi-dimensional process is recurrent, while if B(r) ≡ B−(r) and f(t) satisfy the

inequalities (1.2) in part (ii) of Theorem 1.2 with 2bc1+γ

1+γ > 1, then the multi-dimensional

process is transient. (Of course, since K is a ball, rad±(K) appearing in Theorem 1.1 are
equal to rad(K).)

Now consider the case that B(r) ≡ B+(r) and f(t) satisfy the inequalities (1.1) in

part (i) of Theorem 1.2 with 2bc1+γ

1+γ = 1. To show recurrence, we need to show recurrence

for the one dimensional case when B(x) = bxγ + d−1
2x , for large x, and f(t) = c(log t)

1
1+γ ,

for large t, with 2bc1+γ

1+γ = 1. Thus, the function φ appearing in (3.7) must be replaced by

φ(x) =

∫ ∞
x

exp(−
∫ t

1

(2bsγ +
d− 1

s
)ds) = C

∫ ∞
x

t1−d exp(−2bt1+γ

1 + γ
)dt.

(Here C is the appropriate constant. In (3.7) we integrated over s starting from 0 for
convenience in order to prevent such a constant from entering, however in the present
case we can’t do this because of the term d−1

s .) In place of (3.9), we will now have

φ(x) ∼ C

2b
x−γ+1−d exp(−2bx1+γ

1 + γ
).

This causes the term j−
γ

1+γ on the right hand side of (3.11) to be replaced by j−
γ+d−1
1+γ ,

which in turn causes lj in (3.12) to be changed to lj = [ j
d−2
1+γ

log j exp( 2bc1+γ

1+γ j)]. Finally, this
causes the term on the right hand side of (3.20) to be changed to

exp(−D
2
j

2 e
j) exp

(
j
d−2
1+γ (log j)−1e

2bc1+γ

1+γ j log 2M
)

. Recalling that Dj is equal to a positive

constant, if γ ≥ 0, and Dj is on the order j
γ

1+γ , if γ < 0, we conclude that if 2bc1+γ

1+γ = 1,
then the above expression is summable in j if d = 2 and γ ≥ 0. This proves recurrence
when 2bc1+γ

1+γ = 1, d = 2 and γ ≥ 0.

We now extend from the radial case to the case of general K. In [2], the proof of a
condition for transience was first given for the radial case. The extension to the case of
general K, which appears as step III in the proof of Theorem 1.15 in that paper, followed
by Lemma 2.1 in that paper. This lemma implies that if one considers two such processes,
one corresponding to K1 and one corresponding to K2, where K1 is a ball and K2 ⊃ K̄1,
then the process corresponding to K2 is transient if the one corresponding to K1 is
transient. Lemma 2.1 goes through just as well when the Brownian motion is replaced
by our Brownian motion with drift. This extends our proof of transience to the case of
general K.

In [2], the proof of the condition for recurrence also was first given in the radial case.
The extension to the general case, which is more involved than in the case of transience,
and which requires the additional condition

∫∞
0

(f ′)2(t)dt <∞, appears in step V in the
proof of Theorem 1.15 in that paper. The analysis in that step also go through when
Brownian motion is replaced by our Brownian motion with drift. This extends the proof
of recurrence to the case of general K. �
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Transience/recurrence for diffusion processes in time-dependent regions

5 Proof of Theorem 1.3

We will prove the theorem for the one-dimensional case. The proof for the multi-
dimensional case follows from the proof of the one-dimensional case, similar to the way
the proof of Theorem 1.2 follows from the proof of Theorem 1.1. Let P2 and E2 denote
probabilities and expectations for the process starting from x = 2 at time 0.

Let tj = ej as in the proof of part (i) of Theorem 1.1. We have

E2T1 ≤ t1 +

∞∑
j=1

tj+1P2(T1 ≥ tj) = e+

∞∑
j=1

ej+1P2(T1 ≥ tj). (5.1)

Recall the definition of j0 and of Aj+1 from the beginning of the proof of part (i) of
Theorem 1.1. From (3.3) we have for j ≥ j0 + 1,

P2(T1 ≥ tj) ≤ P2(∩j−1i=j0
Aci+1) ≤

j−1∏
i=j0

(
1− P bx

γ ;Ref←:f(ti+1)
f(ti)

(T1 ≤ ti+1 − ti)
)
. (5.2)

If we show that
lim
j→∞

P
bxγ ;Ref←:f(tj+1)

f(tj)
(T1 ≤ tj+1 − tj) = 1, (5.3)

then it will certainly follow from (5.1) and (5.2) that E2T1 <∞, proving positive recur-
rence. In order to prove (5.3), it suffices from (3.4) to prove that for some choice of
positive integers {lj}∞j=j0 ,

lim
j→∞

(
P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < T1)

)lj
= 0 (5.4)

and
lim
j→∞

P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> tj+1 − tj) = 0. (5.5)

From (3.8), (3.11) and the fact that limy→∞(1− 1
y )yg(y) = 0, if limy→∞ g(y) =∞, it follows

that (5.4) holds if we choose

lj = [j
γ

1+γ (log j) exp(
2bc1+γ

1 + γ
j)]. (5.6)

With this choice of lj , we have from (3.19),

P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> tj+1 − tj) ≤ exp(−
D2
j

2
ej) exp

(
j

γ
1+γ (log j)e

2bc1+γ

1+γ j log 2M
)
, (5.7)

where, as noted after (3.20), Dj is equal to a postive constant if γ ≥ 0, and Dj is on the

order j
γ

1+γ , if γ ∈ (−1, 0). Thus, (5.5) follows from (5.7) if 2bc1+γ

1+γ < 1 �

6 Proof of Theorem 1.4

As in the proof of Theorem 1.1, we can assume that b and f satisfy (3.1). We will first
show that

lim inf
t→∞

X(t)

f(t)
≤ ρ a.s., for any ρ >

(
1− 1 + γ

2bc1+γ
) 1

1+γ . (6.1)

The proof of (6.1) is just a small variant of the proof of recurrence in Theorem 1.1; that
is, part (i) of Theorem 1.1. As in that proof, let tj = ej . Recalling the definition of j0
appearing at the very beginning of the proof of part (i) of Theorem 1.1, it follows from
(3.1) that f(tj) = cj

1
1+γ , for j ≥ j0. In that proof, for j ≥ j0, Aj+1 was defined as the

event that the process hits 1 at some time t ∈ [tj , tj+1]. For the present proof, we define
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Transience/recurrence for diffusion processes in time-dependent regions

instead, for each ρ ∈ (0, 1), the event A(ρ)
j+1 that the process X(t) satisfies X(t) ≤ ρf(tj)

for some t ∈ [tj , tj+1]. We mimic the proof of Theorem 1.1-i up through (3.9), using

A
(ρ)
j+1 in place of Aj+1, replacing the stopping time T1 by the stopping time Tρf(tj), and

replacing φ(1) by φ(ρf(tj)). Instead of (3.10), we obtain

1−
(
P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < Tρf(tj))

)lj ≥ 1

2
lj
φ(f(tj))− φ(f(tj+1))

φ(ρf(tj))− φ(f(tj+1))
, (6.2)

for sufficiently large j, if limj→∞ lj
φ(f(tj))
φ(ρf(tj))

= 0.
Instead of (3.11), we have

φ(f(tj))− φ(f(tj+1))

φ(ρf(tj))− φ(f(tj+1))
≥ K1

φ(f(tj))

φ(ρf(tj))
≥ K2 exp

(
− 2bc1+γ

1 + γ
(1− ρ1+γ)j

)
, (6.3)

for sufficiently large j, for constants K1,K2 > 0. From (6.2) and (6.3), it follows that
(3.5) with T1 replaced by Tρf(tj) will hold if we define lj ∈ N by

lj = [
1

j log j
exp

(2bc1+γ

1 + γ
(1− ρ1+γ)j

)
], (6.4)

since then the general term, 1 −
(
P
bxγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj+1) < Tρf(tj))

)lj , will be on the

order at least 1
j log j .

We now continue to mimic the proof of Theorem 1.1-i, starting from the paragraph
after (3.12) and up through (3.19). We then insert the present lj from (6.4) in (3.19) to
obtain

P
bxγ ;Ref←:f(tj+1)

f(tj)
(σ

(j)
lj

> tj+1 − tj) ≤ exp(−
D2
j

2
ej)(2M)

1
j log j exp

(
2bc1+γ

1+γ (1−ρ1+γ)j
)

=

exp(−
D2
j

2
ej) exp

( 1

j log j
e

2bc1+γ

1+γ (1−ρ1+γ)j log 2M
)
, for sufficiently large j.

(6.5)

Recalling that Dj is equal to a positive constant, if γ ≥ 0, and that Dj is on the order j
γ

1+γ ,

if γ < 0, it follows that the right hand side of (6.5) is summable in j if 2bc1+γ

1+γ (1−ρ1+γ) < 1,

or equivalently, if ρ >
(
1 − 1+γ

2bc1+γ

) 1
1+γ . Analogous to the proof of Theorem 1.1, we

conclude then that P1(A
(ρ)
j i.o.) = 1 for ρ as above. From the definition of A(ρ)

j and the
fact that f is increasing, we conclude that (6.1) holds.

To complete the proof of Theorem 1.4, we will prove that

lim inf
t→∞

X(t)

f(t)
≥ ρ a.s., for any ρ <

(
1− 1 + γ

2bc1+γ
) 1

1+γ . (6.6)

For this direction, we will need some new ingredients. Recalling again the definition
of j0 appearing at the very beginning of the proof of part (i) of Theorem 1.1, it follows
from (3.1) that f(t) = c(log t)

1
1+γ for t ≥ ej0 . Let τ1 = inf{t ≥ ej0 : X(t) = f(t)}, and for

j ≥ 2, let τj = inf{t ≥ τj−1 + 1 : X(t) = f(t)}. By the remarks in the paragraph preceding
Theorem 1.4, it follows that τj <∞ a.s. [P1], for all j. By construction, we have

τj > j, for all j ≥ 1. (6.7)

Let ε ∈ (0, 1) and let ρ ∈ (0, 1). Define s = s(t) by

ρ(1− 2ε)f(s) = ρ(1− ε)f(t), for t ≥ ej0 . (6.8)

Since f(t) = c(log t)
1

1+γ , we have

s(t) = t(
1−ε
1−2ε )

1+γ

. (6.9)
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Transience/recurrence for diffusion processes in time-dependent regions

Of course, f(s(t)) = 1−ε
1−2εf(t). For j ≥ j0, define Bj to be the event that the following

three inequalities hold:

i. X(t) ≥ (1− ε)f(τj), τj ≤ t ≤ τj + 1;

ii. X(t) ≥ ρ(1− ε)f(τj), τj + 1 ≤ t ≤ τj+1;

iii. τj+1 ≤ s(τj).

(We have suppressed the dependence of Bj on ε and ρ.) It follows from (6.8) that on
the event Bj one has X(t) ≥ (1− 2ε)ρf(t), for all t ∈ [τj , τj+1]. Thus, for any N , on the

event ∩∞j=NBj , one has lim inft→∞
X(t)
f(t) ≥ (1− 2ε)ρ. We will complete the proof of (6.6)

by showing that
lim
M→∞

P1(∩∞j=MBj) = 1, (6.10)

for all ρ <
(
1− 1+γ

2bc1+γ

) 1
1+γ and all sufficiently small ε (depending on ρ).

We write

P1(∩Nj=MBj) =

N∏
j=M

P1(Bj | ∩j−1i=M Bi), (6.11)

where ∩M−1i=M Bi denotes the entire probability space. Let

Cj = {X(t) ≥ (1− ε)f(τj), τj ≤ t ≤ τj + 1}.

(Note that Cj depends on the random variable τj .) Let P bx
γ

(1−ε)f(τj) denote probabilities for

the diffusion process corresponding to Lbxγ without reflection, starting from (1− ε)f(τj).
Noting that if τj+1 ≤ s(τj), then X(τj+1) = f(τj+1) ≤ f(s(τj)), it follows by the strong
Markov property and comparison that

P1(Bj | ∩j−1i=M Bi, τj) ≥

P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) > Tf(s(τj)), Tf(s(τj)) ≤ s(τj)− τj − 1)− P1(Ccj |τj).
(6.12)

Also,

P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) > Tf(s(τj)), Tf(s(τj)) ≤ s(τj)− τj − 1) =

P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) > Tf(s(τj)), Tf(s(τj)) ∧ Tρ(1−ε)f(τj) ≤ s(τj)− τj − 1) ≥

P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) > Tf(s(τj)))−

P bx
γ

(1−ε)f(τj)(Tf(s(τj)) ∧ Tρ(1−ε)f(τj) ≥ s(τj)− τj − 1).

(6.13)

In order to get a lower bound on P1(Bj | ∩j−1i=M Bi, τj), we will bound P1(Ccj |τj) and

P bx
γ

(1−ε)f(τj)(Tf(s(τj)) ∧ Tρ(1−ε)f(τj) ≥ s(τj)− τj − 1) from above, and we will calculate the

asymptotic behavior of P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) > Tf(s(τj))).

We start with P1(Ccj |τj). Let P BM
0 denote probabilities for a standard Brownian motion

starting from 0, and let T̂x = min(Tx, T−x), for x > 0. By the strong Markov property and
comparison we clearly have

P1(Ccj |τj) ≤ P BM
0 (T̂εf(τj) ≤ 1). (6.14)

From [6, Theorem 2.2.2], we have P BM
0 (T̂x ≤ t) ≤ 2 exp(−x

2

2t ). Thus from (6.14) we obtain

P1(Ccj |τj) ≤ 2 exp
(
− 1

2
ε2c2(log τj)

2
1+γ
)
. (6.15)

We now turn to P bx
γ

(1−ε)f(τj)(Tf(s(τj)) ∧ Tρ(1−ε)f(τj) ≥ s(τj) − τj − 1). Denote by Y (t)

the diffusion corresponding to the operator 1
2
d2

dx2 + bxγ d
dx and the measure P bx

γ

(1−ε)f(τj),
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Transience/recurrence for diffusion processes in time-dependent regions

and denote by W(t) standard Brownian motion on
(
ρ(1 − ε)f(τj),∞) with reflection

at the endpoint. Denote probabilities for this Brownian motion starting from x by

P
0;Ref→:ρ(1−ε)f(τj)
x . (The superscript 0 signifies 0 drift.) Since the drift of the Y diffusion

is positive, we can couple Y (t) andW(t) so thatW(t) ≤ Y (t), for all t ∈ [0, Tρ(1−ε)f(τj) ∧
Tf(s(τj))], where Tρ(1−ε)f(τj) and Tf(s(τj)) refer to the hitting times for the Y process.
(Note that we have been using the generic Ta for the hitting time of a for any process,
the process in question being inferred from the probability measure which appears with
it.) Thus, for any t > 0,

P bx
γ

(1−ε)f(τj)(Tf(s(τj)) ∧ Tρ(1−ε)f(τj) ≥ t) ≤ P
0;Ref→:ρ(1−ε)f(τj)
(1−ε)f(τj) (Tf(s(τj)) ≥ t). (6.16)

For ease of notation, in the analysis below, we let L1 = ρ(1 − ε)f(τj), L2 = (1 − ε)f(τj)

and L3 = f(s(τj)). Let P BM
x denote probabilities for a standard Brownian motion starting

from x. By the isotropy of Brownian motion and the fact that a reflected Brownian motion
can be realized as the absolute value of a Brownian motion, we have

P
0;Ref→:ρ(1−ε)f(τj)
(1−ε)f(τj) (Tf(s(τj)) ≥ t) = PBM

L2−L1
(TL3−L1

∧ T−(L3−L1) ≥ t). (6.17)

Using Brownian scaling for the first inequality and symmetry for the second one, we
have

P BM
L2−L1

(TL3−L1
∧ T−(L3−L1) ≥ t) = P BM

L2−L1
L3−L1

(T1 ≥
t

(L3 − L1)2
) ≤

P BM
0 (T1 ≥

t

(L3 − L1)2
).

(6.18)

As is well-known, there exist κ, λ > 0 such that P BM
0 (T1 ≥ t) ≤ κe−λt, for all t ≥ 0. Thus,

from (6.16)–(6.18), choosing t = s(τj)− τj − 1, we conclude that

P bx
γ

(1−ε)f(τj)(Tf(s(τj)) ∧ Tρ(1−ε)f(τj) ≥ s(τj)− τj − 1) ≤ κ exp
(
− λ(s(τj)− τj − 1)

(L3 − L1)2
)
. (6.19)

We now calculate the asymptotic behavior of P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) > Tf(s(τj))) via

that of P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) < Tf(s(τj))). Similar to (3.8), we have

P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) < Tf(s(τj))) =
φ(f(s(τj)))− φ((1− ε)f(τj))

φ(f(s(τj)))− φ(ρ(1− ε)f(τj))
. (6.20)

In light of (6.9) and (3.9), it follows from (6.20) that

P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) < Tf(s(τj))) ∼
φ((1− ε)f(τj))

φ(ρ(1− ε)f(τj))
, as τj →∞. (6.21)

From (3.9) and the fact that f(t) = c(log t)
1

1+γ , we have

φ((1− ε)f(τj))

φ(ρ(1− ε)f(τj))
∼ ργτ−

2bc1+γ (1−ε)1+γ
1+γ (1−ρ1+γ)

j , as τj →∞. (6.22)

Thus, from (6.22) and (6.21),

P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) < Tf(s(τj))) ∼ ρ
γτ
− 2bc1+γ (1−ε)1+γ

1+γ (1−ρ1+γ)
j , as τj →∞. (6.23)

From (6.12), (6.13), (6.15), (6.19), (6.23) and (6.7) we have

P1(Bj | ∩j−1i=M Bi, τj) ≥ 1− 2ργτ
− 2bc1+γ (1−ε)1+γ

1+γ (1−ρ1+γ)
j −

2 exp
(
− 1

2
ε2c2(log τj)

2
1+γ
)
− κ exp

(
− λ(s(τj)− τj − 1)

(L3 − L1)2
)
,

(6.24)

for sufficiently large j.
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Since

s(τj)− τj − 1

(L3 − L1)2
=

τ
( 1−ε
1−2ε )

1+γ

j − τj − 1

( 1
1−2ε − ρ)2(1− ε)2c2(log τj)

2
1+γ

,

and since τj > j by (6.7), it follows that (6.24) holds with τj replaced by j on the right
hand side of the inequality. Then taking the conditional expectation with respect to
∩j−1i=MBi on the left hand side, to remove τj from the conditioning there, we conclude that

P1(Bj | ∩j−1i=M Bi) ≥ 1− 2ργj−
2bc1+γ (1−ε)1+γ

1+γ (1−ρ1+γ)−

2 exp
(
− 1

2
ε2c2(log j)

2
1+γ
)
− κ exp

(
− j(

1−ε
1−2ε )

1+γ

− j − 1

( 1
1−2ε − ρ)2(1− ε)2c2(log j)

2
1+γ

)
,

(6.25)

for sufficiently large j.

Clearly,
∑∞
j=j0

exp
(
− j

( 1−ε
1−2ε

)1+γ−j−1

( 1
1−2ε−ρ)2(1−ε)2c2(log j)

2
1+γ

)
< ∞. Since by assumption γ < 1, it

follows that
∑∞
j=j0

exp
(
− 1

2ε
2c2(log j)

2
1+γ
)
<∞. Since 2bc1+γ

1+γ (1− ρ1+γ) > 1 is equivalent

to ρ <
(
1 − 1+γ

2bc1+γ

) 1
1+γ , we also have

∑∞
j=j0

j−
2bc1+γ (1−ε)1+γ

1+γ (1−ρ1+γ) < ∞, for all ρ <(
1− 1+γ

2bc1+γ

) 1
1+γ and sufficiently small ε (depending on ρ). Using these facts with (6.25)

and (6.11), we conclude that

lim
M→∞

lim
N→∞

P1(∩Nj=MBj) = 1,

which gives (6.10) for all ρ <
(
1 − 1+γ

2bc1+γ

) 1
1+γ and all sufficiently small ε (depending

on ρ). �

7 Proof of Theorem 1.5

Proof of (i). The proof is almost exactly the same as the proof of Theorem 1.4 start-
ing from (6.6), using (log t)l instead of (log t)

1
1+γ (and with b = c = 1). The one

place in the proof where this results in a meaningful difference is in the estimate
on P x

γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) < Tf(s(τj))). We have (6.21) as in the proof of Theorem 1.4.

From (3.9) and the fact that f(t) = (log t)l, we have, instead of (6.22),

φ((1− ε)f(τj))

φ(ρ(1− ε)f(τj))
∼ ργ exp

(
− 2

1 + γ
(1− ε)1+γ(1− ρ1+γ)(log τj)

l(1+γ)
)
.

Using this with (6.21) gives, instead of (6.23),

P bx
γ

(1−ε)f(τj)(Tρ(1−ε)f(τj) < Tf(s(τj))) ∼

ργ exp
(
− 2

1 + γ
(1− ε)1+γ(1− ρ1+γ)(log τj)

l(1+γ)
)
, as τj →∞.

By (6.7), τj > j. Since l(1 + γ) > 1, the right hand side above is summable for all

ρ ∈ (0, 1). The proof of Theorem 1.4 then gives lim inft→∞
X(t)
f(t) ≥ ρ a.s., for all ρ ∈ (0, 1);

thus, lim inft→∞
X(t)
f(t) ≥ 1 a.s. Since X(t) ≤ f(t), we conclude that limt→∞

X(t)
f(t) = 1 a.s.

Proof of (ii). We first prove (1.4). We follow the same kind of strategy used to prove (6.6)
in the proof of Theorem 1.4. Let {τj}∞j=1 be defined as it is following (6.6). Let ε ∈ (0, 1)

and q ∈ (0, l). If we were to define s(t), for t ≥ 1, by

f(s)− (1 + ε)sq = f(t)− tq (equivalently, sl − (1 + ε)sq = tl − tq),

we would have sl = tl + (1 + ε)sq − tq ≥ tl + εtq. In light of this, we define for simplicity
s = s(t) by

sl = tl + εtq.
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Transience/recurrence for diffusion processes in time-dependent regions

Then
f(s(t)) = (s(t))l = tl + εtq;

s(t) = t(1 + εtq−l)
1
l = t+ εt1+q−l + lower order terms, as t→∞.

(7.1)

and
f(s(t))− (1 + ε)(s(t))q = (s(t))l − (1 + ε)(s(t))q =

tl + εtq − (1 + ε)(s(t))q ≤ tl − tq = f(t)− tq.
(7.2)

Let Bj be the event that

i. X(t) ≥ f(τj)− ετ qj , τj ≤ t ≤ τj + 1;

ii. X(t) ≥ f(τj)− τ qj , τj + 1 ≤ t ≤ τj+1;

iii. τj+1 ≤ s(τj).

(We have suppressed the dependence of Bj on ε and q.) It follows from (7.2) that on
the event Bj one has X(t) ≥ f(t)− (1 + ε)tq, for all t ∈ [τj , τj+1]. Thus, for any N , on the
event ∩∞j=NBj , one has

lim sup
t→∞

(
f(t)−X(t)− (1 + ε)tq

)
≤ 0.

Therefore, the proof of (1.4) will be completed when we show that

lim
M→∞

P1(∩∞j=MBj) = 1, (7.3)

for some ε ∈ (0, 1) and all q > q0.
We write

P1(∩Nj=MBj) =

N∏
j=M

P1(Bj | ∩j−1i=M Bi), (7.4)

where ∩M−1i=M Bi denotes the entire probability space. Let

Cj = {X(t) ≥ f(τj)− ετ qj , τj ≤ t ≤ τj + 1}.

(Note that Cj depends on the random variable τj .) Let P x
γ

f(τj)−ετqj
denote probabilities for

the diffusion process corresponding to Lxγ without reflection, starting from f(τj)− ετ qj .
Noting that if τj+1 ≤ s(τj), then X(τj+1) = f(τj+1) ≤ f(s(τj)), it follows by the strong
Markov property and comparison that

P1(Bj | ∩j−1i=M Bi, τj) ≥

P x
γ

f(τj)−ετqj
(Tf(τj)−τqj > Tf(s(τj)), Tf(s(τj)) ≤ s(τj)− τj − 1)− P1(Ccj |τj).

(7.5)

Also,

P x
γ

f(τj)−ετqj
(Tf(τj)−τqj > Tf(s(τj)), Tf(s(τj)) ≤ s(τj)− τj − 1) =

P x
γ

f(τj)−ετqj
(Tf(τj)−τqj > Tf(s(τj)), Tf(s(τj)) ∧ Tf(τj)−τqj ≤ s(τj)− τj − 1) ≥

P x
γ

f(τj)−ετqj
(Tf(τj)−τqj > Tf(s(τj)))−

P x
γ

f(τj)−ετqj
(Tf(s(τj)) ∧ Tf(τj)−τqj ≥ s(τj)− τj − 1).

(7.6)

In order to get a lower bound on P1(Bj | ∩j−1i=M Bi, τj), we will bound P1(Ccj |τj) and

P x
γ

f(τj)−ετqj
(Tf(s(τj)) ∧ Tf(τj)−τqj ≥ s(τj) − τj − 1) from above, and we will calculate the

asymptotic behavior of P x
γ

f(τj)−ετqj
(Tf(τj)−τqj > Tf(s(τj))).
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We start with P1(Ccj |τj). We mimic the paragraph containing (6.14), the only change
being that εf(τj) is replaced by ετ qj . Thus, similar to (6.15), we obtain

P1(Ccj |τj) ≤ 2 exp
(
− 1

2
ε2τ2qj

)
. (7.7)

We now turn to P x
γ

f(τj)−ετqj
(Tf(s(τj))∧Tf(τj)−τqj ≥ s(τj)−τj−1). We mimic the paragraph

following (6.15), the only changes being that (1 − ε)f(τj) is replaced by f(τj) − ετ qj ,
ρ(1− ε)f(τj) is replaced by f(τj)− τ qj and b is set to 1. Similar to (6.19), we obtain,

P x
γ

f(τj)−ετqj
(Tf(s(τj)) ∧ Tf(τj)−τqj ≥ s(τj)− τj − 1) ≤ κ exp

(
− λ(s(τj)− τj − 1)

(L3 − L1)2
)
, (7.8)

where L3 = f(s(τj)) and L1 = f(τj)− τ qj .

We now calculate the asymptotic behavior of P x
γ

f(τj)−ετqj
(Tf(τj)−τqj > Tf(s(τj))) via that

of P x
γ

f(τj)−ετqj
(Tf(τj)−τqj < Tf(s(τj))). Similar to (3.8), we have

P x
γ

f(τj)−ετqj
(Tf(τj)−τqj < Tf(s(τj))) =

φ(f(s(τj)))− φ(f(τj)− ετ qj )

φ(f(s(τj)))− φ(f(τj)− τ qj )
. (7.9)

For any λ ∈ R, we have

(tl + λtq)1+γ = tl(1+γ) + λ(1 + γ)tlγ+q + lower order terms as t→∞. (7.10)

We now make the assumption, as in the statement of the theorem, that q > q0. Thus,
lγ + q > 0. Using this in (7.10), along with (3.9) (with b = 1) and (7.9), and recalling that
f(τj) = τ lj and that, from (7.1), f(s(τj)) = τ lj + ετ qj , we conclude that

P x
γ

f(τj)−ετqj
(Tf(τj)−τqj < Tf(s(τj))) ∼ exp(−2(1− ε)τ lγ+qj ), as τj →∞. (7.11)

From (7.5)–(7.8) and (7.11), we have

P1(Bj | ∩j−1i=M Bi, τj) ≥ 1− 2 exp(−2(1− ε)τ lγ+qj )−

2 exp
(
− 1

2
ε2τ2qj

)
− κ exp

(
− λ(s(τj)− τj − 1)

(L3 − L1)2
)
, for sufficiently large τj .

From (7.1), we have s(τj)− τj − 1 ≥ ε
2τ

1+q−l
j for large τj . From (7.8) and (7.1), we have

L3 − L1 = f(s(τj))− f(τj) + τ qj = (1 + ε)τ qj . Thus, for large τj ,

s(τj)− τj − 1

(L3 − L1)2
≥ ε

2(1 + ε)2
τ1−q−lj .

If 1 − q − l > 0, then we can complete the proof just like we completed the proof of
Theorem 1.4 and conclude that (7.3) holds, and thus that (1.4) holds. Note that in order
to come to this conclusion, we have needed to assume that q > q0 = max(0,−lγ) and
that 1 − q − l > 0; that is, we need max(0,−lγ) < 1 − l and q ∈ (max(0,−lγ), 1 − l). A
fundamental assumption in the theorem is that l ∈ (0, 1

1−γ ). For these values of l, the
above inequality always holds. Thus, (7.3) holds for those q which are larger than q0 and
sufficiently close to q0. Consequently, (1.4) holds for all q which are larger than q0 and
sufficiently close to q0. However, if (1.4) holds for some q, then clearly it also holds for
all larger q. Thus, (1.4) holds for all q > q0.

We now turn to the proof of (1.5). We have γ ∈ (−1, 0] and q0 = −γl ∈ [0, l). Let
tj = jk, for j ≥ 1 and some k > 1 to be fixed later. For M > 0, let AMj+1 be the event
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that X(t) ≤ f(tj)−Mtq0j for some t ∈ [tj , tj+1]. Clearly, lim supt→∞
f(t)−X(t)

tq0 ≥M on the
event {AMj i.o.}. The conditional version of the Borel-Cantelli lemma [3] shows that if

∞∑
j=1

P1(AMj+1|Ftj ) =∞, (7.12)

then P1(AMj i.o.) = 1 Thus, to prove (1.5), it suffices to show that (7.12) holds for all
M > 0.

Since up to time tj , the largest the process can be is f(tj), and since up to time tj+1

the time-dependent region is contained in [1, f(tj+1)], it follows by comparison that

P1(AMj+1|Ftj ) ≥ P
xγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj)−Mt

q0
j
≤ tj+1 − tj). (7.13)

Clearly,

P
xγ ;Ref←:f(tj+1)

f(tj)
(Tf(tj)−Mt

q0
j
≤ tj+1 − tj) =

P
xγ ;Ref↔:f(tj)−Mt

q0
j ,f(tj+1)

f(tj)
(Tf(tj)−Mt

q0
j
≤ tj+1 − tj),

(7.14)

where P
xγ ;Ref↔:f(tj)−Mt

q0
j ,f(tj+1)

f(tj)
corresponds to the Lxγ diffusion with reflection at both

f(tj)−Mtq0j and f(tj+1).
We estimate the right hand side of (7.14). We have

{Tf(tj)−Mt
q0
j
< Tf(tj+1)} − {Tf(tj+1) > tj+1 − tj} ⊂ {Tf(tj)−Mt

q0
j
≤ tj+1 − tj}.

Thus,

P
xγ ;Ref↔:f(tj)−Mt

q0
j ,f(tj+1)

f(tj)
(Tf(tj)−Mt

q0
j
≤ tj+1 − tj) ≥

P
xγ ;Ref↔:f(tj)−Mt

q0
j ,f(tj+1)

f(tj)
(Tf(tj)−Mt

q0
j
< Tf(tj+1))−

P
xγ ;Ref↔:f(tj)−Mt

q0
j ,f(tj+1)

f(tj)
(Tf(tj+1) > tj+1 − tj) =

P x
γ

f(tj)
(Tf(tj)−Mt

q0
j
< Tf(tj+1))− P

xγ ;Ref→:f(tj)−Mt
q0
j

f(tj)
(Tf(tj+1) > tj+1 − tj),

(7.15)

where P x
γ

f(tj)
corresponds to the Lxγ diffusion without reflection.

Similar to (3.8), we have

P x
γ

f(tj)
(Tf(tj)−Mt

q0
j
< Tf(tj+1)) =

φ(f(tj))− φ(f(tj+1))

φ(f(tj)−Mtq0j )− φ(f(tj+1))
, (7.16)

where φ is as in (3.7) with b = 1. We now choose k so that kl(1 + γ) > 1. Then since

(f(tj+1))1+γ − (f(tj))
1+γ = (j + 1)kl(1+γ) − jkl(1+γ)

is on the order jkl(1+γ)−1, it follows from (7.16) and (3.9) that

P x
γ

f(tj)
(Tf(tj)−Mt

q0
j
< Tf(tj+1)) ∼

φ(f(tj))

φ(f(tj)−Mtq0j )
. (7.17)

Now

(f(tj))
1+γ = jkl(1+γ);

(f(tj)−Mtq0j )1+γ = (jkl −Mj−klγ)1+γ = jkl(1+γ) −M(1 + γ) + o(1), as j →∞.
(7.18)
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Using (7.18) and (3.9), we conclude from (7.17) that

lim inf
j→∞

P x
γ

f(tj)
(Tf(tj)−Mt

q0
j
< Tf(tj+1)) > 0. (7.19)

We now consider P
xγ ;Ref→:f(tj)−Mt

q0
j

f(tj)
(Tf(tj+1) > tj+1 − tj). By Markov’s inequality, we

have for λ > 0,

P
xγ ;Ref→:f(tj)−Mt

q0
j

f(tj)
(Tf(tj+1) > tj+1 − tj) ≤

exp
(
− λ(tj+1 − tj)

)
E
xγ ;Ref→:f(tj)−Mt

q0
j

f(tj)
exp(λTf(tj+1)).

(7.20)

We apply Proposition 2.4 to the expectation on the right hand side of (7.20), with
α = f(tj)−Mtq0j = jkl −Mj−klγ , β = f(tj+1) = (j + 1)kl, b = 1 and λ = λ̄, where λ̄ is as
in the statement of the proposition. Then

E
xγ ;Ref→:f(tj)−Mt

q0
j

f(tj)
exp(λ̄Tf(tj+1)) ≤ 2. (7.21)

Since γ ≤ 0, we have min(αγ , βγ) = βγ ; thus,

λ̄ =
(j + 1)klγ

(2e− 1)
(
(j + 1)kl − jkl +Mj−klγ

) .
Now (j+1)kl− jkl is on the order jkl−1. Recall from the previous paragraph that we have
chosen k so that kl(1 + γ) > 1. Thus, the denominator on the right hand side above is on
the order jkl−1, and thus λ̄ is on the order jklγ−kl+1. Since tj+1 − tj = (j + 1)k − jk is on

the order jk−1, the expression (tj+1 − tj)λ̄ is on the order jk
(
1−l(1−γ)

)
. By assumption,

l(1− γ) < 1; thus limj→∞(tj+1 − tj)λ̄ =∞. Using this with (7.21), and substituting λ = λ̄

in (7.20), we conclude that

lim
j→∞

P
xγ ;Ref→:f(tj)−Mt

q0
j

f(tj)
(Tf(tj+1) > tj+1 − tj) = 0. (7.22)

From (7.13)–(7.15), (7.19) and (7.22) we conclude that (7.12) holds for any M > 0. �
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