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Abstract

Strong embeddings, that is, couplings between a partial sum process of a sequence
of random variables and a Brownian motion, have found numerous applications in
probability and statistics. We extend Chatterjee’s novel use of Stein’s method for
{−1,+1} valued variables to a general class of discrete distributions, and provide
logn rates for the coupling of partial sums of independent variables to a Brownian
motion, and results for coupling sums of suitably standardized exchangeable variables
to a Brownian bridge.
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1 Introduction

Let ε1, ε2 . . . be a sequence of independent random variables distributed as ε, a
mean zero, variance one random variable. Letting Sk =

∑k
i=1 εi, k = 1, 2, . . . , be the

corresponding sequence of partial sums, Donsker’s invariance principle [11], see also
[3], implies that the random continuous function

Xn(t) =
1√
n
(S[nt] + (nt− [nt])ε[nt]+1), 0 ≤ t ≤ 1

converges weakly to a Brownian motion process (Bt)0≤t≤1. One way to study the quality
of the approximation of Xn(t) by Bt is to determine a ‘slowly increasing’ sequence f(n)
such that there exists an embedding of both processes on a common probability space
such that

max
0≤k≤n

|Sk −Bk| = Op(f(n)).

Finding the smallest achievable order of f(n) has been a very important question in the
literature.

Skorokhod [23], also see its translation [24] and Strassen [27], achieved the rate
(n log log n)1/4(log n)1/2 assuming Eε4 <∞ using Skorokhod embedding, and Kiefer [16]
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On strong embeddings by Stein’s method

showed that this rate was optimal under the finite fourth moment condition. Csörgő and
Révész [8] made improvements to the rate under additional moment assumptions. See
the survey paper by Obłój [20] and [9] for a more detailed account.

The celebrated KMT approximation by Komlós, Major and Tusnády ([17], [18])
achieved the rate log n under the condition that ε have a finite moment generating
function in a neighborhood of zero. To state their result precisely we make the following
definition.

We say Strong Embedding (SE) holds for the mean zero, variance one random
variable ε if there exist constants C,K, and λ such that for all n = 1, 2, . . . the partial
sums Sk =

∑k
i=1 εi, k = 1, . . . , n of a sequence ε1, ε2 . . . of independent random variables

distributed as ε, and a standard Brownian motion (Bt)t≥0 can be constructed on a joint
probability space such that

P

(
max

0≤k≤n
|Sk −Bk| ≥ C log n+ x

)
≤ Ke−λx for all x ≥ 0. (1.1)

We adopt the standard empty sum convention whereby S0 = 0.

Theorem 1.1 (KMT approximation [17]). SE holds for ε satisfying E exp θ|ε| <∞ for some
θ > 0.

Results by Bártfai [1], see [31], show that the rate in (1.1) is best possible under the
finite moment generating function condition. A multidimensional version of the KMT
approximation was proved by Einmahl [12], from which Zaitsev ([29], [30]) removed a
logarithic factor. For extensions to stationary sequences see the history in [2], where
dependent variables of the form Xk = G(. . . , εk−1, εk, εk+1, . . .) for εi, i ∈ Z i.i.d. are
considered. Strong embedding results have a truly extensive range of applications that
includes empirical processes, non-parametric statistics, survival analysis, time series,
and reliability; for a sampling see the texts [22] [9], or the articles [10], [28] and [21].

Here we take the approach to the KMT approximation introduced by Chatterjee [6]
that has its origins in Stein’s method [26] and appears simpler, and is possibly easier to
generalize, than the dyadic approximation argument of [17]. This alternative approach
depends on the use of Stein coefficients, also known as Stein kernels, that first appeared
in the work of Cacoullos and Papathanasiou [5]. In some sense, a Stein coefficient T for
a mean zero random variable W neatly encodes all information regarding the closeness
of W to the mean zero normal variable Z having variance σ2. Theorem 2.3 below, from
[6], demonstrates that a coupling of W and Z exists whose quality can be evaluated
uniquely as a function of T and σ2. Theorem 1.2, that demonstrates Theorem 1.1 for the
special case of simple symmetric random walk, was proved in [6] applying this approach.

Theorem 1.2 (Chatterjee [6]). SE holds for ε a symmetric random variable with support
{−1,+1}.

In this work, using the methods of [6], we generalize Theorem 1.2 as follows.

Theorem 1.3. SE holds for ε, any random variable with mean zero and variance 1
satisfying Eε3 = 0, taking values in a finite set A not containing 0.

To prove our result we first provide a construction in the case where we have a
finite number of variables and then extend to derive strong approximation for an infinite
sequence. Such extensions have been studied in the context of the KMT theorem for
summands with finite p-th moment in [19] and also in [6].

For the finite case we employ induction, as in [6]. The induction step requires
extending Theorem 1.4 of [6] from the special case where ε is a symmetric variable
taking values in {−1, 1}. The generalization depends on the ‘zero-bias’ smoothing
method introduced in Lemma 2.4, which may be of independent interest as regards the
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construction of Stein coefficients. Theorem 1.4 here is a new result for the embedding
of exchangeable random variables and a Brownian bridge.

Theorem 1.4. For any positive integer n, let ε1, ε2, . . . , εn be exchangeable random
variables taking values in a finite set A ⊂ R. Let

Sk =

k∑
i=1

εi, Wk = Sk −
k

n
Sn and γ2 =

1

n

n∑
i=1

ε2i .

Then there exists a positive universal constant C, and for all ν > 0 positive constants
K1,K2 and λ0 depending only on A and ν, such that for all n ≥ 1 and η ≥ ν, a version of
W0,W1, . . . ,Wn and a standard Brownian bridge (Bt)0≤t≤1 exist on the same probability
space and satisfy

E exp(λ max
0≤k≤n

|Wk −
√
nηBk/n|)

≤ exp(C log n)E exp

(
K1λ

2S2
n

n
+K2λ

2n(γ2 − η2)2
)

for all λ ≤ λ0.

Moreover, if 0 6∈ A, then there exist positive constants K1 and λ0 depending only on A
such that

E exp(λ max
0≤k≤n

|Wk −
√
nγBk/n|) ≤ exp(C log n)E exp

(
K1λ

2S2
n

n

)
for all λ ≤ λ0,

and if in addition ε1, . . . , εn are i.i.d. with zero mean, then there exists a positive λ

depending only on A such that

P

(
max

0≤k≤n
|Wk −

√
nγBk/n| ≥ λ−1C log n+ x

)
≤ 2e−λx for all x ≥ 0.

The constant C is given explicitly in (3.8) in the proof of Theorem 3.1; its numerical
value is roughly 8.4. The constants in the second inequality of Theorem 1.4 are those
that appear in the first inequality, specialized to a case where the lower bound ν depends
only on A.

Our extension of the Rademacher variable result of [6] requires a number of non-
trivial components. Example 3 of [6] demonstrates how to smooth Rademacher variables
to obtain Stein coefficients, and the author states ‘we do not know yet how to use
Theorem 1.2 to prove the KMT theorem in its full generality, because we do not know
how to generalize the smoothing technique of Example 3.’ We address this point by the
zero bias method of Lemma 2.4, that shows how any mean zero, finite variance random
variable may be smoothed to obtain a Stein coefficient.

Additionally, dealing with variables restricted to the set {−1, 1} avoids another diffi-
culty. In particular, the second inequality of Theorem 1.4 shows that the ‘natural scaling’
for the approximating Brownian bridge process depends on the variance parameter
γ2 = n−1

∑n
i=1 ε

2
i , which in the case of Rademacher variables is always one. In fact,

for such variables, the variance parameter remains the constant one when restricted
and suitably scaled to any subset of variables. In contrast, in general when applying
induction to piece together a larger path from smaller ones, their respective variance
parameters may not match. This effect gives rise to the term (γ2 − η2)2 in the exponent
of the first inequality of Theorem 1.4, which then needs to be controlled in order for
the induction to be completed. In doing so, one gains results on the comparison of the
sample paths of a more general classes of exchangeable variables to a Brownian bridge.

The second claim of Theorem 1.4 is shown under the assumption 0 6∈ A. This condition
becomes critical precisely at (3.30), where we require that the smallest absolute value
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of the elements of A is positive, from which one then obtains a lower bound ν on γ when
invoking Theorem 3.1. This same phenomenon occurs in the proof of Lemma 4.1, on the
way to demonstrate Theorem 1.3.

The remainder of this work is organized as follows. In Section 2, we prove two
theorems, one for coupling sums Sn of i.i.d. random variables, and one for coupling Wn

of Theorem 1.4, to Gaussians. We also prove Lemma 2.4, which shows how to construct
Stein type coefficients using smoothing by zero bias variables. Theorems 3.1 and 1.4,
the first result a conditional version of the second, are proved in Section 3, and we prove
Lemma 4.1, implying Theorem 1.3, in Section 4.

2 Bounds for couplings to Gaussian variables

In this section we prove Theorems 2.1 and 2.2, generalizations of Theorems 3.1 and
3.2 of [6], and our zero bias smoothing result, Lemma 2.4. The first theorem gives
bounds on couplings of sums Sn of i.i.d. variables, and the second on coupling of certain
exchangeable sums to Gaussian random variables.

Theorem 2.1. For every mean zero, variance one bounded random variable ε satisfying
E(ε3) = 0 and E(ε4) <∞, there exists θ1 > 0 such that for every positive integer n it is
possible to construct a version of the sum Sn =

∑n
i=1 εi of n independent copies of ε, and

Zn ∼ N (0, n), on a joint probability space such that

E exp(θ1|Sn − Zn|) ≤ 8.

For convenience, we adopt the convention that a normal random variable with mean
µ and zero variance is identically equal to µ.

Theorem 2.2. For n ≥ 1, let ε1, ε2, . . . εn be arbitrary elements of a finite set A ⊂ R, not
necessarily distinct. Let γ2 = n−1

∑n
i=1 ε

2
i , let π be a uniform random permutation of

{1, 2, . . . , n}, and for each 1 ≤ k ≤ n let

Sk =

k∑
i=1

επ(i) and Wk = Sk −
kSn
n
. (2.1)

Then for all ν > 0 there exist positive constants c1, c2 and θ2 depending only on A and ν
such that for any integer n ≥ 1, an integer k such that |2k − n| ≤ 1, and any η ≥ ν, it is
possible to construct a version of Wk and a Gaussian random variable Zk with mean 0
and variance k(n− k)/n on the same probability space such that for all θ ≤ θ2,

E exp(θ|Wk − ηZk|) ≤ exp

(
3 +

c1θ
2S2

n

n
+ c2θ

2n(γ2 − η2)2
)
.

We now define Stein coefficients, the key ingredient upon which our approach
depends. Let W be a random variable with E[W ] = 0 and finite second moment. We say
the random variable T defined on the same probability space is a Stein coefficient for W
if

E[Wf(W )] = E[Tf ′(W )] (2.2)

for all Lipschitz functions f and f ′ any a.e. derivative of f , whenever these expectations
exist.

Theorem 2.3 (Chatterjee [6]). Let W be mean zero with finite second moment and
suppose that T is a Stein coefficient for W with |T | almost surely bounded by a constant.
Then, given any σ2 > 0, we can construct a version of W and Z ∼ N (0, σ2) on the same
probability space such that

E exp(θ|W − Z|) ≤ 2E exp

(
2θ2(T − σ2)2

σ2

)
for all θ ∈ R.
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To prove Theorems 2.1 and 2.2, we require the following definitions. Following
Section 3.2 of [13], see also Proposition 4.2 of [7], for X a random variable with finite,
non-zero second moment, we say X2 has the X-square bias distribution when

E[f(X2)] =
1

EX2
E[X2f(X)] (2.3)

for all functions f for which the expectation on the right hand side exists. For a mean
zero random variable X with finite, non-zero variance σ2, we say that X∗ has the X-zero
bias distribution when

σ2E[f ′(X∗)] = E[Xf(X)] (2.4)

for all Lipschitz functions f and any a.e. derivative f ′, whenever these expectations exist.
That X∗ exists for such random variables, see [14] and [7].

If X is a mean zero random variable with finite, non-zero variance σ2, then for any g ∈
Cc, the collection of continuous functions with compact support, letting f(x) =

∫ x
0
g(u)du,

using (2.3), we have

σ2Eg(UX2) = σ2Ef ′(UX2)

= σ2E

∫ 1

0

f ′(uX2)du

= σ2E

[
f(X2)

X2

]
= E

[
X2 f(X)

X

]
= E[Xf(X)]

where X2 and U are independent, U ∼ U[0, 1] and X2 has the X-square bias distribution.
Thus, using (2.4), we have

σ2Eg(UX2) = E[Xf(X)] = σ2E[f ′(X∗)] = σ2E[g(X∗)].

Since the expectation of g(X∗) and g(UX2) agree for any g ∈ Cc, with =d denoting
distributional equivalance, we obtain

X∗ =d UX
2.

Smoothing X by adding an independent random variable Y having the X-zero bias
distribution, we obtain the following result which will be used for constructing Stein
coefficients for sums.

Lemma 2.4. If X is a mean zero random variable with finite non-zero variance, and Y is
an independent variable with the X-zero bias distribution, then

E[Xf(X + Y )] = E[(X2 −XY )f ′(X + Y )]

for all Lipschitz functions f and a.e. derivative f ′ for which these expectations exist.

Proof. Let V be distributed as X, let U be a U[0, 1] random variable, and set

Y = UV 2

where V,U, V 2 and X are independent. Note that for any bivariate function g for which
the expectations below exist, by (2.3) we have

E[g(X,V 2)] =
1

σ2
E[V 2g(X,V )], (2.5)

EJP 21 (2016), paper 15.
Page 5/30

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4299
http://www.imstat.org/ejp/


On strong embeddings by Stein’s method

where σ2 is the variance of X. Hence

E[(X2 −XY )f ′(X + Y )]

=E[(X2 −XUV 2)f ′(X + UV 2)]

=E

[∫ 1

0

(X2 −XuV 2)f ′(X + uV 2)du

]
=E

[
(X2 −XuV 2)f(X + uV 2)

V 2

∣∣∣∣ 1
0

+XV 2

∫ 1

0

f(X + uV 2)

V 2
du

]

=E

[
(X2 −XV 2)f(X + V 2)−X2f(X)

V 2

]
+ E[Xf(X + Y )]

=
1

σ2
E[V (X2 −XV )f(X + V )− V X2f(X)] + E[Xf(X + Y )]

=
1

σ2
E[V X(X − V )f(X + V )] + E[Xf(X + Y )],

where we have used (2.5) in the second to last equality, as well as the independence of
V and X, and that EV = 0, in the last. Hence, to prove the claim, it suffices to show
that the first term above is zero. Since X =d V and V and X are independent and
exchangeable, we have

V X(X − V )f(X + V ) =d V X(V −X)f(X + V ) = −V X(X − V )f(X + V ),

demonstrating that the expectation of the expression above is zero.

For any mean zero X with finite, non-zero variance σ2 the distribution of X∗ is
absolutely continuous with density function

pX∗(x) =
E[X1(X > x)]

σ2
. (2.6)

One finds directly from (2.6) that

a ≤ X ≤ b for some constants a < b implies a ≤ X∗ ≤ b. (2.7)

Comparing (2.2) with (2.4), we see that T is a Stein coefficent for X if σ−2E[T |X] is
the Radon Nikodym derivative dµ∗

dµ of the probability measure µ∗ of X∗ with respect to
the measure µ of X. Hence, in light of (2.6), if X is a random variable with mean zero
and finite variance, having density function pX(x) whose support is an interval, then
setting

hX(x) =
E[X1(X > x)]

pX(x)
1(pX(x) > 0) we have E[Xf(X)] = E[hX(X)f ′(X)] (2.8)

for all Lipschitz function f and a.e. derivative f ′ for which these expectations exist, that
is, hX(X) is a Stein coefficient for X. We note the first equality in (2.8) shows, by virtue
of E(X) = 0, that hX(x) ≥ 0.

Now consider a random variable X having vanishing first and third moment, variance
strictly between zero and infinity and satisfying E(X4) <∞. Then the distribution for
a random variable Y having the X-zero bias distribution exists, and from (2.4) with
g(x) = x2 and g(x) = x3, we respectively find

E(Y ) = 0 and E(Y 2) <∞. (2.9)

Moreover from (2.6) we see that Y has density function pY (y) whose support is a closed
interval. Hence the function hY (y), given by the first equality in (2.8), satisfies the
second.
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Lemma 2.5. Let ε1, . . . εn be independent and identically distributed as ε, a random
variable with mean zero, finite nonzero variance, and satisfying E(ε3) = 0 and E(ε4) <∞,
and let Y have the ε-zero bias distribution and be independent of ε1, . . . , εn. Then for all
Lipschitz functions f and a.e. derivative f ′,

E[S̃nf(S̃n)] = E[Tf
′(S̃n)]

where

S̃n = Sn + Y with Sn = ε1 + ε2 + · · ·+ εn,

and

T =

n∑
i=1

ε2i − SnY + hY (Y ) with hY (y) =
E[Y 1(Y > y)]

pY (y)
1(pY (y) > 0).

Proof. With S(i)
n = Sn − εi, we have

E[S̃nf(S̃n)] = E[Snf(S̃n) + Y f(S̃n)] =

n∑
i=1

E[εif(εi + Y + S(i)
n )] + E[Y f(Y + Sn)]. (2.10)

For the first term of (2.10), using that the summands εi are independent and applying
Lemma 2.4 yields

E[εif(εi + Y + S(i)
n )] = E[(ε2i − εiY )f ′(εi + Y + S(i)

n )] = E[(ε2i − εiY )f ′(S̃n)].

Now turning to the second term of (2.10), we first note that by (2.4) the assumption that
the third moment of ε is zero implies E(Y ) = 0. Now using the independence of Y and
Sn, (2.8) yields

E[Y f(Y + Sn)] = E[hY (Y )f ′(Y + Sn)] = E[hY (Y )f ′(S̃n)].

Substitution into (2.10) now yields the claim.

Hoeffding’s lemma, e.g. see the proof of Lemma 2.2 of [4], will be used below. It
states that if X is a mean zero random variable that satisfies a ≤ X ≤ b almost surely,
then

E[exp(θX)] ≤ e(b−a)
2θ2/8 for all θ ∈ R. (2.11)

We also require the ‘non central χ2
1’ moment generating function identity,

E exp
(
αV 2 + βV

)
=

exp
(

β2

2(1−2α)

)
(1− 2α)1/2

(2.12)

valid for the standard Gaussian variable V , and all β ∈ R and α < 1/2.
For the law L(X) of any random variable X let

`(L(X)) = inf{b− a : P (a ≤ X ≤ b) = 1},

the length of the support of X. For notational simplicity we will write `(X), or ` when X
is clear from context, for `(L(X)). We use that `(X) is translation invariant in the sense
that `(X) = `(X − c) for any real number c without further mention.
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Lemma 2.6. For every almost surely bounded random variableX, there exists a constant
ϑ`(X) ∈ (0,∞) depending only on `(X) such that when X1, X2, . . . are independent
random variables distributed as X, the sum Sn = X1 + · · ·+Xn and µ = EX satisfy

E

[
exp

(
θ2
S2
n

n

)]
≤ 4

3
exp

(
4

3
nθ2µ2

)
for all n ≥ 1 and |θ| ≤ ϑ`(X).

The constant 4/3 is somewhat arbitrary as any value greater than 1 can be achieved;
the proof of Theorem 3.1 requires a value strictly less than 3/2.

Proof. Let V be a N (0, 1) random variable independent of X. Using Hoeffding’s lemma
(2.11) conditional on V , for any function of V we have

E[exp(t(V )(X − µ))|V ] ≤ e`
2t(V )2/8.

Applying E(exp θV ) = exp(θ2/2), for `θ <
√
2 and V independent of X1, X2, . . ., letting

t(V ) =
√
2θ V√

n
we obtain

E

[
exp

(
θ2
S2
n

n

)]
= E

[
exp

(√
2θ
Sn√
n
V

)]
= E

[
E

(
exp

(√
2θ

V√
n
X

) ∣∣∣∣ V )n]
= E

[
E

(
exp(t(V )X)

∣∣∣∣ V )n] = E [E(exp(t(V )(X − µ) + t(V )µ)

∣∣∣∣ V )n]
≤ E

[
exp

(
2`2θ2V 2

8n
+
√
2θµ

V√
n

)n]
= E

[
exp

(
`2θ2

4
V 2 +

√
2θµ
√
nV

)]
=

1√
1− `2θ2/2

exp

(
nθ2µ2

1− `2θ2/2

)
≤ 1

1− `2θ2/2
exp

(
nθ2µ2

1− `2θ2/2

)
,

where we have applied (2.12) in the last line. It is now direct to verify that the property
required by the lemma holds by letting ϑ`(X) = 1/(

√
2`(X)), the unique positive solution

to
1

1− `(X)
2
θ2/2

=
4

3
.

Lemma 2.7. Let ε be a bounded, mean zero, variance σ2 ∈ (0,∞) random variable
satisfying Eε3 = 0. Then the Stein coefficient hY (y), given by (2.8) for Y with the ε-zero
bias distribution, is bounded.

Proof. As ε is a mean zero random variable with finite, nonzero variance, the zero bias
distribution L(Y ) exists. As Eε3 = 0 and ε is bounded and non-trivial, as in (2.9) one
verifies that EY = 0 and that Var(Y ) is positive and finite. Hence, as noted below (2.8),
the Stein coefficient hY (y) as given by (2.8) is nonnegative, so we need only show that it
is bounded above.

From (2.6), an a.e. density of Y is given by

pY (y) =
1

σ2

∫ ∞
y

udFε(u) (2.13)

where we use FX to denote the distribution function of the random variable X. From
(2.13) we may observe that the support of Y is the smallest closed interval ofR containing
the support of ε. Since ε is bounded and has mean zero, using (2.7), this interval is of the
form [a, b] for −∞ < a < 0 < b <∞, hence for t ∈ [a, b] the upper limit of the integral in
(2.13) may be replaced by b.
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In particular, for all t ∈ [0, b], by (2.8) we have

hY (t) =

∫ b
t
ypY (y)dy

pY (t)

=

∫ b
t
y
∫ b
y
udFε(u)dy

σ2pY (t)

=

∫ ∫
t≤y≤u≤b yudFε(u)dy

σ2pY (t)

=

∫ b
t
u
∫ u
t
ydydFε(u)

σ2pY (t)

=

∫ b
t
u(u2 − t2)dFε(u)

2σ2pY (t)

≤
b2
∫ b
t
udFε(u)

2σ2pY (t)
=
b2

2
,

where we have used Fubini’s theorem in the fourth equality, and (2.13) in the second
and sixth. As h−Y (t) = hY (−t) we obtain that hY (y) is bounded for t ∈ [a, 0].

Proof of Theorem 2.1: For short we write S = ε1 + ε2 + · · ·+ εn and S̃ = S + Y with Y is
as in Lemma 2.5. As the third moment of ε is zero and its fourth moment is finite, as in
(2.9), Y has mean zero with finite variance, and hence so does S̃.

By Lemma 2.5, T =
n∑
i=1

ε2i −SY +hY (Y ) is a Stein coefficient for S̃. Since ε is bounded

and the third moment of ε is zero, Lemma 2.7 yields that hY (Y ) is bounded. Also ε

bounded implies S is bounded. In addition, as ε is bounded there exists some B such
that |ε| ≤ B, and (2.7) implies |Y | ≤ B. Thus, we conclude that |T | is bounded.

Now invoking Theorem 2.3, there exists a version of S̃ and Z ∼ N (0, σ2) on the same
probability space such that

E exp(θ|S̃ − Z|) ≤ 2E
(
exp(2θ2σ−2(T − σ2)2)

)
for all θ ∈ R.

Using |Y | ≤ B we have |S − S̃| ≤ B. It follows that,

E exp(θ|S − Z|) ≤ 2E
(
exp(B|θ|+ 2θ2σ−2(T − σ2)2)

)
.

Letting C0 ≥ B be such that |hY (Y )| ≤ C0, and setting σ2 = n, we obtain

(T − σ2)2

σ2
≤ 3S

2
+ 3C2

0S
2 + 3C2

0

n

where S =
n∑
i=1

(ε2i − 1).

Hence,

E exp(θ|S − Z|) ≤ 2 exp

(
B|θ|+ 6C2

0θ
2

n

)
E exp

(
6θ2

S
2
+ C2

0S
2

n

)

≤ exp

(
B|θ|+ 6C2

0θ
2

n

)
E

[
exp

(
12θ2S

2

n

)
+ exp

(
12θ2C2

0S
2

n

)]
(2.14)

where we applied the simple inequality exp(x+ y) ≤ (e2x + e2y)/2.
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Noting for S and S that ε2 − 1 and ε respectively are bounded and have mean zero, using
Lemma 2.6 for the first two inequalities below, we see that there exists θ1 > 0 such that
for all |θ| ≤ θ1 and all positive integers n

E exp(12θ2S
2
/n) ≤ 2 and E exp(12θ2C2

0S
2/n) ≤ 2 and exp

(
B|θ|+ 6C2

0θ
2

n

)
≤ 2.

Theorem 2.1 now follows from (2.14).

We now prepare for the proof of Theorem 2.2 by providing a few lemmas. For A the
finite set in which the basic variable ε takes values, let

D = {b− a : a, b ∈ A} and D+ = D ∩ [0,∞), (2.15)

the set of differences of the elements in A, and those differences that are non-negative.
We note here that D is symmetric in that D = −D. Let also

B = max
a∈A
|a|. (2.16)

Recall the definition (2.1) of Wk and observe that we may write

Wk = Sk −
k

n
Sn =

k∑
i=1

επ(i) −
k

n

n∑
i=1

επ(i) =
n− k
n

k∑
i=1

επ(i) −
k

n

n∑
i=k+1

eπ(i)

=
1

n

k∑
i=1

n∑
j=k+1

(επ(i) − επ(j)), (2.17)

and therefore

Wk =
∑
d∈D+

Wk,d where Wk,d =
1

n

k∑
i=1

n∑
j=k+1

(επ(i) − επ(j))1(|επ(i)−επ(j)|=d). (2.18)

Lemma 2.8. Under the hypotheses of Theorem 2.2, for any θ ∈ R, 1 ≤ k ≤ n and d ∈ D+

we have

E exp(θWk,d/
√
k) ≤ exp(d2θ2/2) and E exp(θWk/

√
k) ≤ exp(B2θ2), (2.19)

where B is as in (2.16). Further, there exists α0 > 0 depending only on A such that

E[exp(αW 2
k,d/k)] ≤ 2 for all |α| ≤ α0 and all d ∈ D+. (2.20)

Proof. We may assume d > 0 as the result is otherwise trivial. Fix an integer k in
[1, n] and d ∈ D+, and let m(θ) := E exp(θWk,d/

√
k). We argue as in [6]. Since Wk,d is

bounded, the function m(θ) is differentiable and differentiation and expectation may be
interchanged. Hence, using (2.18) for the second equality,

m′(θ) =
1√
k
E(Wk,d exp(θWk,d/

√
k))

=
1

n
√
k

k∑
i=1

n∑
j=k+1

E[(επ(i) − επ(j))1(|επ(i)−επ(j)|=d) exp(θWk,d/
√
k)]. (2.21)

Now, let i and j satisfying 1 ≤ i ≤ k < j ≤ n be arbitrary and let π′ = π ◦ (i, j) where
(i, j) is the transposition of i and j. Then (π, π′) is an exchangeable pair of random
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On strong embeddings by Stein’s method

permutations. Let W ′k,d be defined as in (2.18) with π′ replacing π. Using exchangeability
for the first equality and the definition of π′ for the second,

E[(επ(i) − επ(j))1(|επ(i)−επ(j)|=d) exp(θWk,d/
√
k)]

=E[(επ′(i) − επ′(j))1(|επ′(i)−επ′(j)|=d) exp(θW
′
k,d/
√
k)]

=E[(επ(j) − επ(i))1(|επ(i)−επ(j)|=d) exp(θW
′
k,d/
√
k)]

=− E[(επ(i) − επ(j))1(|επ(i)−επ(j)|=d) exp(θW
′
k,d/
√
k)].

Averaging the first and last expressions yields

E[(επ(i) − επ(j))1(|επ(i)−επ(j)|=d) exp(θWk,d/
√
k)]

=
1

2
E[(επ(i) − επ(j))1(|επ(i)−επ(j)|=d)(exp(θWk,d/

√
k)− exp(θW ′k,d/

√
k))]. (2.22)

Note

|Wk,d −W ′k,d|

=
1

n

∣∣∣∣ ∑
k+1≤l≤n,l 6=j

(επ(i) − επ(l))1(|επ(i)−επ(l)|=d) +
∑

1≤l≤k,l 6=i

(επ(l) − επ(j))1(|επ(l)−επ(j)|=d)

+ (επ(i) − επ(j))1(|επ(i)−επ(j)|=d) −
( ∑
k+1≤l≤n,l 6=j

(επ′(i) − επ′(l))1(|επ′(i)−επ′(l)|=d)

+
∑

1≤l≤k,l 6=i

(επ′(l) − επ′(j))1(|επ′(l)−επ′(j)|=d) + (επ′(i) − επ′(j))1(|επ′(i)−επ′(j)|=d)
) ∣∣∣∣

=
1

n

∣∣∣∣ n∑
l=1

(επ(i) − επ(l))1(|επ(i)−επ(l)|=d) +

n∑
l=1

(επ(l) − επ(j))1(|επ(l)−επ(j)|=d)

∣∣∣∣
≤ 1

n
[nd+ nd] = 2d.

Now applying the inequality |ex− ey| ≤ 1
2 |x−y|(e

x+ ey) we see that (2.22) in absolute
value is bounded by

|θ|
4
√
k
E[|επ(i) − επ(j)|1(|επ(i)−επ(j)|=d)|Wk,d −W ′k,d|((exp(θWk,d/

√
k) + exp(θW ′k,d/

√
k))]

≤ |θ|
4
√
k
2d2E[exp(θWk,d/

√
k) + exp(θW ′k,d/

√
k)]

=
|θ|d2√
k
m(θ).

So, from (2.21), and the fact that 1 ≤ i ≤ k and k < j ≤ n are arbitrary, we obtain

|m′(θ)| ≤ 1

n
√
k

|θ|d2√
k

k∑
i=1

n∑
j=k+1

m(θ) ≤ d2|θ|m(θ).

Now, using, m(0) = 1, and that m(θ) ≥ 0 for all θ ∈ R, for θ > 0, we obtain∫ θ

0

m′(u)

m(u)
du ≤

∫ θ

0

d2udu =⇒ m(θ) ≤ exp(d2θ2/2)

and for θ < 0, we obtain∫ 0

θ

−m′(u)
m(u)

du ≤
∫ 0

θ

d2(−u)du =⇒ m(θ) ≤ exp(d2θ2/2),

EJP 21 (2016), paper 15.
Page 11/30

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4299
http://www.imstat.org/ejp/


On strong embeddings by Stein’s method

proving the first inequality of (2.19).
Arguing similarly, now letting m(θ) := E exp(θWk/

√
k) and W ′k as in (2.1) with π′

replacing π, noting |Wk −W ′k| = |επ(i) − eπ(j)| ≤ 2B, we obtain

E[(επ(i) − επ(j)) exp(θWk/
√
k)] ≤ |θ|

4
√
k
E[(επ(i) − επ(j))2((exp(θWk/

√
k) + exp(θW ′k/

√
k))]

≤ |θ|4B
2

4
√
k

2m(θ) =
2|θ|B2

√
k

m(θ),

so that |m′(θ)| ≤ 2B2|θ|m(θ), implying the final inequality of (2.19).
Turning to (2.20), letting Z be a standard normal random variable independent of

Wk,d, by (2.19) and (2.12), for all d ∈ D+ and α < 1/(2d2), we have

E exp(αW 2
k,d/k) = E exp

(√
2αZWk,d/

√
k
)
≤ E exp(d2αZ2) ≤ 1√

1−2d2α .

Now set α0 so that the bound above is any number no greater than 2 when d is replaced
by max{d : d ∈ D+}.

Lemma 2.9. Under the assumptions of Theorem 2.2 there exists α1 > 0 depending only
on A such that for all n, all 1 ≤ k ≤ 2n/3, and all 0 ≤ α ≤ α1,

E exp
(
αS2

k/k
)
≤ exp

(
1 +

3αS2
n

4n

)
.

Proof. The steps are the same as in the proof of Lemma 3.5 of [6]. For Z a standard
normal random variable independent of π, by definition (2.1) of Wk we have

E exp(αS2
k/k) = E exp

(√
2α

k
SkZ

)

= E exp

(√
2α

k
WkZ +

√
2α

k

kSn
n
Z

)
.

By (2.19), with B given by (2.16), for the first term we obtain the bound

E

[
exp

(√
2αZWk/

√
k
) ∣∣∣∣ Z] ≤ exp(2αB2Z2).

Thus,

E exp(αS2
k/k) ≤ E exp

(
2αB2Z2 +

√
2α

k

kSn
n
Z

)
.

Recalling Sn is nonrandom, using the non central χ2
1 identity (2.12), we find that

E exp(αS2
k/k) ≤

1√
1− 4αB2

exp

(
αkS2

n

(1− 4αB2)n2

)
for 0 < α < 1/(4B2).

The proof of the lemma is now completed by bounding k by 2n/3 and choosing α1 > 0

small enough so that 1/(1− 4α1B
2) is sufficiently close to 1.

Proof of Theorem 2.2: We assume θ > 0. Applying our convention that zero variance
normal random variables are equal to their mean almost surely, when n = 1 we have
S0 = W0 = W1 = Z0 = Z1 = 0 and the result holds trivially, so we assume n ≥ 2.
Recalling definition (2.15) of D+ for each d > 0 in D+ and that D is symmetric, let Yd
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have the uniform U[−d/2, d/2] distribution, and be independent of each other and of the
uniform random permutation π, and for d = 0 let Y0 = 0. Set

Y =
∑
d∈D+

Yd.

For arbitrary i, j satisfying 1 ≤ i ≤ k < j ≤ n let Fij = σ{π(l) : l 6∈ {i, j}}. Regarding
the collection {ε1, . . . , εn} as a multiset, we have

{επ(i), επ(j)} = {εi, i = 1, . . . , n} \ {επ(l), l 6∈ {i, j}},

showing that {επ(i), επ(j)}, and therefore also επ(i) + επ(j) and dij := |επ(i) − επ(j)| are
measurable with respect to Fij . Further, the conditional distribution of

Xij :=
επ(i) − επ(j)

2

given Fij is uniform over the set {−dij/2, dij/2}.
Let S(i)

k = Sk − επ(i),W
(i)
k = S

(i)
k − (k/n)Sn and Y (ij) = Y − Ydij . For επ(i) 6= επ(j),

applying Lemma 2.4 and the easily verified fact that the zero bias distribution of the
variable that takes the values {−a, a} with equal probability is uniform over [−a, a], for
some fixed Lipschitz function f , we have

E[(επ(i) − επ(j))f(Wk + Y )|Fij ]

=2E[Xijf(Xij + Ydij +W
(i)
k + (επ(i) + επ(j))/2 + Y (ij))|Fij ]

=2E[(X2
ij −XijYdij )f

′(Xij + Ydij +W
(i)
k + (επ(i) + επ(j))/2 + Y (ij))|Fij ]

=2E[(X2
ij −XijYdij )f

′(Wk + Y )|Fij ]
=2E[(d2ij/4−XijYdij )f

′(Wk + Y )|Fij ].

We note that the equality between the first and final terms above holds also when
επ(i) = επ(j), both sides being zero. Taking expectation we obtain

E[(επ(i) − επ(j))f(Wk + Y )] = E[tijf
′(Wk + Y )] (2.23)

where

tij = 2

(
d2ij
4
−XijYdij

)
=
ε2π(i) + ε2π(j)

2
− επ(i)επ(j) − (επ(i) − επ(j))Ydij . (2.24)

It is easy to verify using (2.8), or by integration by parts, that for U ∼ U[−a, a],

E[Uf(U)] =
1

2
E[(a2 − U2)f ′(U)],

implying

E[Y f(Wk + Y )] =
∑
d∈D+

E[Ydf(Yd +Wk + (Y − Yd)]

=
1

2

∑
d∈D+

E

[(
d2

4
− Y 2

d

)
f ′(Yd +Wk + (Y − Yd)

]
= E[R4f

′(Wk + Y )], (2.25)

where

R4 =
1

2

∑
d∈D+

(
d2

4
− Y 2

d

)
.

EJP 21 (2016), paper 15.
Page 13/30

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4299
http://www.imstat.org/ejp/


On strong embeddings by Stein’s method

Since D+ is finite there exists C0 > 0 so that

|R4| ≤ C0. (2.26)

From (2.17),

Wk =
1

n

k∑
i=1

n∑
j=k+1

(επ(i) − επ(j)),

so lettting

W̃k =Wk + Y (2.27)

and combining (2.23) and (2.25), we have

E[W̃kf(W̃k)] = E[Tf
′(W̃k)], (2.28)

where the Stein coefficient T , in light of (2.24), is given by

T =
1

n

k∑
i=1

n∑
j=k+1

tij +R4 = R1 −R2 −R3 +R4,

where

R1 =
1

2n

(n− k)
k∑
i=1

ε2π(i) + k

n∑
j=k+1

ε2π(j)

 , R2 =
1

n

k∑
i=1

επ(i)

n∑
j=k+1

επ(j),

and

R3 =
1

n

∑
1≤i≤k<j≤n

(επ(i) − επ(j))Ydij

=
∑
d∈D+

Yd
1

n

∑
1≤i≤k<j≤n

(επ(i) − επ(j))1(|επ(i) − επ(j)| = d) =
∑
d∈D+

YdWk,d,

with Wk,d as in (2.18). Since |Yd| ≤ d/2, we have

|R3| ≤
∑
d∈D+

d

2
|Wk,d|. (2.29)

Recalling that ν > 0 is a given fixed number, and that

γ2 =
1

n

n∑
i=1

ε2i , set σ̃2 =
k(n− k)γ2

n
and σ2 =

k(n− k)η2

n
,

for a positive constant η ≥ ν, noting that since n ≥ 2 both σ2 and σ̃2 are positive. Then,

(
T − σ2

)2
σ2

=
n

k(n− k)η2
(
R1 − σ2 −R2 −R3 +R4

)2
≤ n

k(n− k)ν2
(
R1 − σ2 −R2 −R3 +R4

)2
. (2.30)
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To bound this quantity, consider first

R1 − σ̃2

=
1

2n

(n− k)
k∑
i=1

ε2π(i) + k

n∑
j=k+1

ε2π(j)

− σ̃2

=
1

2n

(n− k)
k∑
i=1

ε2π(i) + k

n∑
j=k+1

ε2π(j)

− k(n− k)
n2

n∑
i=1

ε2π(i)

=
1

2n

(n− k)
k∑
i=1

ε2π(i) + k

n∑
j=k+1

ε2π(j) −
2k(n− k)

n

n∑
i=1

ε2π(i)


=

1

2n

(n− k)

(
k∑
i=1

ε2π(i) −
k

n

n∑
i=1

ε2π(i)

)
+ k

 n∑
j=k+1

ε2π(j) −
n− k
n

n∑
j=1

ε2π(j)


=

1

2n

(n− k)

(
n− k
n

k∑
i=1

ε2π(i) −
k

n

n∑
i=k+1

ε2π(i)

)
+ k

k

n

n∑
j=k+1

ε2π(j) −
n− k
n

k∑
j=1

ε2π(j)


=

1

2n2

((n− k)2 − k(n− k)) k∑
i=1

ε2π(i) −
(
(n− k)k − k2

) n∑
j=k+1

ε2π(j)


=
n− 2k

2n2

(n− k)
k∑
i=1

ε2π(i) − k
n∑

j=k+1

ε2π(j)

 .

Hence, for all k = 1, 2, . . . , n, with B as in (2.16),

|R1 − σ2| ≤ |n− 2k|
2n2

(
(n− k)

k∑
i=1

ε2π(i) + k

n∑
i=k+1

ε2π(j)

)
+ |σ̃2 − σ2|

≤ |n− 2k|
2

γ2 + |σ̃2 − σ2| ≤ |n− 2k|
2

B2 + |σ̃2 − σ2|.

Choosing k such that |n− 2k| ≤ 1, we obtain

|R1 − σ2| ≤ B2

2
+ |σ̃2 − σ2|. (2.31)

Regarding R2, for any k ∈ {1, . . . , n} we have

|R2| =
1

n

∣∣∣∣ k∑
i=1

επ(i)

n∑
j=k+1

επ(j)

∣∣∣∣ ≤ B|Sk|. (2.32)

Hence, for k such that |2k − n| ≤ 1, from (2.30), (2.31), (2.32), (2.29) and (2.26), and
that |σ̃2 − σ2| = |k(n−k)n (γ2 − η2)|, we obtain

(T − σ2)2

σ2
≤ n

k(n− k)ν2

(
B2/2 + |σ̃2 − σ2|+B|Sk|+

∑
d∈D+

d

2
|Wk,d|+ C0

)2

≤ C

(
1 + n(γ2 − η2)2 + S2

k

k
+
∑
d∈D+

W 2
k,d

k

)

for some constant C depending uniquely on A and ν.
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We now verify that the hypotheses of Theorem 2.3 hold for W̃k of (2.27) and T . Clearly
W̃k satisfies E(W̃k) = 0 and E(W̃ 2

k ) <∞. By (2.28), T is a Stein coefficient for W̃k, and T
is easily verified to be bounded. Writing Z for short for ηZk in the statement of Theorem
2.2, we note that Z is distributed N (0, σ2), and by Theorem 2.3 we can construct a
version of W̃k and Z on the same probability space so that for all θ,

E exp(θ|W̃k − Z|) ≤ 2E exp(2θ2σ−2(T − σ2)2)

≤ 2E exp

(
2Cθ2

(
1 + n(γ2 − η2)2 + S2

k

k
+
∑
d∈D+

W 2
k,d

k

))
.

With D = 1
2

∑
d∈D+ d we have |Wk − W̃k| ≤ |Y | ≤

∑
d∈D+

|Yd| ≤ D. Letting q = |D+|+ 1, we

have

E exp(θ|Wk − Z|)

≤ 2 exp(D|θ|+2Cθ2 +2Cθ2n(γ2− η2)2)E exp

(
2Cθ2

S2
k

k
+2Cθ2

∑
d∈D+

W 2
k,d

k

)

≤ 2

q
exp(D|θ|+2Cθ2 +2Cθ2n(γ2− η2)2)

(
E exp

(
2Cqθ2

S2
k

k

)
+
∑
d∈D+

E exp

(
2Cqθ2

W 2
k,d

k

))
,

by the convexity of the exponential function. Using Lemmas 2.9 and 2.8, there exists
θ3 > 0 depending only on A and ν such that for all θ ≤ θ3, we obtain

E exp(θ|Wk − Z|)

≤ 2

q
exp(D|θ|+ 2Cθ2 + 2Cθ2n(γ2 − η2)2)

(
exp

(
1 + 6Cqθ2

S2
n

4n

)
+ 2(q − 1)

)
≤ 2 exp(D|θ|+ 2Cθ2 + 2Cθ2n(γ2 − η2)2)

(
exp

(
1 + 6Cqθ2

S2
n

4n

)
+ 2

)
.

Now choose θ4 > 0, depending only on A and ν, so that

2 exp(Dθ4 + 2Cθ24) ≤ e and note exp
(
1 + θ2x

)
+ 2 ≤ exp

(
2 + θ2x

)
for all x ≥ 0,

implying that for θ ≤ θ2 := θ3 ∧ θ4,

E exp(θ|Wk − Z|) ≤ exp

(
1 + 2Cθ2n(γ2 − η2)2 + 2 + 6Cqθ2

S2
n

4n

)
= exp

(
3 + 6Cqθ2

S2
n

4n
+ 2Cθ2n(γ2 − η2)2

)
,

which is the desired bound.

3 The induction step

In this section we present Theorem 3.1, which we use to prove Theorem 1.4 that
generalizes Theorem 1.4 in [6]. Let ε1, ε2, . . . εn be arbitrary elements of a finite setA ⊂ R,
not necessarily distinct, and let π be a uniform random permutation of {1, 2, . . . , n}. For
each 1 ≤ k ≤ n recall

Sk =

k∑
i=1

επ(i) and Wk = Sk −
kSn
n
. (3.1)
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We show (W1, . . . ,Wn) and a positive multiple of a Gaussian vector (Z1, . . . , Zn)

obtained by evaluating a Brownian bridge process on [0, n] at integer time points can be
coupled on the same space so that the moment generating function of their maximum
absolute difference achieves the exponential bound (3.6) below. In place of coupling,
the result of the theorem can be equivalently stated in terms of the existence of a joint
probability function ρnεεε (s, z) on (S1, . . . , Sn) and (Z1, . . . , Zn) having the correct marginals
whose joint realization obeys the desired bound.

It will be helpful to regard the collection εεε = {ε1, . . . , εn} as a multiset. We say s ∈ Rn
is a ‘path’ corresponding to a multiset of ‘increments’ εεε when there exists π ∈ Pn, the set
of permutations on {1, . . . , n}, such that s can be achieved by summing the increments ε
in the order given by π, that is, when s is an element of the set of all feasible paths

Anεεε := {s ∈ Rn : sk =

k∑
i=1

επ(i), k = 1, . . . , n, π ∈ Pn}. (3.2)

Conversely, the multiset of increments corresponding to a path s is given by

εεεs= {s1, s2 − s1, . . . , sn − sn−1}, (3.3)

so that s ∈ Anεεε if and only if εεεs = εεε.
Suppose that among εεε are l distinct numbers, appearing with multiplicities m1, . . . ,ml,

necessarily summing to n. Then letting fnεεε (s) be the probability mass function of
(S1, . . . , Sn) as given by (3.1), we have

|Anεεε | =
n!

m1!m2! . . .ml!
and fnεεε (s) =

1

|Anεεε |
1(s ∈ Anεεε ) =

1

|Anεεε |
1(εεεs = εεε), (3.4)

that is, the distribution fnεεε (s) is uniform over Anεεε .
The following result is a conditional version of Theorem 1.4.

Theorem 3.1. Let ε1, ε2, . . . εn be arbitrary elements of a finite set A ⊂ R, not necessarily
distinct, π a uniform random permutation of {1, 2, . . . , n}, Sk and Wk as in (3.1), and
γ2 = n−1

∑n
i=1 ε

2
i . Then there exists a positive universal constant C, and for every ν > 0

positive constants K1,K2 and λ0 depending only on A and ν such that for any integer
n ≥ 1 and every η ≥ ν one may construct a version of (Wk)0≤k≤n and Gaussian random
variables (Zk)0≤k≤n with zero mean and covariance

Cov(Zi, Zj) =
(i ∧ j)(n− (i ∨ j))

n
(3.5)

on the same probability space such that

E exp(λ max
0≤i≤n

|Wi − ηZi|)

≤ exp

(
C log n+

K1λ
2S2

n

n
+K2λ

2n(γ2 − η2)2
)

for any λ ≤ λ0. (3.6)

Proof. As the result holds trivially for λ ≤ 0 we need consider only λ > 0. Also, as W0 = 0

and Z0 = 0 by convention it suffices to consider the maximum over 1 ≤ i ≤ n in (3.6). We
use Theorem 2.2 and induction to prove the theorem.

Recall the constants α1 from Lemma 2.9 depending only on A, and c1, c2 and θ2 from
Theorem 2.2, depending only on A and ν. With B given in (2.16), letting θ5 be the unique
positive solution to

1√
1−B4θ2/2

=
4

3
, (3.7)
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depending only on A. We will demonstrate the claim holds with

C =
2 + log 4

log(3/2)
, K1 = 8c1, K2 = 18c2 and λ0 =

√
α1

32c1
∧ θ2

2
∧ θ5√

72c2
. (3.8)

Note that any multiset εεε = {ε1, . . . , εn} of elements of A lies in exactly one set of the
form

Bn(a, b) = {{ε1, ε2, . . . , εn} :
n∑
i=1

εi = a,
1

n

n∑
i=1

ε2i = b2}

as a and b range over all pairs of feasible values of Sn and γ, respectively. Fix one such
feasible pair a, b, which may be notationally suppressed when clear from context, let
εεε ∈ Bn(a, b) be arbitrary and fix any value η > 0.

With fnεεε (s) the probability mass function of (S1, . . . , Sn) given in (3.4) and φn(z) the
probability density function of a Gaussian random vector (Z1, . . . , Zn) with mean zero
and covariance (3.5), we show that for each n ≥ 1, we can construct a joint probability
function ρnεεε (s, z) on Anεεε ×Rn having the desired marginals∑

s∈Anεεε

ρnεεε (s, z) = φn(z) and

∫
Rn
ρnεεε (s, z)dz = fnεεε (s) (3.9)

and satisfying the exponential bound∫
Rn

∑
s∈Anεεε

[
exp

(
λ max

1≤i≤n

∣∣∣∣ si − ia

n
− ηzi

∣∣∣∣) ρnεεε (s, z)] dz
≤ exp

(
C log n+

K1λ
2a2

n
+K2λ

2n(b2 − η2)2
)

for all λ ∈ (0, λ0], (3.10)

for all η ≥ ν, with C,K1,K2 and λ0 as in (3.8), with C universal and the latter three
constants depending only on A and ν.

We will prove the claim by induction on n. For n = 1 we note that W1 = 0 by (2.1)
and Z1 = 0 by convention, since it has mean zero and covariance given by (3.5). Hence
(3.6) holds for n = 1 for all C, all nonnegative K1,K2, and all λ0, and in particular for
the set of constants specified in (3.8).

Given n ≥ 2, suppose that for all l = 1, 2, . . . , n− 1 and all multisubsets ζζζ of A of size l
we can construct ρlζζζ(s, z) satisfying (3.9) and (3.10). Take k = [n/2], let t denote multiset
union and define the sets

Sn,kεεε = {s :
∑
ε∈εεε1

ε = s for some εεε1, εεε2 such that |εεε1| = k, εεε1 t εεε2 = εεε}, and

Bn,kεεε (s) = {(εεε1, εεε2) :
∑
ε∈εεε1

ε = s, |ε1ε1ε1| = k, εεε1 t εεε2 = εεε} for s ∈ Sn,kεεε .

That is, Sn,kεεε is the set of all feasible values at time k of a path having increments εεε, and
Bn,kεεε (s) is the set of all ways of dividing the n increments εεε into sets of sizes k and n− k
so that the path at time k takes the value s. Counting the number of paths that take the
value s ∈ Sn,kεεε at time k shows that gn,kεεε (s), the marginal density of Sk in fnεεε (s), is given
by

gn,kεεε (s) =

∑
(ζζζ1,ζζζ2)∈Bn,kεεε (s) |A

k
ζζζ1
||An−kζζζ2

|
|Anεεε |

. (3.11)
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Similarly, let hn,k(z) denote the marginal density function of Zk in φn(z), that of the
Gaussian distribution with mean zero and variance k(n− k)/n. By Theorem 2.2, there
exists a joint density function ψn,kεεε (s, z) on Sn,kεεε ×R and positive constants c1, c2 and θ2,
depending only on A and ν, such that∫

ψn,kεεε (s, z)dz = gn,kεεε (s),
∑

s∈Sn,kεεε

ψn,kεεε (s, z) = hn,k(z), (3.12)

and for θ ≤ θ2 and η ≥ ν,∫ ∑
s∈Sn,kεεε

[
exp

(
θ

∣∣∣∣ s− ka

n
− ηz

∣∣∣∣)ψn,kεεε (s, z)

]
dz ≤ exp

(
3 +

c1θ
2a2

n
+ c2θ

2n(b2 − η2)2
)
.(3.13)

For s∈ Sn,kεεε , z ∈ R, and recalling the definition (3.3) of εεεs, s1, s2 such that (εεεs
1

, εεεs
2

) ∈
Bn,kεεε (s), z1 ∈ Rk and z2 ∈ Rn−k, let

γnεεε (s, z, s
1, z1, s2, z2) = ψn,kεεε (s, z)Pεεε,s(εεε

s1 , εεεs
2

)ρk
εεεs1

(s1, z1)ρn−k
εεεs2

(s2, z2) (3.14)

where

Pεεε,s(εεε1, εεε2) =
|Akεεε1 ||A

n−k
εεε2 |∑

(ζζζ1,ζζζ2)∈Bn,kεεε (s) |A
k
ζζζ1
||An−kζζζ2

|
1((εεε1, εεε2) ∈ Bn,kεεε (s)).

Interpreting (3.14) in terms of a construction, one first samples the joint values s and
z of the coupled random walk and Gaussian path at time k, then chooses increments
corresponding to s1 and s2, the first and last half of the walk according to their likelihood
over the choices of those whose increments over the first half of the walk sum to s, and
whose union of increments over both halves must be εεε, and then samples coupled values
of the paths with discrete Brownian bridges before and after time k.

One may verify that γnεεε is a density function by integrating over z1 and z2 using the
second equality in (3.9) followed by applying the second equality in (3.4), integrating
over z, and then summing over all s1 and s2 and s, this last operation being equivalent to
summing over all paths s with increments εεε, see (3.17) and the explanation following.

Now, let (S,Z,S1,Z1,S2,Z2) be a random vector with density γnεεε where S1 = (S1
i )1≤i≤k,

S2 = (S2
i )1≤i≤n−k and Z1 = (Z1

i )1≤i≤k, Z2 = (Z2
i )1≤i≤n−k. Let S be obtained by ‘piecing’

the paths S1 and S2 together at time k according to the rule

Si =

{
S1
i 1 ≤ i ≤ k

S + S2
i−k k < i ≤ n, (3.15)

here noting Sk = S, and define Z by

Zi =

{
Z1
i +

i
kZ 1 ≤ i ≤ k

Z2
i−k +

n−i
n−kZ k < i ≤ n, (3.16)

here noting likewise that Zk = Z, since Z1
k = 0. Now as in [6], we demonstrate that

ρnεεε (s, z), the joint density of (S,Z), achieves the desired marginals (3.9) and exponential
bound (3.10).
1. Marginal distribution of S. Let sss be the path constructed from s, s1 and s2 as S is
constructed from S,S1 and S2 in (3.15). Note that

{s : s ∈ Anεεε } = {s : (εs
1

εs
1

εs
1

, εs
2

εs
2

εs
2

) ∈ Bn,kεεε (sk)},

and that Sk = S almost surely. Hence, if S 6∈ Anεεε then from (3.14) S has probability zero.
For the marginal of γnεεε to be non-zero on s, s1, s2, first s must be a feasible value at time
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k for a path with increments εεε, then s1 must be a path of increments that attains the
value s at time k, and finally the collection of increments determined by s1 and s2 must
match the given set εεε of increments. In this case we obtain from (3.9), (3.12) and (3.11),
that the marginal distribution of (S,S1,S2) is given by∫

γnεεε (s, z, s
1, z1, s2, z2)dz2dz1dz

= gn,kεεε (s)Pεεε,s(εεε
s1 , εεεs

2

)fk
εεεs1

(s1)fn−k
εεεs2

(s2)

=

∑
(ζζζ1,ζζζ2)∈Bn,kεεε (s) |A

k
ζζζ1
||An−kζζζ2

|
|Anεεε |

|Ak
εεεs1
||An−k

εεεs2
|∑

(ζζζ1,ζζζ2)∈Bn,kεεε (s) |A
k
ζζζ1
||An−kζζζ2

|
1

|Ak
εεεs1
||An−k

εεεs2
|

=
1

|Anεεε |
= fnεεε (sss).

(3.17)

Now observing that (3.15) gives a one-to-one correspondence between (S,S1,S2) and S

we find that S has marginal density fnεεε (sss) as in (3.4).

2. Marginal distribution of Z. Consider Akε1ε1ε1 × A
n−k
ε2ε2ε2 , the set of all pairs of paths

(s1, s2) with increments εεε1 and εεε2 respectively. Using (3.9) and (3.12), and noting that
(εεεs

1

, εεεs
2

) = (εεε1, εεε2) for (s1, s2) ∈ Akε1ε1ε1 ×A
n−k
ε2ε2ε2 , the marginal distribution of Z, Z1, Z2 is given

by∑
s∈Sn,kεεε

∑
(εεε1,εεε2)∈Bn,kεεε (s)

∑
(s1,s2)∈Akε1ε1ε1×A

n−k
ε2ε2ε2

γnεεε (s, z, s
1, z2, s2, z2)

=
∑

s∈Sn,kεεε

ψn,kεεε (s, z)

 ∑
(εεε1,εεε2)∈Bn,kεεε (s)

Pεεε,s(εεε1, εεε2)
∑

(s1,s2)∈Akε1ε1ε1×A
n−k
ε2ε2ε2

ρkεεε1(s
1, z1)ρn−kεεε2 (s2, z2)


=

∑
s∈Sn,kεεε

ψn,kεεε (s, z)

 ∑
(εεε1,εεε2)∈Bn,kεεε (s)

Pεεε,s(εεε1, εεε2)
∑

s1∈Akεεε1

ρkεεε1(s
1, z1)

∑
s2∈An−kεεε2

ρn−kεεε2 (s2, z2)


=

∑
s∈Sn,kεεε

ψn,kεεε (s, z)

 ∑
(εεε1,εεε2)∈Bn,kεεε (s)

Pεεε,s(εεε1, εεε2)φ
k(z1)φn−k(z2)


= φk(z1)φn−k(z2)

∑
s

ψn,kεεε (s, z)

= φn−k(z2)φk(z1)hn,k(z)

where we have used that
∑

(εεε1,εεε2)∈Bn,kεεε (s) Pεεε,s(εεε1, εεε2) = 1. Hence Z, Z1 and Z2 are indepen-

dent with densities hn,k(z), φk(z1) and φn−k(z2) respectively, implying that Z given by
(3.16) is a multivariate mean zero Gaussian random vector. As in [6], one can verify that
Z has covariances given by (3.5), and hence Z ∼ φn(z).

3.The exponential bound. For 1 ≤ i ≤ n, letting

Wi = Si −
ia

n
,

we show that

E exp(λ max
1≤i≤n

|Wi − ηZi|) ≤ exp

(
C log n+

K1λ
2a

n
+K2λ

2n(b2 − η2)2
)

for λ ∈ (0, λ0]
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where C,K1,K2 and λ0 are as in (3.8). We continue to proceed as in [6].
Again writing S for Sk, let

TL := max
1≤i≤k

∣∣∣∣ S1
i −

iS

k
− ηZ1

i

∣∣∣∣ , TR := max
k<i≤n

∣∣∣∣ S2
i−k −

i− k
n− k

(a− S)− ηZ2
i−k

∣∣∣∣ ,
and

T :=

∣∣∣∣ S − ka

n
− ηZ

∣∣∣∣ .
Note that when 1 ≤ i ≤ k we have

|Wi − ηZi| =
∣∣∣∣ S1

i −
ia

n
− η

(
Z1
i +

iZ

k

) ∣∣∣∣
≤
∣∣∣∣ S1

i −
iS

k
− ηZ1

i

∣∣∣∣ + ∣∣∣∣ iSk − ia

n
− i

k
ηZ

∣∣∣∣
≤ TL +

i

k
T ≤ TL + T.

Similarly for k < i ≤ n one can verify |Wi − ηZi| ≤ TR + T , proving

max
1≤i≤n

|Wi − ηZi| ≤ max{TL + T, TR + T}.

Now fixing λ ≤ λ0, the inequality exp(x ∨ y) ≤ ex + ey yields

exp(λ max
1≤i≤n

|Wi − ηZi|) ≤ exp(λTL + λT ) + exp(λTR + λT ). (3.18)

To prove that the exponential bound holds, we develop inequalities on the expectation of
the two quantities on the right hand side of (3.18), starting with the expression involving
TL.

Note that εεεs
1

determines S, and since εεε is fixed εεεs
2

is also determined, so by (3.14) the
conditional density of (S1,Z1) given (εεεS

1

, Z) is ρk
εεεS1 (s1, z1). Now using that the moment

generating functions of TL and T are finite everywhere and that T is a function of {S,Z},
invoking the induction hypothesis and applying the Cauchy-Schwarz inequality twice,
with γ21 = (1/k)

∑k
i=1 ε

2
π(i) we obtain

E exp(λTL + λT ) = E
[
E
(
exp(λTL)|εεεS

1

, Z
)
exp(λT )

]
≤
[
E

(
E
(
exp(λTL)|εεεS

1

, Z
)2)

E(exp(2λT ))

]1/2
≤ exp(C log k)

[
E exp

(
2K1λ

2S2

k
+ 2K2λ

2k(γ21 − η2)2
)
E exp(2λT )

]1/2
≤ exp(C log k)

[
E exp

(
4K1λ

2S2

k

)
E exp

(
4K2λ

2k(γ21 − η2)2
)]1/4

(E exp(2λT ))
1/2

.

(3.19)

For the first expectation in (3.19), (3.8) implies that 0 ≤ 4K1λ
2 ≤ α1, and as |2k−n| ≤

1 we may invoke Lemma 2.9 to yield

E exp

(
4K1λ

2S2

k

)
≤ exp

(
1 +

3K1λ
2a2

n

)
. (3.20)
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For the second expectation in (3.19), recalling the definition of γ21 ,

E exp
(
4K2λ

2k(γ21 − η2)2
)
=E exp

4K2λ
2 1

k

(
k∑
i=1

(ε2π(i) − η
2)

)2
=E exp

(
θ2
U2
k

k

)
, (3.21)

where θ = 2λ
√
K2, and we write

Uk =

k∑
i=1

(ε2π(i) − η
2) =

n∑
i=1

(
ε2i1i∈π([k]) −

k

n
η2
)

=

n∑
i=1

ai,

where [k] = {1, . . . , k} so that π([k]) = {π(i) : i = 1, 2, . . . , k}, and ai = ε2i1i∈π([k])−(k/n)η2.
To bound (3.21), we will argue as in Lemma 2.6. Observe that for V a standard

normal random variable independent of Uk,

E exp

(
θ2
U2
k

k

)
= E exp

(√
2θ

V√
k
Uk

)
= E exp

(√
2θ
|V |sgn(V )√

k
Uk

)
= E exp

(√
2θ
|V |√
k
Uk

∣∣∣∣ sgn(V ) = 1

)
P (sgn(V ) = 1)

+ E exp

(√
2θ
|V |√
k
(−Uk)

∣∣∣∣ sgn(V ) = −1
)
P (sgn(V ) = −1).

Now using the independence of |V | and sgn(V ), and that sgn(V ) is a symmetric ±1
random variable, we obtain

E exp

(
θ2
U2
k

k

)
=

1

2

[
E exp

(√
2θUk

|V |√
k

)
+ E exp

(√
2θ(−Uk)

|V |√
k

)]
. (3.22)

Recall that random variables X1, X2, . . . , Xn are said to be negatively associated, see
[15], if for any two disjoint index sets I and J ,

E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)] (3.23)

for all coordinatewise nondecreasing functions f : R|I| → R and g : R|J| → R.
Let X1, . . . , Xn be negatively associated. It is immediate that aX1 + b, . . . , aXn + b

are negatively associated for all a ≥ 0 and b ∈ R. In addition, letting Yi = −Xi for all
i = 1, . . . , n, for f and g coordinatewise nondecreasing functions and I and J disjoint
index sets, as −f(−·) is coordinatewise nondecreasing, we have

E[f(Yi, i ∈ I)g(Yj , j ∈ J)] = E[(−f(−Xi, i ∈ I))(−g(−Xj , j ∈ J))]
≤ E[(−f(−Xi, i ∈ I))]E[(−g(−Xj , j ∈ J))] = E[f(Yi, i ∈ I)]E[g(Yj , j ∈ J)],

demonstrating that −X1, . . . ,−Xn are negatively associated. Combining these two facts,
aX1 + b, . . . , aXn + b are negatively associated for all a ∈ R and b ∈ R. By a direct
inductive argument on (3.23),

E

[
n∏
i=1

fi(Xi)

]
≤

n∏
i=1

E [fi(Xi)] (3.24)

whenever the functions fi, i = 1, 2, . . . , n are all nondecreasing.
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By Theorem 2.11 of [15], taking the real numbers in Definition 2.10 there to consist
of k ones and n− k zeros, the indicators 11∈π([k]), . . . ,1n∈π([k]) are negatively associated;
hence so are a1, . . . , an and −a1, . . . ,−an. Thus, by (3.24), we have

E

[
exp

(√
2θUk

|V |√
k

) ∣∣∣∣ V ] = E
[
exp

(
√
2θ

n∑
i=1

ai
|V |√
k

)∣∣∣∣ V
]

≤
n∏
i=1

E

[
exp

(√
2θai
|V |√
k

) ∣∣∣∣ V ] = k∏
i=1

E

[
exp

(√
2θ
(
ε2π(i) − η

2
) |V |√

k

) ∣∣∣∣ V ] . (3.25)

Now since −η2 ≤ ε2π(i)−η
2 ≤ B2−η2, using Hoeffding’s lemma (2.11) with µ = b2−η2,

the mean of ε2π(i) − η
2, we obtain

k∏
i=1

E

[
exp

(√
2θ(ε2π(i) − η

2)
|V |√
k

) ∣∣∣∣ V ] ≤ exp

(
B4θ2V 2

4k
+
√
2θµ
|V |√
k

)k
= exp

(
B4θ2V 2

4
+
√
2θµ
√
k|V |

)
≤ exp

(
B4θ2V 2

4
+
√
2θµ
√
kV

)
+ exp

(
B4θ2V 2

4
+
√
2θµ
√
k(−V )

)
.

Using that V and −V have the same distribution, taking expectation in (3.25) and
then applying the non-central chi square identity (2.12) yields

E

[
exp

(√
2θUk

|V |√
k

)]
≤ 2E

[
exp

(
B4θ2V 2

4
+
√
2θµ
√
kV

)]
=

2√
1−B4θ2/2

exp

(
kθ2µ2√

1−B4θ2/2

)
≤ 8

3
exp

(
4

3
kθ2µ2

)
(3.26)

for all 0 ≤ θ ≤ θ5, by (3.7).
Using the fact that −a1, . . . ,−an are negatively associated and that −ai and ai have

supports over intervals of equal length for all i = 1, 2, . . . , n, (3.26) holds with Uk replaced
by −Uk. Thus, by (3.22),

E exp

(
θ2
U2
k

k

)
≤ 8

3
exp

(
4

3
kθ2µ2

)
for 0 ≤ θ ≤ θ5. (3.27)

Using (3.8) we see that 0 ≤ 4K2λ
2 ≤ θ25, and as k ≤ 2n

3 , by (3.21) and (3.27), and
recalling that µ = b2 − η2, we have

E exp
(
4K2λ

2k(γ21 − η2)2
)

≤ 8

3
exp

(
16

3
K2λ

2k(b2 − η2)2
)
≤ 3 exp

(
32

9
K2λ

2n(b2 − η2)2
)
. (3.28)

For the third expectation in (3.19), again by (3.8), 0 ≤ 2λ ≤ θ2. Hence by (3.13),

E exp(2λT ) ≤ exp

(
3 +

4c1λ
2a2

n
+ 4c2λ

2n(b2 − η2)2
)
. (3.29)

Applying bounds (3.20), (3.28) and (3.29) in (3.19), and setting

Q12 = 1 +
3K1λ

2a2

n
+

32K2λ
2n(b2 − η2)2

9
and Q3 = 3 +

4c1λ
2a2

n
+ 4c2λ

2n(b2 − η2)2,
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we obtain

E exp(λTL + λT ) ≤ 31/4 exp

(
C log k +

1

4
Q12 +

1

2
Q3

)
≤ 2 exp

(
C log k + 2 +

(3K1 + 8c1)λ
2a2

4n
+

(8K2 + 18c2)

9
λ2n(b2 − η2)2

)
.

Again by (3.8), 3K1 + 8c1 = 4K1 and 8K2 + 18c2 = 9K2. Since k ≤ 2n/3, we have

log k = log n− log(n/k) ≤ log n− log(3/2).

Thus, using from (3.8) that C log(3/2) = log 4 + 2,

E exp(λTL + λT ) ≤ 2 exp

(
C log n− C log(3/2) + 2 +

K1λ
2a2

n
+K2λ

2n(b2 − η2)2
)

=
1

2
exp

(
C log n+

K1λ
2a2

n
+K2λ

2n(b2 − η2)2
)
.

In like manner we obtain this same bound on E exp(λTR + λT ), so (3.18), now yields

exp(λ max
1≤i≤n

|Wi − ηZi|) ≤ exp

(
C log n+

K1λ
2a2

n
+K2λ

2n(b2 − η2)2
)
.

This step completes the induction, and the proof.

Proof of Theorem 1.4: Let A be the set of the r distinct values {a1, . . . , ar} and let
ε1, ε2, . . . , εn be exchangeable random variables taking values in A. Let

M = (M1, . . . ,Mr) where for j = 1, . . . , r we set Mj =

n∑
i=1

1(εi = aj),

the number of components of the multiset εεε = {ε1, . . . , εn} that take on the value aj . With
L denoting distribution, or law, clearly

L(ε1, ε2, . . . , εn) =
∑
m≥0

L(ε1, ε2, . . . , εn|M = m)P (M = m)

where m = (m1, . . . ,mr) and m ≥ 0 is to be interpreted componentwise. As M is a
symmetric function of ε1, ε2, . . . , εn, the conditional law L(ε1, ε2, . . . , εn|M = m) inherits
exchangeability from L(ε1, ε2, . . . , εn), that is,

L(ε1, ε2, . . . , εn|M = m) =d L(επ(1), επ(2), . . . , επ(n)|M = m)

where π is uniformly chosen from Pn. In particular, given M = m,

k∑
i=1

εi =d

k∑
i=1

επ(i) for all k = 1, . . . , n

where =d denotes equality in distribution. Hence, (3.6) of Theorem 3.1 yields the version
of the first claim of Theorem 1.4 when conditioning on M, and taking expectation over
M yields that result.

We now demonstrate the second claim under the assumption that 0 6∈ A, which
together with A finite implies that

ν = min
a∈A
|a| (3.30)
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is positive. With this value of ν the constants c1, c2 and θ2 as given by Theorem 2.2 depend
only on A, and let C,K1,K2 and λ0 be as given in (3.8) for this ν. As γ ≥ ν, conditional on
ε1, . . . , εn, inequality (3.6) of Theorem 3.1 holds for η = γ, and the argument is completed
by taking expectation over M as for the proof of the first claim.

For the last claim, under the hypotheses that ε1, . . . , εn are i.i.d. mean zero random
variables, since K1 depends only on A, by Lemma 2.6 there exists λ > 0 depending only
on A such that

E

(
K1λ

2S2
n

n

)
≤ 2.

Thus from the second claim of the theorem we obtain

E exp(λ max
0≤k≤n

|Wk −
√
nγBk/n|) ≤ 2 exp(C log n),

and applying Markov’s inequality yields

P

(
max

0≤k≤n
|Wk −

√
nγBk/n| ≥ λ−1C log n+ x

)
≤
E exp(λmax0≤k≤n |Wk −

√
nγBk/n|)

exp(C log n)
e−λx

≤ 2 exp(C log n)

exp(C log n)
e−λx = 2e−λx.

4 Proof of Theorem 1.3

In this final section we prove Theorem 1.3 by first demonstrating a ‘finite n version’
of the desired result in the following lemma.

Lemma 4.1. There exists a constant A such that for every finite set A of real numbers
not containing zero, there exists a constant λ > 0 such that for any positive integer n,
any ε, ε1, ε2, . . . , εn i.i.d. random variables with mean zero and variance one satisfying
Eε3 = 0 and taking values in A, and Sk =

∑k
i=1 εi, k = 1, . . . , n, it is possible to construct

a version of the sequence (Sk)0≤k≤n and Gaussian random variables (Zk)0≤k≤n with
mean zero and Cov(Zi, Zj) = i ∧ j on the same probability space such that

E exp(λ|Sn − Zn|) ≤ A (4.1)

and

E exp(λ max
0≤k≤n

|Sk − Zk|) ≤ A exp(A log n). (4.2)

Proof. As in Theorem 3.1 it suffices to prove the result with the maximum taken over
1 ≤ k ≤ n. Recall the positive constant θ1 from Theorem 2.1, the values ϑ`(X) from Lemma
2.6, B from (2.16), and let C,K1,K2 and λ0 be as in Theorem 1.4 for ν = mina∈A |a|. Set

λ = min

{
θ1
2
,
λ0
4
,
ϑ`(ε)

4
√
K1

,
ϑ`(ε2)√

2
,

1

B + 1

}
. (4.3)

Let gn(s) and hn(z) denote the mass function of Sn and the density of Zn respectively;
in particular hn(z) is just the N (0, n) density. By Theorem 2.1, as 2λ ≤ θ1, with Sn the
support of Sn, there is a joint probability function ψn(s, z) on Sn ×R such that∫

R

ψn(s, z)dz = gn(s),
∑
s∈Sn

ψn(s, z) = hn(z), (4.4)

and ∫
R

[∑
s∈Sn

exp(2λ|s− z|)ψn(s, z)

]
dz ≤ 8. (4.5)

EJP 21 (2016), paper 15.
Page 25/30

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4299
http://www.imstat.org/ejp/


On strong embeddings by Stein’s method

Given any multiset of values εεε = {ε1, . . . , εn} from A, let ρnεεε (s, z) be the joint density
function guaranteed by Theorem 3.1; from that result, the marginal distributions of s
and z are, respectively, fnεεε (s) as in (3.4), and φn(z), that of a mean zero Gaussian vector
with covariance (3.5).

For any s ∈ Sn, define

Bn(s) = {{ε1, ε2, . . . , εn} :
n∑
i=1

εi = s}.

Now, recalling the definition (3.3) of εεεs, for s ∈ Sn, s such that εεεs ∈ Bn(s), z ∈ R and
z̃ ∈ Rn, let

γn(s, z, s, z̃) = ψn(s, z)P (εεε = εεεs|Sn = s)ρnεεεs(s, z̃), (4.6)

where the multiset εεε on the right hand side is composed of n independent random
variables distributed as ε. Interpreting (4.6) in terms of a construction, to obtain
(S,Z,S, Z̃) one first samples the joint values S and Z of the coupled random walk
and Gaussian path at time n, then conditional on the terminal value S, one samples
increments εεε consistent with the path s from their i.i.d. distribution, and finally one
couples a walk S to the discrete Brownian bridge Z̃ in such a way that a certain multiple
of it and (W1, . . . ,Wn) given by

Wi = Si −
i

n
Sn (4.7)

are close.
To verify that (4.6) determines a probability function, recalling (3.2), note first that∑
s:εs∈Bn(s)

P (εεε = εεεs|Sn = s)ρnεεεs(s, z̃)

=
∑

δδδ∈Bn(s)

∑
s∈An

δδδ

P (εεε = δδδ|Sn = s)ρnδδδ (s, z̃) =
∑

δδδ∈Bn(s)

P (εεε = δδδ|Sn = s)
∑
s∈An

δδδ

ρnδδδ (s, z̃)

=
∑

δδδ∈Bn(s)

P (εεε = δδδ|Sn = s)φn(z̃) = φn(z̃).

Now by (4.4), ∑
s∈Sn

∑
s:εs∈Bn(s)

γn(s, z, s, z̃) = hn(z)φn(z̃), (4.8)

and integrating over z and z̃ yields 1.
Let (S,Z,S, Z̃) be a random vector sampled from γn(s, z, s, z̃), and define Z =

(Z1, . . . , Zn) by

Zi = Z̃i +
i

n
Z.

Using that Z and Z̃ are independent by (4.8), and that the latter has covariance given by
(3.5), it follows that Z is a mean zero Gaussian random vector with Cov(Zi, Zj) = i ∧ j.

Regarding the marginals of s, integrating (4.6) over z and z̃, with fnεεε (s) given by (3.4),
we obtain∫
Rn

∫
R

γn(s, z, s, z̃)dzdz̃ = gn(s)P (εεε = εεεs|Sn = s)fnεsεsεs(s) = P (εεε = εεεs)fnεsεsεs(s) = P (εεε = εεεs)
1

|Anεεεs |
.
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The first term is the likelihood that the independently generated increments correspond-
ing to those of s, while the second term is the chance that these increments will be
arranged by the uniform permutation in an order that produces s. Hence, the marginal
correspond to the distribution of S.

It only remains to show that the pair (S,Z) satisfies the bounds (4.1) and (4.2). Note
that for 1 ≤ i ≤ n, recalling (4.7), we have

|Si − Zi| =

∣∣∣∣ Wi +
i

n
S −

(
Z̃i +

i

n
Z

) ∣∣∣∣
≤ |Wi − Z̃i|+

i

n
|S − Z|. (4.9)

From (4.6), one can easily check that the conditional distribution of (S, Z̃) given (εεεS, Z) =

(εεε, z) is ρnεεε (s, z̃).
Let γ2 = n−1

∑n
i=1 ε

2
i and recall ν = mina∈A |a| > 0. As γ ≥ ν and 4λ ≤ λ0 by (4.3), we

may invoke Theorem 3.1 conditional on {εεε, Z}, and choosing η = γ we obtain

E(exp(4λ max
1≤i≤n

|Wi − γZ̃i|)
∣∣εεε, Z) ≤ exp

(
C log n+

16K1λ
2S2

n

n

)
, (4.10)

with C and K1 depending only on A. Applying the Cauchy-Schwarz inequality and (4.5),
as S and Z are measurable with respect to {εεε, Z}, from (4.9) we obtain

E exp(λ max
1≤i≤n

|Si − Zi|)

≤
[
E
(
E
(
exp(λ max

1≤i≤n
|Wi − Z̃i|)

∣∣εεε, Z))2E exp(2λ|S − Z|)
]1/2

≤
[
8E
(
E
(
exp(λ max

1≤i≤n
|Wi − Z̃i|)

∣∣εεε, Z))2]1/2. (4.11)

Using conditional Jensen’s inequality, the triangle inequality and the convexity of the
exponential function in the first three lines below, (4.10) yields(

E
(
exp(λ max

1≤i≤n
|Wi − Z̃i|)

∣∣εεε, Z))2

≤ E
(
exp(2λ max

1≤i≤n
|Wi − Z̃i|)

∣∣εεε, Z)
≤ 1

2
E
(
exp(4λ max

1≤i≤n
|Wi − γZ̃i|)

∣∣εεε, Z)+ 1

2
E
(
exp(4λ max

1≤i≤n
|γZ̃i − Z̃i|)

∣∣εεε, Z)
≤ 1

2
exp

(
C log n+

16K1λ
2S2

n

n

)
+

1

2
E
(
exp(4λ|γ − 1| max

1≤i≤n
|Z̃i|)

∣∣εεε, Z)
≤ exp(C log n) +

1

2
E
(
exp(4λ|γ − 1| max

1≤i≤n
|Z̃i|)

∣∣εεε, Z). (4.12)

For the first term in the fourth line, Lemma 2.6 yields

E exp

(
16K1λ

2S2
n

n

)
≤ 2,

since ε1 has mean zero, |ε1| ≤ B in (2.16) and 4
√
K1λ ≤ ϑ`(ε) by (4.3).

For the second term in (4.12), observe that conditional on (εεε, Z), Z̃ is a mean zero
multivariate Gaussian random vector with covariance given by (3.5). Equivalently,
conditional on (εεε, Z), the distribution of (Z̃i/

√
n)1≤i≤n is that of a Brownian bridge on
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[0, 1] sampled at times 1/n, 2/n, . . . , 1. Thus, letting Bt, t ∈ [0, 1] be a Brownian bridge
independent of (εεε, Z), since γ is a function of εεε, we have

E
(
exp(4λ|γ − 1| max

1≤i≤n
|Z̃i|)

∣∣εεε, Z)
=E
(
exp(4

√
nλ|γ − 1| max

1≤i≤n

|Z̃i|√
n
)
∣∣εεε, Z)

=E
(
exp(4

√
nλ|γ − 1| max

t∈[n]/n
|Bt|)

∣∣εεε, Z)
≤E
(
exp(4

√
nλ|γ − 1| max

0≤t≤1
|Bt|)

∣∣εεε, Z)
≤E
(
exp(4

√
nλ|γ − 1| max

0≤t≤1
Bt) + exp(4

√
nλ|γ − 1| max

0≤t≤1
(−Bt))

∣∣εεε, Z).
From [25], the distribution of X = max0≤t≤1Bt is given by

P (X ≤ x) = 1− exp(−2x2) for x ≥ 0.

Using this identity, and the fact that −Bt is also a Brownian bridge, it is straightforward
to show that for any real number a, we have

E
(
exp(a max

0≤t≤1
Bt) + exp(a max

0≤t≤1
(−Bt))

)
≤ 2 +

√
2πa exp(a2/8).

Thus, since Bt and γ are respectively independent of, and a function of, εεε, we obtain

E
(
exp(4λ|γ − 1| max

1≤i≤n
|Z̃i|)

∣∣εεε, Z)
≤2 +

√
2π4
√
nλ|γ − 1| exp

(
2λ2n(γ − 1)2

)
≤2 + 4(B + 1)

√
2πnλ exp

(
2λ2n(γ2 − 1)2

)
(4.13)

where in the last step, we used |γ − 1| ≤ B +1 where B is given by (2.16), and that γ ≥ 0

implies 1 ≤ (γ + 1)
2.

Since Eε21 = 1, we have n(γ2−1)2 =
(∑n

i=1(ε
2
i −Eε2i )

)2
/n and E(ε2i −Eε2i ) = 0. As ε2 ≤ B2

and 0 ≤
√
2λ ≤ ϑ`(ε2), by (4.3), Lemma 2.6 yields

E exp
(
2λ2n(γ2 − 1)2

)
≤ 2.

Additionally, since λ(B + 1) ≤ 1 by (4.3), taking expectation in (4.13) yields

E(exp(4λ|γ − 1| max
1≤i≤n

|Z̃i|)) = 2 + 8(B + 1)
√
2πnλ ≤ exp(C1 log n) (4.14)

for some universal constant C1.
Thus, by (4.11), (4.12) and (4.14), we have

E exp(λ max
1≤i≤n

|Si − Zi|)

≤
[
8E
(
exp (C log n) +

1

2
E
(
exp(4λ|γ − 1| max

1≤i≤n
|Z̃i|)

∣∣εεε, Z)])]1/2
≤81/2

[
exp(C log n) +

1

2
exp(C1 log n)

]1/2
≤A exp(A log n)

for some universal constant A, which we may take to be at least 8. The proof of (4.2)
is now complete. Lastly note that Z̃n = 0 implies Zn = Z, hence (4.5) yields (4.1) as
A ≥ 8.

Theorem 1.3 follows from Lemma 4.1 in exactly the same way as Theorem 1.5 follows
from Lemma 5.1 in [6], noting that the reasoning applied at this step does not depend on
the support of the summand variables of the random walk.
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