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Abstract

In this paper, we consider Markov chains of the form Xn
(k+1)/n = ψk(X

n
k/n, Zk+1/

√
n,

1/n) where the innovation comes from the sequence Zk, k ∈ N∗ of independent
centered random variables with arbitrary law. Then, we study the convergence
E[f(Xn

t )] → E[f(Xt)] where (Xt)t>0 is a Markov process in continuous time. This
may be considered as an invariance principle, which generalizes the classical Central
Limit Theorem to Markov chains. Alternatively (and this is the main motivation of our
paper), Xn may be an approximation scheme used in order to compute E[f(Xt)] by
Monte Carlo methods. Estimates of the error are given for smooth test functions f as
well as for measurable and bounded f. In order to prove convergence for measurable
test functions we assume that Zk satisfies Doeblin’s condition and we use Malliavin
calculus type integration by parts formulas based on the smooth part of the law of Zk.
As an application, we will give estimates of the error in total variation distance for the
Ninomiya Victoir scheme.
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1 Introduction

In this paper, we consider a time grid tnk = k/n, k ∈ N with n ∈ N∗ and a Markov
chain

Xn
tnk+1

= ψk(Xn
tnk
, Zk+1/

√
n, 1/n),

where ψk : Rd ×RN ×R+ → Rd is a smooth function and Zk, k ∈ N∗, is a sequence of
independent centered random variables. We aim to study the convergence of the law of
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Approximation of Markov semigroups

Xn to the law of a Markov process X. More precisely, we will give estimates of the weak
error

εn(f) = |E[f(Xn
t )]− E[f(Xt)]| .

This problem may be considered from two points of view. The first one is to look
at this convergence result as to an invariance principle. We illustrate this approach
with the Central Limit Theorem (CLT). Indeed, if ψk(x, z, t) = x+ z and Zk, k ∈ N∗, are
independent and identically distributed with variance 1, we have Xn

1 = n−1/2
∑n
k=1 Zk.

Using then the CLT, we know that Xn
1
law→ W1 where (Wt)t>0 is a standard Brownian

motion and then W1 ∼ N (0, 1) where N (0, 1) is the standard Normal distribution. Since
the law of Zk, k ∈ N∗ is arbitrary and the limit law of (Xn

1 )n∈N does not depend on this
law, we say that it is an invariance principle. Keeping this in mind, we look at our Markov
chain Xn as to a general Markovian scheme based on the sequence of random variables
Zk, k ∈ N∗. Then, the convergence of Xn to a Markov process X which is universal (in
the sense that it does not depend on the law of Zk, k ∈ N∗) represents an invariance
principle. Our result can thus be seen as a direct generalization of the CLT. Notice that,
when looking from this point of view, ψk, k ∈ N represents a scheme which naturally
appears in a concrete modelization problem. A main interest is to approximate the law
of Xn

1 , which may be difficult to understand directly, by the law of X1 which is simpler to
study (as for W1 above).

A second point of view comes from numerical probabilities: For instance, if X is a
diffusion process and we want to compute E[f(Xt)], then we can use a discretization
scheme Xn (for example the Euler scheme). Thereafter, we can obtain the approximation
E[f(Xn

t )] using Monte Carlo methods. In this kind of approaches, we may choose the
approximation scheme (Xn

tnk
)k∈N as we want (in contrast with the previous situation

when the Markov chain Xn was given by an external modelization).

Our initial motivation for the study of the error εn(f) comes from the second point of
view (numerical probabilities) but all the results of this paper are significant from both
perspectives. Let us mention that the difficulty of the analysis and the interest of the
result depend on the regularity of the test function f. It turns out that if f is a smooth
function, then the analysis of the error is rather simple, using a Taylor type expansion
in short time first, and a concatenation argument after. However, the study is much
more subtle if f is simply a bounded and measurable test function - this is the so called
convergence in total variation distance. A lot of work has been done in this direction in
the case of the CLT. In particular, Bhattacharya and Rao [9] obtained the convergence
when f(x) = 1A(x) where A is a measurable set that belongs to a large class (including
convex sets). From that point, one would hope to get such results for every measurable
set A and consequently for every measurable and bounded test function f. Eventually,
the seminal result of Prokhorov [32] clarified this point: He proved that the convergence
in total variation in the CLT may not be obtained without some regularity assumptions
on the law of Zk. Essentially, one has to assume that the law of Zk has an absolute
continuous component. In our framework this hypothesis has to be slightly strengthened.
We assume that Zk verifies the Doeblin’s condition (see (1.8)). In this way, we extract
some regular noise and use it in order to build some integration by parts formulas
(inspired from Malliavin calculus). Then, we use those formulas to regularize the test
function f and finally to achieve our error analysis.

Main results

Let us now present our results with more details. In order to do it, we have to
introduce some notations. For fixed T > 0 and n ∈ N∗, we define the homogeneous time
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Approximation of Markov semigroups

grid πT,n = {tnk = kT/n, k ∈ N}. We consider the d dimensional Markov chain

Xn
tnk+1

= ψk(Xn
tnk
,
Zk+1√
n
, δnk+1), k ∈ N, (1.1)

where ψk : Rd × RN × R+ → Rd is a smooth function such that ψk(x, 0, 0) = x, and
Zk ∈ RN , k ∈ N∗, is a sequence of independent and centered random variables
and supk∈N∗ δ

n
k 6 C/n. The semigroup of the Markov chain (Xn

t )t∈πT,n
is denoted by

(Qnt )t∈πT,n
and its transition probabilities are given by νnk+1(x, dy) = P(Xn

tnk+1
∈ dy|Xn

tnk
=

x), k ∈ N. We recall that for t ∈ πT,n, Qnt f(x) = E[f(Xn
t )|Xn

0 = x]. We will also consider
a Markov process in continuous time (Xt)t>0 with semigroup (Pt)t>0 and we define
µnk+1(x, dy) = P(Xtnk+1

∈ dy|Xtnk
= x).

Moreover, for f ∈ C∞(Rd) and for a multi-index α = (α1, · · · , αd) ∈ Nd we denote
|α| = α1 + ... + αd and ∂αf = (∂1)α1 . . . (∂d)

αdf = ∂αx f(x) = ∂α1
x1
. . . ∂αd

xd
f(x). We include

the multi-index α = (0, ..., 0) and in this case ∂αf = f. We will use the norms

‖f‖q,∞ = sup
x∈Rd

∑
06|α|6q

|∂αf(x)|, ‖f‖q,1 =
∑

06|α|6q

∫
Rd

|∂αf(x)|dx.

In particular ‖f‖0,∞ = ‖f‖∞ is the usual supremum norm and we will denote Cqb (Rd) =

{f ∈ Cq(Rd), ‖f‖q,∞ < ∞} and Cqc (Rd) ⊂ Cq(Rd) the set of functions with compact
support.

A first standard result is the following: Let us assume that there exists h > 0, q ∈ N
such that for every f ∈ Cq(Rd), k ∈ N∗ and x ∈ Rd,∣∣µnkf(x)− νnk f(x)

∣∣ =
∣∣∫ f(y)µnk (x, dy)−

∫
f(y)νnk (x, dy)

∣∣ 6 C‖f‖q,∞/n1+h. (1.2)

Then, for all T > 0, there exists C > 1 such that we have

sup
t∈πT,n;t6T

‖Ptf −Qnt f‖∞ 6 C‖f‖q,∞/nh. (1.3)

It means that (Xn
t )t∈πT,n

is an approximation scheme of weak order h for the Markov
process (Xt)t>0. In the case of the Euler scheme for diffusion processes, this result,
with h = 1, has initially been proved in the seminal papers of Milstein [27] and of Talay
and Tubaro [34] (see also [18]). Similar results were obtained in various situations:
Diffusion processes with jumps (see [33], [16]) or diffusion processes with boundary
conditions (see [13], [12], [14]). An overview of this subject is given in [17]. More
recently, approximation schemes of higher orders (e.g., h = 2), based on cubature
methods, have been introduced and studied by Kusuoka [22], Lyons [26], Ninomiya,
Victoir [28] or Alfonsi [1]. The reader may also refer to the work of Kohatsu-Higa and
Tankov [19] for a higher weak order scheme for jump processes.

Another result concerns convergence in total variation distance. We want to obtain
(1.3) with ‖f‖q,∞ replaced by ‖f‖∞ when f is a measurable function. In the case of the
Euler scheme for diffusion processes, a first result of this type has been obtained by Bally
and Talay [6], [7] using the Malliavin calculus (see also Guyon [15]). Afterwards Konakov,
Menozzi and Molchanov [20], [21] obtained similar results using a parametrix method.
Recently Kusuoka [23] obtained estimates of the error in total variation distance for the
Victoir Ninomiya scheme (which corresponds to the case h = 2). We will obtain a similar
result using our approach. Moreover, we give estimates of the rate of convergence of
the density function and its derivatives.
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Regularization properties. We first remark that the crucial property which is used in
order to replace ‖f‖q,∞ by ‖f‖∞ in (1.3), is the regularization property of the semigroup.
Let us be more precise: Let η : R+ → R+ an increasing function, q ∈ N be fixed. Given
the time grid πT,n = {tnk = kT/n, k ∈ N}, we say that a semigroup (Pnt )t∈πT,n

satisfies
Rq,η, if

Rq,η ∀t ∈ πT,n, t > 0, ‖Pnt f‖q,∞ 6
C

tη(q)
‖f‖∞. (1.4)

We also introduce a dual regularization property: We consider the dual semigroup Pn,∗t

(i.e.
〈
Pn,∗t g, f

〉
= 〈g, Pnt f〉 with the scalar product in L2(Rd)) and we assume that

R∗q,η ∀t ∈ πT,n, t > 0, ‖Pn,∗t f‖q,1 6
C

tη(q)
‖f‖1. (1.5)

Finally, we consider the following stronger regularization property: For every multi-index
α, β with |α|+ |β| = q,

Rq,η ∀t ∈ πT,n, t > 0, ‖∂αPnt ∂βf‖∞ 6
C

tη(q)
‖f‖∞. (1.6)

We notice that Rq,η implies both Rq,η and R∗q,η and that a semigroup satisfying Rq,η is
absolutely continuous with respect to the Lebesgue measure.

In addition to (1.2), we will also suppose that the following dual estimate of the error
in short time holds:

| 〈g, (µnk − νnk )f〉 | 6 C‖g‖q,1‖f‖∞/n1+h. (1.7)

Using those hypothesis, we can obtain a first result.

Theorem 1.1. We recall that T > 0 and n ∈ N∗. We fix h > 0, q ∈ N and we assume
that the short time estimates (1.2) and (1.7) hold (with this q and h). Moreover, we
assume that (1.4) holds for (Pt)t∈πT,n

and that (1.5) holds for (Qnt )t∈πT,n
. Then, for every

S ∈ [T/n, T/2),

∀t ∈ πT,n, t > 2S, ‖Ptf −Qnt f‖∞ 6
C

Sη(q)
‖f‖∞/nh.

Integration by parts formulas. Once we have this abstract result, the following step
is to give sufficient conditions in order to obtain Rq,η, R∗q,η and Rq,η. The method we
adopt in this paper is to use Malliavin type integration by parts formulas based on the
noise Zk ∈ RN , k ∈ N∗. Then we will have to bound the weights that appear in those
formulas and the regularization properties will follow.

In order to obtain those estimates, we assume that the law of each Zk is locally lower
bounded by the Lebesgue measure: There exists some z∗,k ∈ RN and r∗, ε∗ > 0 such that
for every measurable set A ⊂ Br∗(z∗,k) one has

P(Zk ∈ A) > ε∗λ(A) (1.8)

where λ is the Lebesgue measure. If this property holds then a “splitting method” can
be used in order to represent Zk as

Zk√
n

= χkUk + (1− χk)Vk,

where χk, Uk, Vk are independent random variables, χk is a Bernoulli random variable
and
√
nUk ∼ ϕr∗(u)du with ϕr∗ ∈ C∞(RN ). Then we use the abstract Malliavin calculus
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based on Uk, developed in [5] and [3], in order to obtain integration by parts formulas.
The crucial point is that the density ϕr∗ of

√
nUk is smooth and we control its logarithmic

derivatives. Using this property, we build integration by parts formulas and we obtain
relevant estimates for the weights which appear in these formulas. It is worth mentioning
that, a variant of the Malliavin calculus based on a similar splitting method has already
been used by Nourdin and Poly [30] (see also [29] and [24]). They use the so called Γ

calculus introduced by Bakry, Gentil and Ledoux [2]. Roughly speaking, the difference
between our approach and the one in [2] is the following: Our construction is similar to
the “simple functionals” approach in Malliavin calculus and has the derivative operator
as basic object. In contrast, in the Γ calculus, the basic object is the Ornstein Uhlenbeck
operator.

In order to state the main result of our paper, we introduce some additional assump-
tions:

∀p ∈ N, sup
k∈N∗

E[|Zk|p] <∞, (1.9)

∀r ∈ N∗, sup
k∈N
‖ψk‖1,r,∞ = sup

k∈N

r∑
|α|=0

r−|α|∑
|β|+|γ|=1

‖∂αx ∂βz ∂
γ
t ψk‖∞ <∞ (1.10)

∃λ∗ > 0, ∀k ∈ N, inf
x∈Rd

inf
|η|=1

N∑
i=1

〈∂ziψk(x, 0, 0), η〉2 > λ∗. (1.11)

Moreover, we introduce the following regularized version of the approximation
scheme (Xn

t )t∈πT,n
:

∀t ∈ πT,n, Xn,θ
t (x) =

1

nθ
G+Xn

t (x),

with G a standard normal random variable independent from Xn
tnk

and θ > h+ 1. Here
Xn
t (x) is the Markov chain which starts from x: Xn

0 (x) = x. We denote

Qn,θt (x, dy) = P(Xn,θ
t (x) ∈ dy) = pn,θt (x, y)dy.

Theorem 1.2. We recall that T > 0 and n ∈ N∗. We fix h > 0, q ∈ N and and we
consider a Markov semigroup (Pt)t>0 and the discrete Markov chain (Qnt )t∈πT,n

defined
in (1.1). We assume that the short time estimates (1.2) and (1.7) hold (with this q and h).
Moreover, we assume (1.8), (1.9), (1.10) and (1.11).

A. For every S ∈ [T/n, T/2), we have

∀t ∈ πT,n, t ∈ (2S, T ], ‖Ptf −Qnt f‖∞ 6
C

(λ∗S)η(q)
‖f‖∞/nh. (1.12)

B. For every t > 0, Pt(x, dy) = pt(x, y)dy with (x, y) 7→ pt(x, y) belonging to C∞(Rd ×
Rd).

C. For every x0, y0, R > 0, ε ∈ (0, 1) and every multi-index α, β, we have

∀t ∈ πT,n, t ∈ (2S, T ], sup
BR(x0,y0)

|∂αx ∂βy pt(x, y)− ∂αx ∂βy p
n,θ
t (x, y)| 6 Cε/n

h(1−ε),

(1.13)
with a constant Cε which depends on R, x0, y0, S, λ∗, T, ε, η and on |α| + |β| (and
may go to infinity as ε tends to 0). Moreover we denote BR(x0, y0) = {(x, y) ∈
Rd ×Rd, |(x, y)− (x0, y0)| 6 R}.
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We notice that (1.12) gives the total variation convergence between the semigroups
(Pt)t>0 and (Qnt )t∈πT,n

. Once the appropriate regularization properties are obtained
(using the abstract Malliavin calculus), the proof of (1.12) is rather elementary. In
contrast, the estimate (1.13) is based on a non trivial interpolation result recently
obtained in [8]. Notice, however, that the estimate (1.13) is sub-optimal (because of
ε > 0). We will illustrate (1.12) by taking Xn to be the Ninomiya Victoir scheme of a
diffusion process. This is a variant of the result already obtained by Kusuoka [23] in the
case where Zk has a Gaussian distribution (and so the standard Malliavin calculus is
available). As we have mentioned in the beginning of this paper, the random variables
Zk, k ∈ N∗ have an arbitrary distribution (except the property (1.8)) and our result can
be seen as an invariance principle as well.

The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section
3, we settle the abstract Malliavin calculus based on the splitting method. We use it in
Section 4 in order to prove the regularization properties for the approximation scheme
Xn (in fact for the regularization Xn,θ) and we obtain Theorem 1.2. Finally, in Section 5,
we use the previous results in order to give estimates of the total variation distance for
the Ninomiya Victoir approximation scheme. In order to enlighten the presentation of
our results, Section 6 is devoted to the proof of Theorem 4.2 on Sobolev norms of Xn

which is presented in Section 4

2 The distance between two Markov semigroups

Throughout this section the following notations will prevail. We fix T > 0 and we
denote n ∈ N∗, the number of time step between 0 and T . Then, for k ∈ N we define
tnk = kT/n and we introduce the homogeneous time grid πT,n = {tnk = kT/n, k ∈ N} and

its bounded version πT̃T,n = {t ∈ πT,n, t 6 T̃} for T̃ > 0. Finally, for S ∈ [0, T̃ ) we will

denote πS,T̃T,n = {t ∈ πT̃T,n, t > S}. Notice that, all the results from this paper remain true
with non homogeneous time step but, for sake of simplicity, we will not consider this
case. First, we state some results for smooth test functions.

2.1 Regular test functions

We consider a sequence of finite transition measures µnk (x, dy), k ∈ N∗ from Rd to
Rd. This means that for each fixed x and k, µnk (x, dy) is a finite measure on Rd with the
borelian σ field and for each bounded measurable function f : Rd → R, the application

x 7→ µnkf(x) :=

∫
Rd

f(y)µnk (x, dy)

is measurable. We also denote

|µnk | := sup
x∈Rd

sup
‖f‖∞61

∣∣ ∫
Rd

f(y)µnk (x, dy)
∣∣,

and, we assume that all the sequences of measures we consider in this paper satisfy:

sup
k∈N∗

|µnk | <∞. (2.1)

Although the main application concerns the case where µnk (x, dy) is a probability measure,
we do not assume this here. Indeed, µnk (x, dy) is only supposed be a signed measure
of finite (but arbitrary) total mass. This is because one may use the results from this
section not only in order to estimate the distance between two semigroups but also in
order to obtain an expansion of the error.

Now we associate the sequence of measures µn to the time grid πT,n.
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Definition 2.1. We define the discrete semigroup Pn in the following way.

Pn0 f(x) = f(x), Pntnk+1
f(x) = Pntnkµ

n
k+1f(x) = Pntnk

∫
Rd

f(y)µnk+1(x, dy).

More generally, we define (Pt,s)t,s∈πT,n;t6s by

Pntnk ,tnk f(x) = f(x), ∀k, r ∈ N∗, k 6 r, Pntnk ,tnr+1
f(x) = Pntnk ,tnr µ

n
r+1f(x).

We notice that for t, s, u ∈ πT,n, t 6 s 6 u, we have the semigroup property Pnt,uf =

Pnt,sP
n
s,uf . We will consider the following hypothesis: Let q ∈ N and t 6 s ∈ πT,n. If

f ∈ Cq(Rd) then Pt,sf ∈ Cq(Rd) and

sup
t,s∈πT,n;t6s

‖Pnt,sf‖q,∞ 6 C‖f‖q,∞. (2.2)

Notice that (2.1) implies that (2.2) holds for q = 0.
We consider now a second sequence of finite transition measures νnk (x, dy), k ∈ N∗.

Moreover, we introduce the corresponding semigroup Qn defined in a similar way as Pn

with µn replaced by νn which also satisfies (2.1) and (2.2).
We aim to estimate the distance between Pnf and Qnf in terms of the distance

between the transition measures µnk (x, dy) and νnk (x, dy), so we denote

∆n
k = µnk − νnk .

(Pnt )t∈πT,n
can be seen as a semigroup in continuous time, (Pt)t>0, considered on the

time grid πT,n, while (Qt)t∈πT,n
would be its approximation discrete semigroup. Let

q ∈ N, h > 0 be fixed. We introduce a short time error approximation assumption: There
exists a constant C > 0 (depending on q only) such that for every k ∈ N∗, we have

En(h, q) ‖∆n
kf‖∞ 6 C‖f‖q,∞/nh+1. (2.3)

Proposition 2.2. Let q ∈ N be fixed. Suppose that νn satisfies (2.2) for this q and that
we have En(h, q) (see (2.3)). Then for every f ∈ Cq(Rd),

sup
t∈πT

T,n

‖Pnt f −Qnt f‖∞ 6 C‖f‖q,∞/nh. (2.4)

Proof. Let m ∈ N∗, m 6 n. We have

‖Pntnmf −Q
n
tnm
f‖∞ 6

m−1∑
k=0

‖PntnkP
n
tnk ,t

n
k+1

Qntnk+1,t
n
m
f − PntnkQ

n
tnk ,t

n
k+1

Qntnk+1,t
n
m
f‖∞ (2.5)

=

m−1∑
k=0

‖Pntnk ∆n
k+1Q

n
tnk+1,t

n
m
f‖∞.

Using (2.1) for µn, (2.3) and then (2.2) for νn, we obtain

‖Pntnk+1,t
n
m

∆n
k+1Q

n
tnk
f‖∞ 6 C‖∆n

k+1Q
n
tnk
f‖∞ 6 C‖Qntnk f‖q,∞/n

h+1 6 C‖f‖q,∞/n1+h.

Summing over k = 0, ...,m− 1, we conclude.

2.2 Measurable test functions (convergence in total variation distance)

The estimate (2.4) requires a lot of regularity for the test function f. We aim to show
that, if the semigroups at work have a regularization property, then we may obtain
estimates of the error for measurable and bounded test functions. In order to state this
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result we have to give some hypothesis on the adjoint semigroup. Let q ∈ N. We assume
that there exists a constant C > 1 such that for every measurable and bounded function
f and any g ∈ Cq(Rd)

E∗n(h, q) | 〈g,∆n
kf〉 | 6 C‖g‖q,1‖f‖∞/n1+h. (2.6)

where 〈g, f〉 =
∫
g(x)f(x)dx is the scalar product in L2(Rd).

Our regularization hypothesis is the following. Let q ∈ N, S > 0 and η : R+ → R+ an
increasing function be given. We assume that there exists a constant C > 1 such that

Rq,η(S) ∀t, s ∈ πT,n, with S 6 s− t, ‖Pnt,sf‖q,∞ 6
C

Sη(q)
‖f‖∞. (2.7)

We also consider the “adjoint regularization hypothesis”. We assume that there exists an
adjoint semigroup Pn,∗t,s , that is 〈

Pn,∗t,s g, f
〉

=
〈
g, Pnt,sf

〉
for every measurable and bounded function f and every function g ∈ C∞c (Rd). We assume
that Pn,∗t,s satisfies

R∗q,η(S) ∀t, s ∈ πT,n, with S 6 s− t, ‖Pn,∗t,s f‖q,1 6
C

Sη(q)
‖f‖1. (2.8)

Notice that a sufficient condition in order that R∗q,η(S) holds is the following: For every
multi index α with |α| 6 q

∀t, s ∈ πT,n, with S 6 s− t, ‖Pnt,s∂αf‖∞ 6
C

Sη(q)
‖f‖∞. (2.9)

Indeed:

‖∂αPn,∗t,s f‖1 6 sup
‖g‖∞61

|
〈
∂αP

n,∗
t,s f, g

〉
| = sup

‖g‖∞61

|
〈
f, Pnt,s(∂αg)

〉
|

6 ‖f‖1 sup
‖g‖∞61

‖Pnt,s(∂αg)‖∞ 6
C

Sη(q)
‖f‖1.

Proposition 2.3. Let q ∈ N, h > 0, S ∈ [T/n, T/2) and η : R+ → R+ an increasing
function be fixed. We assume that En(h, q) (see (2.3)) and E∗n(h, q) (see (2.6)) hold for
Pn and Qn. We also suppose that Pn satisfies Rq,η(S) (see (2.7)) and Qn satisfies R∗q,η(S)

(see (2.8)) and that (2.2) hold with q = 0 for both of them. Then,

sup
t∈π2S,T

T,n

‖Pnt f −Qnt f‖∞ 6
C

Sη(q)
‖f‖∞/nh.

Proof. Using a density argument we may assume that f ∈ C(Rd). Moreover, by (2.5), it
is sufficient to prove that

‖Qntnk ∆n
k+1P

n
tnk+1,t

n
m
f‖∞ 6

C

Sη(q)
‖f‖∞/n1+h,

for m ∈ {2, . . . , n}. Since tnm > 2S we have tnk > S or tnm− tnk+1 > S. Suppose first that
tnm − tnk+1 > S. Using (2.1) for Qn, (2.3) and (2.7) for Pn,

‖Qntnk ∆n
k+1P

n
tnk+1,t

n
m
f‖∞ 6 C‖∆n

k+1P
n
tnk+1,t

n
m
f‖∞

6 C‖Pntnk+1,t
n
m
f‖q,∞/n1+h 6 CS−η(q)‖f‖∞/n1+h.
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Suppose now that tnk > S. We take φε(x) = ε−dφ(ε−1x) with φ ∈ Cc(Rd), φ > 0. Then,
for a fixed x0, we define φε,x0

(x) = φε(x− x0). Since we have (2.2), Qntnk ∆n
k+1P

n
tnk+1,t

n
m
f is

continuous. Then

|Qntnk ∆n
k+1P

n
tnk+1,t

n
m
f(x0)| = lim

ε→0
|〈φε,x0

, Qntnk ∆n
k+1P

n
tnk+1,t

n
m
f〉|.

Using (2.6), (2.8) for Qn and then (2.1) for Pn, we obtain

|〈φε,x0 , Q
n
tnk

∆n
k+1P

n
tnk+1,t

n
m
f〉| = |〈Qn,∗tnk φε,x0 ,∆

n
k+1P

n
tnk+1,t

n
m
f〉|

6 C‖Qn,∗tnk φε,x0‖q,1‖Pntnk+1,t
n
m
f‖∞/n1+h

6 CS−η(q)‖φε,x0‖1‖f‖∞/n1+h

and since ‖φε,x0
‖1 = ‖φ‖1 6 C, the proof is completed.

In concrete applications the following slightly more general variant of the above
proposition will be useful.

Proposition 2.4. Let q ∈ N, h > 0, S ∈ [T/n, T/2) and η : R+ → R+ an increasing
function be fixed. We assume that En(h, q) (see (2.3)) and E∗n(h, q) (see (2.6)) hold for
Pn and Qn. Moreover, we assume that there exists some kernels (P

n

t,s)t,s∈πT,n;t6s which

satisfies Rq,η(S) (see(2.7)) and (Q
n

t,s)t,s∈πT,n;t6s which satisfies R∗q,η(S) (see (2.8)) and
that (2.2) hold with q = 0 for both of them. We also assume that for every t, s ∈ πT,n with
s− t > S,

‖Qnt,sf −Q
n

t,sf‖∞ + ‖Pnt,sf − P
n

t,sf‖∞ 6 CS−η(q)‖f‖∞/nh+1. (2.10)

Then,

sup
t∈π2S,T

T,n

‖Pnt f −Qnt f‖∞ 6 C sup
k6n

(|µnk |+ |νnk |)S−η(q)‖f‖∞/nh.

Remark 2.5. Notice that P
n

and Q
n

are not supposed to satisfy the semigroup property
and are not directly related to µn and νn.

Proof. The proof follows the same line as the one of the previous proposition. Suppose
first that tnm − tnk > S. Then, (2.1) implies

‖Qntnk ∆n
k+1P

n
tnk+1,t

n
m
f‖∞ 6 ‖Qntnk ∆n

k+1P
n

tnk+1,t
n
m
f‖∞ + ‖Qntnk ∆n

k+1(Pntnk+1,t
n
m
− Pntnk+1,t

n
m

)f‖∞

6 ‖∆n
k+1P tnk+1,t

n
m
f‖∞ + ‖∆n

k+1(Pntnk+1,t
n
m
− Pntnk+1,t

n
m

)f‖∞.

Since P
n

verifies Rq,η(S), we deduce from (2.3) that

‖∆n
k+1P

n

tnk
f‖∞ 6 C‖Pntnk f‖q,∞/n

h+1 6 CS−η(q)‖f‖∞/nh+1.

Using (2.10), it follows

|∆n
k+1(Pntnk+1,t

n
m
− Pntnk+1,t

n
m

)f(x)| 6 |
∫

(Pntnk+1,t
n
m
− Pntnk+1,t

n
m

)f(y)νk+1(x, dy)|

+ |
∫

(Pntnk+1,t
n
m
− Pntnk+1,t

n
m

)f(y)µk+1(x, dy)|

6 (|νnk+1|+ |µnk+1|)‖(Pntnk+1,t
n
m
− Pntnk+1,t

n
m

)f‖∞

6 C(|νnk+1|+ |µnk+1|)S−η(q)‖f‖∞/nh+1.

Suppose now that tnk > S. We write

‖Qntnk ∆n
k+1P

n
tnk+1,t

n
m
f‖∞ 6 ‖Qntnk ∆n

k+1P
n
tnk+1,t

n
m
f‖∞ + ‖(Qntnk −Q

n

tnk
)∆n

k+1P
n
tnk ,t

n
m
f‖∞.

In order to bound ‖Qntnk ∆n
k+1P

n
tnk+1,t

n
m
f‖∞ we use the same reasoning as in the proof of

the previous proposition. And the second term is bounded using (2.10).
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2.3 Convergence of the density functions

In this section we will consider a Markov semigroup (Pt)t>0 and we will give an
approximation result and a regularity criterion for it. The regularization property that
we assume for the approximation processes is stronger than the one considered in the
previous section and, instead of Proposition 2.3 we will use a general approximation
result based on an interpolation inequality, proved in [8]. We recall that we have fixed T >

0, and for n ∈ N∗ we denote tnk = kT/n. For k ∈ N∗, we consider µnk (x, dy) = µn(x, dy) =

PT/n(x, dy), for all k ∈ N, the homogeneous sequence of finite transition measures which
satisfy (2.2). To this sequence of measures, we associate the discrete version (Pnt )t∈πT,n

of P such that for all t, s ∈ πT,n, t 6 s, Pnt,sf(x) = Ps−tf(x). Moreover we introduce a
sequence of transition probability measures νnk (x, dy), k ∈ N∗, and the corresponding
discrete semigroups Qn(x, dy) defined by Qnt,t = Id and Qntnk ,tnr+1

= Qntnk ,tnr ν
n
r+1. We recall

that for all t ∈ πT,n then Qnt f = Qn0,tf . We assume that for f ∈ Cq(Rd), we have
Qnt,sf ∈ Cq(Rd) for all t, s ∈ πT,n, t 6 s, and it verifies (2.2):

sup
t,s∈πT,n;t6s

‖Qnt,sf‖q,∞ 6 C‖f‖q,∞.

For h > 0 and q ∈ N, we assume that we have (2.3) and (2.6):

En(h, q) ‖(µn − νnk )f‖∞ 6 C‖f‖q,∞/n1+h.

and,
E∗n(h, q) | 〈g, (µn − νnk )f〉 | 6 C‖g‖q,1‖f‖∞/n1+h.

In concrete applications, it may be cumbersome to prove the regularization properties
of the underlying semigroups Pn and Qn. In order to treat this problem, we introduce
now (Q

n

t )t∈πT,n
, a modification of (Qnt )t∈πT,n

in the sense that for every measurable and
bounded function f : Rd → R, we have

∀t, s ∈ πT,n, with S 6 s− t, ‖Qnt,sf −Q
n

t,sf‖∞ 6 CS−η(q)‖f‖∞/nh+1. (2.11)

We assume that (Q
n

t )t∈πT,n
satisfies the following strong regularization property. We

fix q ∈ N S, η > 0, and we assume that for every multi-index α, β with |α|+ |β| 6 q and
f ∈ Cq(Rd) one has

Rq,η(S) ∀t, s ∈ πT,n, with S 6 s− t, ‖∂αQ
n

t,s∂βf‖∞ 6 CS−η(q)‖f‖∞. (2.12)

Notice that if Rq+2d,η(S) holds, then for all t ∈ πT,n, there exists pnt ∈ Cq(Rd ×Rd) such
that Q

n

t (x, dy) = pnt (x, y)dy. Moreover, if t > S, then for every |α|+ |β| 6 q, we have

sup
(x,y)∈Rd×Rd

|∂αx ∂βy pnt (x, y)| 6 CS−η(q+2d). (2.13)

Indeed, let fζ : Rd → C, x 7→ e−i〈ζ,x〉. Using the Fourier representation of the density
function, we have

pnt (x, y) =

∫
Rd

ei〈ζ,y〉Q
n

t fζ(x)dζ

Now we notice that ∂βy fζ(y) = fζ(y)(−i)|β|
∏|β|
i=1 ζβi and it follows that for all x, y,∈ Rd,

∂αx ∂
β
y p

n
t (x, y) =

∫
Rd

i|β|
( |β|∏
i=1

ζβi

)
ei〈ζ,y〉∂αx (Q

n

t fζ)(x)dζ
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=

∫
[−1,1]d

i|β|
( |β|∏
i=1

ζβi

)
ei〈ζ,y〉∂αx (Q

n

t fζ)(x)dζ

+

∫
Rd\[−1,1]d

i|β|
( |β|∏
i=1

ζβi

)
ei〈ζ,y〉∂αx (Q

n

t fζ)(x)dζ

=: I + J

Since ‖fζ‖∞ = 1, we use (2.12) and we obtain: |I| 6 CS−η(|α|) 6 CS−η(q). Moreover,
for any multi-index β′, we have

J = (−1)|β|i|β
′|
∫
Rd\[−1,1]d

ei〈ζ,y〉∏|β′|
i=1 ζβ′i

∂αx (Q
n

t ∂β′∂βfζ)(x)dζ.

We take β′ = (2, . . . , 2) and we obtain similarly |J | 6 CS−η(q+2d). We gather all the
terms together and we obtain (2.13). Finally, we recall that the regularization properties
Rq,η(S) and R∗q,η(S) hold when Rq,η(S) is satisfied.

Theorem 2.6. We recall that T > 0 and n ∈ N∗. We have the following properties.

A. We fix q ∈ N, h, S ∈ [T/n, T/2) and η : R+ → R+ an increasing function. We
assume that for every m ∈ N, m > n, there exists some modifications (Q

m

t )t∈πT,m

of (Qmt )t∈πT,m
such that (2.11) and (2.12) hold for these q, h, η and S. Moreover we

assume that Em(h, q) (see (2.3)) and E∗m(h, q) (see (2.6)) hold between (Pmt )t∈πT,m
=

(Pt)t∈πT,m
and (Qmt )t∈πT,m

and that (2.2) hold for Qm. Then, we have

sup
t∈π2S,T

T,n

‖Ptf −Qnt f‖∞ 6 CS−η(q)‖f‖∞/nh. (2.14)

B. Moreover, we suppose that the modifications Q of Q satisfy also Rq,η(S) (see (2.12))
for every q ∈ N. Then, for every t > 0, Pt(x, dy) = pt(x, y)dy with (x, y) 7→ pt(x, y)

belonging to C∞(Rd ×Rd).

C. For every R > 0, ε ∈ (0, 1) and every multi-index α, β with |α| + |β| = u, we also
have

sup
t∈π2S,T

T,n

sup
(x,y)∈BR(x0,y0)

|∂αx ∂βy pt(x, y)− ∂αx ∂βy pnt (x, y)| 6 CS−η(pu,ε∨q)/nh(1−ε) (2.15)

with a constant C which depends on R, x0, y0, T and on |α|+ |β| and pu,ε = (u+ 2d+

1 + 2d(1− ε)(u+ d)/(2ε)e).

Remark 2.7. The inequality (2.14) is essentially a consequence of Proposition 2.4.
However, we may not use directly this result, because we do not assume that the
semigroup (Pt)t>0 has the regularization property (2.7) or even the less restrictive
hypothesis (2.2). It simply satisfies (2.1). This is a result of main interest since we have
to check the regularization properties for the approximation scheme Qn only (more
precisely for every Qm,m > n). Indeed, in concrete applications, it can be cumbersome
to study the regularization property for P . Using this result, it is not necessary anymore.
Consequently in this paper, we will only study the regularization properties of the
approximation Markov chain (1.1) and we will give sufficient conditions in order to
obtain those properties.

Remark 2.8. The estimate (2.15) is sub-optimal because of ε > 0. One may wonder if
optimal estimates (with nh instead of nh(1−ε)) may be obtained - as it was the case in
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the paper of Bally and Talay [6] concerning the Euler scheme. Notice that, in the above
paper, specific properties related to the dynamics of the diffusion process which gives
the semigoup are used, and in particular properties of the tangent flow. For example,
if Xt(x) denotes the diffusion process starting from x then we have E[f ′(Xt(x))] =

∂xE[f(Xt(x))(∂xXt(x))−1] − E[f(Xt(x))∂x(∂xXt(x))−1)]. Such properties are crucial in
the above paper - but are difficult to express in terms of general semigroups.

Proof. We prove A first. We fix n ∈ N∗. Now we introduce the sequence of discrete
semigroups ((Qn,mt )t∈πT,n

)m∈N∗ defined in the following way: For all t ∈ πT,n we have
Qn,mt f(x) = Qnmt f(x). Let m′ > m, then

‖Qn,mtnk ,tnk+1
f −Qn,m

′

tnk ,t
n
k+1

f‖∞ = ‖Qn,mtnm
mk ,t

nm
m(k+1)

f −Qn,m
′

tnm′
m′k ,t

nm′
m′(k+1)

f‖∞

6 ‖Qnmtnm
mk ,t

nm
m(k+1)

f − Pnmtnm
mk ,t

nm
m(k+1)

f‖∞

+ ‖Pnm
′

tnm′
m′k ,t

nm′
m′(k+1)

f −Qnm
′

tnm′
m′k ,t

nm′
m′(k+1)

f‖∞

Since Qnm and Qnm
′

verify respectively Enm(h, q) and Enm′(h, q) and both Qnm and Qnm
′

satisfy (2.2), we use the Lindeberg decomposition (2.5) in order to obtain: ‖Qn,mtnk ,tnk+1
f −

Qn,m
′

tnk ,t
n
k+1

f‖∞6C‖f‖q,∞/(nh+1mh). In the same way we obtain |〈g,Qn,mtnk ,tnk+1
f−Qn,m

′

tnk ,t
n
k+1

f〉| 6
C‖g‖1,q‖f‖∞/(nh+1mh). Now, since both Qnm and Qnm

′
have modifications which satisfy

(2.11) and (2.12), we use the same reasoning as in the proof of Proposition 2.4 and

it follows that: ∀t ∈ π2S,T
T,n , ‖Qn,mt f − Qn,m

′

t f‖∞ 6 CS−η(q)‖f‖∞/(nhmh). The sequence
((Qn,mt )t∈πT,n

)m∈N∗ is thus Cauchy and it converges toward (Pnt )t∈πT,n
for smooth test

functions using Proposition 2.2. In particular, taking m = 1 and letting m′ tend to infinity
in the previous inequality we have

∀t ∈ π2S,T
T,n , ‖Qn,1t f − Pnt f‖∞ 6 CS−η(q)‖f‖∞/nh,

which is (2.14). Let us prove C. We are going to use a result from [8]. First, we introduce
some notations. For q ∈ N, we introduce the distance dq defined by

dq(µ, ν) = sup
{
|
∫
fdµ−

∫
fdν‖ : ‖f‖q,∞ 6 1

}
.

For q, l ∈ N, r > 1 and f ∈ Cq(Rd ×Rd), we denote

‖f‖q,l,r =
∑

06|α|6q

(∫ ∫
(1 + |x|l + |y|l)|∂αf(x, y)|rdxdy

)1/r
.

Since we want to show how the constant depends from S in the right hand side of
(2.15), we will use a variant of Theorem 2.11 from [8].

Proposition 2.9. Let p, p̃ ∈ N, m ∈ N∗ and r > 1 be given and let r∗ be the conjugate
of r. We consider some measures µ(dx, dy) and µgn(dx, dy) = gn(x, y)dxdy with gn ∈
Cp+2m(Rd ×Rd) and we assume that there exists Kµ,Kg,p,m > 1, h ∈ N∗, such that

dp̃(µ, µgn) 6 Kµ/n
h, ‖gn‖p+2m,2m,r 6 Kg,p,m, ∀n ∈ N. (2.16)

Then µ(dx, dy) = g(x, y)dxdy where g belongs to the Sobolev space W p,r(Rd) and for all
ζ > (p+ p̃+ d/r∗)/m, there exists a universal constant C > 1 such that

‖g − gn‖Wp,r(Rd) 6 CCh,mζ,p+p̃+d/r∗(Kg,p,mn
−2h/ζ +Kµn

−h+h(p+p̃+d/r∗)/(ζm)). (2.17)

with Ch,ξ,u = 2h+u(1− 2−ξ+u)−1.
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Proof. For k, n ∈ N, we introduce

nk = min{n;nh > 2ζkm}, and kn = min{k ∈ N;nk > n}

First, we notice that nkn−1 < n 6 nkn . Moreover, if we define C2 = 2ζm, C1 = 2−h, we
have

C1n
h 6 2ζknm 6 C2n

h. (2.18)

Indeed nh > nhkn−1 which gives C2. In order to obtain C1, we notice that nkn 6
1 + 2ζknm/h. Now, we fix n ∈ N and for k ∈ N∗, we define

g̃k = 0 if k < kn and g̃k = gnk
− gn, if k > kn

and ν(dx) = µ(dx)− gn(x)dx, νk(dx) = g̃k(x)dx. Using Proposition 2.5 and Theorem 2.6
in [8], it follows that

‖g − gn‖Wp,r(Rd) 6
∞∑
k=1

2k(p+p̃+d/r∗)dp̃(ν, νk) +

∞∑
k=1

2−2mk‖g̃k‖p+2m,2m,p̃ =: T1 + T2

First, we estimate T1. If k < kn, we have νk = 0 so that dp̃(ν, νk) = dp̃(ν, 0) =

dp̃(µ, µgn) 6 Kµ/n
h. On the other and, if k > kn, we have dp̃(ν, νk) = dp̃(µ, µgnk

) 6

Kµn
−h
k 6 Kµ2−kmζ . Using (2.18) together with all ζ > (p+ p̃+ d/r∗)/m, it follows that

T1 6Kµ2kn(p+p̃+d/r∗)n−h + (1− 2−mζ+p+p̃+d/r
∗
)−1Kµ2−kn(mζ−p−p̃−d/r∗)

62(1− 2−mζ+p+p̃+d/r
∗
)−1C

(p+p̃+d/r∗)/(ζm)
2 C−1

1 Kµ/n
h(1−(p+p̃+d/r∗)/(ζm)).

Now, we estimate T2. Using (2.16) and (2.18) again, we have

T2 6 2Kg,p,m

∞∑
k=kn

2−2mk 6 2(1− 2−2m)−1C−1
1 Kg,p,mn

−2h/ζ ,

and since m > 1, the proof is completed.

We come back to our framework. We fix R > 0, t ∈ π2S,T
T,n . We consider a function

ΦR ∈ C∞b (Rd ×Rd) such that 1BR(x0,y0)(x, y) 6 ΦR(x, y) 6 1BR+1(x0,y0) and we denote

gn,Rt (x, y) = ΦR(x, y)pnt (x, y).

We use the result above for the sequence gn := gn,Rt , n ∈ N and µ(dx, dy) = ΦR(x, y)×
Pt(x, dy)dx. In our specific case (2.11) and (2.14) give d0(µ, µgn) 6 CS−η(q)n−h. Since
we have also (2.13), it follows that (2.16) hold with Kµ = CS−η(q) and Kg,p,m =

CS−η(p+2m+2d). We deduce from Proposition 2.9 that ΦR(x, y)Pt(x, dy)dx = µ(dx, dy) =

g(x, y)dxdy with g ∈ W p,r(Rd). Moreover, using Sobolev’s embedding theorem, for
ζ > (p+ d/r∗)/m and u 6 p− d/r we have

‖g − gn‖u,∞ 6 C‖g − gn‖Wp,r(Rd)

6 CCh,mζ,p+d/r∗(S
−η(p+2m+2d)n−2h/ζ + S−η(q)n−h+h(p+d/r∗)/(ζm)).

We take u = |α|+ |β|, r = d, p = u+ 1 and m = d(1− ε)(u+ d)/(2ε)e and put ζ = 2/(1− ε).
In this case ζ > (p+ d/r∗)/m+ 2 and we obtain

‖g − gn‖|α|+|β|,∞
6 C2h+u+d(S−η(u+2d+1+2d(1−ε)(u+d)/(2ε)e)n−h(1−ε) + S−η(q)n−h(1−ε)).
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3 Integration by parts using a splitting method

In this section, we aim to build some integration by part formulas in order to prove the
regularization properties. This kind of formulas is widely studied in Malliavin calculus
for the Gaussian framework. However, since we are interested in random variables
with form (1.1), where the random variables laws of Zk, k ∈ N∗ are arbitrary (and thus
not Gaussian) the standard Malliavin calculus is not adapted anymore. Therefore, we
whether develop a finite dimensional differential calculus which happens to be well
suited to our framework as soon as Zk involves a regular part.

Concretely, we consider a sequence of independent random variables Zk = (Z1
k , . . . ,

ZNk ) ∈ RN , k ∈ {1, . . . , n} and we denote Z = (Z1, . . . , Zn). The number n is fixed
throughout this section (so there is no asymptotic procedure going on even if n is large in
concrete applications since we are interested in estimating the error as n→∞). We aim
to build integration by parts formulas based on the random vectors Z. The basic required
assumption to obtain those formulas is the following: There exists z∗ = (z∗,k)k∈N∗

taking its values in RN and ε∗, r∗ > 0 such that for every Borel set A ⊂ RN and every
k ∈ {1, . . . , n}

Lz∗(ε∗, r∗) P(Zk ∈ A) > ε∗λ(A ∩Br∗(z∗,k)) (3.1)

where λ is the Lebesgue measure on RN . We also define

Mp(Z) := 1 ∨ sup
k∈{1,...,n}

E[|Zk|p] (3.2)

and assume that Mp(Z) <∞ for every p > 1.
It is easy to check that (3.1) holds if and only if there exists some non negative

measures µk with total mass µk(RN ) < 1 and a lower semi-continuous function ϕ > 0

such that P(Zk ∈ dz) = µk(dz)+ϕ(z−z∗,k)dz. Notice that the random variables Z1, . . . , Zn
are not assumed to be identically distributed. However, the fact that r∗ > 0 and ε∗ > 0

are the same for all k represents a mild substitute of this property. In order to construct
ϕ we have to introduce the following function: For v > 0, set ϕv : RN → R defined by

ϕv(z) = 1|z|6v + exp
(

1− v2

v2 − (|z| − v)2

)
1v<|z|<2v. (3.3)

Then ϕv ∈ C∞b (RN ), 0 6 ϕv 6 1 and we have the following crucial property: For every
p, k ∈ N there exists a universal constant Cq,p such that for every z ∈ RN , q ∈ N and
i1, . . . , iq ∈ {1, . . . , N}, we have

ϕv(z)|
∂q

∂zi1 · ∂ziq
(lnϕv)(z)|p 6

Cq,p
vpq

, (3.4)

with the convention lnϕv(z) = 0 for |z| > 2v. As an immediate consequence of (3.1), for
every non negative function f : RN → R+

E[f(Zk)] > ε∗

∫
RN

ϕr∗/2( z − z∗,k )f(z)dz.

By a change of variable

E[f(
1√
n
Zk)] > ε∗

∫
RN

nN/2ϕr∗/2
(√
n(z − z∗,k√

n
)
)
f(z)dz. (3.5)

We denote

m∗ = ε∗

∫
RN

ϕr∗/2(z)dz = ε∗

∫
RN

ϕr∗/2(z − z∗,k)dz
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and

φn(z) = nN/2ϕr∗/2(
√
nz)

and we notice that
∫
φn(z)dz = m∗ε

−1
∗ .

We consider a sequence of independent random variables χk ∈ {0, 1}, Uk, Vk ∈ RN ,
k ∈ {1, . . . , n} with laws given by

P(χk = 1) = m∗, P(χk = 0) = 1−m∗, (3.6)

P(Uk ∈ dz) =
ε∗
m∗

φn(z − z∗,k√
n

)dz,

P(Vk ∈ dz) =
1

1−m∗
(P(

1√
n
Zk ∈ dz)− ε∗φn(z − z∗,k√

n
)dz).

Notice that (3.5) guarantees that P(Vk ∈ dz) > 0. Then a direct computation shows that

P(χkUk + (1− χk)Vk ∈ dz) = P(
1√
n
Zk ∈ dz). (3.7)

This is the splitting procedure for 1√
n
Zk. Now on we will work with this representation

of the law of 1√
n
Zk. So, we always take

1√
n
Zk = χkUk + (1− χk)Vk.

Remark 3.1. The above splitting procedure has already been widely used in the littera-
ture: In [31] and [25], it is used in order to prove convergence to equilibrium of Markov
processes. In [10], [11] and [35], it is used to study the Central Limit Theorem. Last but
not least, in [30], the above splitting method (with 1Br∗ (z∗,k) instead of φn(z − z∗,k√

n
)) is

used in a framework which is similar to the one in this paper.

In the following, we will denote χ = (χ1, . . . , χn), U = (U1, . . . , Un) and V =

(V1, . . . , Vn) and we will consider the class of random variables:

S = {F = f(χ,U, V ) : f is measurable and u→ f(χ, u, v) ∈ C∞b (Rn ×RN ),∀χ, v}. (3.8)

We will also denote Sd the space of d-dimensional vectors with components that belong
to S. For a multi index α = (α1, . . . , αq) with αj = (kj , ij), kj ∈ {1, . . . , n}, ij ∈ {1, . . . , N},
we denote |α| = q the length of α and

∂αu f(χ, u, v) =
∂q

∂ui1k1 · · · ∂u
iq
kq

f(χ, u, v).

We construct now a differential calculus based on the laws of the random variables
Uk, k = 1, . . . , n which mimics the Malliavin calculus, following the ideas from [5], [3]
and [4]. In order to be self contained, we shortly present the results that we need. For
F = f(χ,U, V ) ∈ S we define the Malliavin derivatives

D(k,i)F = χk
1√
n

∂F

∂U ik
= χk

1√
n

∂f

∂uik
(χ,U, V ), k = 1, . . . , n, i = 1, . . . , N. (3.9)

We denote by 〈·, ·〉 the usual scalar product on RN ×Rn. The Malliavin covariance matrix
for a multi dimensional functional F = (F 1, . . . , F d) is defined as

σi,jF =
〈
DF i, DF j

〉
=

n∑
k=1

N∑
r=1

D(k,r)F
i ×D(k,r)F

j , i, j = 1, . . . , d. (3.10)
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The higher order derivatives are defined by iterating D:

DαF = Dα1
· · ·Dαm

F.

Now we define the Ornstein Uhlenbeck operator L : S → S. We denote

Γk = lnφn(Uk −
z∗,k√
n

) ∈ S

and we notice that

D(k,i)Γk =
1√
n
χk∂ui

k
lnφn(Uk −

z∗,k√
n

) =
1√
n
χk∂ui

k
lnφn(uk −

z∗,k√
n

)|uk=Uk

= χk∂zi lnϕr∗/2(z)|
z=
√
n(Uk−

z∗,k√
n

)
.

Finally, we define

−LF =

n∑
k=1

N∑
i=1

D(k,i)D(k,i)F +

n∑
k=1

N∑
i=1

D(k,i)F ×D(k,i)Γk.

Remark 3.2. The basic random variables in our calculus are Zk, k = 1, . . . , n so we
precise the way in which the differential operators act on them. Since Zk =

√
nχkUk +√

n(1− χk)Vk, it follows that

D(m,j)Z
i
k = χkδm,kδi,j , (3.11)

LZik = −χk∂zi lnϕr∗/2(z)|
z=
√
n(Uk−

z∗,k√
n

)
. (3.12)

where δi,j = 1 if i = j and 0 if i 6= j, stands for the Kroenecker symbol.

In our framework, the duality formula in Malliavin calculus reads as follows: For each
F,G ∈ S

E[FLG] = E[〈DF,DG〉] = E[GLF ]. (3.13)

This follows immediately using the independence structure and standard integration by
parts on RN : Indeed, if f, g ∈ C1

b (RN ) and k ∈ {1, . . . , n}, then

N∑
i=1

E[∂ui
k
f(Uk)∂ui

k
g(Uk)]

=
ε∗
m∗

N∑
i=1

∫
RN

∂ui
k
f(u)∂ui

k
g(u)φn(u− z∗,k√

n
)du

= − ε∗
m∗

N∑
i=1

∫
RN

f(u)(∂2
ui
k
g(u) + ∂ui

k
g(u)

∂ui
k
φn(u− z∗,k√

n
)

φn(u− z∗,k√
n

)
)φn(u− z∗,k√

n
)du

= −E
[
f(Uk)

N∑
i=1

∂2
ui
k
g(Uk) + ∂ui

k
g(Uk)∂ui

k
lnφn(Uk −

z∗,k√
n

)
]
.

It follows that

n∑
k=1

N∑
i=1

E[D(k,i)F ×D(k,i)G]

=
1

n

n∑
k=1

N∑
i=1

E[χk∂ui
k
f(χ,U, V )× ∂ui

k
g(χ,U, V )]

EJP 21 (2016), paper 12.
Page 16/44

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4079
http://www.imstat.org/ejp/


Approximation of Markov semigroups

= −E
[
f(χ,U, V )

n∑
k=1

χk

N∑
i=1

1

n
∂2
ui
k
g(χ,U, V ) +

1√
n
∂ui

k
g(χ,U, V )

1√
n
∂ui

k
lnφn(Uk −

z∗,k√
n

)
]

= −E
[
f(χ,U, V )

n∑
k=1

N∑
i=1

D(k,i)D(k,i)G+D(k,i)GD(k,i)Γk

]
= E[FLG],

which is exactly (3.13). We have the following standard chain rule: For φ ∈ C1(Rd) and
F ∈ Sd

Dφ(F ) =

d∑
j=1

∂jφ(F )DF j . (3.14)

Moreover, one may prove, using (3.14) and the duality relation (or direct computation),
that

Lφ(F ) =

d∑
j=1

∂jφ(F )LF j +

d∑
i,j=1

∂i∂jφ(F )
〈
DF i, DF j

〉
. (3.15)

In particular for F,G ∈ S,

L(FG) = FLG+GLF + 2 〈DF,DG〉 . (3.16)

We are now able to give the Malliavin integration by parts formula:

Theorem 3.3. Let F ∈ Sd and G ∈ S be such that E[(detσF )−p] < ∞ for every p > 1.

We denote γF = σ−1
F . Then for every φ ∈ C∞c (Rd) and every i = 1, . . . , d

E[∂iφ(F )G] = E[φ(F )Hi(F,G)] (3.17)

with
−H(F,G) = GγFLF + 〈D(GγF ), DF 〉 (3.18)

and

Hi(F,G) = −
d∑
j=1

Gγi,jF LF j + 〈D(Gγi,jF ), DF j〉.

Moreover, for every multi index α = (α1, . . . , αm) ∈ {1, . . . , d}m

E[∂αφ(F )G] = E[φ(F )Hα(F,G)] (3.19)

with Hα(F,G) defined by the recurrence relation H(α1,··· ,αm)(F,G) = Hαm
(F,

H(α1,...,αm−1)(F,G)).

Proof. Using the chain rule Dφ(F ) = ∇φ(F )DF we have

〈Dφ(F ), DF 〉 = ∇φ(F ) 〈DF,DF 〉 = ∇φ(F )σF .

It follows that ∇φ(F ) = γF 〈Dφ(F ), DF 〉 . Then, using (3.16) and the duality formula
(3.13),

E[G∇φ(F )] = E[GγF 〈Dφ(F ), DF 〉] =
1

2
E[GγF (L(φ(F )F )− φ(F )LF − FLφ(F ))]

=
1

2
E[φ(F )(FL(GγF )−GγFLF − L(GγFF ))].

We use once again (3.16) in order to obtain H(F,G) in (3.18).
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We give now estimates of the weights Hα(F,G) which appear in the above integration
by parts formulas. We will work with the norms:

|F |21,q =
∑

16|α|6q

|DαF |2, |F |2q = |F |2 + |F |21,q, (3.20)

and

‖F‖1,q,p =
∥∥|F |1,q∥∥p = E[|F |p1,q]1/p (3.21)

‖F‖q,p = ‖F‖p +
∥∥|F |1,q∥∥p.

Proposition 3.4. For each m, q ∈ N, there exists a universal constant C > 1 (depending
on d,m, q only) such that for every multi index α with |α| 6 q and every F ∈ Sd and
G ∈ S on has

|Hα(F,G)|m 6 C(1 ∨ (detσF )−1)q(q+m+1)(1 + |F |2dq(q+m+2)
1,m+q+1 + |LF |2qm+q−1)|G|m+q. (3.22)

The proof is long but straightforward so we skip it. The reader may find the detailed
proof in [5] and in [3], Theorem 3.4.

We end this section with an estimate of ‖LZik‖q,p :

Lemma 3.5. We have the following properties.

A. For every k = 1, . . . , n and i = 1, . . . , N , we have

E[LZik] = 0. (3.23)

B. For every q ∈ N and p > 2 there exists a constant C depending on q, p only

‖LZik‖q,p 6
Cm

1/p
∗

r∗
(1 + r−q∗ ) (3.24)

Proof. A. Using the duality relation we have E[1× LZik] = E[
〈
D1, DZik

〉
] = 0. In order to

prove B we recall (see (3.12)) that

LZik = −χk∂i(lnϕr∗/2)
(√
n(Uk −

z∗,k√
n

)
)
.

Let Λk,q be the set of the multi-index α = (α1, . . . , αq) such that αj = (k, ij). Notice that
for a multi-index α of length q, such that α /∈ Λk,q, we have DαLZ

i
k = 0. Suppose now

that α ∈ Λk,q and let α = (i1, . . . , iq, i). It follows

DαLZ
i
k = −χk∂α(lnϕr∗/2)

(√
n(Uk −

z∗,k√
n

)
)
.

Since the function ϕr∗/2 is constant on Br∗/2(0) and on Rd \ Br∗(0), using (3.4), we
obtain

‖DαLZ
i
k‖pp =

ε∗‖χk‖pp
m∗

∫
RN

nN/2
∣∣∂α(lnϕr∗/2)

(√
n(u− z∗,k√

n
)
)∣∣pϕr∗/2(√n(u− z∗,k√

n
)
)
du

=
ε∗‖χk‖pp
m∗

∫
r∗/26|u|6r∗

∣∣∂α(lnϕr∗/2)(u)
∣∣pϕr∗/2(u)du

6
Cq+1,pm∗

r
p(q+1)
∗

.

and then

‖LZik‖q,p 6 C sup
l6q

sup
α∈Λk,l

‖DαLZ
i
k‖p 6

Cm
1/p
∗

r∗
(1 + r−q∗ ).
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3.1 Localization

We have seen in Proposition 3.4 that we can bound the Sobolev norms of the weight
which appear in the integration by part formula (3.19). In order to obtain the regular-
ization properties, we will have to bound the moments of those Sobolev norms or more
particularly, the moments of the terms which appear in the right hand side of (3.22).
However, in many cases it is cumbersome to estimate E[(detσF )−p], p ∈ N. The method
adopted in this paper comes down to localize the calculus when detσF does not belong
to a neighborhood of zero. Then, we will prove a similar property as (2.11) and we will
obtain the convergence in total variation distance. More specifically, when F = Xn,
we will have to localize the random variables Zk and χk which appear in (1.1) with the
decomposition (3.7). We introduce a suited framework to treat this problem.

In the following, we will not work under P, but under a localized probability measure
which we define now. We fix S > 0 such that S 6 T and we consider the set

ΛS = { 1

bSn/T c

bSn/Tc∑
k=1

χk >
m∗
2
}. (3.25)

Using Hoeffding’s inequality and the fact that E[χk] = m∗, it can be checked that

P(ΛcS) 6 exp(−m2
∗bSn/T c/2). (3.26)

We consider also the localization function ϕn1/4/2, defined in (3.3), and we construct the
random variable

Θ = ΘS,n = 1ΛS
×

n∏
k=1

ϕn1/4/2(Zk). (3.27)

Since Zk has finite moments of any order, the following inequality can be shown: For
every l ∈ N there exists C such that

P(ΘS,n = 0) 6 P(ΛcM ) +

n∑
k=1

P(|Zk| > n1/4) 6 exp(−m2
∗bSn/T c/2) +

M4(l+1)(Z)

nl
. (3.28)

We define the probability measure

dPΘ =
1

E[Θ]
ΘdP. (3.29)

Corollary 3.6. Let F ∈ Sd and G ∈ S be such that EΘ[(detσF )−p] <∞ for every p > 1.

We denote γF = σ−1
F . Then, for every φ ∈ C∞c (Rd) and every i = 1, . . . , d

EΘ[∂iφ(F )G] = EΘ[φ(F )HΘ
i (F,G)] (3.30)

with

−HΘ(F,G) = GγFLF + 〈D(GγF ), DF 〉+GγF 〈D ln Θ, DF 〉

and

HΘ
i (F,G) = −

d∑
j=1

Gγi,jF LF j + 〈D(Gγi,jF ), DF j〉+Gγi,jF
〈
D ln Θ, DF j

〉
.

And for every multi index α = (α1, . . . , αm) ∈ {1, . . . , d}m,

EΘ[∂αφ(F )G] = EΘ[φ(F )HΘ
α (F,G)], (3.31)
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with HΘ
α (F,G) defined by the recurrence relation HΘ

(α1,··· ,αm)(F,G) = HΘ
αm

(F,

HΘ
(α1,··· ,αm−1)(F,G)), and the convention ln(Θ) = 0 for Θ = 0. Moreover there exists

an universal constant C such that for every multi index α with |α| = q

EΘ[|HΘ
α (F,G)|pm] 6 CCq,Θ(F,G), (3.32)

with

Cq,Θ(F,G) = EΘ[(1 ∨ (detσF )−1)2pq(q+m+1)]1/2

× (1 + EΘ[|F |8pqd(q+m+2)
1,m+q+1 ]1/4 + EΘ[|LF |8pqm+q−1]1/4)EΘ[|G|4pm+q]

1/4. (3.33)

Proof. Using (3.18) with G replaced by GΘ we obtain E[∂iφ(F )GΘ] = E[φ(F )Hi] with

H = −ΘGγFLF − 〈D(ΘGγF ), DF 〉 = ΘH(F,G)−GγF 〈DΘ, DF 〉 .

It follows that

EΘ[∂iφ(F )G] =
1

E[Θ]
E[∂iφ(F )GΘ] =

1

E[Θ]
E[φ(F )(ΘHi(F,G)−G

d∑
j=1

γi,jF
〈
DΘ, DF j

〉
]

= EΘ[φ(F )(Hi(F,G)−G
d∑
j=1

γi,jF
〈
D ln Θ, DF j

〉
].

So (3.30) is proved and (3.31) follows by recurrence. Moreover

EΘ[|G
d∑
j=1

γi,jF
〈
D ln Θ, DF j

〉
|p]

6 CEΘ[|D ln(Θ)4p]1/4EΘ[|γF |4p]1/4EΘ[|DF |4p]1/4EΘ[|G|4p]1/4.

Notice that by (3.4) we have

EΘ[|D ln Θ|4p]1/4p 6 C/n1/4.

Then (3.32) follows from (3.22).

4 Convergence results for a class of Markov chain

Now we have introduced the integration by parts formulas which are adapted to our
study, we are in a position to prove the regularization properties. In order to do it, we
have to bound the miscellaneous terms which appear in the right hand side of (3.33).
This section is devoted to the estimation of those terms. We will treat separately the
estimation of the norm of the inverse of the covariance matrix from the other terms.
Indeed, this study requires localization techniques which are not necessary in order
to bound the Sobolev norms of the others terms. Then we will give the regularization
properties and the total variation convergence results that follow from those estimates.

Throughout this section, n ∈ N∗ will still be fixed and will be the number of time
step between 0 and T and also the number of increments that we consider in our
abstract Malliavin calculus. We consider two sequences of independent random variables
Zk+1 ∈ RN , κk ∈ R, k ∈ N and we assume that Zk, k ∈ N∗, are centered and verify (3.1)
and (3.2).

We suppose that, there exists C > 1 such that supk∈N∗ δ
n
k 6 C/n and we construct

the Rd valued Markov chain (Xn
t )t∈πT,n

in the following way:

Xn
tnk+1

= ψ(κk, X
n
tnk
,
Zk+1√
n
, δnk+1), k ∈ N (4.1)
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where
ψ ∈ C∞(R×Rd ×RN ×R+;Rd) and ψ(κ, x, 0, 0) = x. (4.2)

We introduce the norm

‖ψ‖1,r,∞ = 1 ∨
r∑

|α|=0

r−|α|∑
|β|+|γ|=1

‖∂αx ∂βz ∂
γ
t ψ‖∞. (4.3)

Remark 4.1. Notice that the random variables κk can be useful in concrete applications.
Indeed, in the Ninomiya Victoir scheme, at each time step k, one throws a coin κk ∈
{1,−1} and uses different forms for the function ψ according to the fact that κk is equal
to 1 or to −1.

Since the function ψ only needs to be measurable with respect to κ and that all
our estimates will be done in terms of ‖ψ‖1,r,∞, then without loss of generality, we can
simplify the notations and denote

ψk(x, z, t) = ψ(κk, x, z, t).

Then, we slightly modify the definition (4.3) and instead, in the sequel, we will consider
the norm

‖ψ‖1,r,∞ = sup
k∈N
‖ψk‖1,r,∞ = 1 ∨ sup

k∈N

r∑
|α|=0

r−|α|∑
|β|+|γ|=1

‖∂αx ∂βz ∂
γ
t ψk‖∞, (4.4)

with (ψk)k∈N a sequence of functions that belong to Cr(Rd ×RN ×R+;Rd). It is worth
noticing that all our results remain true if we replace the supremum over k ∈ N by the
supremum over k ∈ N with tnk < T . However, for the sake of clarity, we will work with
(4.4). Finally for r ∈ N∗, we denote

Kr(ψ) = (1 + ‖ψ‖1,r,∞) exp(‖ψ‖21,3,∞). (4.5)

We aim to give sufficient conditions under which the above Markov chain has the regu-
larization property (2.12). In order to do it, we consider the following new representation
of Xn. Let us introduce some notations. We denote

Hk =
Zk√
n

= χkUk + (1− χk)Vk.

Using a Taylor expansion of order one, we write

Xn
tnk+1

= Xn
tnk

+
N∑
i=1

∂ziψk(Xn
tnk
, 0, 0)Hi

k+1 + δnk+1

∫ 1

0

∂tψk(Xn
tnk
, Hk+1, λδ

n
k+1)dλ

+
1

2

N∑
i,j=1

Hi
k+1H

j
k+1

∫ 1

0

(1− λ)∂zi∂zjψk(Xn
tnk
, λHk+1, 0)dλ.

We denote

aik = ∂ziψk(Xn
tnk
, 0, 0), bi,jk =

∫ 1

0

(1− λ)∂zi∂zjψk(Xn
tnk
, λHk+1, 0)dλ, b̃k

=

∫ 1

0

∂tψk(Xn
tnk
, Hk+1, λδ

n
k+1)dλ,

and then, we write
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Xn
tnm

= x+

N∑
i=1

m−1∑
k=0

aikH
i
k+1 +

1

2

N∑
i,j=1

m−1∑
k=0

bi,jk H
i
k+1H

j
k+1 +

m−1∑
k=0

b̃kδ
n
k+1. (4.6)

Moreover we denote by Xn(x) the Markov chain which starts from x (i.e. Xn
0 (x) = x)

and we denote by ∂αXn the derivative with respect to the starting point x. We will use
the results from the previous section for Xn. In order to do it we have to estimate the
Sobolev norms of Xn:

Theorem 4.2. For every q, q′ ∈ N with q > q′, and p > 2 there exists l ∈ N∗, C > 1 which
depend on r∗, ε∗,m∗, q, p and the moments of Z, but not on n,such that

sup
t∈πT

T,n

sup
06|α|6q−q′

‖∂αxXn
t (x)‖q′,p 6 CKq+2(ψ)l, (4.7)

sup
t∈πT

T,n

‖LXn
t ‖q,p 6 CKq+4(ψ)l, (4.8)

where Kr(ψ) is defined in (4.5) and is given by

Kr(ψ) = (1 + ‖ψ‖1,r,∞) exp(‖ψ‖21,3,∞).

The proof is long and technical so we postpone it to Section 6.

4.1 The Malliavin covariance matrix

We turn now to the covariance matrix. We will work under the probability PΘ

defined in (3.29). We recall that T > 0 and n ∈ N are given and we have denoted
ΛS = { 1

bnS/Tc
∑bnS/Tc
k=1 χk > m∗

2 }. The localization random variable ΘS,n is defined in
(3.27) and we have proved in (3.28) that, for every l ∈ N,

P(ΘS,n = 0) 6 exp(−m2
∗bnS/T c/2) +

M4(l+1)(Z)

nl
.

We also have

{ΘS,n 6= 0} ⊂ { 1

n

bnS/Tc∑
k=1

χk >
bnS/T cm∗

2n
} ∩ {|Zk| 6 n1/4, k = 1, . . . , n}.

Using the computational rules for k ∈ {0, . . . ,m− 1} and m 6 n, we obtain

D(k+1,i)X
n
tnm

= Ik,i +

m−1∑
l=k+1

JlD(k+1,i)X
n
tnl

(4.9)

with

Ik,i =
1√
n
χk+1

(
aik +

N∑
j=1

Hj
k+1b

i,j
k +

N∑
j,q=1

Hj
k+1H

q
k+1c

i,j,q
k + δnk+1c̃

i
k

)
, (4.10)

ci,j,qk =
1√
n
χk+1

∫ 1

0

λ(1− λ)∂zi∂zj∂zqψk(Xn
tnk
, λHk+1, 0)dλ

c̃ik =

∫ 1

0

∂zi∂tψk(Xn
tnk
, Hk+1, λδ

n
k+1)dλ (4.11)

and the d× d dimensional matrices Jl, defined by

Jp,rl = Jp,rl,0 +

N∑
j=1

Jp,rl (j) +

N∑
j,q=1

Jp,rl (j, q)
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with

Jp,rl,0 = δnl+1

∫ 1

0

∂xp
∂t(ψl(X

n
tnl
, Hl+1, λδ

n
l+1))rdλ,

Jp,rl (j) = Hj
l+1∂xp∂zj (ψl(X

n
tnl
, 0, 0))r,

Jp,rl (j, q) = Hj
l+1H

q
l+1

∫ 1

0

(1− λ)∂xp∂zj∂zq (ψl(X
n
tnl
, λHl+1, 0))rdλ.

We first aim to express D(k+1,i)X
n
t using the variance of constants method. We

consider the tangent flow Y nt = ∇xXn
t (x), t ∈ πT,n, which is the d× d dimensional matrix

solution of

Y ntnm = I +

m−1∑
l=0

JlY
n
tnl
,

where I is the identity matrix. The explicit solution of the above equation is given
by Y ntnm =

∏m−1
k=0 (I + Jk). If each of the matrices I + Jk, k = 1, . . . ,m, is invertible

then, Y ntnm is also invertible. On the set {Θtnm,n
6= 0}, we have |Hk| = |n−1/2Zk| 6 n−1/4

so that ‖Jk‖∞ := supi,j6d ‖J
i,j
k ‖∞ 6 3‖ψ‖1,3,∞n−1/4. It follows that, among others, if

‖ψ‖1,3,∞n−1/4 6 1/6, then the lower eigenvalue of I + Jk is larger then 1/2, so we have

the invertibility property. We denote by (Ŷ nt )t∈πT,n
the inverse of (Y nt )t∈πT,n

and it is easy

to check that Ŷ n solves the equation:

Ŷ ntnm = I −
m−1∑
l=0

Ŷ ntnl (I + Jl)
−1Jl.

The following representation of the Malliavin derivative, known as the “variance of
constants method”, is given by

∀t ∈ πT,n, t > tnk+1 D(k+1,i)X
n
t = Y nt Ŷ

n
tnk+1

Ik,i, (4.12)

and is zero if t < tnk+1. We will use the following estimates.

Lemma 4.3. Let p > 2. There exists a constant C > 1, which depends on p and T , such
that the following holds. Suppose that n and t ∈ π0,T

T,n are sufficiently large in order to
have

3‖ψ‖1,3,∞
n1/4

+
M8(Z)

n
+ exp(−m2

∗nt/(2T )) 6
1

2
. (4.13)

Then,

EΘt,n [ sup
s∈πT

T,n

‖Y ns ‖p] 6 2 exp
(
C(M2p(Z)2/p +M4(Z)2)(1 + ‖ψ‖21,3,∞)

)
, (4.14)

and

EΘt,n [ sup
s∈πT

T,n

‖Ŷ ns ‖p] 6 2 exp
(
C(M2p(Z)2/p +M4(Z)2)(1 + ‖ψ‖21,3,∞)

)
, (4.15)

with

‖Y nt ‖ := sup
i,j6d

|(Y nt )i,j |.

Proof. Step 1. We notice that on the set {Θt,n 6= 0} we have Hl = H l := Hl1{|Zl|6n1/4}.

Consequently Jl = J l := Jl1{|Zl+1|6n1/4} and Ŷ n = Y
n

where (Y
n

t )t∈πT,n
is the solution of

the equation

Y
n

tnm
= I −

m−1∑
l=0

Y
n

tnl
(I + J l)

−1J l.
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Moreover, we have

EΘt,n
[ sup
s∈πT,n

‖Ŷ ns ‖p] 6
1

E[Θt,n]
E[ sup
s∈πT,n

‖Y ns ‖p] 6 CE[ sup
s∈πT,n

‖Y ns ‖p],

the last inequality is a consequence of (3.28). Indeed

E[Θt,n] > 1− P(Θt,n = 0) > 1− exp(−m2
∗nt/(2T ))− M8(Z)

n
>

1

2
.

The last inequality is true under the hypothesis (4.13). So, our task is now to estimate
E[sups∈πT

T,n
‖Y ns ‖p].

Step 2. Let

Fl = σ(χi, Ui, Vi, i = 1, . . . , l).

Since, from (4.13), the lower eigenvalue of (I+J l) is larger than 1/2, then ‖(I+J l)
−1‖ 6 2.

It follows that ‖Y ntnl (I+J l)
−1J l‖ 6 2‖Y ntnl ‖‖J l‖ and since Y

n

tnl
is Fl measurable, we obtain

‖E[Y
n

tnl
(I + J l)

−1J l | Fl]‖ 6 2‖Y ntnl ‖E[‖J l‖ | Fl].

Now, we notice that E[‖Jp,rl,0 ‖ | Fl] 6 C‖ψ‖1,2,∞/n and

E[‖Jp,rl (j)‖ | Fl] 6
C√
n
‖ψ‖1,2,∞E[|Zjl+1|1{|Zl+1|>n1/4} | Fl]

6
C

n
‖ψ‖1,2,∞E[|Zl+1|3] 6

C‖ψ‖1,2,∞M3(Z)

n
.

Moreover, using the Hölder inequality, we obtain

E[‖Jp,rl (j, q)‖ | Fl]| 6 C
M4(Z)1/2‖ψ‖1,3,∞

n
.

It follows that E[‖J l‖ | Fl] 6 CM4(Z)‖ψ‖1,3,∞/n so, finally, we obtain

‖E[Y
n

tnl
(I + J l)

−1J l | Fl)‖ 6 CM4(Z)(1 + ‖ψ‖1,3,∞)‖Y ntnl ‖/n. (4.16)

Step 3. We are now ready to start our proof. We write

(Y
n

tnm
)i,j = δi,j −

m−1∑
l=0

θi,jl (4.17)

with

θi,jl = (Y
n

tnl
(I + J l)

−1J l)
i,j .

We denote

θ̂l = E[θl | Fl], θ̃l = θl − θ̂l

and we write

Y
n

tnm
= Mm +Am with

Mm = −
m−1∑
l=0

θ̃l, Ai,jm = δi,j −
m−1∑
l=0

θ̂i,jl .
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By (4.16) we have ‖nθ̂l‖ 6 CM4(Z)(1 + ‖ψ‖1,3,∞)‖Y ntnl ‖ and using the triangle inequality,
we deduce that

sup
tnk6t

n
m

‖Ak‖ 6 1 + CM4(Z)(1 + ‖ψ‖1,3,∞)
1

n

m−1∑
l=0

‖Y ntnl ‖.

So that,

E[ sup
tnk6t

n
m

‖Ak‖p]1/p 6 1 + CM4(Z)(1 + ‖ψ‖1,3,∞)
1

n

m−1∑
l=0

‖Y ntnl ‖p.

We recall that ‖θl‖ 6 2‖J l‖‖Y
n

tnl
‖ and it follows that

‖θ̃l‖ 6 ‖θl‖+ ‖θ̂l‖ 6 C(|Zl+1|2 +M4(Z))(1 + ‖ψ‖1,3,∞)‖Y ntnl ‖/n
1/2,

and then,

‖θ̃l‖2p 6 C(M2p(Z)2/p +M4(Z)2)(1 + ‖ψ‖21,3,∞)‖Y ntnl ‖
2
p/n.

Moreover, (Mm)m∈N∗ is a martingale so, using Burkholder’s inequality (see (6.2)), we
have

E[ sup
tnk6t

n
m

‖Mk‖p]1/p 6 C(

m−1∑
l=0

‖θ̃l‖2p)1/2.

We conclude that

E[ sup
tnk6t

n
m

‖Y tnk ‖
p]1/p 6 1 + C(M2p(Z)1/p +M4(Z))(1 + ‖ψ‖1,3,∞)(

1

n

m−1∑
l=0

‖Y ntnl ‖
2
p)

1/2.

Now, we are going to use the Gronwall’s lemma. We put Ql = ‖Y ntnl ‖
2, so that,

‖Y ntnl ‖
2
p = ‖Ql‖p/2. It follows that

E[ sup
k6m

Q
p/2
k ]1/p 6 1 + C(M2p(Z)1/p +M4(Z))(1 + ‖ψ‖21,3,∞)(

1

n

m−1∑
l=0

‖Ql‖p/2)1/2,

which gives,

‖ sup
k6m

Qk‖p/2 6 1 + C(M2p(Z)2/p +M4(Z)2)(1 + ‖ψ‖21,3,∞)
1

n

m−1∑
l=0

‖Ql‖p/2

6 1 + C(M2p(Z)2/p +M4(Z)2)(1 + ‖ψ‖21,3,∞)
1

n

m−1∑
l=0

‖ sup
k6l

Qk‖p/2.

Then, by Gronwall’s lemma,

‖ sup
k6m

Qk‖p/2 6 exp
(
C(M2p(Z)2/p +M4(Z)2)(1 + ‖ψ‖21,3,∞)

)
.

The estimate of EΘt,n
[sups∈πT,n

‖Y ns ‖p] is similar but simpler, so we leave it out.

We have the following estimate for the covariance matrix of Xn :
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Proposition 4.4. Suppose that there exists λ∗ > 0 such that

inf
κ∈R

inf
x∈Rd

inf
|ξ|=1

N∑
i=1

〈∂ziψ(κ, x, 0, 0), ξ〉2 > λ∗ (4.18)

Assume also that n and t ∈ π0,T
T,n are sufficiently large such that (4.13) holds and that

n1/2 >
8(N3 +N2 + 1)

λ∗
‖ψ‖21,3,∞. (4.19)

Let σXn
t

be the Malliavin covariance matrix of Xn
t defined in (3.10) for t ∈ πT,n. There

exists a constant C > 1, which depends on p, T and the moment of Z up to order 8p,
such that

EΘt,n
[(detσXn

t
)−p]1/p 6 C

exp(C‖ψ‖21,3,∞)

λ∗m∗t/T
. (4.20)

.

Proof. Let t ∈ π0,T
T,n and m ∈ N∗ such that tnm = t. By (4.12), σXn

t
= Y nt σ̂(Y nt )∗, with

(Y nt )∗ the transpose matrix of Y nt and σ̂ =
∑m
k=1(Ŷ ntnk Ik−1) × (Ŷ ntnk Ik−1)∗. It follows that

detσXn
t

= (detY nt )2 det σ̂ andt

EΘt,n
[(detσXn

t
)−p] 6 EΘt,n

[(detY nt )−4p]1/2EΘt,n
[(det σ̂)−2p]1/2.

Since (detY nt )−1 = det Ŷ nt , we use (4.15) and we obtain EΘt,n
[(detY nt )−4p]1/2 6

exp(C(M8p(Z)1/(2p) +M4(Z)2)(1 + ‖ψ‖21,3,∞)). We estimate now the lower eigenvalue of
σ̂ given by

λ̂ = inf
|ξ|=1

m∑
k=1

N∑
i=1

〈
(Ŷ ntnk Ik−1,i)× (Ŷ ntnk Ik−1,i)

∗ξ, ξ
〉

= inf
|ξ|=1

m∑
k=1

N∑
i=1

〈
(Ik−1,iIk−1,i)

∗(Ŷ ntnk )∗ξ, (Ŷ ntnk )∗ξ
〉
. (4.21)

Recall that, Ik,i is given in (4.10):

Ik,i =
1√
n
χk+1(aik +

N∑
j=1

Hj
k+1b

i,j
k +

1√
n

N∑
j,q=1

Hj
k+1H

q
k+1c

i,j,q
k + δnk+1c̃

i
k).

Then, for η ∈ Rd and k ∈ {0, . . . ,M − 1} we have

N∑
i=1

〈(Ik,iIk,i)∗η, η〉 =

N∑
i=1

〈Ik,i, η〉2 >
1

2n

N∑
i=1

χk+1

〈
aik, η

〉2 − 2(N3 +N2 + 1)

× sup
i,j,q
{ |
〈
Hj
k+1b

i,j
k , η

〉
|2, |

〈
Hj
k+1H

q
k+1c

i,j,q
k , η

〉
|2, |〈δnk+1c̃

i
k, η〉|2}.

Since we are on the set {Θt,n 6= 0}, we have supk∈{1,.,n} |Hk| 6 n−1/4. Moreover,

supi,j,q{|b
i,j
k |, |c

i,j,q
k |, |c̃ik|} 6 ‖ψ‖1,3,∞, for all k ∈ {0, . . . , n− 1}, so that

sup
i,j,q
{ |
〈
Hj
k+1b

i,j
k , η

〉
|, |
〈
Hj
k+1H

q
k+1c

i,j,q
k , η

〉
|, |〈δnk+1c̃

i
k, η〉|} 6

1

n1/4
‖ψ‖1,3,∞|η|.

We recall that we have the hypothesis (4.18)

N∑
i=1

〈
aik, η

〉2
=

N∑
i=1

〈
∂ziψk(Xn

tnk
, 0, 0), η

〉2

> λ∗|η|2.
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Using (4.19), we have λ∗/2− 2(N3 +N2 + 1)‖ψ‖21,3,∞/n1/2 > λ∗/4, and we obtain

N∑
i=1

〈(Ik,iIk,i)∗η, η〉 >
χk+1

n
(
λ∗
2
− 2

(N3 +N2 + 1)‖ψ‖21,3,∞
n1/2

)|η|2 > χk+1
1

4n
λ∗|η|2

We come back to (4.21) and we take η = (Ŷ ntnk )∗ξ. Since on the set {Θt,n 6= 0} and

bnt/T c = nt/T , we have T
nt

∑nt/T
k=1 χk > 1

2m∗, it follows that

λ̂ >
λ∗
4

1

n
inf
|ξ|=1

nt/T∑
k=1

χk‖(Ŷ ntnk )∗ξ‖2 >
λ∗
4n

nt/T∑
k=1

χk inf
|ξ|=1

‖(Ŷ ntnk )∗ξ‖2

>
λ∗m∗nt/T

8n
inf

s∈πT
T,n;s6t

inf
|ξ|=1

‖(Ŷ ns )∗ξ‖2 >
λ∗m∗t

8T
( sup
s∈πT

T,n;s6t
‖Y ns ‖)−2

Since we have (4.13), (4.14) follows and we conclude that

EΘt,n [λ̂−p]1/p 6
8n

λ∗m∗(nt/T )
EΘt,n [ sup

s∈πT
T,n

‖Y ns ‖2p]1/p

6C
exp

(
C(M4p(Z)1/p +M4(Z)2)(1 + ‖ψ‖21,3,∞)

)
T

λ∗m∗t
.

4.2 The regularization property

We still fix T > 0 and n ∈ N∗ and we consider the Markov chain (Xn
t )t∈πT,n

, defined

in (4.1). We also recall that ΘS,n is defined in (3.27) and we introduce (Qn,Θt )t∈πT,n
such

that,

∀t ∈ πT,n, Qn,Θt f(x) := EΘt,n
[f(Xn

t (x))] =
1

E[Θt,n]
E[Θt,nf(Xn

t (x))]. (4.22)

Notice that (Qn,Θt )t∈πT,n
, is not a semigroup, but this is not necessary. We will not be

able to prove the regularization property for Qn but for Qn,Θ and every t 6 T .

Proposition 4.5. A. Let T > 0 and n ∈ N∗. We assume that n and t ∈ π0,T
T,n are

sufficiently large in order to have (4.13):

3‖ψ‖1,3,∞
n1/4

+
M8(Z)

n
+ exp(−m2

∗nt/(2T )) 6
1

2

and (4.19). Moreover we assume that (4.18) holds true. Then for every q ∈ N and
multi index α, β with |α|+ |β| 6 q, there exists l ∈ N∗ and C > 1 which depend on
m∗, r∗ and the moments of Z such that

‖∂αQn,Θt ∂βf‖∞ 6 C
Kq+3(ψ)l

(λ∗t)q(q+1)
‖f‖∞ (4.23)

with Kr(ψ) defined in (4.5). In particular, Qn,Θt (x, dy) = pn,Θt (x, y)dy and (x, y) 7→
pn,Θt (x, y) belongs to C∞(Rd ×Rd).

B. There exists C > 1, such that for every l ∈ N and t ∈ πTT,n, we have

‖Qnt f −Q
n,Θ
t f‖∞ 6 4(exp(−m2

∗nt/(2T )) +
M4(l+1)(Z)

nl
)‖f‖∞. (4.24)

Remark 4.6. (4.23) means that the strong regularization property Rq,η (see (2.12)),
with η(q) = q(q + 1), holds for Qn,Θ.
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Proof. We fix t ∈ π0,T
T,n. Let us prove A.

∂αQ
n,Θ
t ∂βf(x) =

∑
|β|6|γ|6q

EΘt,n
[∂γf(Xn

t (x))Pγ(Xn
t )], (4.25)

where Pγ(Xn
t ) is a universal polynomial of ∂ρxX

n
t (x), 0 6 |ρ| 6 q − |γ| + 1. Using the

integration by parts formula (3.30) and the estimate (3.32) (together with E[Θt,n] > 1/2

using (4.13)) we obtain

|EΘt,n
[∂γf(Xn

t (x))Pγ(Xn
t (x))]| = |EΘt,n

[f(Xn
t (x))HΘt,n

γ (Xn
t (x),Pγ(Xn

t (x))]| (4.26)

6 ‖f‖∞EΘt,n
[|HΘt,n

γ (Xn
t (x),Pγ(Xn

t (x))|]
6 C‖f‖∞ ×A1 ×A2 ×A3

with

A1 = 1 ∨ EΘt,n [((detσXn
t (x))

−1)2q(q+1)]1/2

A2 = 1 + E[|Xn
t (x)|8qd(q+2)

1,q+1 ]1/4 + E[|LXn
t (x)|8qq−1]1/4

A3 = E[|Pγ(Xn
t (x))|4|γ|]

1/4.

Using the results from Theorem 4.2, we obtain

A2 ×A3 6 CKq+3(ψ)l.

We use now (4.20) and it follows

A1 = 1 ∨ EΘt,n
[(detσXn

t (x))
−2q(q+1)]1/2 6 1 ∨ C(λ∗t)

−q(q+1) exp(Cq(q + 1)‖ψ‖21,3,∞).

Now, we gather all the terms together,

|∂αQn,Θt ∂βf(x))| 6 C
Kq+3(ψ)l

(λ∗t)q(q+1)
‖f‖∞.

B. We have

|Qnt f(x)−Qn,Θt f(x)| 6 |Qnt f(x)||1− 1

E[Θt,n]
|+ 1

E[Θt,n]
|E[f(Xn

t (x))(1−Θt,n)]|

6 2‖f‖∞
E[|1−Θt,n|]
E[Θt,n]

6 2‖f‖∞
P(Θt,n = 0)

1− P(Θt,n = 0)
.

By (3.28) we have, for every l ∈ N, P(Θt,n = 0) 6 exp(−m2
∗nt/(2T )) +M4(l+1)(Z)n−l and

we conclude using (4.13) in order to obtain 1− P(Θt,n = 0) > 1/2.

We give now an alternative way to regularize the semigroup Qn (by convolution). We
consider a d dimensional standard normal random variable G which is independent from
Zk, k ∈ N∗, and for θ > 0, we introduce (Xn,θ

t )t∈πT,n
as follows

Xn,θ
t (x) =

1

nθ
G+Xn

t (x). (4.27)

We denote by pn,θt (x, y) the density of the law of Xn,θ
t (x) and for t ∈ πT,n, we define

Qn,θt f(x) := E[f(
1

nθ
G+Xn

t (x))]. (4.28)

Corollary 4.7. Under the hypothesis of the previous proposition we have:
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A. For every multi index α, β with |α|+ |β| 6 q, and every q ∈ N∗, there exists l ∈ N∗,
C > 1, which depend on q, T and the moments of Z such that for all l′ ∈ N and
t ∈ π0,T

T,n sufficiently large in order to have (4.13) and (4.19), the following estimate
holds:

‖∂αQn,θt ∂βf‖∞

6 C
( Kq+3(ψ)l

(λ∗t)q(q+1)
+ nqθKq+3(ψ)l(exp(−m2

∗nt/(4T )) +
M4(l′+1)(Z)1/2

nl′/2
)
)
‖f‖∞,

(4.29)

with Kr(ψ) defined in (4.23).

B. There exists l ∈ N∗, C > 1, such that for every l′ ∈ N and t ∈ πTT,n

‖Qnt f(x)−Qn,θt f(x)‖∞ 6 C
( K4(ψ)l

(λ∗t)2nθ
+ 2(exp(−m2

∗nt/(2T )) +
M4(l′+1)(Z)

nl′
)
)
‖f‖∞.

(4.30)

Proof. We fix t ∈ π0,T
T,n. Let us prove A. As in (4.25), we write

∂αQ
n,θ
t ∂βf(x) =

∑
|β|6|γ|6q

E[(∂γf)(n−θG+Xn
t (x))Pγ(Xn

t (x))],

where Pγ(Xn
t ) is a universal polynomial of ∂ρxX

n
t (x), 0 6 |ρ| 6 q − |γ|+ 1. We decompose

E[(∂γf)(n−θG+Xn
t (x))Pγ(Xn

t (x))] = I + J

with

I = E[Θt,n]EΘt,n [∂γf(n−θG+Xn
t (x))Pγ(Xn

t (x))],

J = E[(∂γf)(n−θG+Xn
t (x))Pγ(Xn

t (x))(1−Θt,n)].

The reasoning from the previous proof shows that

I 6 C
Kq+3(ψ)l

(λ∗t)q(q+1)
‖f‖∞.

And since G follows the standard normal law and is independent from Xn and Θt,n, we
have

J = E
[
Pγ(Xn

t (x))(1−Θt,n)

∫
Rd

(∂γf)(n−θy +Xn
t (x))(2π)−d/2e−|y|

2/2dy
]
.

Moreover, one has

(∂γf)(n−θy +Xn
t (x)) = n|γ|θ∂γy (f(n−θy +Xn

t (x))),

so that, using standard integration by parts, we have

J = n|γ|θE
[
Pγ(Xn

t (x))(1−Θt,n)

∫
Rd

f(n−θy +Xn
t (x))Hγ(y)(2π)−d/2e−|y|

2/2dy
]
,

where Hγ is the Hermite polynomial corresponding to the multi-index γ. Finally we
obtain

|J | 6 Cn|γ|θKq+3(ψ)l‖f‖∞E[1−Θt,n]1/2
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6 Cn|γ|θKq+3(ψ)l‖f‖∞(exp(−m2
∗nt/(4T )) +

M4(l′+1)(Z)1/2

nl′/2
)

the last inequality being a consequence of (3.28).
Now we prove B. Let l′ ∈ N∗. Using (3.28) and (4.23), there exists C, l > 1 such that

we have

|Qnt f(x)−Qn,θt f(x)| 6 E[Θt,n]|EΘt,n
[f(Xn

t (x))− f(Xn
t (x) + n−θG)]|+ 2‖f‖∞E[1−Θt,n]

6 n−θ
d∑
j=1

∫ 1

0

|EΘt,n [∂jf(Xn
t (x) + λn−θG)Gj ]|dλ+ 2‖f‖∞E[1−Θt,n]

6 Cn−θ
K4(ψ)l

(λ∗t)2
‖f‖∞ + 2(exp(−m2

∗nt/(2T )) +
M4(l′+1)(Z)

nl′
)‖f‖∞. 2

4.3 Approximation result

In this section we give the approximation result for a Markov semigroup (Pt)t>0.

We recall that T > 0 and n ∈ N are fixed. We denote µnk (x, dy) = PT/n(x, dy) for
all k ∈ N∗. We consider now an approximation scheme based on the Markov chain
introduced in the previous section (see (4.1). Therefore, we consider two sequences of
independent random variables Zk+1 ∈ RN , κk ∈ R, k ∈ N and we take (δnk )k∈N∗ such
that supk∈N∗ δ

n
k 6 C/n for a constant C > 1. We assume that Z1, . . . , Zn verifies (3.1) and

have finite moments of any order: For every p > 1,

Mp(Z) = 1 ∨ sup
k6n

E[|Zk|p] <∞. (4.31)

Moreover, we take ψ ∈ C∞(R × Rd × RN × R+;Rd) such that ψ(κ, x, 0, 0) = x

and we construct Xn
tnk+1

(x) = ψ(κk, X
n
tnk

(x), Zk+1/
√
n, δnk+1) with Xn

0 (x) = x. We de-

note νnk+1(x, dy) = P(Xn
tnk+1

∈ dy | Xn
tnk

= x) and we construct the discrete semigroup

Qntnk+1
= Qntnk ν

n
k+1 on the time grid πT,n. We recall that the notation ‖ψ‖1,r,∞ is introduced

in (4.3) and we assume that, for every r ∈ N,

‖ψ‖1,r,∞ <∞. (4.32)

We also assume that there exists λ∗ > 0 such that

inf
κ∈R

inf
x∈Rd

inf
|ξ|=1

N∑
i=1

〈∂ziψ(κ, x, 0, 0), ξ〉2 > λ∗. (4.33)

Now we are able to prove our main result.

Theorem 4.8. We recall that T > 0. We fix q ∈ N, h > 0 and S ∈ (0, T/2). For a given
n ∈ N∗, we consider the Markov semigroup (Pt)t>0, and the approximation Markov chain
(Qnt )t∈πT,n

, defined above. Moreover, we assume that there exists n0 ∈ N∗ such that
T/n0 6 S and, (4.13) and (4.19) hold with n = n0 and t = S. Then, for all n > n0, we
have the following properties.

A. We assume that (4.31), (4.32) and (4.33) hold. Moreover we assume that Em(h, q)

(see (2.3)) and E∗m(h, q) (see (2.6)) hold between (Pmt )t∈πT,m
= (Pt)t∈πT,m

and
(Qmt )t∈πT,m

for every m > n. Then, there exists l ∈ N∗, C > 1, which depend on q,
T and the moments of Z, such that

sup
t∈π2S,T

T,n

‖Ptf −Qnt f‖∞ 6 C
Kq+3(ψ)l

(λ∗S)η(q)
‖f‖∞/nh. (4.34)

with η(q) = q(q + 1).
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B. Moreover, for every t > 0, Pt(x, dy) = pt(x, y)dy with (x, y) 7→ pt(x, y) belonging to
C∞(Rd ×Rd).

C. We recall the Qn,Θ is defined in (4.22) and verifies Qn,Θt (x, dy) = pn,Θt (x, y)dy. Then,
there exists l ∈ N∗ such that for every R > 0, ε ∈ (0, 1), x0, y0 ∈ Rd, and every
multi-index α, β with |α|+ |β| = u, we also have

sup
t∈π2S,T

T,n

sup
(x,y)∈BR(x0,y0)

|∂αx ∂βy pt(x, y)− ∂αx ∂βy p
n,Θ
t (x, y)| 6C Kq+3(ψ)l

(λ∗S)η(pu,ε∨q)
/nh(1−ε)

(4.35)

with a constant C which depends on R, x0, y0, T and on |α|+ |β| and pu,ε = (u+ 2d+

1 + 2d(1− ε)(u+ d)/(2ε)e).

D. Let θ > h + 1. We recall the Qn,θ is defined in (4.28) and verifies Qn,θt (x, dy) =

pn,θt (x, y)dy. Then, there exists l ∈ N∗ such that for every R > 0, ε ∈ (0, 1), x0, y0 ∈
Rd, and every multi-index α, β with |α|+ |β| = u, we also have

sup
t∈π2S,T

T,n

sup
(x,y)∈BR(x0,y0)

|∂αx ∂βy pt(x, y)− ∂αx ∂βy p
n,θ
t (x, y)| 6C Kq+3(ψ)l

(λ∗S)η(pu,ε∨q)
/nh(1−ε)

(4.36)

Proof. A-B. We use Proposition 2.4: We have proved in Proposition 4.5 that Qn,Θ verifies
the regularization properties. The proof of (4.34) and (4.35) is an immediate consequence
of Theorem 2.6. C. In order prove (4.36) one uses Corollary 4.7 instead of Proposition
4.5.

Remark 4.9. The simulation of an approximation scheme given by Qn,Θ may be cum-
bersome, so the estimate obtained in (4.35) is not very useful. This is why we propose
the regularized scheme Xn,θ which is easier to simulate.

5 The Ninomiya Victoir scheme

We illustrate Theorem 4.8 when Xn is the Ninomiya Victoir scheme for a diffusion
process. This is a variant of the result already obtained by Kusuoka [23] in the case
where Zk has a Gaussian distribution (and so the standard Malliavin calculus is available).
Since in our paper Zk has an arbitrary distribution (except for the property (3.1)), our
result may be seen as an invariance principle as well. We consider the d dimensional
diffusion process

dXt =

N∑
i=1

Vi(Xt) ◦ dW i
t + V0(Xt)dt (5.1)

with V0, Vi ∈ C∞b (Rd;Rd), i = 1, . . . , N and W = (W 1, . . . ,WN ) a standard Brownian
motion and ◦dW i

t denotes the Stratonovich integral with respect to W i. The infinitesimal
operator of this Markov process is given by

A = V0 +
1

2

N∑
k=1

V 2
k (5.2)

with the notation V f(x) = 〈V (x),∇f(x)〉. Let us define exp(V )(x) := ΦV (x, 1) where ΦV
solves the deterministic equation

ΦV (x, t) = x+
∫ t

0
V (ΦV (x, s))ds. (5.3)
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By a change of variables, it is possible to show that ΦεV (x, t) = ΦV (x, εt), so we have

exp(εV )(x) := ΦεV (x, 1) = ΦV (x, ε).

We also notice that the semigroup of the above Markov process is given by PVt f(x) =

f(ΦV (x, t)) and has the infinitesimal operator AV f(x) = V f(x). In particular the relation
PVt AV = AV P

V
t reads

V f(ΦV (x, t)) = AV P
V
t f = PVt AV f = 〈V (x),∇x (f(ΦV (x, t))〉 .

Using m times Dynkin’s formula PVt f(x) = f(x) +
∫ t

0
PVs AV f(x)ds we obtain

f(ΦV (x, t))) = f(x) +

m∑
r=1

tr

r!
V rf(x) +

1

m!

∫ t

0

(t− s)mV m+1PVs f(x)ds. (5.4)

We present now the Ninomiya Victoir scheme. We consider a sequence ρk, k ∈ N
of independent Bernoulli random variables and we define ψk : Rd ×RN+1 → Rd in the
following way

ψk(x,w1, w0) = exp(w0V0) ◦ exp(w1,1V1) ◦ · ◦ exp(w1,NVN ) ◦ exp(w0V0)(x), if ρk = 1,

(5.5)

ψk(x,w1, w0) = exp(w0V0) ◦ exp(w1,NVN ) ◦ · ◦ exp(w1,1V1) ◦ exp(w0V0)(x), if ρk = −1.

(5.6)

The Ninomiya Victoir scheme uses these functions with w0
k = T/2n and w1,i

k =
√
TZik/

√
n,

for i = 1, . . . , N . Moreover Zik, i = 1, . . . , d, k ∈ N∗ are independent random variables
which verify (3.1) and moreover satisfy the following moment conditions:

E[Zik] = E[(Zik)3] = E[(Zik)5] = 0, E[(Zik)2] = 1, E[(Zik)4] = 6. (5.7)

In the original paper of Ninomiya Victoir, the random variables Zik are standard normally
distributed, and then verify (3.1). The new point here is that we do not require that Zk
follows this particular law anymore but only the weaker assumptions (3.1) and (5.7). We
recall that tnk = Tk/n. One step of our scheme is given by

Xn
tnk+1

= ψk(Xn
tnk
, w1

k+1, w
0
k+1). (5.8)

We have the first following result.

Theorem 5.1. There exists some universal constants l ∈ N∗, C > 1 such that for every
f ∈ C6

b (Rd), we have

sup
t∈πT

T,n

|E[f(Xt)]− E[f(Xn
t )]| 6 CC6(V )l‖f‖6,∞/n2 (5.9)

with Cq(V ) := supi=0,.,N ‖Vi‖q,∞.

Remark 5.2. The same estimate has already been proved by Alfonsi [1] using short time
expansions on the solution of the Feynman Kac partial differential equation associated
to the diffusion process.

Under an ellipticity condition we are able to give an estimate of the total variation
distance between a diffusion process of the form (5.1) and its Ninomiya Victoir scheme.
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Theorem 5.3. We assume that

inf
|ξ|=1

N∑
i=1

〈Vi(x), ξ〉2 > λ∗ > 0 ∀x ∈ Rd. (5.10)

Let S ∈ (0, T/2). Then there exists n0 ∈ N∗ such that for every n > n0, there exists
l ∈ N∗, C > 1 such that for every bounded and measurable function f : Rd → R,

sup
t∈π2S,T

T,n

|E[f(Xt)]− E[f(Xn
t )]| 6 C

C6(V )lK9(ψ)l

(λ∗S)42
‖f‖∞ /n2. (5.11)

Remark 5.4. This estimate has already been proved by Kusuoka [23] (with a different
approach). He considers a much more general non degeneracy assumptions (of Hör-
mander type) and uses Malliavin calculus in order to prove his result. Here the noise
Zik is no more Gaussian so the standard Malliavin calculus does not work anymore, but,
since we have the property (3.1), we may use the abstract integration by parts formula
introduced in Section 3.

Proof of Theorem 5.1. We have to show En(3, 6) (see (2.3)) and (2.2) for Qn. Indeed, the
proof will then follow from Proposition 2.2. First, we notice that (2.2) is satisfied with
q = 6 for the semigroup Qn using Theorem 4.2 (see (4.7)). Now, we focus on the proof of
En(3, 6). In order to simplify the notations, we fix T = 1 without loss of generality. We
denote

T0f(x) = TN+1f(x) = f(exp(
1

2n
V0)(x)), Tif(x) = f(exp(

Z√
n
V1)(x)), i = 1, . . . , N.

Notice that, with the notation introduced in the beginning of this section, Tif(x) =

PUi
i f(x) with Ui = ZVi/

√
n, if i = 1, . . . , N and U0 = UN+1 = V0/(2n). Using (5.4) with

t = 1 and V = Ui, i = 1, . . . , N we obtain

Tif(x) = f(x) +

m∑
r=1

Zr

nr/2
1

r!
V ri f(x) +

Zm+1

n(m+1)/2
Rm+1,if(x) (5.12)

with

Rm+1,if(x) =
1

m!

∫ 1

0

(1− λ)mV m+1
i PUi

λ f(x)dλ (5.13)

and we recall that PUi

λ f(x) = f(exp(λZVi/
√
n)). We have a similar expansion if we

put V = V0/(2n) in (5.4). We aim to give an expansion of order 3 (with respect to
1/n) for E[f(ψk(x,w1

k+1, w
0
k+1)] (see (5.14) below). In order to do it, we replace each

Ti, i = 1, . . . , N, with an expansion of order m 6 5 given above with Z = Zik+1 (and we
proceed in the same way when V = V0/(2n)). Then, we calculate the products of the
miscellaneous expansions, each with a well chosen order m such that there is no term
with factor n−r, r > 3, appearing in those products. Moreover, all the terms containing
n−3 go in the remainder. The last step consists in computing the expectancy. We notice

that E[PUi
t ] = P

V 2
i /(2n)

t and E[(Zik+1)r] = 0 for odd r 6 5. Finally, since E[(Zik+1)2] = 1,
E[(Zk+1)4] = 6, the calculus is completed and we obtain:

E[f(ψk(x,w1
k+1, w

0
k+1)] = E[T0T1 . . . .TN+1f(x)] (5.14)

= f(x) +
1

n
(V0f(x) +

1

2

N∑
i=1

V 2
i f(x)) +

1

2n2
V 2

0 f(x) +
1

8n2

N∑
i=1

V 4
i f(x)

+
1

4n2

∑
i<j

V 2
i V

2
j f(x) +

1

4n2

N∑
i=1

(V0V
2
i f(x) + V 2

i V0f(x)) +
1

n3
Rf(x).
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The remainder R is a sum of terms of the following form:

CT0,α0
, . . . , TN+1,αN+1

f(x) (5.15)

with α = (α0, . . . , αN+1) ∈ {0, . . . , 3}N+2, |α| = α0 + . . .+αN+1 = 3, and using the notation
given in (5.13),

T0,k, TN+1,k ∈ {V k0 , Rk,0}, Ti,k ∈{V 2k
i , R2k,i}, i ∈ {1, . . . , N} k = 0, . . . , 2,

T0,3 = TN+1,3 = R3,0, Ti,3 =R6,i, i ∈ {1, . . . , N},

with for i = 1, . . . , N ,

R6,i = E[(Zi)6R6,i] =

∫ 1

0

(1− λ)5E[Z6V 6
i P

U1

λ f(x)]dλ.

It is easy to check that for every g ∈ Ck+p(R), we have the following property

‖Ti,kg‖p,∞ 6 CC2k+p(V )l‖g‖k+p,∞

for some constants l ∈ N∗, C > 1. So, it follows that

‖Rf‖∞ 6 CC6(V )l‖f‖6,∞. (5.16)

We turn now to the diffusion process Xt. For any t > 0, we have the expansion

E[f(Xt(x))] = PAt f(x) = f(x) + tAf(x) +
t2

2
A2f(x) +

t3

3!
R′tf(x).

with

R′tf(x) = t−1

∫ t

0

PAλ A
3f(x)(1− λ/t)2dλ. (5.17)

We take t = n−1 and make the difference between (5.17) and (5.14). All the terms cancel
except for the remainders so we obtain

∀k ∈ {0, . . . , n− 1},
E[f(Xtnk+1

)− f(Xn
tnk+1

) | Xtnk
= Xn

tnk
= x] = (R′1/nf(x)/3!−Rf(x))/n3. (5.18)

We clearly have ‖R′1/nf‖∞ 6 CC6(V )l‖f‖6,∞. This, together with (5.16) completes the
proof.

Proof of Theorem 5.3. This will be a consequence of Theorem 4.8 as soon as we check
that the ellipticity assumption (4.18) holds true. We fix k and we look at ψk(x,w1, w0)

defined in (5.6). We suppose that ρk = 1 (the proof for ρk = −1 is similar). We denote
w1 = (w1,1, · · · , w1,N} and w̃ = (w1, w0) with w0 ∈ R+. Using the notation Ti = i, we
consider the process xt(w), 0 6 t 6 TN+2 solution of the following equation:

xt(w̃) = x+
w0

2

∫ t

T0

V0(xs(w̃))ds, T0 6 t 6 T1,

xt(w̃) = xTi
(w̃) + w1,i

∫ t

Ti

Vi(xs(w̃))ds, Ti 6 t 6 Ti+1, i = 1, . . . , N,

xt(w̃) = xTN+1
(w̃) +

w0

2

∫ t

TN+1

V0(xs(w̃))ds, TN+1 6 t 6 TN+2.
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Then, ψk(x, w̃) = xTN+2
(w̃) and consequently for r ∈ {1, . . . , N}, we have ∂w1,rψk(x, w̃) =

∂w1,rxTN+2
(w̃). Moreover ∂w1,rxt(w̃) = 0 for t 6 Tr and

∂w1,rxt(w̃) = ∂w1,rxTr+1(w̃) +

N∑
i=r+1

w1,i

∫ Ti+1∧t

Ti∧t
∇Vi(xs(w̃))∂w1,rxs(w̃)ds

+
w0

2

∫ t

TN+1∧t
∇V0(xs(w̃))∂w1,rxs(w̃)ds,

for t > Tr+1, in particular for t = TN+1. For Tr < t 6 Tr+1, ∂w1,rxt(w̃) solves the equation

∂w1,rxt(w̃) =

∫ t

Tr

Vr(xs(w̃))ds+ w1,r

∫ t

Tr

∇Vr(xs(w̃))∂w1,rxs(w̃)ds.

It follows that

∂w1,rxt(w̃) |w̃=0=

∫ t

Tr

Vr(xs(0))ds = Vr(x)(t− Tr).

Notice that Tr+1 − Tr = 1. Then, we have

∂w1,rxTN+2
(w̃) |w̃=0= ∂w1,rxTr+1

(w̃) |w̃=0= Vr(x).

and then, by (5.10),
N∑
r=1

〈∂w1,rxTN+2
(0), ξ〉2 > λ∗|ξ|2.

6 Proof of Theorem 4.2 on Sobolev norms

In this section, we will obtain estimates of the Sobolev norms of Xn and LXn which
appear in Theorem 4.2. The method we adopt here is to prove the estimates for a generic
class of processes which involves the Malliavin derivatves of Xn and LXn.

Before doing it, we give some preliminary results. We consider a separable Hilbert
space U , we denote |a|U the norm of U and, for a random variable F ∈ U, we denote
‖F‖U,p = (E[|F |pU )]1/p. Moreover we consider a martingale Mn ∈ U, n ∈ N and we recall
Burkholder’s inequality in this framework: For each p > 2 there exists a constant bp > 1

such that

∀n ∈ N, ‖Mn‖U,p 6 bpE[(

n∑
k=1

|Mk −Mk−1|2U )p/2]1/p. (6.1)

As an immediate consequence

‖Mn‖U,p 6 bp(

n∑
k=1

‖Mk −Mk−1‖2U,p)1/2. (6.2)

Indeed

‖Mn‖2U,p 6 b2pE[(

n∑
k=1

|Mk −Mk−1|2U )p/2]2/p = b2p‖
n∑
k=1

|Mk −Mk−1|2U‖p/2

6 b2p

n∑
k=1

‖|Mk −Mk−1|2U‖p/2 = b2p

n∑
k=1

‖Mk −Mk−1‖2U,p.

We consider the scheme defined in the previous sections (see (4.6)):

Xn
tnk+1

= x+

N∑
i=1

m−1∑
k=0

Hi
k+1a

i
k(Xn

tnk
) +

m−1∑
k=0

δnk+1b̃k(Xn
tnk
, Hk+1, δ

n
k+1)
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+
1

2

N∑
i,j=1

m−1∑
k=0

Hi
k+1H

j
k+1b

i,j
k (Xn

tnk
, Hk+1)

with Hk = n−1/2Zk and

aik(x) = ∂ziψ(κk, x, 0, 0),

bi,jk (x, z) =

∫ 1

0

(1− λ)∂zi∂zjψ(κk, x, λz, 0)dλ,

b̃k(x, z, t) =

∫ 1

0

∂tψ(κk, x, z, λt)dλ.

We also denote

Ak =

N∑
i=1

Hi
k+1∇xaik(Xn

tnk
) + δnk+1∇xb̃k(Xn

tnk
, Hk+1, δ

n
k+1)

+
1

2

N∑
i,j=1

Hi
k+1H

j
k+1∇xb

i,j
k (Xn

tnk
, Hk+1).

Notice that Xn
t , a

i
k, b

i,j
k , b̃k ∈ Rd and Ak is a d× d dimensional matrix.

Now, we focus on the estimates of the Sobolev norms. As before, U is a separable
Hilbert space. We say that, a U valued random variable F belongs to S(U) if for every
h ∈ U we have 〈h, F 〉 ∈ S (see (3.8)) and we define DF by 〈h,DF 〉 = D 〈h, F 〉 for every
h ∈ U . Then, we define the norms (see (3.20) and (3.21))

|F |2U,m =
∑

06|α|6m

|DαF |2U , ‖F‖U,m,p =
∥∥|F |U,m∥∥p = E[|F |pU,m]1/p.

The Hilbert space U being given, we denote V = Ud (recall that Xn
tnk
∈ Rd so, in this

case, U = R and V = Rd). We consider now some processes (αk)k∈N, (βk)k∈N, (Γk)k∈N
with αk = (α1

k, . . . , α
N
k ) ∈ V N , βk = (β1

k, . . . , β
N
k ) ∈ V N , Γk ∈ V. We assume that αik =

αik(Z1, . . . , Zk) and
〈
h, αik

〉
∈ C∞b (RkN ) for every h ∈ V, i = 1, . . . , N (we recall that

Zk ∈ RN ). So αk ∈ S(V ). The same is assumed on βk and Γk. We look at a process
Yk ∈ V = Ud, k ∈ N which satisfies the equation

Ym = Y0 +

m−1∑
k=0

AkYk +

N∑
i=1

m−1∑
k=0

Hi
k+1α

i
k +

N∑
i=1

m−1∑
k=0

LHi
k+1β

i
k + Γm. (6.3)

Notice that we do not discuss about existence and uniqueness of the solution of such
an equation. We just suppose that, the process Y at hand satisfies this equation (which
naturally appears in our calculus). We aim to estimate the Sobolev norms of Ym. Let
q ∈ N and p > 2. We denote

Cq,p(α, β,Γ) = sup
06m6n−1

sup
i=1,..,N

(1 + ‖αim‖V,q,p + ‖βim‖V,q,p + ‖Γm+1‖V,q,p) (6.4)

Proposition 6.1. For every q ∈ N and p > 2 there exists some constants l ∈ N∗, C > 1

(depending on q and p) such that

sup
m6n
‖Ym‖V,q,p 6 C(Ml(Z) +

m
1/l
∗

r∗
(1 + r−q∗ ))Cq,l(α, β,Γ)Kq+2(CMl(Z)ψ)l. (6.5)

with Kr(ψ) and Ml(Z) defined in (4.5) and (3.2).
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Proof. Step 1. Let q = 0, so that ‖Ym‖V,q,p = ‖Ym‖V,p. We will check that

sup
m6n
‖Ym‖V,p 6 C

(
Mp(Z)1/pC0,p(α, 0, 0) +

m
1/p
∗

r∗
C0,p(0, β, 0) + C0,p(0, 0,Γ)

)
× exp(CM2p(Z)2/p‖ψ‖21,3,∞). (6.6)

We study the terms which appear in the right hand side of (6.3). Notice that βik
is σ(Z1, . . . , Zk) measurable and E[LHi

k+1] = 0 (see (3.23)). It follows that, Mm =∑m−1
k=0 LHi

k+1β
i
k is a martingale and consequently, by (6.2)

‖Mm‖V,p 6 bp(

m−1∑
k=0

‖LHi
k+1β

i
k‖2V,p)1/2.

Since LHi
k+1 and βik are independent, using (3.24) we obtain

‖LHi
k+1β

i
k‖2V,p = ‖LHi

k+1‖2p‖βik‖2V,p 6
Cm

2/p
∗

r2
∗
‖βik‖2V,p/n.

We conclude that

sup
m6n
‖Mm‖V,p 6

Cm
1/p
∗

r∗
(

1

n

n−1∑
k=0

‖βik‖2V,p)1/2 6
Cm

1/p
∗

r∗
sup

k6n−1
‖βik‖V,p.

Since Hi
k+1 is independent from αik and E[Hi

k+1] = 0, it follows that Mm =
∑m−1
k=0 Hi

k+1α
i
k

is a martingale. We have ‖Hi
k‖p 6 n−1/2Mp(Z)1/p so the same reasoning as above

proves that the previous inequality holds for Mm (with m
1/p
∗ r−1

∗ replaced by Mp(Z)1/p

and ‖βik‖V,p replaced by ‖αik‖V,p). We use the same reasoning for Mm =∑m−1
k=0 Hi

k+1∇xaik(Xn
tnk

)Yk ∈ V and we obtain

‖Mm‖V,p 6 bp(

m−1∑
k=0

‖Hi
k+1∇xaik(Xn

tnk
)Yk‖2V,p)1/2 6 CMp(Z)1/p‖ψ‖1,2,∞(

1

n

m−1∑
k=0

‖Yk‖2V,p)1/2.

Finally, using the triangle inequality

‖
m−1∑
k=0

Hi
k+1H

j
k+1∇xb

i,j
k (Xn

tnk
, Hk+1)Yk‖V,p 6

m−1∑
k=0

‖Hi
k+1H

j
k+1∇xb

i,j
k (Xn

tnk
, Hk+1)Yk‖V,p

6 CM2p(Z)1/p‖ψ‖1,3,∞
1

n

m−1∑
k=0

‖Yk‖V,p,

and in the same way ‖
∑m−1
k=0 δnk+1∇xb̃k(Xn

tnk
, Hk+1, δ

n
k+1)Yk‖V,p 6 C‖ψ‖1,3,∞ ×∑m−1

k=0 ‖Yk‖V,p/n. We gather all the terms and we obtain

‖Ym‖V,p 6 ‖Y0‖V,p + CM2p(Z)1/p‖ψ‖1,3,∞(
1

n

m−1∑
k=0

‖Yk‖2V,p)1/2

+C(Mp(Z)1/p sup
k6n−1

‖αik‖V,p +
m

1/p
∗

r∗
sup

k6n−1
‖βik‖V,p) + ‖Γm‖V,p

Using Gronwall’s lemma we obtain (6.6).
Step 2. Let

H = {h : {1, . . . , n} × {1, . . . , N} → R : |h|2H =

n∑
k=1

N∑
i=1

h2(k, i) <∞}.
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so that DXn
tnm
∈ Hd. We are going to prove that

sup
m6n
‖DXn

tnm
‖Hd,p 6 CM2p(Z)1/p‖ψ‖1,3,∞ exp(CM2p(Z)2/p‖ψ‖21,3,∞). (6.7)

For h ∈ H we denote

DhF = 〈DF, h〉 =

n∑
k=1

N∑
i=1

h(k, i)D(k,i)F.

Since

D(r,j)H
i
k =

1√
n
δr,kδj,iχk,

we use (4.6) to obtain

DhX
n
tnk+1

= DhX
n
tnk

+AkDhX
n
tnk

+
1√
n

N∑
i=1

χk+1h(k + 1, i)aik(Xn
tnk

)

+
1√
n

N∑
i,j=1

χk+1(h(k + 1, i)Hj
k+1 + h(k + 1, j)Hi

k+1)bi,jk (Xn
tnk
, Hk+1)

+
1√
n

N∑
i,j,q=1

χk+1H
i
k+1H

j
k+1∂zqb

i,j
k (Xn

tnk
, Hk+1)h(k + 1, q)

+
1√
n
χk+1δ

n
k+1

N∑
q=1

∂zq b̃k(Xn
tnk
, Hk+1, δ

n
k+1)h(k + 1, q)

Iterating this formula over k we obtain

DhX
n
tnm

=

m−1∑
k=0

AkDhX
n
tnk

+ 〈h,Γm〉

with Γm(k, i) = 0 for k > m and, for k 6 m

Γm(k, i) =
χk√
n

(
aik−1(Xn

tnk−1
) +

N∑
j=1

Hj
kb
i,j
k−1(Xn

tnk−1
, Hk) +

N∑
j,l=1

Hj
kH

l
k∂zib

l,j
k−1(Xn

tnk−1
, Hk)

+δnk∂zi b̃k−1(Xn
tnk−1

, Hk, δ
n
k )
)
.

One has

|Γm|2Hd =

m∑
k=1

N∑
i=1

|Γm(k, i)|2 6 C‖ψ‖21,3,∞
1

n

n∑
k=1

(1 + |Zk|4)

so, using (6.6) (with V replaced by Hd and αk = βk = 0), we obtain

sup
m6n
‖DXn

tnm
‖Hd,p 6 C sup

m6n
‖Γm‖Hd,p exp(CM2p(Z)2/p‖ψ‖21,3,∞)

6 CM2p(Z)1/p‖ψ‖1,3,∞ exp(CM2p(Z)2/p‖ψ‖21,3,∞).

Step 3. We estimate the derivatives of Ym, solution of (6.3). We have

DYm =

m−1∑
k=0

AkDYk +

N∑
i=1

m−1∑
k=0

Hi
k+1α

i
k +

N∑
i=1

m−1∑
k=0

LHi
k+1β

i

k + Γm
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with

αik = ∇x∇xaik(Xn
tnk

)DXn
tnk
Yk +Dαik,

β
i

k = Dβik

and

Γm =

m−1∑
k=0

N∑
i=1

∇xaik(Xn
tnk

)DHk+1Yk +
1

2

N∑
i,j=1

m−1∑
k=0

D(Hi
k+1H

j
k+1∇xb

i,j
k (Xn

tnk
, Hk+1))Yk

+

m−1∑
k=0

δnk+1D(∇xb̃k(Xn
tnk
, Hk+1, δ

n
k+1))Yk +

N∑
i=1

m−1∑
k=0

αikDH
i
k+1

+

N∑
i=1

m−1∑
k=0

βikDLH
i
k+1 +DΓm.

Notice that DYm is a process with values in Hd. We will prove that

Mp(Z)1/pC0,p(α, 0, 0) +
m

1/p
∗

r∗
C0,p(0, β, 0) + C0,p(0, 0,Γ) (6.8)

6 CM4p(Z)1/p
(
M2p(Z)1/2pC0,2p(α, 0,Γ) +

m
1/2p
∗

r∗
(1 + r−1

∗ )C0,2p(0, β, 0)
)

× ‖ψ‖21,4,∞ exp(CM4p(Z)1/p‖ψ‖21,4,∞) +Mp(Z)1/pC1,p(α, 0,Γ) +
m

1/p
∗

r∗
C1,p(0, β, 0).

Once (6.8) is proved, the whole proof is concluded. Indeed, using (6.8) and the result
from the first step (that is (6.5) with q = 0 and Ym replaced by DYm), we obtain (6.5)
with q = 1. Consequently, using recursively the same reasoning we obtain (6.5) for every
q ∈ N.

We estimate each of the terms which appear in the right hand side of (6.8). First, we
write

‖∇x∇xaik(Xn
tnk

)DXn
tnk
Yk‖Hd,p 6 C‖ψ‖1,3,∞

∥∥|DXn
tnk
|Hd |Yk|V

∥∥
p

6 C‖ψ‖1,3,∞‖DXn
tnk
‖Hd,2p‖Yk‖V,2p

6 CM4p(Z)1/2p‖ψ‖21,3,∞
(
M2p(Z)1/2pC0,2p(α, 0, 0)

+
m

1/2p
∗

r∗
C0,2p(0, β, 0)

+ C0,2p(0, 0,Γ)
)

exp(CM4p(Z)1/p‖ψ‖21,3,∞),

the last inequality being a consequence of (6.6) and (6.7). It follows that

‖αik‖Hd,p 6 CM4p(Z)1/2p
(
M2p(Z)1/2pC0,2p(α, 0,Γ) +

m
1/2p
∗

r∗
C0,2p(0, β, 0)

)
× ‖ψ‖21,3,∞ exp(CM4p(Z)1/p‖ψ‖21,3,∞) + C1,p(α, 0, 0).

And

‖βik‖Hd,p = ‖Dβik‖Hd,p 6 C1,p(0, β, 0).

We analyse now Γm. We treat first Im :=
∑m−1
k=0 βikDLH

i
k+1. Since βikD(p,j)LH

i
k+1 = 0

if p 6= k + 1, we obtain

|Im|2Hd 6
N∑
j=1

m−1∑
k=0

|D(k+1,j)LH
i
k+1|2|βik|2V
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so that, using (3.24), and the independency of LHk+1 and βk, we have

‖|Im|Hd‖p =
∥∥|Im|2Hd

∥∥1/2

p/2
6 (

N∑
j=1

m−1∑
k=0

∥∥|D(k+1,j)LH
i
k+1|2|βik|2V

∥∥
p/2

)1/2

= (

N∑
j=1

m−1∑
k=0

∥∥|D(k+1,j)LH
i
k+1||βik|V

∥∥2

p
)1/2

= (

N∑
j=1

m−1∑
k=0

‖D(k+1,j)LH
i
k+1‖2p

∥∥|βik|V ∥∥2

p
)1/2

6
Cm

1/p
∗

r∗
(1 + r−1

∗ ) sup
k6m−1

∥∥|βik|V ∥∥p =
Cm

1/p
∗

r∗
(1 + r−1

∗ ) sup
k6m−1

‖βik‖V,p.

Since DHi
k has properties which are similar to the ones of DLHi

k, the same reasoning
as above gives

‖
m−1∑
k=0

αikDH
i
k+1‖Hd,p 6 C sup

k6m−1
‖αik‖V,p

and we have

|
m−1∑
k=0

∇xaik(Xn
tnk

)YkDH
i
k+1|2Hd 6 ‖ψ‖21,2,∞

m−1∑
k=0

N∑
j=1

|Yk|2V |Dk+1,jH
i
k+1|2

6
C

n
‖ψ‖21,2,∞

n−1∑
k=0

|Yk|2V .

Using (6.6) and the triangle inequality, we obtain

‖
m−1∑
k=0

∇xaik(Xn
tnk

)YkDH
i
k+1‖Hd,p 6 C‖ψ‖1,2,∞

(
n−1

n−1∑
k=0

‖Yk‖2V,p
)1/2

6 C
(
Mp(Z)1/pC0,p(α, 0,Γ) +

m
1/p
∗

r∗
C0,p(0, β, 0)

)
×‖ψ‖1,2,∞ exp(CM2p(Z)2/p‖ψ‖21,3,∞).

We write now

m−1∑
k=0

D(Hi
k+1H

j
k+1∇xb

i,j
k (Xn

tnk
, Hk+1))Yk = I + J

with

I =

m−1∑
k=0

(Hi
k+1DH

j
k+1 +Hj

k+1DH
i
k+1)∇xbi,jk (Xn

tnk
, Hk+1)Yk,

J =

m−1∑
k=0

Hi
k+1H

j
k+1D(∇xbi,jk (Xn

tnk
, Hk+1))Yk.

We have

|I|2Hd 6 C‖ψ‖21,3,∞n−1
m−1∑
k=0

(|Hi
k+1|2 + |Hj

k+1|
2)|Yk|2V ,

EJP 21 (2016), paper 12.
Page 40/44

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4079
http://www.imstat.org/ejp/


Approximation of Markov semigroups

and using the independence between Yk and Hk+1, it follows that

‖I‖Hd,p 6 Cn−1/2
(
Mp(Z)1/pC0,p(α, 0,Γ)

+
m

1/p
∗

r∗
C0,p(0, β, 0)

)
Mp(Z)1/p‖ψ‖1,3,∞ exp(CM2p(Z)2/p‖ψ‖21,3,∞).

Considering the estimates of DXn
tnk

, we obtain in a similar way

‖J‖Hd,p 6 Cn−1
(
Mp(Z)1/pC0,p(α, 0,Γ)

+
m

1/p
∗

r∗
C0,p(0, β, 0)

)
M2p(Z)1/p‖ψ‖1,3,∞ exp(CM2p(Z)2/p‖ψ‖21,3,∞)

+ Cn−1/2
(
M2p(Z)1/2pC0,2p(α, 0,Γ) +

m
1/2p
∗

r∗
C0,2p(0, β, 0)

)
M4p(Z)1/p

× ‖ψ‖21,4,∞ exp(CM4p(Z)1/p‖ψ‖21,3,∞)

6 Cn−1/2
(
M2p(Z)1/2pC0,2p(α, 0,Γ) +

m
1/2p
∗

r∗
C0,2p(0, β, 0)

)
M4p(Z)1/p

× ‖ψ‖21,4,∞ exp(CM4p(Z)1/p‖ψ‖21,3,∞)

It follows that a similar estimate holds for
∑m−1
k=0 D(Hi

k+1H
j
k+1∇xbi,j(Xn

tnk
))Yk as for

J . Finally, in the same way, we obtain

‖
m−1∑
k=0

δnk+1D(∇xb̃k(Xn
tnk
, Hk+1, δ

n
k+1))Yk‖Hd,p

6 Cn−1/2
(
M2p(Z)1/2pC0,2p(α, 0,Γ)

+
m

1/2p
∗

r∗
C0,2p(0, β, 0)

)
‖ψ‖21,4,∞ exp(CM4p(Z)1/p‖ψ‖21,3,∞).

We gather all these terms and we obtain (6.8).

Now, we are in a position to prove Theorem 4.2. For the reader’s convenience we
recall the statement of this result.

Theorem 6.2. For every q, q′ ∈ N, q′ 6 q, and p > 2 there exists some constants l ∈ N∗,
C > 1 (depending on r∗, ε∗,m∗, q, p and the moments of Z but not on n) such that

sup
t∈πT

T,n

sup
06|α|6q−q′

‖∂αxXn
t (x)‖q′,p 6 CKq+2(ψ)l, (6.9)

sup
t∈πT

T,n

‖LXn
t ‖q,p 6 CKq+4(ψ)l. (6.10)

where Kr(ψ) is defined in (4.5) and is given by

Kr(ψ) = (1 + ‖ψ‖1,r,∞) exp(‖ψ‖21,3,∞).

Proof. We estimate first ‖Xn
t ‖q,p. We have already checked that

DXn
tnm

=

m−1∑
k=0

AkDX
n
tnk

+ Γm

with

Γm(k, i) = 1{k6m}
χk√
n

(
aik−1(Xn

tnk−1
) +

N∑
j=1

Hj
kb
i,j
k−1(Xn

tnk−1
, Hk)
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+

N∑
j,l=1

Hj
kH

l
k∂zib

l,j
k−1(Xn

tnk−1
, Hk) + δnk∂zi b̃k−1(Xn

tnk−1
, Hk, δ

n
k )
)
.

Using (6.5), the only thing to prove is that ‖Γm‖q−1,p 6 CKq+2(ψ)l. We have already done
it for the first order derivatives (that is q = 1). For higher order derivatives, the proof
follows the same line (using a recurrence argument).

Now, we study ∇xXn
t (x) which solves the equation

∇xXn
tnm

(x) = I +

m−1∑
k=1

Ak∇xXn
tnk

(x).

This equation is similar to (6.3) so the upper bound of ‖∇xXn
tnm

(x)‖q,p follows from (6.6).
For higher order derivatives the reasoning is the same.

Let us now deal with LXn
t . Notice that

〈
DHj

k, DH
i
k

〉
= 0 for i 6= j. Then, using the

computational rules (see (3.15)), we obtain

LXn
tnk+1

= AkLX
n
tnk

+

N∑
i=1

Hi
k+1α

i
k +

N∑
i=1

LHi
k+1β

i
k +

N∑
i,j=1

γi,jk

with

αik =

d∑
l,r=1

∂xl
∂xr

aik(Xn
tnk

)〈(DXn
tnk

)r, (DXn
tnk

)l〉, βik = aik(Xn
tnk

)

and

γi,jk =
1

2
LHi

k+1H
j
k+1b

i,j
k (Xn

tnk
, Hk+1) +

1

2
LHi

k+1H
j
k+1b

i,j
k (Xn

tnk
, Hk+1)

+
1

2
Hi
k+1H

j
k+1

( d∑
l,r=1

∂xl
∂xr

bi,jk (Xn
tnk
, Hk+1)〈(DXn

tnk
)l, (DXn

tnk
)r〉

+

N∑
r=1

∂zrb
i,j
k (Xn

tnk
, Hk+1)LHr

k+1 +
χk+1

n

N∑
r=1

∂2
zrb

i,j
k (Xn

tnk
, Hk+1)

)
+ 1i=j

χk+1

n
bi,ik (Xn

tnk
, Hk+1) +

χk+1

n

(
Hi
k+1∂zj b

i,j
k (Xn

tnk
, Hk+1)

+Hj
k+1∂zib

i,j
k (Xn

tnk
, Hk+1)

)
+

1

2
δnk+1

( d∑
l,r=1

∂xl
∂xr b̃k(Xn

tnk
, Hk+1, δ

n
k+1)〈(DXn

tnk
)l, (DXn

tnk
)r〉

+

N∑
r=1

∂zr b̃k(Xn
tnk
, Hk+1, δ

n
k+1)LHr

k+1 +
χk+1

n

N∑
r=1

∂2
zr b̃k(Xn

tnk
, Hk+1, δ

n
k+1)

)
.

We have

‖αik‖q,p 6 C‖ψ‖1,q+3,∞‖Xn
tnk
‖2q+1,p 6 CKq+3(ψ)l

and a similar estimate holds for ‖βik‖q,p. Moreover, we have Γm =
∑N
i,j=1

∑m−1
k=0 γi,jk so

we have to analyse each of the terms in γi,jk . We look first at

‖LHi
k+1H

j
k+1b

i,j
k (Xn

tnk
, Hk+1)‖q,p6 ‖LHi

k+1H
j
k+1‖q,2p‖b

i,j
k (Xn

tnk
, Hk+1)‖q,2p

6 ‖LHi
k+1‖q,4p‖H

j
k+1‖q,4p‖ψ‖

l
1,q+2,∞(‖Xn

tnk
‖lq,2p + ‖Hj

k‖
l
q,2p)

6CKq+2(ψ)l/n.
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The other terms in γi,jk verify similar estimates. So we obtain

‖Γm‖q,p 6
N∑

i,j=1

m−1∑
k=0

‖γi,jk ‖q,p 6 CKq+4(ψ)l.

We conclude that

Cq,p(α, β,Γ) 6 CKq+4(ψ)l

and the proof is competed.
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