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Abstract

We consider measurable F : Ω×Rd → R where for any x the random variable F (·, x)

belongs to the Malliavin Sobolev space D1,2 (with respect to a Lévy process) and
provide sufficient conditions on F and G1, . . . , Gd ∈ D1,2 such that F (·, G1, . . . , Gd) ∈
D1,2.

The above result is applied to show Malliavin differentiability of solutions to BSDEs
(backward stochastic differential equations) driven by Lévy noise where the generator
is given by a progressively measurable function f(ω, t, y, z).
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1 Introduction

Backward stochastic differential equations (BSDEs) have been studied with growing
interest and from various perspectives. They appear in stochastic control theory, as
Feynman-Kac representation of second order semilinear PDEs, and have many applica-
tions in Finance and Insurance (see, for instance, El Karoui et al. [18], the survey paper
from Bouchard et al. [11] or Delong [13], and the references therein).

Pardoux and Peng have considered in [28] and [29] Forward Backward SDEs (FBSDEs)
of the form

Xs = x+

∫ s

t

a(Xr)dr +

∫ s

t

b(Xr)dWr

Ys = g(XT ) +

∫ T

s

f(Xr, Yr, Zr)dr +

∫ T

s

ZrdWr, t ≤ s ≤ T,

where W denotes the Brownian motion. Under suitable smoothness and boundedness
conditions on the coefficients they have shown that the two-parameter process DθYs is
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Malliavin derivative and applications to BSDEs

a.s. continuous in s ∈ [θ, T ] and, moreover, {DθYθ := lims↓θ DθYs : θ ∈ [t, T ]} is a version
of the process {Zs : s ∈ [t, T ]}. In this way, using the relation

Ys = E

[
g(XT ) +

∫ T

s

f(Xr, Yr, Zr)dr

∣∣∣∣∣FWs
]

it is possible to represent Z (with the right interpretation) as

(
DsE

[
g(XT ) +

∫ T

s

f(Xr, Yr, Zr)dr

∣∣∣∣∣FWs
])

s∈[t,T ]

.

These representations turned out to be useful in regularity estimates for Y and Z which
play an important role for estimates of convergence rates of time-discretizations (see,
for example, [10], [12], [11], [14]).

El Karoui et al. generalized in [18] this result to a class of progressively measurable
generators (ω, t) 7→ f(ω, t, y, z). Also in the Brownian setting, Ankirchner et al. [3] and
Mastrolia et al. [24] extended the result to generators of BSDEs with quadratic growth.

On the canonical Lévy space, Malliavin differentiability of BSDEs with jumps has
been considered by Delong in [13] and by Delong and Imkeller for delayed BSDEs in
[14].

In this paper, we first consider a measurable function F : Ω × Rd → R where
F (·, x) belongs to the Malliavin Sobolev space D1,2 for any x ∈ Rd. We ask for sufficient
conditions on F and G1, . . . , Gd ∈ D1,2 such that F (·, G1, . . . , Gd) ∈ D1,2. Our aim was
to find very general conditions such that the result is also applicable for BSDEs with
non-Lipschitz generators. As we work in the Lévy setting, the results hold of course
especially for the Brownian case. In this respect, we could generalize the conditions
given in [18, Theorem 5.3] by not imposing the finiteness of fourth moments on the
generator and the terminal condition (see Theorem 4.4 below). Moreover, we provide a
rigorous proof of the extended chain rule for the Malliavin derivative of F (·, G1, . . . , Gd)

in the Brownian case (see Theorem 3.12). Such a chain rule was already used in [18].
Compared with [13] or [14], we do not require a canonical Lévy space to state Malliavin
differentiability of BSDEs (Theorem 4.4).

The paper is organized as follows: Section 2 contains the setting and a collection of
used notation.

Section 3 starts with the definition of the Malliavin derivative in the Lévy setting. The
Malliavin calculus based on chaos expansions in the Lévy case has been treated in various
papers, e.g. by Løkka [23], Lee and Shih [22], Di Nunno et al. [17].In our paper, we recall
a method used in [32] which is related to Picard’s difference operator approach [31].
It allows to compute the Malliavin derivative Dt,x for x 6= 0 without knowing the chaos
expansion and without imposing the condition that the underlying probability space is
specified, e.g. as the canonical Lévy space from [35] or the probability space of Section
4 in [23]. Based on the fact that Dt,x for x 6= 0 and Dt,0 are of different nature we solve
the question about the Malliavin differentiability of F (·, G1, . . . , Gd) ∈ D1,2 in two steps:
In Subsection 3.3.1 we treat the question concerning Dt,x, x 6= 0, while Subsection 3.3.2
contains the case Dt,0. In the latter, we use the result from [36] that for the Brownian
motion the Malliavin Sobolev spaces DW1,p(E) with p > 1 (E denotes a separable Hilbert
space) coincide with the Kusuoka-Stroock Sobolev spaces which are defined using the
concept of ray absolute continuity and stochastic Gateaux differentiability.

In Section 4 we formulate the conditions on the BSDE such that it is Malliavin
differentiable, present the proof and give an example.
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Malliavin derivative and applications to BSDEs

2 Setting

Let X = (Xt)t∈[0,T ] be a càdlàg Lévy process on a complete probability space (Ω,F ,P)

with Lévy measure ν. We will denote the augmented natural filtration of X by (Ft)t∈[0,T ]

and assume that F = FT .
The Lévy-Itô decomposition of a Lévy process X can be written as

Xt = γt+ σWt +

∫
]0,t]×{|x|≤1}

xÑ(ds, dx) +

∫
]0,t]×{|x|>1}

xN(ds, dx), (2.1)

where σ ≥ 0, W is a Brownian motion and N (Ñ ) is the (compensated) Poisson random
measure corresponding to X.

The process (∫
]0,t]×{|x|≤1}

xÑ(ds, dx) +

∫
]0,t]×{|x|>1}

xN(ds, dx)

)

is the jump part of X and will be denoted by J . Note that the P-augmented filtrations
(FWt )t∈[0,T ] resp. (FJt )t∈[0,T ] generated by the processes W resp. J satisfy

FWt ∨ FJt = Ft,

(see [35, Lemma 3.1]) thus spanning the original filtration generated by X again.
Throughout the paper we will use the notation X(ω) = (Xt(ω))t∈[0,T ] for sample tra-
jectories. Let ∆X given by ∆Xt := Xt − lims↗tXs denote the process of the jumps of
X.

Let

µ(dx) := σ2δ0(dx) + ν(dx)

and

m(dt, dx) := (λ⊗ µ)(dt, dx)

where λ denotes the Lebesgue measure. We define the independent random measure (in
the sense of [19, p. 256]) M by

M(dt, dx) := σdWtδ0(dx) + Ñ(dt, dx) (2.2)

on sets B∈B([0, T ]×R) with m(B) <∞. It holds EM(B)2 =m(B).

In [35], Solé et al. consider the independent random measure σdWtδ0(dx)+xÑ(dt, dx).

Here, in order to match the notation used for BSDEs, we work with the equivalent
approach where the Poisson random measure is not multiplied with x.

We close this section with notation for càdlàg processes on the path space and for
BSDEs.

Notation: Skorohod space

• With D[0, T ] we denote the Skorohod space of càdlàg functions on the interval
[0, T ] equipped with the Skorohod topology. The σ-algebra B(D[0, T ]) is the Borel σ-
algebra i.e. it is generated by the open sets ofD[0, T ]. It coincides with the σ-algebra
generated by the family of coordinate projections (pt : D[0, T ]→ R, x 7→ x(t), t ≥ 0)

(see Theorem 12.5 of [8] for instance).

• For a measurable mapping Y: Ω→ D[0, T ], ω 7→ Y(ω), the probability measure PY

on (D[0, T ],B (D[0, T ])) denotes the image measure of P under Y.
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Malliavin derivative and applications to BSDEs

• For a fixed t ∈ [0, T ] the notation

xt(s) := x(t ∧ s), for all s ∈ [0, T ] (2.3)

induces the natural identification

D[0, t] =
{
x ∈ D[0, T ] : xt = x

}
.

By this identification we define a filtration on this space by

Gt = σ (B (D[0, t]) ∪NX [0, T ]) , 0 ≤ t ≤ T, (2.4)

where NX [0, T ] denotes the null sets of B (D[0, T ]) with respect to the image
measure PX of the Lévy process X. For more details on D[0, T ], see [8] and
[15, Section 4].

Notation for BSDEs

• For 1 ≤ p ≤ ∞ let Sp denote the space of all (Ft)-progressively measurable and
càdlàg processes Y : Ω× [0, T ]→ R such that

‖Y ‖Sp := ‖ sup
0≤t≤T

|Yt| ‖Lp <∞.

• We define L2(W ) as the space of all (Ft)-progressively measurable processes
Z : Ω× [0, T ]→ R such that

‖Z‖2L2(W ) := E

∫ T

0

|Zs|2 ds <∞.

• Let R0 := R\{0}. We define L2(Ñ) as the space of all random fields U : Ω× [0, T ]×
R0 → R which are measurable with respect to P ⊗ B(R0) (where P denotes the
predictable σ-algebra on Ω× [0, T ] generated by the left-continuous (Ft)-adapted
processes) such that

‖U‖2L2(Ñ) := E

∫
[0,T ]×R0

|Us(x)|2 dsν(dx) <∞.

• We define L2(M) by L2(M) := L2(W ) ⊕ L2(Ñ) which is the space of all random
fields Z : Ω× [0, T ]×R→ R which are measurable with respect to P ⊗ B(R) such
that

‖Z‖2L2(M) := E

∫
[0,T ]×R

∣∣Zs,x∣∣2m(ds, dx) <∞.

• L2(ν) := L2(R0,B(R0), ν).

• | · | denotes a norm in Rn.

• For later use we recall the notion of the predictable projection of a stochastic
process depending on parameters.

According to [33, Proposition 3] (see also [25, Proposition 3] or [2, Lemma 2.2])
for any z ∈ L2(P⊗m) := L2(Ω× [0, T ]×R,FT ⊗ B([0, T ]×R),P⊗m) there exists
a process

pz ∈ L2 (Ω× [0, T ]×R,P ⊗ B(R),P⊗m)

such that for any fixed x ∈ R the function (pz)·,x is a version of the predictable
projection (in the classical sense, see e.g. [2, Definition 2.1]) of z·,x. In the following
we will always use this result to get predictable projections which are measurable
w.r.t. a parameter. Again, we call pz the predictable projection of z.
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3 Malliavin calculus

3.1 Definition of D1,2 using chaos expansions

The random measure M defined in (2.2) allows to introduce the Malliavin derivative
defined via chaos expansions (see, for example, [34]) as follows: Any ξ ∈ L2 := L2(Ω,F ,P)

has a unique chaos expansion (see [19, Theorem 2])

ξ =

∞∑
n=0

In(f̃n)

and it holds

Eξ2 := ‖ξ‖2L2
=

∞∑
n=0

n!
∥∥∥f̃n∥∥∥2

Ln2

where the f̃n ∈ L̃n2 := L̃2 (([0, T ]×R)
n
,m⊗n) , the subspace of symmetric functions from

Ln2 := L2 (([0, T ]×R)
n
,m⊗n) , and In denotes the n-th multiple integral with respect to

M from (2.2). The multiple integrals with respect to M can be defined as follows: If
n = 0 set L0

2 := R and I0(f0) := f0 for f0 ∈ R. For n ≥ 1 we start with a simple function
fn ∈ Ln2 given by

fn ((t1, x1), . . . , (tn, xn)) =

m∑
k=1

ak

n∏
i=1

1IBki (ti, xi),

where the sets Bki ∈ B([0, T ] × R) for k = 1, . . . ,m, i = 1, . . . , n are disjoint for fixed k,
and m(Bki ) <∞ for all i and k. Then

In(fn) :=

m∑
k=1

ak

n∏
i=1

M(Bki ).

By denseness of these simple functions in Ln2 and by linearity and continuity of In, one
extends the domain of the n-fold multiple stochastic integral In to become a mapping
In : Ln2 → L2. It holds In(fn) = In(f̃n) where f̃n denotes the symmetrization of fn w.r.t. the
n pairs of variables in [0, T ]×R. For fn ∈ Ln2 and gm ∈ Lm2 we have

EIn(fn)Im(gm) =

{
n!
∫
([0,T ]×R)n

f̃ng̃ndm
⊗n, n = m,

0, n 6= m.

The space D1,2 consists of all random variables ξ ∈ L2 such that

‖ξ‖2D1,2
:=

∞∑
n=0

(n+ 1)!
∥∥∥f̃n∥∥∥2

Ln2

<∞.

The Malliavin derivative is defined for ξ ∈ D1,2 by

Dt,xξ :=

∞∑
n=1

nIn−1

(
f̃n ((t, x), · )

)
,

for P⊗m-a.a. (ω, t, x) ∈ Ω× [0, T ]×R. Thus Dξ ∈ L2(P⊗m).
We also consider

D0
1,2 :=

{
ξ =

∞∑
n=0

In(f̃n) ∈ L2 : f̃n ∈ L̃n2 , n ∈ N,

∞∑
n=1

(n+ 1)!

∫ T

0

‖f̃n((t, 0), ·)‖2
Ln−1
2

dt <∞
}

(3.1)
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and

DR0
1,2 :=

{
ξ =

∞∑
n=0

In(f̃n) ∈ L2 : f̃n ∈ L̃n2 , n ∈ N,

∞∑
n=1

(n+ 1)!

∫
[0,T ]×R0

‖f̃n((t, x), ·)‖2
Ln−1
2
m(dt, dx) <∞

}
.

If σ > 0 and ν 6= 0 it holds D1,2 = D0
1,2 ∩D

R0
1,2. (3.2)

3.2 From canonical to general probability spaces

Solé et al. introduced in [35] the canonical Lévy space and proved that for x 6= 0

the Malliavin derivative Dr,xξ (defined via chaos expansions) equals in this space an
increment quotient. We will discuss here how to transfer results about random variables
from the canonical Lévy space to any general probability space carrying a Lévy process
provided that the regarded σ -algebra is the completion of the one generated by the Lévy
process.

This technique is needed, since key theorems of this section, like Theorem 3.12,
will be proven on specific probability spaces. However, the formulation of its assertion
is possible also on general probability spaces. The validity of the assertion is then
guaranteed by the transfer technique given in Theorem 3.1. Hence, in Section 4, where
we apply this section’s theorems to BSDEs, we are not restricted to certain specific
probability spaces.

Assume (Ω1,F1,P1) , (Ω2,F2,P2) to be complete probability spaces with càdlàg Lévy
processes Xi = (Xi

t)t∈[0,T ], X
i
t : Ωi → R, such that Xi corresponds to a given Lévy triplet

(γ, σ, ν) for i = 1, 2. Furthermore, assume that Fi is the completion of the σ-algebra
generated by Xi. For the processes X1, X2, we get the associated independent random
measures M1 and M2 like in (2.2), and the families of multiple stochastic integrals(

I1n(fn)
)
n∈N ,

(
I2n(fn)

)
n∈N ,

respectively. The following assertion is taken from [32, Corollary 4.2], where it is
formulated for Lévy processes with paths in D[0,∞[.

Theorem 3.1. Let (E, E , ρ) be a σ-finite measure space and let

C1 ∈ L2 (Ω1 × E,F1 ⊗ E ,P1 ⊗ ρ) ,

C2 ∈ L2 (Ω2 × E,F2 ⊗ E ,P2 ⊗ ρ)

and suppose that these random fields have chaos decompositions

C1 =

∞∑
n=0

I1n(fn), P1 ⊗ ρ-a.e., C2 =

∞∑
n=0

I2n(gn), P2 ⊗ ρ-a.e.

for fn, gn being functions in L2(E, E , ρ)⊗̂Ln2 which are symmetric in the last n variables,
where ’⊗̂’ denotes the Hilbert space tensor product.

Assume that for ρ-almost all e ∈ E there are functionals

Fe : D ([0, T ])→ R

such that Ci(e) = Fe
(
(Xi

t)t∈[0,T ]

)
, Pi-a.s. for i = 1, 2. Then for all n ∈ N it holds fn = gn,

ρ⊗m⊗n-a.e.
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Roughly speaking, if we have the same functionals Fe acting on both Lévy processes
Xi defined on the probability spaces (Ωi,Fi,Pi) for i = 1, 2 then the deterministic kernels
of their chaos expansions coincide.

The Factorization lemma (see, for instance, [5, Section II.11]) implies that for any
ξ ∈ L2 there exists a measurable functional gξ : D([0, T ])→ R such that

ξ(ω) = gξ

(
(Xt(ω))0≤t≤T

)
= gξ(X(ω))

for a.a. ω ∈ Ω.

The following characterization that gξ(X) ∈ DR0
1,2 is a consequence from Alòs, León

and Vives [1, Corollary 2.3. and Lemma 2.1] (this results hold true for a general Lévy
measure since the square integrability of the Lévy process stated at the beginning of [1]
is in fact only used from [1, Section 2.4] on) and Theorem 3.1. For details see the proof
in [32, Theorem 5.1].

Lemma 3.2. If gξ(X) ∈ L2 then gξ(X) ∈ DR0
1,2 ⇐⇒

gξ(X + x1I[t,T ])− gξ(X) ∈ L2(P⊗m) (3.3)

and it holds then for x 6= 0 P⊗m-a.e.

Dt,xξ = gξ(X + x1I[t,T ])− gξ(X). (3.4)

Compared to the approach of [35] which uses the random measure σdWtδ0(dx) +

xÑ(dt, dx), here the according Malliavin derivative for x 6= 0 and M from (2.2) is just a
difference instead of the difference quotient from [35].

Applied on gξ(X(ω)) this gives in the canonical space

gξ(X(ωr,x))− gξ(X(ω)) = gξ(X(ω) + x1I[r,T ])− gξ(X(ω))

for P⊗m a.e. (ω, r, x).

In the situation of the previous lemma, one may ask whether properties of gξ(X) that
hold P-a.s. are preserved P⊗m-a.e. for gξ(X + x1I[t,T ]). The positive answer is given by
the following result (the proof can be found in the appendix).

Lemma 3.3. Let Λ ∈ GT be a set with P ({X ∈ Λ}) = 0. Then

P⊗m
({

(ω, r, v) ∈ Ω× [0, T ]×R0 : X(ω) + v1I[r,T ] ∈ Λ
})

= 0.

Corollary 3.4.

(i) Let f : D[0, T ]×R→ R be a measurable mapping such that P-a.s. y 7→ f(X(ω), y)

is a Lipschitz function with Lipschitz constant L independent from ω ∈ Ω. Then the
set

Λ := {x ∈ D[0, T ] : y 7→ f(x, y) is not Lipschitz in y with constant L}

satisfies P(X ∈ Λ) = 0. Lemma 3.3 implies that also

y 7→ f(X(ω) + v1I[r,T ], y)

is a Lipschitz function with constant L for P⊗m-a.e. (ω, r, v) ∈ Ω× [0, T ]×R0.

(ii) Let ξ = gξ(X) ∈ L∞(Ω). By the same reasoning as in (i), it follows from Lemma 3.3
that P⊗m-a.e. the random element gξ(X + v1I[r,T ]) is bounded.

Note that the boundedness of gξ(X + v1I[r,T ]) implies boundedness of the difference
in (3.4),

gξ(X + v1I[r,T ])− gξ(X),

which – in case of L2-integrability w.r.t. P⊗m – equals the Malliavin derivative for v 6= 0.
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3.3 Malliavin calculus for random functions

We want to address the following problem: Let

F : Ω×Rd → R

be jointly measurable, for any y ∈ Rd we assume F (·, y) ∈ D1,2, and for a.a. ω ∈ Ω let
F (ω, ·) ∈ C1(Rd). If G1, ..., Gd ∈ D1,2, under which assumption do we get

F (·, G1, ..., Gd) ∈ D1,2?

We will treat this question in two steps: First we will find conditions on F and
G = (G1, ..., Gd) such that

• F (·, G) ∈ DR0
1,2

• F (·, G) ∈ D0
1,2

separately and then use relation (3.2).

3.3.1 The case F (·, G) ∈ DR0
1,2

Lemma 3.5. Assume that F (·, y) ∈ DR0
1,2 for all y ∈ Rd, F (·, G) ∈ L2, andG1, ..., Gd ∈ DR0

1,2.

Let F (ω, ·) ∈ C(Rd) P-a.s. and let F be represented by the functional gF (X, ·). Then
F (·, G) ∈ DR0

1,2 ⇐⇒

(Dt,xF )(·, G)+ gF (X + x1I[t,T ], G+Dt,xG)− gF (X + x1I[t,T ], G)

∈ L2(Ω× [0, T ]×R0,P⊗m). (3.5)

Proof. By the expression (Dt,xF )(·, G) we mean that we insert the L2-vector (G1, . . . , Gd)

into the y-variable of Dt,xF (·, y). Furthermore, since by Lemma 3.3, expression gF (X(ω)+

x1I[t,T ], y) is continuous in y for P⊗m-a.e. (ω, t, x) ∈ Ω× [0, T ]×R0, taking equivalence
classes of

gF (X(ω) + x1I[t,T ], y) |y=(G1(ω)+Dt,xG1(ω),...,Gd(ω)+Dt,xGd(ω))

for representatives (G1(ω) +Dt,xG1(ω), . . . , Gd(ω) +Dt,xGd(ω)) leads to a well-defined
L0(P⊗m) object.

For the sufficiency, one can use the same arguments as for [32, Theorem 5.2]. There
the proof is carried out only for d = 1 but it is easy to see that the multidimensional case
can be proved in the same way.

For the necessity we consider G1, . . . , Gd as given by functionals gG1
, . . . , gGd and

conclude from Lemma 3.2 that

Dt,xF (·, y) = gF (X + x1I[t,T ], y)− gF (X, y).

Hence expression (3.5) equals in fact

gF (X + x1I[t,T ], G1 +Dt,xG1, ..., Gd +Dt,xGd)− gF (X,G1, ..., Gd)

= gF (X + x1I[t,T ], gG1(X + x1I[t,T ]), ..., gGd(X + x1I[t,T ]))− gF (X,G1, ..., Gd)

= Dt,xF (X,G1, ..., Gd)

where we have used Lemma 3.2 again.
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3.3.2 The case F (·, G) ∈ D0
1,2

The Lévy-Itô decomposition implies that the Brownian part and the pure jump part of a
Lévy process are independent. Thus we may represent a copy of X on the completion of
(ΩW × ΩJ ,FW ⊗FJ ,PW ⊗ PJ) as

Xt(ω) = γt+ σωWt + Jt(ωJ ), t ∈ [0, T ],

where ω = (ωW , ωJ ). Here (ΩW ,FW ,PW ) denotes the completed canonical Wiener space
i.e. ΩW := C0[0, T ] is the space of continuous functions starting in 0, and FW is the Borel
σ-algebra completed with respect to the Wiener measure PW . The space (ΩJ ,FJ ,PJ) is
a probability space carrying the pure jump process J , where FJ is generated by J and
completed.

To work on the canonical space (ΩW ,FW ,PW ) we continue with a short reminder
on Gaussian Hilbert spaces and refer the reader for more information to Janson [20].
Consider the Gaussian Hilbert space H :=

{ ∫ T
0
h(s)dWs : h ∈ L2[0, T ]

}
. Because of Itô’s

isometry we may identify H with

H0 := L2[0, T ].

The space

H1 :=

{∫ ·
0

h(s)ds : h ∈ L2[0, T ]

}
with 〈

∫ ·
0
h1(s)ds,

∫ ·
0
h2(s)ds〉H1

:=
∫ T
0
h1(s)h2(s)ds is the Cameron-Martin space. For h ∈

H0 we have gh ∈ H1 with

gh(t) := E

(∫ T

0

h(s)dWsWt

)
=

∫ t

0

h(s)ds.

The main idea to get sufficient conditions for F (·, G) ∈ D0
1,2 consists in applying

Theorem 3.10 below. We proceed with a collection of definitions and some facts related
to this theorem.

In the sequel let E be a separable Hilbert space.

Definition 3.6 ([36], [27]). Let 1 ≤ p <∞ and S ⊆ D1,p(P
W ) be a dense set of smooth

random variables. By DW1,p(E) we denote the completion of

{ξ =

n∑
k=1

GkHk : Gk ∈ S, Hk ∈ E}

with respect to the norm

‖ξ‖1;E :=

(
E‖ξ‖pE + E

∫ T

0

‖ DW
t ξ‖

p
Edt

) 1
p

where DW
t ξ :=

∑n
k=1(DW

t Gk)Hk.

Note that L2(ΩJ ,FJ ,PJ) is a separable Hilbert space, and that the space DW1,2(E) for
E := L2(ΩJ ,FJ ,PJ) can be identified with D0

1,2 defined in (3.1) (see [1]). This means
we may reformulate the question posed in the beginning of this section by asking for
sufficient conditions such that

F (·, G) ∈ DW1,2(E).

The answer will be Theorem 3.12 at the end of this section.
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Malliavin derivative and applications to BSDEs

Let E1 and E2 be separable Hilbert spaces. A bounded linear operator A : E1 → E2

is is called Hilbert-Schmidt operator if for some orthonormal basis {en} in E1 it holds

‖A‖HS(E1,E2) :=

( ∞∑
n=1

‖Aen‖2E2

) 1
2

<∞

(see, for example, [9]). We will denote by HS(H0, E) the space of Hilbert-Schmidt
operators between H0 and E.

Definition 3.7 ([20],[9]). With L0(PW ;E) we denote the space of E-valued random
variables, equipped with the topology of convergence in probability.

For ξ ∈ L0(PW ;E) and h ∈ H0 we define the Cameron-Martin shift by

ρh(ξ)(ωW ) := ξ(ωW + gh).

One of the properties of the Cameron-Martin shift is the Cameron-Martin formula.
(For an integral of E-valued objects, we always use the Bochner integral.)

Lemma 3.8.

(i) (Cameron-Martin formula). PW ∼ PW ◦ ρ−1h for h ∈ H0, and the Radon-Nikodym
derivative is given by

dPW ◦ ρ−1h
dPW

(ωW ) = exp

{
− 1

2

∫ T

0

h(t)2dt−
∫ T

0

h(t)dWt

}
.

(ii) If K ∈ Lp(PW ;E) for some p > 1 then for any q ∈ [1, p[∥∥∥∥∫ T

0

ρshKds

∥∥∥∥
Lq(PW ;E)

≤
∫ T

0

exp

{
s2

2(p− q)
‖h‖2H0

}
ds ‖K‖Lp(PW ;E).

(iii) For every ξ ∈ L0(PW ;E) the map H0 → L0(PW ;E) : h 7→ ρh(ξ) is continuous.

Proof. (i) See Kuo [21, Theorem 1.1].
(ii) Analogously to the proof of Theorem 14.1 (vi) in Janson [20] for 1 ≤ q < p we

choose r = p
p−q so that 1

r + q
p = 1, and by the Cameron-Martin formula and Hölders

inequality we get∥∥∥∥∫ T

0

ρshKds

∥∥∥∥
Lq(PW ;E)

≤
∫ T

0

(
E‖ρshK‖qE

) 1
q ds

=

∫ T

0

(
E exp

{
s

∫ T

0

h(t)dWt −
s2

2
‖h‖2H0

}
‖K‖qE

) 1
q

ds

≤ ‖K‖Lp(PW ;E)

∫ T

0

(
E exp

{
sr

∫ T

0

h(t)dWt −
s2r

2
‖h‖2H0

}) 1
rq

ds

= ‖K‖Lp(PW ;E)

∫ T

0

(
exp

{
s2(r2 − r)

2
‖h‖2H0

}) 1
rq

ds

= ‖K‖Lp(PW ;E)

∫ T

0

exp

{
s2

2(p− q)
‖h‖2H0

}
ds.

(iii) This assertion is formulated for real valued random variables in [20, Theorem
14.1 (viii)] but in [20, Remark 14.6] it is stated that it holds for random variables with
values in a separable Banach space.
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Definition 3.9 ([20],[9]). (i) A random variable ξ ∈ L0(PW ;E) is absolutely continu-
ous along h ∈ H0 (h-a.c.) if there exists a random variable ξh ∈ L0(PW ;E) such that
ξh = ξ a.s. and for all ωW∈ ΩW the map

u 7→ ξh(ωW+ u gh)

is absolutely continuous on bounded intervals of R.

(ii) ξ ∈ L0(PW ;E) is ray absolutely continuous (r.a.c.) if ξ is h-a.c. for every h ∈ H0.

(iii) For ξ ∈ L0(PW ;E) and h ∈ H0 we say the directional derivative ∂hξ ∈ L0(ΩW ;E)

exists if

ρuh(ξ)− ξ
u

→P
W

∂hξ, u→ 0.

(iv) ξ ∈ L0(PW ;E) is called stochastically Gâteaux differentiable (s.G.d.) if ∂hξ exists
for every h ∈ H0 and there exists an HS(H0, E)-valued random variable denoted by
D̃ξ such that for every h ∈ H0

∂hξ = 〈D̃ξ, h〉H0
, PW -a.s.

According to Sugita [36], the Malliavin Sobolev spaces DWn,p(E) for n ∈ N, 1 <

p < ∞ and the Kusuoka-Stroock Sobolev spaces defined via the properties r.a.c. and
s.G.d. coincide. According to Bogachev [9] this holds also for p = 1. Here we only use
the assertion for n = 1:

Theorem 3.10 ( [36, Theorem 3.1], [9, Proposition 5.4.6 (iii)] ). Let p ∈ [1,∞[. Then

DW1,p(E)={ξ ∈ Lp(P
W;E) : ξ is r.a.c., s.G.d. and D̃ξ ∈ Lp(P

W;HS(H0;E))},

and for ξ ∈ DW1,p(E) it holds DW ξ = D̃ξ a.s.

We will also need the following result.

Theorem 3.11. For h ∈ H0 and ξ ∈ L0(ΩW ;E) it holds

ξ is
h-a.c

⇐⇒



(i) ∂hξ exists
(ii)∀u ∈ R : ρuhξ(ωW)− ξ(ωW) =

∫ u
0
ρsh(∂hξ)(ωW)ds

PW-a.s.,

where
∫ |u|
−|u| ‖ρsh(∂hξ)(ωW)‖E ds <∞ PW -a.s.

and (s, ωW) 7→ ρsh(∂hξ)(ωW) denotes a jointly
measurable version.

Proof. For E = R this is Theorem 15.21 of [20]. One can generalize the proof to E-valued
random variables since by the Radon-Nikodym property of E (see [16, Corollary IV.1.4]),
the fundamental theorem of calculus holds for absolutely continuous functions if Bochner
integrals are used.

With the above preparations we are now able to find sufficient conditions for F (·, G) ∈
DW1,2(E).

Theorem 3.12. Assume that E = L2(ΩJ ,FJ ,PJ) and

(Ω,F ,P) = (ΩW × ΩJ ,F ,PW ⊗ PJ),

where F is the completion of FW ⊗FJ . Let

F : Ω×Rd → R

be jointly measurable and G1, ..., Gd ∈ DW1,q(E) for some q ≥ 1. Suppose that p > 1 and
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(i) F (ω, ·) ∈ C1(Rd) for a.a. ω ∈ Ω,

(ii) for all y ∈ Rd : F (·, y) ∈ DW1,p(E),

(iii) for each N ∈ N, ∃KN ∈
⋃
r>1 Lr(P) such that for a.a. ω it holds:

∀y, ỹ ∈ BN (0) := {x ∈ Rd : |x| ≤ N} :

‖(DWF (·, y))(ω)− (DWF (·, ỹ))(ω)‖H0
≤ KN (ω)|y − ỹ|,

(iv) (DWF )(·, G1, ..., Gd) ∈ Lp(P
W ;HS(H0, E)) and

d∑
k=1

∂

∂yk
F (·, G1, ..., Gd)DWGk ∈ Lp(P

W ;HS(H0, E)).

Then
F (·, G1, ..., Gd) ∈ DW1,p(E)

and

DWF (·, G1, ..., Gd) = (DWF )(·, G1, ..., Gd) +

d∑
k=1

∂

∂yk
F (·, G1, ..., Gd)DWGk

in Lp(P
W ;HS(H0, E)).

Remark 3.13. In Theorem 3.12 it is possible to use also

(iii)’ ∀ε > 0 ∃δε(y) > 0 : ∀ω ∈ Ω,∀ỹ ∈ Bδε(y) :

‖(DWF (·, y))(ω)− (DWF (·, ỹ))(ω)‖H0 ≤ ε.

instead of (iii). Neither of both assumptions implies the other one.

Proof. Step 1. We will use the characterization of DW1,p(E) from Theorem 3.10. In fact,
we will prove for any u ∈ R and h ∈ H0 the relations

ρuhF (ωW, G(ωW))− F (ωW, G(ωW)) =

∫ u

0

ρsh(∂hF )(ωW, G(ωW))ds, PW -a.s.,

(∂hF )(·, G) = 〈(DWF )(·, G) +∇yF (·, G) · DWG, h〉H0
, P-a.s.

(3.6)

where the first equation is E-valued with G = (G1, . . . , Gd), and the second equation is
scalar with ∇y = ( ∂

∂y1
, . . . , ∂

∂yd
).

Since by assumption (iv)

(DWF )(·, G) +∇yF (·, G) · DWG ∈ Lp(P
W ;HS(H0, E))

we infer that
∫ |u|
−|u| ‖ρsh(∂hF )(·, G)‖Eds < ∞, PW -a.s and according to Theorem 3.11 it

follows from the first line of (3.6) that F (·, G) is r.a.c. From the second line of (3.6) we
get that F (·, G) is s.G.d. and

D̃F (·, G) = (DWF )(·, G) +∇yF (·, G) · DWG

in Lp(P
W ;HS(H0, E)). Together with Theorem 3.10 this would imply the assertion of

the theorem. So it remains to show the relations in (3.6) which will be done in Steps 2
and 3.

Step 2. Since F (·, y) ∈ DW1,p(E) we have by Theorem 3.10 that F (·, y) is r.a.c. and

DWF (·, y) = D̃F (·, y) ∈ Lp(P
W ;HS(H0, E)).
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Hence by Theorem 3.11 for each u ∈ R and h ∈ H0 the E-valued equation

F (ωW+ ugh, y)− F (ωW, y) =

∫ u

0

ρsh〈(DWF (·, y))(ωW), h〉H0
ds,

holds for all ωW up to an exception set Cy ∈ FW with PW (Cy) = 0. Consequently, for
each u ∈ R and h ∈ H0 we have the real-valued equation (where we use the notation
ρuh(ω) = (ωW + ugh, ωJ ))

F (ρuh(ω), y)− F (ω, y) =

∫ u

0

ρsh〈(DWF (·, y))(ω), h〉H0
ds, (3.7)

for all ω with the exception of a set C̄y ∈ F with P(C̄y) = 0. Since the LHS is a.s. contin-
uous in y, we can find an exception set C̄ ∈ F with P(C̄) = 0, which is independent of
y, provided that we can show a.s. continuity in y of the RHS. To do this we estimate for
y, ỹ ∈ BN (0) the expression∣∣∣∣ ∫ u

0

ρsh〈(DWF (·, ỹ))(ω), h〉H0
ds−

∫ u

0

ρsh〈(DWF (·, y))(ω), h〉H0
ds

∣∣∣∣
≤

∣∣∣∣ ∫ u

0

ρsh〈(DWF (·, ỹ))(ω)− (DWF (·, y))(ω), h〉H0
ds

∣∣∣∣
≤ ‖h‖H0

∫ u

0

‖(DWF (·, ỹ))(ωW+ sgh, ωJ)− (DWF (·, y))(ωW+ sgh, ωJ)‖H0ds

≤ ‖h‖H0
|y − ỹ|

∫ u

0

KN (ωW+ sgh, ωJ)ds.

Since by Lemma 3.8
∫ u
0
ρshKNds <∞, P-a.s., it follows that for a.a. ω the RHS of (3.7)

is continuous in y. Consequently, on Ω\C̄ ∈ F relation (3.7) is true for all y ∈ Rd. Putting
the terms to zero on C̄, the right hand side of (3.7) is jointly measurable w.r.t. (ω, y). We
may replace y by G(ω) := (G1(ω), . . . , Gd(ω)) and get

F (ρuh(ω), G(ω))− F (ω,G(ω)) =

∫ u

0

〈(DWF )(ρsh(ω), G(ω)), h〉H0
ds, P- a.s. (3.8)

So far the Cameron-Martin shift ρuh acts only on the first variable of F (ω,G(ω)). In the
following step we derive the representation for ρuhF (ω,G(ω)).

Step 3. We show that F (·, G) is r.a.c. For this we choose an interval [0, t1], t ∈ [0, t1],

let 0 = s0 < s1 < ... < sn = t1 and consider for stk := sk ∧ t the expression

ρthF (ω,G(ω))− F (ω,G(ω)) =

n∑
k=1

ρstkhF (ω,G(ω))− ρstk−1h
F (ω,G(ω)). (3.9)

For any b := stk and a := stk−1 we derive from (3.8) and the mean-value theorem that a.s.

ρbhF (ω,G(ω))− ρahF (ω,G(ω))

= [F (ρbh(ω), G(ρbh(ω)))− F (ρah(ω), G(ρbh(ω)))]

+[F (ρah(ω), G(ρbh(ω)))− F (ρah(ω), G(ρah(ω)))]

=

∫ b

a

〈(DWF )(ρsh(ω), G(ρbh(ω))), h〉H0
ds

+∇yF (ρah(ω), G(ρah(ω)) + θ[G(ρbh(ω))−G(ρah(ω))])

·[G(ρbh(ω))−G(ρah(ω))]
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for some θ ∈ [0, 1]. We may write the last term because F (ω, y) is C1 w.r.t. y. Similarly to
(3.7) , for each Gl ∈ DW1,q(E), we have for all t ∈ R and h ∈ H0 that

ρthGl(ω)−Gl(ω) =

∫ t

0

〈(DWGl)(ρsh(ω)), h〉H0
ds, P-a.s.

with m(ω) := max
l

∫ t1

0

|ρsh〈(DWGl)(ω), h〉H0
|ds <∞. (3.10)

To obtain (3.6) we rewrite (3.9) in the following way

ρthF (ω,G(ω))− F (ω,G(ω))

=

∫ t

0

ρsh[〈(DWF )(ω,G(ω)), h〉H0 + 〈∇yF (ω,G(ω)) · (DWG)(ω), h〉H0 ]ds

+

n∑
k=1

remainder terms.

The remainder terms are given by∫ stk

stk−1

ρsh〈(DWF )(ω,G(ρ(stk−s)h(ω)))− (DWF )(ω,G(ω)), h〉H0
ds

+

∫ stk

stk−1

{ρstk−1h
∇yF ((ω), G(ω) + θ[ρ(stk−stk−1)h

G(ω)−G(ω)])

−ρstk−1h
∇yF (ω,G(ω))} · ρsh∂hG(ω)ds

+

∫ stk

stk−1

{ρstk−1h
∇yF (ω,G(ω))− ρsh∇yF (ω,G(ω))}ρsh∂hG(ω)ds

= I1 + I2 + I3,

where we use ∂hG(ω) := 〈(DWG)(ω), h〉H0 as an abbreviation. It is sufficient to show
that the sum of the remainder terms tends in probability to zero for a fixed sequence
of partitions with ‖(st,nk )‖ := max1≤k≤n |st,nk − s

t,n
k−1| → 0. Because of (3.10), for arbitrary

ε1 > 0 one can choose ‖(st,nk )‖ sufficiently small such that for all s ∈ [st,nk−1, s
t,n
k ]

|ρst,nk hGl(ω)− ρshGl(ω))| ≤
∫ st,nk

s

|〈ρrh(DWGl)(ω), h〉|dr < ε1.

For ω with supst,nk−1≤s≤s
t,n
k
|ρshG(ω)| ≤ N assumption (iii) implies

|〈(DWF )(ρsh(ω), G(ρst,nk h(ω)))− (DWF )(ρsh(ω), G(ρsh(ω))), h〉H0 |
≤ ‖h‖H0

KN (ρsh(ω)) |G(ρst,nk h(ω))−G(ρsh(ω))|
≤ ‖h‖H0

KN (ρsh(ω)) ε1.

Since Lemma 3.8 (ii) implies that
∫ st,nk
st,nk−1

ρshKN (ω)ds < ∞ a.s. we have I1 → 0 a.s. for

‖(st,nk )‖ → 0.
To estimate I2 we conclude from assumption (i) that for a.a. ω it holds for all n and

k = 1, ..., n that F (ρst,nk−1h
ω, ·) ∈ C1(Rd). For any such ω and arbitrary ε2 > 0 we have

|ρst,nk−1h{∇yF (ω,G(ω) + θ[ρ(st,nk −s
t,n
k−1)h

G(ω)−G(ω)])−∇yF (ω,G(ω))}|<ε2

if only ‖(st,nk )‖ is small enough.
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For the remaining integral I3 we proceed as follows: By Lemma 3.8 (iii) the map

[0, t1] 3 s 7→ ρsh∇yF (ωW, G(ωW)) ∈ L0(PW ;E)

is uniformly continuous, which then also holds for

[0, t1] 3 s 7→ ρsh∇yF (ω,G(ω)) ∈ L0(P).

Therefore,

n∑
k=1

∣∣∣∣ ∫ st,nk

st,nk−1

[
ρst,nk−1h

∇yF (ω,G(ω))− ρsh∇yF (ω,G(ω))
]
· ρsh(∂hG)(ω)ds

∣∣∣∣
≤ max

1≤k≤n
sup

st,nk−1≤r≤s
t,n
k

∣∣ρst,nk−1h
∇yF (ω,G(ω))− ρrh∇yF (ω,G(ω))

∣∣
×
∫ t

0

|ρsh(∂hG)(ω)|ds

→P 0 for ‖(st,nk )‖ → 0.

4 Malliavin derivative of solutions to BSDEs

In this section we apply our theorems on Malliavin differentiability of random func-
tions to generators of BSDEs. As a result we state in Theorem 4.4 that under conditions
on the smoothness of the data (ξ, f) solutions to BSDEs are Malliavin differentiable.
For simplicity, we set σ = 1 in (2.1). The assertions hold true (with the appropriate
modifications) if at least one of them, σ or the Lévy measure ν, are non-zero.

For 0 ≤ t ≤ T we consider the BSDE

Yt = ξ +

∫ T

t

f

(
X, s, Ys, Zs,

∫
R0

g(Us(x))g1(x)ν(dx)

)
ds−

∫ T

t

ZsdWs

−
∫
]t,T ]×R0

Us(x)Ñ(ds, dx), (4.1)

with f : D[0, T ]× [0, T ]×R3 → R. The conditions on g and g1 are specified in (Afg) below
and ensure that the integral is well-defined. We use the abbreviations

[g(u)]ν :=

∫
R0

g(u(x))g1(x)ν(dx) (4.2)

where u : R0 → R denotes a measurable function, and

fg(h, s, y, z, u) := f(h, s, y, z, [g(u)]ν),

so that∫ T

t

f

(
X, s, Ys, Zs,

∫
R0

g(Us(x))g1(x)ν(dx)

)
ds =

∫ T

t

fg (X, s, Ys, Zs, Us) ds.

The motivation to consider an expression of this form arises from [26] and [7] where
BSDEs related to utility maximization have been investigated. However, to show Malli-
avin differentiability, our expression had to be chosen in a simpler way. For the above
expression, when g is the identical map, Malliavin differentiability of (Y, Z, U) has been
stated in [13, Theorem 3.5.1].

For shortness of notation, we define

Zs,x :=

{
Zs, x = 0,

Us(x), x 6= 0
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to write ∫ T

t

ZsdWs +

∫
]t,T ]×R0

Us(x)Ñ(ds, dx) =

∫
]t,T ]×R

Zs,xM(ds, dx).

For the terminal value ξ and the function fg we agree upon the following assumptions:

(Aξ) ξ ∈ D1,2.

(Af ) a) f : D[0, T ]× [0, T ]×R3 → R is jointly measurable, adapted to (Gt)t∈[0,T ] defined
in (2.4).

b) E
∫ T
0
|f(X, t, 0, 0, 0)|2 dt <∞.

c) f(X, ., .) ∈ C([0, T ]×R3) P-a.s. and f satisfies the following Lipschitz condition:
There exists a constant Lf such that for all t ∈ [0, T ], η, η̃ ∈ R3

|f (X, t, η)− f (X, t, η̃) | ≤ Lf |η − η̃|,

P-a.s.

d) For all t ∈ [0, T ] and i = 1, 2, 3, ∃ ∂ηif(X, t, η) P-a.s. and the functions

[0, T ]×R3 3 (t, η) 7→ ∂ηif(X, t, η)

are P-a.s. continuous.

e) f(X, t, η) ∈ D1,2 for all (t, η) ∈ [0, T ]×R3, and ∀t ∈ [0, T ], ∀N ∈ N ∃Kt
N ∈

⋃
p>1 Lp

such that for a.a. ω

∀η, η̃ ∈ BN (0) :

‖ (D.,0f(X, t, η)) (ω)− (D.,0f(X, t, η̃)) (ω)‖H0 < Kt
N (ω) |η − η̃| ,

where for D.,0f(X, t, η) we always take a progressively measurable version in t.

f) Assume there is a random field Γ ∈ L2(P⊗m), such that for all random vectors
G ∈ (L2)3 and for a.e. t it holds

|(Ds,xf) (t, G)| ≤ Γs,x, P⊗m-a.e.

where (Ds,xf) (t, G) := Ds,xf(X, t, η) |η=G .

g) g ∈ C1(R) with bounded derivative and g1 ∈ L2(R0,B(R0), ν).

A triple (Y,Z, U) ∈ S2 × L2(W ) × L2(Ñ) which satisfies (4.1) is called a solution to the
BSDE (4.1).

Remark 4.1. 1. For a function F : Ω × [0, T ] × R3 → R being jointly measurable,
adapted to (Ft)t∈[0,T ] one can always find a function f as in (Afa), such that P-a.s.
the equation

F (ω, ·, ·) = f(X(ω), ·, ·)

holds. Furthermore, for all t ∈ [0, T ], η ∈ R3 the equation

F (ω, t, η) = f
(
Xt(ω), t, η

)
P-a.s.

is satisfied ( for a proof see [15, Theorem 4.9.], [32, Lemma 3.2., Theorem 3.3.],
and for the notation Xt(ω) recall (2.3)). In particular, for functions satisfying (Afa)
it holds

f
(
ht, t, η

)
= f (h, t, η) PX -a.s.

for all t ∈ [0, T ], η ∈ R3.
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Malliavin derivative and applications to BSDEs

2. Assumption (Af f) is, in fact, stronger than needed in Theorem 4.4 below. It is
enough to require that |(Ds,xf) (t, G)| ≤ Γs,x, P ⊗ m-a.e. holds for the solution
G = (Yt, Zt, Ut) and for the members G = (Y nt , Z

n
t , U

n
t ) of the approximating

sequence appearing in the proof of Theorem 4.4. With this more general assumption
one can study, for example, BSDEs with linear generators with random coefficients.

3. The assumption (Afg) on g can be extended to a dependency on t and ω. Also g1
may be assumed to be time-dependent. To keep the same proof of Theorem 4.4
feasible, we have to impose conditions (Afa-f) on g (with R3 replaced by R as g
is then a random process with one parameter). Furthermore, we have to assume
that g1 : [0, T ]×R0 → R is Borel measurable and that ‖g1(t, .)‖L2(ν) is bounded in
t ∈ [0, T ].

To cover the issue of existence of solutions to BSDEs we refer to the following result:

Theorem 4.2 ([37], Lemma 2.4). Assume (ξ, f) satisfies the assumptions ξ ∈ L2 and
(Afa-c). Then the BSDE (4.1) has a unique solution (Y, Z, U) ∈ S2 × L2(W )× L2(Ñ).

We cite the stability result of Barles, Buckdahn and Pardoux ([6]) comparing the
distance between solutions to the BSDE (4.1) with different terminal conditions and
generators.

Theorem 4.3 ([6], Proposition 2.2). Assume that (ξ, fg) and (ξ′, f ′g) satisfy ξ, ξ′ ∈ L2 and
suppose the generators fulfill (Afa-c), while g is Lipschitz and g1 ∈ L2(R0,B(R0), ν).

Then there exists a constant C > 0 such that for the corresponding solutions (Y, Z, U)

and (Y ′, Z ′, U ′) to (4.1) it holds

‖Y − Y ′‖2S + ‖Z − Z ′‖2L2(W ) + ‖U − U ′‖2
L2(Ñ)

≤ C

(
‖ξ − ξ′‖2L2

+

∫ T

0

‖fg (X, s, Ys, Zs, Us)− f ′g (X, s, Ys, Zs, Us) ‖2L2
ds

)
.

We state now the result about the Malliavin derivative of solutions to BSDEs. For
the proof we apply Itô’s formula like in the original work due to Pardoux and Peng [28]
or in Ankirchner et al. [3]. The benefit is that one does not need any higher moment
conditions on the data than L2. Hence this result is a generalization of El Karoui et
al. [18, Theorem 5.3]. It is also more general than [13, Theorem 3.5.1] of Delong: For
example, we do not require a canonical Lévy space, the Lévy process does not need to
be square integrable, and the generator in (4.1) allows some nonlinear structure w.r.t.
Us(x) thanks to the function g.

Theorem 4.4. Assume (Aξ) and (Af ). Then the following assertions hold.

(i) For m- a.e. (r, v) ∈ [0, T ] × R there exists a unique solution (Yr,v,Zr,v,Ur,v) ∈
S2 × L2(W )× L2(Ñ) to the BSDE

Yr,vt = Dr,vξ +

∫ T

t

Fr,v (s,Yr,vs ,Zr,vs ,Ur,vs ) ds

−
∫
]t,T ]×R

Zr,vs,xM(ds, dx), 0 ≤ r ≤ t ≤ T

Yr,vs = Zr,vs = Ur,vs = 0, 0 ≤ s < r ≤ T, (4.3)

where

Zr,vs,x :=

{
Zr,vs , x = 0

Ur,vs (x), x 6= 0,
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and

Fr,v(s, y, z, u) :=



(Dr,0fg) (s, y, z, u)

+〈∇f(X, s, Ys, Zs, [g(Us)]ν), (y, z, [g′(Us)u]ν )〉, v = 0

fg
(
X + v1I[r,T ], s, Ys + y, Zs + z, Us + u

)
−fg (X, s, Ys, Zs, Us), v 6= 0,

with ∇ = (∂η1 , ∂η2 , ∂η3).

(ii) For the solution (Y, Z, U) of (4.1) it holds

Y, Z ∈ L2([0, T ];D1,2), U ∈ L2([0, T ]×R0;D1,2), (4.4)

and Dr,yY admits a càdlàg version for m- a.e. (r, y) ∈ [0, T ]×R.

(iii) (DY,DZ,DU) is a version of (Y,Z,U), i.e. for m- a.e. (r, v) it solves

Dr,vYt =Dr,vξ +

∫ T

t

Fr,v (s,Dr,vYs,Dr,vZs,Dr,vUs) ds (4.5)

−
∫ T

t

Dr,vZsdWs −
∫
]t,T ]×R0

Dr,vUs(x)Ñ(ds, dx), 0 ≤ r ≤ t ≤ T.

(iv) Setting Dr,vYr(ω) := limt↘r Dr,vYt(ω) for all (r, v, ω) for which Dr,vY is càdlàg and
Dr,vYr(ω) := 0 otherwise, we have

p (
(Dr,0Yr)r∈[0,T ]

)
is a version of (Zr)r∈[0,T ],

p (
(Dr,vYr)r∈[0,T ],v∈R0

)
is a version of (Ur(v))r∈[0,T ],v∈R0

.

We present an example of a FBSDE where we specify the dependence on ω in the
generator by a forward process such that (Af f) holds.

Example 4.5. Consider the case of a Lévy process X such that E|Xt|2 < ∞ for all
t ∈ [0, T ]. Assume the generator to be of the type

f(s, ω, y, z, u) = f̃(s,Ψs(ω), y, z, u),

with f̃ having a continuous partial derivative in the second variable bounded by K.
Assume further that this partial derivative is locally Lipschitz in (y, z, u). Let Ψ denote a
forward process given by the SDE

dΨs = b(Ψs)ds+ σ(Ψs)dWs + β(Ψs−, x)Ñ(ds, dx)

with Ψ0 ∈ R. Then conditions (Afe), (Af f) are satisfied under the requirements

(i) The functions b : R→ R and σ : R→ R are continuously differentiable with bounded
derivative.

(ii) β : R×R0 → R is measurable, satisfies

|β(ψ, x)| ≤ Cβ(1 ∧ |x|), (ψ, x) ∈ R×R0,∣∣∣β(ψ, x)− β(ψ̂, x)
∣∣∣ ≤ Cβ |ψ − ψ̂|(1 ∧ |x|), (ψ, x), (ψ̂, x) ∈ R×R0,

and is continuously differentiable in ψ for fixed x ∈ R0.
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This follows, since (Ds,xf) (t, G) is given by

(Ds,xf) (t, G) =

{
f̃ψ(t,Ψt, G)Ds,xΨt, x = 0,

f̃(t,Ψt +Ds,xΨt, G)− f̃(t,Ψt, G), x 6= 0,

implying
|(Ds,xf) (t, G)| < K |Ds,xΨt| .

Theorem [13, Theorem 4.1.2] states that under the above conditions on b, σ and β,

sup
r,v
E sup
s∈[0,T ]

∣∣∣∣Dr,vΨs

v

∣∣∣∣2 <∞,
and refers to [30, Theorem 3] for a proof. Thus, to satisfy (Af f), we may choose
Γ = C sups∈[0,T ] |DΨs|, where C depends on K,Cβ and the Lipschitz constants for b, σ
and β.

4.1 Proof of Theorem 4.4

Let us start with a lemma providing estimates for the Malliavin derivative of the
generator.

Lemma 4.6. Let G = (G1, G2, G3) ∈ (L2)3 and Φ ∈ (L2(P ⊗m))3. If f satisfies (Af ) it
holds for P⊗m-a.a. (ω, r, v), v 6= 0, that∣∣∣∣f(X + v1I[r,T ], t, G+ Φr,v)− f (X, t,G)

∣∣∣∣ ≤ Lf |Φr,v|+ Γr,v. (4.6)

Moreover, for G ∈ (D1,2)3 it holds f(X, t,G) ∈ D1,2 and

|Dr,vf (X, t,G) | ≤ Lf |Dr,vG|+ Γr,v, P⊗m-a.e. (4.7)

Proof. According to Corollary 3.4 we may replace X by X + v1I[r,T ] and use the Lipschitz
property (Afc) to estimate∣∣f(X + v1I[r,T ], t, G+ Φr,v)− f(X + v1I[r,T ], t, G)

∣∣ ≤ Lf |Φr,v|
for P⊗m-a.e. (ω, r, v) with v 6= 0. From (Aff ) one concludes then (4.6).

For v 6= 0 we conclude from Lemma 3.5 that Dr,vf (X, t,G) ∈ DR0
1,2 and apply Lemma

3.2 to get
Dr,vf (X, t,G) = f(X + v1I[r,T ], t, G+Dr,vG)− f (X, t,G) ,

and hence (4.7) follows from (4.6). In the case of v = 0, by assumption (Afe) we may
apply Theorem 3.12. Thus we get the Malliavin derivative

Dr,0f(X, t,G) = (Dr,0f)(t, G) + ∂η1f(X, t,G)Dr,0G1

+∂η2f(X, t,G)Dr,0G2 + ∂η3f(X, t,G)Dr,0G3 (4.8)

for P⊗λ a.a. (ω, r) ∈ Ω× [0, T ]. Relation (4.7) follows from conditions (Afc) and (f) using
that the partial derivatives are bounded by Lf .

Proof of Theorem 4.4. The core of the proof is to conclude assertion (ii) which
will be done by an iteration argument. To simplify the notation we do not mention the
dependency of f on X in most places.

(i) For those (r, v) such that Dr,vξ ∈ L2 the existence and uniqueness of a solution
(Yr,v,Zr,v,Ur,v) to (4.3) follows from Theorem 4.2 since Fr,v meets the assumptions of
the theorem.
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(ii) By Theorem 4.3 the solution depends continuously on the terminal condition and
Dξ is measurable w.r.t. (r, v).We infer the measurable dependency (r, v) 7→ (Yr,v,Zr,v,Ur,v)
as follows: Since by Theorem 4.3 the mapping

L2 → S2 × L2(W )× L2(Ñ) : ξ 7→ (Y, Z, U)

is continuous one can show the existence of a jointly measurable version of

(Yr,v,Zr,v,Ur,v), (r, v) ∈ [0, T ]×R

by approximating Dξ with simple functions in L2(P⊗m). Joint measurability (for example
for Z) in all arguments can be gained by identifying the spaces

L2(λ,L2(P⊗m)) ∼= L2(λ⊗ P⊗m).

The quadratic integrability with respect to (r, v) also follows from Theorem 4.3 since
ξ ∈ D1,2.

Using an iteration scheme, starting with (Y 0, Z0, U0) = (0, 0, 0), we get Y n+1 by
taking the optional projection which implies that

Y n+1
t = Et

(
ξ +

∫ T

t

fg (s, Y ns , Z
n
s , U

n
s ) ds

)
. (4.9)

The process Zn+1 given by

Zn+1
s,x :=

{
Zn+1
s , x = 0,

Un+1
s (x), x 6= 0,

one gets by the martingale representation theorem w.r.t. M (see, for example, [4]):

ξ +

∫ T

0

fg (s, Y ns , Z
n
s , U

n
s ) ds = E

(
ξ +

∫ T

0

fg (s, Y ns , Z
n
s , U

n
s ) ds

)

+

∫
]0,T ]×R

Zn+1
s,x M(ds, dx). (4.10)

Step 1. It is well-known that (Y n, Zn, Un) converges to the solution (Y,Z, U) in
L2(W )×L2(W )×L2(Ñ). Our aim in this step is to show that Y n, Zn and Un are uniformly
bounded in n as elements of L2(λ;D1,2) and L2(λ⊗ ν;D1,2), respectively. This will follow
from (4.14) below.

Given that Y n, Zn ∈ L2(λ;D1,2) and Un ∈ L2(λ⊗ ν;D1,2) one can infer that this also
holds for n+ 1: Indeed, (Afg) implies that [g(Uns )]ν ∈ D1,2 for a.e. s and

|Dr,v[g(Uns )]ν | ≤ Lg‖g1‖L2(ν)‖Dr,vU
n
s ‖L2(ν). (4.11)

From Lemma 4.6 we get that f(X, s, Y ns , Z
n
s , [g(Uns )]ν) ∈ D1,2. The above estimate and

(4.7) as well as the Malliavin differentiation rules shown by Delong and Imkeller in
[14, Lemma 3.1. and Lemma 3.2.] imply that Y n+1 as defined in (4.9) is in L2(λ;D1,2).

Then we conclude from (4.10) and [14, Lemma 3.3.] that Zn+1 ∈ L2(λ;D1,2) and
Un+1 ∈ L2(λ⊗ ν;D1,2). Especially, we get for t ∈ [0, T ] that P -a.e.

Dr,vY n+1
t = Dr,vξ +

∫ T

t

Dr,vfg (X, s, Y ns , Z
n
s , U

n
s ) ds

−
∫
]t,T ]×R

Dr,vZn+1
s,x M(ds, dx) for m - a.a. (r, v) ∈ [0, t]×R,
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Dr,vY n+1
t = 0 for m - a.a. (r, v) ∈ (t, T ]×R,

Dr,vZn+1
t,x = 0 for m⊗ µ - a.a. (r, v, x) ∈ (t, T ]×R2. (4.12)

Since by [4, Theorem 4.2.12] the process
( ∫

]0,t]×RDr,vZ
n+1
s,x M(ds, dx)

)
t∈[0,T ]

admits a

càdlàg version, we may take a càdlàg version of both sides.
By Itô’s formula (see, for instance, [4]), we conclude that for 0 < r < t it holds

eβT (Dr,vξ)2 = eβt(Dr,vY n+1
t )2

+β

∫ T

t

eβs(Dr,vY n+1
s )2ds

−2

∫ T

t

eβs
[
Dr,vfg (X, s, Y ns , Z

n
s , U

n
s )
]
Dr,vY n+1

s ds

+

∫
]t,T ]×R

eβs[2(Dr,vY n+1
s− )Dr,vZn+1

s,x

+1IR0
(x)(Dr,vZn+1

s,x )2]M(ds, dx)

+

∫
]t,T ]×R

eβs(Dr,vZn+1
s,x )2dsµ(dx) P⊗m - a.e.

One easily checks that the integral w.r.t. M is a uniformly integrable martingale and
hence has expectation zero. Therefore, using (4.12), we have for 0 < u < t ≤ T that

Eeβt(Dr,vY n+1
t )2 + E

∫
]r,T ]×R

eβs(Dr,vZn+1
s,x )2dsµ(dx)

≤ eβTE(Dr,vξ)2 + 2

∫ T

r

eβsE
∣∣[Dr,vfg (X, s, Y ns , Z

n
s , U

n
s )
]
Dr,vY n+1

s

∣∣ ds
−βE

∫ T

r

eβs(Dr,vY n+1
s )2ds. (4.13)

By Young’s inequality, (4.11) and Lemma 4.6 we get a constant Cf such that for any
c > 0,

2
∣∣[Dr,vfg (X, s, Y ns , Z

n
s , U

n
s )
]
Dr,vY n+1

s

∣∣
≤ c

∣∣Dr,vY n+1
s

∣∣2 +
Cf
c

(
|Γr,v|2 + |Dr,vY ns |

2
+ |Dr,vZns |

2
+ ‖Dr,vUns ‖2L2(ν)

)
= c

∣∣Dr,vY n+1
s

∣∣2 +
Cf
c

(
|Γr,v|2 + |Dr,vY ns |

2
+

∫
R

∣∣Dr,vZns,x∣∣2 µ(dx)
)
.

Choosing β = c+ 1 and c = 2Cf leads to

E

∫ T

r

eβs
∣∣Dr,vY n+1

s

∣∣2 ds+ E

∫
]r,T ]×R

eβs
∣∣Dr,vZn+1

s,x

∣∣2
m(ds, dx)

≤ eβTE |Dr,vξ|2 +
1

2

∫ T

r

eβsdsE |Γr,v|2

+
1

2

(
E

∫ T

r

eβs |Dr,vY ns |
2
ds+ E

∫
]r,T ]×R

eβs
∣∣Dr,vZns,x∣∣2m(ds, dx)

)
.

Finally, (4.12) and Lemma A.1 imply∫ T

0

eβs‖DY ns ‖2L2(m⊗P)ds+

∫
[0,T ]×R

eβs‖DZns,x‖2L2(m⊗P)m(ds, dx)
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≤ cβ‖|Dξ|+ Γ‖2L2(P⊗m) for all n ∈ N. (4.14)

Step 2. We now show that∥∥Y −DY n+1
∥∥2
L2(P⊗λ⊗m)

+
∥∥Z −DZn+1

∥∥2
L2(P⊗(m)⊗2)

→ 0, n→∞. (4.15)

In order to estimate the expressions from (4.15) one can repeat the previous compu-
tations for the difference Yr,vt −Dr,vY n+1

t to obtain

E

∫ T

r

eβs(Yr,vs −Dr,vY n+1
s )2ds+ E

∫
]r,T ]×R

eβs(Zr,vs,x −Dr,vZ
n+1
s,x )2dsµ(dx)

≤ 1

c
E

∫ T

r

eβs |Fr,v(s,Yr,vs ,Zr,vs ,Ur,vs )−Dr,vfg(s, Y ns , Zns , Uns )|2 ds. (4.16)

for any c > 0.

For the case v = 0, by using Lipschitz properties of f (which also imply the bounded-
ness of the partial derivatives), we can find a constant C ′f such that∣∣Fr,0(s,Yr,0s ,Zr,0s ,Ur,0s )−Dr,0fg(s, Y ns , Zns , Uns )

∣∣
≤ C ′f (

∣∣Yr,0s −Dr,0Y ns ∣∣+
∣∣Zr,0s −Dr,0Zns ∣∣+

∥∥Ur,0s −Dr,0Uns ∥∥L2(ν)
)

+κn(r, s) (4.17)

where for some C > 0

κn(r, s) = C
(∣∣(Dr,0fg)(s, Ys, Zs, Us)− (Dr,0fg)(s, Y ns , Zns , Uns )

∣∣ ∧ Γr,0

+
∣∣Yr,0s ∣∣ ∣∣∂yfg(s, Ys, Zs, Us)− ∂yfg(s, Y ns , Zns , Uns )

∣∣
+
∣∣Zr,0s ∣∣ ∣∣∂zfg(s, Ys, Zs, Us)− ∂zfg(s, Y ns , Zns , Uns )

∣∣
+
∥∥Ur,0s ∥∥

L2(ν)
(
∣∣∂ufg(s, Ys, Zs, Us)− ∂ufg(s, Y ns , Zns , Uns )

∣∣
+ ‖|g′(Us)− g′(Uns )|g1‖L2(ν)

)
)
. (4.18)

Since the sequence (Y n, Zn, Un) converges in L2(W )× L2(W )× L2(Ñ), condition (Afe)
holds, and ∂yf, ∂zf, ∂uf as well as g′ are bounded and continuous it follows from Vitali’s
convergence theorem that

δn := E

∫ T

r

eβsκn(r, s)2drds→ 0 for n→∞. (4.19)

Now we continue with the case v 6= 0. We first realize that for a given ε > 0 we may
choose α > 0 small enough such that

E

∫ T

r

∫
{|v|<α}

eβs |Fr,v(s,Yr,vs ,Zr,vs ,Ur,vs )−Dr,vf(s, Y ns , Z
n
s , U

n
s )|2 ν(dv)ds < ε.

This is because from (4.6), (4.7) and (4.2) one gets by a straightforward calculation

|Fr,v(s,Yr,vs ,Zr,vs ,Ur,vs )|L2(ν)
≤ Γr,v + Lf (|Yr,vs |+ |Zr,vs |+ Lg[|Ur,vs |]ν)

≤ Γr,v + Lf,g(|Yr,vs |+ |Zr,vs |+ ‖Ur,vs ‖L2(ν))

with Lf,g = Lf (1 + Lg‖g1‖L2(ν)) where Lg is the Lipschitz constant of g, and

|Dr,vfg(s, Y ns , Zns , Uns )| ≤ Γr,v + Lf,g(|Dr,vY ns |+ |Dr,vZns |+ ‖Dr,vUns ‖L2(ν)).
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On the set {|v| ≥ α} we use the Lipschitz properties (Afc) and (Afg) to get the
estimate

|Fr,v(s,Yr,vs ,Zr,vs ,Ur,vs )−Dr,vfg(s, Y ns , Zns , Uns )|
≤

∣∣fg ((X + v1I[r,T ]), s, Ys + Yr,vs , Zs + Zr,vs , Us + Ur,vs
)

−fg
(
(X + v1I[r,T ]), s, Y

n
s +Dr,vY ns , Zns +Dr,vZns , Uns +Dr,vUns

) ∣∣
+
∣∣fg (X, s, Ys, Zs, Us)− fg (X, s, Y ns , Z

n
s , U

n
s )
∣∣

≤ Lf,g
[
|Yr,vs −Dr,vY ns |+ |Zr,vs −Dr,vZns |+ ‖Ur,vs −Dr,vUns ‖L2(ν)

+2(|Ys − Y ns |+ |Zs − Zns |+ ‖Us − Uns ‖L2(ν))
]
.

This gives for any n ∈ N

E

∫ T

r

∫
[0,T ]×R

eβs|Fr,v(s,Yr,vs ,Zr,vs ,Ur,vs )−Dr,vfg(s, Y ns , Zns , Uns )|2m(dr, dv)ds

≤ c(Lf,g)E

∫ T

r

eβs
(
‖Ys −DY ns ‖2L2(m) + ‖Zs,. −DZ

n
s,.‖2L2(m⊗µ)

)
ds

+2c(Lf,g)ν({|v| ≥ α})E
∫ T

r

eβs
(
|Ys − Y ns |2 + ‖Zs,. − Z

n
s,.‖2L2(m⊗µ)

)
ds

+δn + ε.

Choosing c in (4.16) in an appropriate way leads to∥∥Y −DY n+1
∥∥2
L2(P⊗λ⊗m)

+
∥∥Z −DZn+1

∥∥2
L2(P⊗(m)⊗2)

≤ ε+ Cn +
1

2

(
‖Y − DY n‖2L2(P⊗λ⊗m) + ‖Z − DZn‖2L2(P⊗(m)⊗2)

)
with Cn = Cn(α) tending to zero if n→∞ for any fixed α > 0. We now apply Lemma A.1
and end up with

lim sup
n→∞

(
‖Y − DY n‖2L2(P⊗λ⊗m) + ‖Z − DZn‖2L2(P⊗(m)⊗2)

)
≤ 2ε.

This implies (4.4). Hence we can take the Malliavin derivative of (4.1) and get (4.5) as
well as

0 = Dr,vξ +

∫ T

r

Fr,v (s,Dr,vYs,Dr,vZs,Dr,vUs) ds

−Zr,v −
∫
]r,T ]×R

Dr,vZs,xM(ds, dx), 0 ≤ t < r ≤ T. (4.20)

By the same reasoning as for Dr,vY n we may conclude that the RHS of (4.5) has a càdlàg
version which we take for Dr,vY.

(iii) This assertion we get comparing (4.3) and (4.5) because of the uniqueness of
(Y,Z,U).

(iv) We first discuss the measurability of limt↘r Dr,vYt w.r.t. (r, v, ω) which is needed
to take the predictable projection. From (4.5) one concludes that for any fixed (r, v)

there exists a càdlàg version of t 7→ Dr,vYt. By [33, Lemma 1] there exists a jointly in
(r, v, t, ω) measurable random map with the following property: for each (r, v) this map
has càdlàg paths and is indistinguishable from the above càdlàg version. We assume now
that Dr,vYt is this measurable random map with càdlàg paths w.r.t. t. Then the pathwise
limit limt↘r Dr,vYt is measurable in (r, v, ω) and the assertion follows by comparing the
RHS of (4.5) with (4.20). �
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4.2 Example: a BSDE related to utility maximization

In [7] and [26] a class of BSDEs is considered which appears in exponential utility
maximization. For these BSDEs an additional summand arises in the generator which is
only locally Lipschitz and is (in the simplest case) of the form: [gα(Us)]ν (see (4.2)) with

gα(x) :=
eαx − αx− 1

α
for some α > 0

and g1(x) := 1 for x ∈ R0. Consider for 0 ≤ t ≤ T the following BSDE

Yt = ξ +

∫ T

t

(fg (X, s, Ys, Zs, Us) + [gα(Us)]ν) ds−
∫ T

t

ZsdWs

−
∫
]t,T ]×R

Us(x)Ñ(ds, dx), (4.21)

where fg is defined like in (4.1). Then we have the following assertion:

Corollary 4.7. Let ξ ∈ D1,2 and assume that ξ is a.s. bounded and ν is a bounded
measure. If (Af ) is satisfied for fg and if there exists constants K1,K2 > 0 such that for
all y, z, u ∈ R

f(X, t, y, z, u) ≤ K1 +K2|y|

for P⊗ λ -a.a. (t, ω) ∈ [0, T ]× Ω, then the following assertions hold for (4.21).

(i) For m- a.e. (r, v) ∈ [0, T ] × R there exists a unique solution (Yr,v,Zr,v,Ur,v) ∈
S2 × L2(W )× L2(Ñ) to the BSDE

Yr,vt = Dr,vξ +

∫ T

t

(Fr,v (s,Yr,vs ,Zr,vs ,Ur,vs ) +Gr,v(s,Ur,vs )) ds

−
∫
]t,T ]×R

Zr,vs,xM(ds, dx), 0 ≤ r ≤ t ≤ T

Yr,vs = Zr,vs = Ur,vs = 0, 0 ≤ s < r ≤ T, (4.22)

with Fr,v and Zr,vs,x given in Theorem 4.4 and

Gr,v(s, u) :=


[
(eαUs − 1)u

]
ν
, v = 0,[

eαUsgα(u) + eαUs−1
α u

]
ν
, v 6= 0.

(ii) For the solution (Y, Z, U) of (4.21) it holds

Y,Z ∈ L2([0, T ];D1,2), U ∈ L2([0, T ]×R0;D1,2),

and Dr,yY admits a càdlàg version for m- a.e. (r, y) ∈ [0, T ]×R.

(iii) (DY,DZ,DU) is a version of (Y,Z,U), i.e. for m- a.e. (r, v) it solves (4.22).

(iv) Setting Dr,vYr(ω) := limt↘r Dr,vYt(ω) for all (r, v, ω) for which Dr,vY is càdlàg and
Dr,vYr(ω) := 0 otherwise, we have

p (
(Dr,0Yr)r∈[0,T ]

)
is a version of (Zr)r∈[0,T ],

p (
(Dr,vYr)r∈[0,T ],v∈R0

)
is a version of (Ur(v))r∈[0,T ],v∈R0

.
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Proof. Since ξ is a.s. bounded, the Lévy measure ν is finite and the generator satisfies
the conditions of [7, Theorem 3.5.] it follows that ‖Y ‖S∞ <∞ and

|Us(x)| ≤ 2‖Y ‖S∞ for P⊗ λ⊗ ν- a.e. (ω, s, x). (4.23)

From the fact that gα is locally Lipschitz and U is a.e. bounded it follows that (Af )

(especially the Lipschitz condition) can be seen as satisfied also for [gα(Us)]ν :

We find a C1 function ĝα such that gα = ĝα on [−2‖Y ‖S∞ , 2‖Y ‖S∞ ] and

supp(ĝα) ⊆ [−3‖Y ‖S∞ , 3‖Y ‖S∞ ] .

Since by (4.23), gα(Us(x)) = ĝα(Us(x)), P⊗ λ⊗ ν- a.e., it follows that for all t ∈ [0, T ]∫ T

t

(fg (X, s, Ys, Zs, Us)+[gα(Us)]ν) ds=

∫ T

t

(
fg (X, s, Ys, Zs, Us)+[ĝα(Us)]ν

)
ds,

P-a.s. So the solution of (4.21) also satisfies the BSDE with gα replaced by ĝα which
satisfies the assumptions of Theorem 4.4.

A Appendix

Proof of Lemma 3.3

Step 1. We have the a.s. representation of the Lévy process X as

Xt = γt+ σWt + Jt.

We denote Bt := γt+ σWt. Because of

P ({X ∈ Λ}) =

∫
D[0,T ]

PJ (Λ− h)PB(dh),

we may restrict ourselves to ’pure jump processes’ (i.e. X = J).

Step 2. Assume that X is a compound Poisson process. Then ν (R0) <∞. We define
P̂ := P⊗ λ⊗ν

Tν(R0)
on
(
Ω× [0, T ]×R0,F ⊗ B([0, T ]×R0)

)
and

X̂t(ω, r, v) := Xt(ω) + βt(r, v)

where βt(r, v) := v1I[r,T ](t). By the law of total probability we get

P̂
(
X̂ ∈ Λ

)
=

∞∑
k=0

P̂
(
X̂ ∈ Λ

∣∣∣N(]0, T ]×R0) = k
)
P̂ (N(]0, T ]×R0) = k). (A.1)

The conditional probabilities

P̂
(
X̂ ∈ Λ

∣∣∣N(]0, T ]×R0) = k
)
, k ∈ N,

are the distributions of an independent sum of β and the compound Poisson process X,
conditioned on the event that the process X jumps k times in ]0, T ]. The probability law of
this conditioned compound Poisson process is the same as the law of a piecewise constant
process which has exactly k independent, uniformly distributed jumps in [0, T ] whose
jump sizes are independently identically distributed according to ν

ν(R0)
and independent

from the jump times. Therefore it holds that

P̂
(
X̂ ∈ Λ

∣∣∣N(]0, T ]×R0) = k
)
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=
(λ⊗ ν)⊗(k+1)

T k+1ν (R0)
k+1

({
((t1,x1), . . . , (tk,xk), (r, v)) :

k∑
l=1

xl1I[tl,T ] + v1I[r,T ] ∈ Λ

})
= P (X ∈ Λ|N(]0, T ]×R0) = k + 1) = 0,

where we used the argument concerning the distribution of a conditioned Poisson process
again to come to the last line. Hence, all summands of (A.1) are zero, which shows the
assertion for the special case of this step.

Step 3. To extend the second step to the case of a general pure-jump Lévy process
X we split up R0 into sets Sp, p ≥ 1 such that 0 < ν(Sp) <∞. Without loss of generality
set S1 := {x ∈ R : |x| > 1}. We may assume that the sequence (Sp)p≥1 is infinite, else
we would be in the compound Poisson case again. From the proof of the Lévy-Itô
decomposition it follows that

Xt = lim
n→∞

n∑
p=2

(
X

(p)
t − t

∫
Sp

xν(dx)

)
+X

(1)
t ,

where the convergence is P-a.s., uniformly in t ∈ [0, T ] and the (X(p)) given by

X
(p)
t =

∫
[0,t]×Sp

xN(ds, dx),

are independent compound Poisson processes which have jumps distributed by
ν|Sp
ν(Sp)

.
Since for k, p ∈ N with p ≥ 1,

0 < (P⊗ λ⊗ ν)
(
{N(]0, T ]× Sp) = k} × [0, T ]× Sp

)
<∞,

we can proceed in a similar way as in (A.1) for σ-finite measures: Let

X
(p)

t := Xt −X(p)
t , 0 ≤ t ≤ T,

an notice that X
(p)

and X(p) are independent. Then

(P⊗ λ⊗ ν)
(
X̂ ∈ Λ

)
=

∞∑
p=1,
k=0

(P⊗ λ⊗ ν)
(
X + β ∈ Λ

∣∣{N(]0, T ]× Sp) = k
}
× [0, T ]× Sp

)
×(P⊗ λ⊗ ν)

({
N(]0, T ]× Sp) = k

}
× [0, T ]× Sp

)
. (A.2)

From Steps 1 and 2 we conclude that the summands on the RHS of (A.2) are zero again
by

(P⊗ λ⊗ ν)
(
X

(p)
+X(p) + β ∈ Λ

∣∣∣{N(]0, T ]× Sp) = k
}
× [0, T ]× Sp

)
= (P⊗ λ⊗ ν)

(
X

(p)
+X(p) ∈ Λ

∣∣∣{N(]0, T ]× Sp) = k + 1
}
× [0, T ]× Sp

)
= 0,

which proves Step 3.

Lemma A.1. Let (gn)n≥0 be a sequence of nonnegative numbers satisfying g0 = 0 and

gn+1 ≤ ε+ Cn +
1

2
gn,

where ε > 0 and limn→∞ Cn = 0. Then it holds that

lim sup
n→∞

gn ≤ 2ε.

Especially, if Cn = 0 for all n ∈ N, then gn ≤ 2ε for all n ∈ N.
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