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Abstract

For a beneficial allele which enters a large unstructured population and eventually
goes to fixation, it is known that the time to fixation is approximately 2 log(α)/α for a
large selection coefficient α. For a population that is distributed over finitely many
colonies, with migration between these colonies, we detect various regimes of the
migration rate µ for which the fixation times have different asymptotics as α→∞.

If µ is of order α, the allele fixes (as in the spatially unstructured case) in time ∼
2 log(α)/α. If µ is of order αγ , 0 ≤ γ ≤ 1, the fixation time is ∼ (2 + (1−γ)∆) log(α)/α,
where ∆ is the number of migration steps that are needed to reach all other colonies
starting from the colony where the beneficial allele appeared. If µ = 1/ log(α), the
fixation time is ∼ (2 + S) log(α)/α, where S is a random time in a simple epidemic
model.

The main idea for our analysis is to combine a new moment dual for the process
conditioned to fixation with the time reversal in equilibrium of a spatial version of
Neuhauser and Krone’s ancestral selection graph.
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The fixation time of a strongly beneficial allele

1 Introduction

The goal of this paper is the asymptotic analysis of the time which it takes for a
single strongly beneficial mutant to eventually go to fixation in a spatially structured
population. The beneficial allele and the wildtype will be denoted by B and b, respectively.
The evolution of type frequencies is modelled by a [0, 1]d-valued diffusion process X =

(X(t))t≥0, X(t) = (Xi(t))i=1,...,d, where d ∈ {2, 3, . . .} denotes the number of colonies
and Xi(t) stands for the frequency of the beneficial allele B in colony i at time t. The
dynamics accounts for resampling, selection and migration. The process X is started
at time 0 by an entrance law from 0 := (0, . . . , 0) and is conditioned to eventually hit
1 := (1, . . . , 1).

Models of this kind are building blocks for more complex ones that are used to obtain
predictions for genetic diversity patterns under various forms of selection. Indeed,
together with the strongly beneficial allele, neutral alleles at physically linked genetic
loci also have the tendency to go to fixation, provided these loci are not too far from the
selective locus under consideration. This so-called genetic hitchhiking was first modelled
by Maynard Smith and Haigh [16]. A synonymous notion is that of a selective sweep,
which alludes to the fact that, after fixation of the beneficial allele B, neutral variation
has been swept from the population. Important tools were developed from these patterns
to locate targets of selection in a genome and quantify the role of selection in evolution,
see e.g. reviews in Sabeti et al. [22], Nielsen [19], Thornton et al. [28].

The process of fixation of a strongly beneficial mutant in the panmictic (i.e. unstruc-
tured) case has been studied using a combination of techniques from diffusion processes
and coalescent processes in a random background; see e.g. Kaplan et al. [12], Stephan
et al. [27], Schweinsberg and Durrett [23], Etheridge et al. [6]. However, since the
analytical tools applied in these papers rely on the theory of one-dimensional diffusion
processes, the extension of these results to a spatially structured situation is far from
straight-forward.

The starting point for the tools developed in this paper is the ancestral selection
graph (ASG) of Neuhauser and Krone [18]. This process has been introduced in order
to study the genealogy under models including selection. Although the ASG can in
principle be used for an arbitrary strength of selection, it has been employed mainly for
models of weak selection, since then the resulting genealogy is close to a neutral one.
However, Wakeley and Sargsyan [29] have used the ASG for strong balancing selection
and Pfaffelhuber and Pokalyuk [21] have shown how to use the ASG in order to re-derive
classical results for selective sweeps in a panmictic population. In our present work a
spatial version of the ASG is the tool of choice which carries over from the panmictic to
the structured case, thus extending the techniques developed in [21] and leading to new
results for the spatially structured case. The key idea here is to employ the equilibrium
ASG in a “paintbox representation” of the (fixed time) distributions of the type frequency
process conditioned to eventual fixation, and then use time reversal of the equilibrium
ASG to obtain an object accessible to the asymptotic analysis.

The fixation process in a structured population under selection has been the object
of study before. Slatkin [25] and Whitlock [30] give heuristic results and comparisons
to the panmictic case. While the former paper only gives results for strong selection
but very weak migration, the latter study gives a comparison to the panmictic case
and studies the question which parameters should be used in the panmictic setting in
order to approximate fixation probabilities and fixation times for structured populations.
In Kim and Maruki [13] the above studies are extended by analysing in addition the
expected heterozygosity of linked neutral loci in the case of frequent migration for
populations structured according to a circular stepping-stone model, see also Remark 2.7
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below. Hartfield [11] gives a more thorough analysis of the fixation times for large
selection/migration ratios in general stepping-stone populations based on the assumption
that in each colony the beneficial mutation spreads before migrating.

Our investigation will provide rigorous results on fixation times for structured popu-
lations, and will detect the corresponding regimes of relative migration/selection speed.

Outline of the paper. After introducing the model in Section 2 we formulate our main
results. These concern the existence of solutions and the structure of the set of solutions
of the system of SDEs specified in our model (Theorem 1) and the asymptotics of the
fixation times for a strongly beneficial allele B in a structured population (Theorem 2).
For the panmictic case (i.e. d = 1), it is well-known that the fixation time, for a large
selection coefficient α, is approximately 2 log(α)/α. As it turns out, the time-scale of
log(α)/α applies in our spatial setting as well. However, population structure may
slow down the fixation process. We study this deceleration for various regimes of the
migration rate µ. A spatial version of the ancestral selection graph is introduced in
Section 3, and its role in the analysis of the fixation probability and the fixation time by
the method of duality is clarified. This leads to a proof of Theorem 1 in Sec. 3.10, and to
the key Proposition 3.1 which relates the asymptotic distribution of the fixation time of
the Wright-Fisher system to that of a marked particle system. Based on the latter, the
proof of Theorem 2 is completed in Sec. 4.

2 Model and main results

We consider solutions X = (X(t))t≥0, X(t) = (X1(t), . . . , Xd(t)) ∈ [0, 1]d, of the system
of interacting Wright-Fisher diffusions

dXi =
(
αXi(1−Xi) + µ

d∑
j=1

b(i, j)(Xj −Xi)
)
dt+

√
1

ρi
Xi(1−Xi)dWi,

i = 1, . . . , d (2.1)

for independent Brownian motions W1, . . . ,Wd. Here, α and µ are positive constants (the
selection and migration coefficient), and b(i, j), i, j = 1, . . . , d, i 6= j, are non-negative
numbers (the backward migration rates) that constitute an irreducible rate matrix
b whose unique equilibrium distribution has the weights ρ1, . . . , ρd (which stand for
the relative population sizes of the colonies). It is well-known (see e.g. [4]) that the
system (2.1) has a unique weak solution.

Equation (2.1) models the evolution of the relative frequencies of the beneficial allele
at the various colonies, assuming a migration equilibrium between the colonies. The
“gene flow” from colony i to colony j is ρiµa(i, j) = ρjµb(j, i); here, a = (a(i, j)) with

a(i, j) =
ρj
ρi
b(j, i) (2.2)

is the matrix of forward migration rates.

Remark 2.1 (Limit of Moran models). We note in passing that the process X arises as
the weak limit (as N →∞) of a sequence of structured two-type Moran models with N
individuals. The dynamics of this Moran model is local pairwise resampling with rates
1/ρi, selection with coefficient α (i.e. offspring from every beneficial line in colony i
replaces some line in the same colony at rate α; note that this is the same as selection
events which occur at rate s := α

N for each (ordered) pair of particles) and migration
with rates µa(i, j) per line. Considering now the relative frequencies of the beneficial
type at the various colonies and letting N →∞ gives (2.1). Here, our assumption that
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(ρi) constitutes an equilibrium for the migration ensures that we are in a demographic
equilibrium with asymptotic colony sizes ρiN (otherwise the ρi, ρj in the formulas would
have to be replaced by time-dependent intensities).

We define the fixation time of X as

Tfix := inf{t > 0 : X(t) = 1}. (2.3)

The fixation probability of the system (2.1), started in X(0) = x, is well-known (see [17]).
In Corollary 3.10 we will provide a new proof for the formula

Px(Tfix <∞) =
1− e−2α(x1ρ1+···+xdρd)

1− e−2α
. (2.4)

Since fixation of the beneficial allele, {Tfix <∞}, is an event in the terminal σ-algebra
of X , conditioning on this event leads to an h-transform of (2.1) which turns out to be
given by the system of SDEs

dX∗i =
(
αX∗i (1−X∗i ) coth

(
α

d∑
j=1

X∗j ρj

)
+ µ

d∑
j=1

b(i, j)(X∗j −X∗i )
)
dt

+

√
1

ρi
X∗i (1−X∗i )dWi (2.5)

for i = 1, . . . , d, with coth(x) = e2x+1
e2x−1 . The uniqueness of the solution of (2.1) carries over

to that of (2.5) as long as x 6= 0. For x = 0, the right hand side of (2.5) is not defined, and
we have to talk about entrance laws from 0 for solutions of (2.5) in this case.

Definition 2.2 (Entrance law from 0). Let ((X∗(t))t>0,P) with X∗(t) = (X∗1 (t), ..., X∗d (t))

be a solution of (2.5) such that X∗(t) 6= 0 for t > 0 and X∗(t)
t→0−−−→ 0 in probability. Then,

the law of X∗ under P is called an entrance law from 0 for the dynamics (2.5).

The following is shown in Section 3.10.

Theorem 1. a) For x ∈ [0, 1]d \ {0}, the system (2.5) has a unique weak solution.
b) Every entrance law from 0 is a convex combination of d extremal entrance laws from
0, which we denote by Pi

0(X ∗ ∈ (.)), with (X ∗,Pi
0) arising as the limit in distribution of

(X ∗,Pεei
) as ε→ 0, where ei is the vector whose i-th component is 1 and whose other

components are 0.

Remark 2.3 (Interpretation of the extremal solutions). We call (X ∗,Pι
0) the solution with

the founder in colony ι. In intuitive terms the case x = 0 corresponds to the beneficial
allele B being present in a copy number which is too low to be seen in a very large
population, i.e. on a macroscopic level. In this case, since the process is conditioned
on fixation, there is exactly one individual – called founder – which will be the ancestor
of all individuals at the time of fixation. This intuition is made precise in a picture
involving duality, see Section 3.8. The d different entrance laws from 0 belonging to (2.5)
correspond to the d different possible geographic locations of the founder.

Before stating our main result on the fixation time of the system (2.5) we fix some
notation and formulate one more definition.

Remark 2.4 (Notation). To facilitate notation we will use Landau symbols. For functions
f, g : R → R, we write (i) f = O(g) as x → x0 ∈ R if lim supx→x0

|f(x)/g(x)| < ∞, (ii)
f ∈ Θ(g) if and only if f ∈ O(g) and g ∈ O(f) and (iii) f ∼ g as x → x0 if and only if
f(x)/g(x)

x→x0−−−−→ 1, (iv) f = o(g) as x → x0 ∈ R if lim supx→x0
|f(x)/g(x)| = 0. We write

=⇒ for convergence in distribution and −→p for convergence in probability.
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In the case of a single colony (d = 1) we have Tfix ∼ 2 logα/α as α→∞. Indeed, it is
well known that in this case the conditioned diffusion (2.5) can be separated into three
phases [6]: the beneficial allele B first has to increase up to a (fixed) small ε > 0. This
phase lasts a time ∼ log(α)/α. In the second phase, the frequency increases to 1− ε in
time of order 1/α which is short as compared to the first and third phase. In the third
phase, it takes still about time log(α)/α until the allele finally fixes in the population.

Definition 2.5 (Two auxiliary epidemic processes). Let a be the matrix of forward migra-
tion rates and let G = (V,E) be the (connected) graph with vertex set 1, . . . , d and edge
set E := {(i, j) : a(i, j) > 0}. We need two auxiliary processes in order to formulate our
theorem.

1. For γ ∈ [0, 1] and ι ∈ {1, . . . , d}, consider the (deterministic) process Iι,γ := Iι =

(Iι(t))t≥0, Iι(t) = (Iι1(t), . . . , Iιd(t)), with state space {0, 1}d defined as follows: The
process starts in Iιj(0) = διj , j = 1, ..., d. As soon as one component (Iιk, say) reaches
1, then after the additional time 1− γ all those components Iιj for which a(k, j) > 0

are set to 1. The fixation time of this process will be denoted by

SIι,γ := inf{t ≥ 0 : Iι(t) = 1}.

In other words, SIι,γ = (1− γ)∆ι, where ∆ι is the number of steps that are needed
to reach all other vertices of the graph G in a stepwise percolation starting from ι.
An intuitive interpretation is as follows: State 1 of a component means that the
colony is infected (by the beneficial type B) and state 0 means that it is not infected.
If a colony gets infected (at time t, say), then all the neighbouring (not yet infected)
colonies get infected precisely at time t+ 1− γ.

2. For any ι ∈ {1, . . . , d}, consider the (random) process J ι = (J ι(t))t≥0, J ι(t) =

(J ι1(t), . . . , J ιd(t)), with state space {0, 1, 2}d. In state 0, the colony is not infected,
in state 1 it is infected but still not infectious, and in 2, it is infectious. The initial
state is J ιι (0) = 1 and J ιj(0) = 0 for j 6= ι, where ι is the founder colony. Transitions
from state 1 to state 2 occur exactly one unit of time after entering state 1. For
j 6= ι, transitions from 0 to 1 occur at rate 2

∑
k ρka(k, j)1{Jιk=2}. The fixation time

of this process will be denoted by

SJ ι := inf{t ≥ 0 : J ι(t) = 2};

in particular, this time is larger than 1.

Infection in these epidemic processes indicates presence of the beneficial type. Our
second main result quantifies in terms of these processes how various migration rates
affect the spread and the fixation time of the beneficial type.

Theorem 2 (Fixation times of X ∗). For ι ∈ {1, . . . , , d}, let X ∗ = (X∗(t))t≥0 be the solution
of (2.5) withX∗(0) = 0 and with the founder in colony ι, see Remark 2.3. Then, depending
on the scaling ratio between µ and α as α→∞, we have the following asymptotics for
the fixation time Tfix defined in (2.3) (now for X ∗ in place of X ):

1. If µ ∈ Θ(α), then
α

logα
Tfix

α→∞−−−−→p 2.

2. More generally, if µ ∈ Θ(αγ) for some γ ∈ [0, 1], then
α

logα
Tfix

α→∞−−−−→p SIι,γ + 2.

3. If µ = 1
logα , then

α

logα
Tfix

α→∞
===⇒ SJ ι + 1.
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Remark 2.6. [Interpretation] Let us briefly give some heuristics for the three cases
of the Theorem. The bottomline of our argument is this: Given a colony i is already
“infected” by the beneficial mutant, the most probable scenario (as α→∞) is that the
beneficial type in colony i grows until migration exports the beneficial type to other
colonies which can be reached from colony i. We argue with successful lines, which
are – in a population undergoing Moran dynamics as in Remark 2.1 – individuals whose
offspring are still present at the time of fixation.

For notational simplicity, we discuss here the situation d = 2 with the founder of
the sweep being in colony ι = 1. The three cases allow us to distinguish when the first
successful migrant (carrying allele B and still having offspring at the time of fixation)
moves to colony 2.

1. µ ∈ Θ(α): Since in colony 1 the number of successful lines grows like a Yule process
with branching rate α, migration of the first successful line will occur already while
the Yule process has O(1) lines, i.e. at a time of order 1/α if µ ∈ Θ(α). From here
on, the beneficial allele has to fix in both colonies, which happens in time 2 log(α)/α

on each of the colonies.

We conjecture that this assertion is valid also for the case µ/α→∞, since intuitively
a still higher migration rate should result in a panmictic situation due to an
averaging effect. However, so far our techniques, and in particular our fundamental
Lemma 4.1, do not cover this case.

2. µ ∈ Θ(αγ), 0 ≤ γ < 1: Again, the question is when the first successful migrant goes
to colony 2. (In the epidemic model from Definition 2.5.1, this refers to infection of
colony 2.) We will argue that this is the case after a time (1− γ) log(α)/α. Indeed,
by this time, the Yule process approximating the number of successful lines in
colony 1 has about exp(α(1 − γ) log(α)/α) = α1−γ lines, each of which travels to
colony 2 at rate αγ , so by that time the overall rate of migration to colony 2 is α.
More generally, at time x log(α)/α, the rate of successful migrants is αγ+x. So, if
γ+x < 1, the probability that a successful migration happens up to time x log(α)/α

is negligible, whereas if γ + x > 1, the probability that a successful migration
happens up to time x log(α)/α is close to 1. By these arguments, the first successful
migration must occur around time (1− γ) log(α)/α and the time it then takes to fix
in colony 2 is again 2 log(α)/α.

3. µ = 1/(logα): Here, migration is so rare that we have to wait until almost fixation
in colony 1 before a successful migrant comes along. Consider the new timescale
whose time unit is logα/α, so that migration happens at rate a(1, 2)/α per individual
on this timescale. Roughly, after time 1 (in the new timescale), the beneficial allele
is almost fixed in colony 1.

For N � α, a migrant is successful approximately with probability 2α/N , given
by the survival probability of a supercritical branching process. So, if one of Nρ1

lines on colony 1 migrates, each at rate a(1, 2)/α, and with the success probability
being 2α/N , the rate of successful migrants is Nρ1

a(1,2)
α

2α
N = 2ρ1a(1, 2). At this

rate, the second colony obtains a successful copy of the beneficial allele. Thus, in
terms of the epidemic model from 2. in Definition 2.5, the first colony is infectious
if allele B is almost fixed there. From the time of the first successful migrant on, it
takes again time 1 (in the new timescale) until the beneficial allele almost fixes in
colony 2. This is when the state of colony 2 in the epidemic model changes from 1
(infected) to 2 (infectious).

The proof of Theorem 2 is given in Section 4.
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(A) µ ∈ Θ(αγ)

(B) µ = 1/(log(α))

Figure 1: Two examples of a sweep in a structured population of d = 2 colonies. (A)
For µ ∈ Θ(αγ), the epidemic model I1,γ from Theorem 2 starts with I1(0) = (1, 0). The
first successful migrant transports the beneficial allele to colony 2 at time 1 − γ (on
the time-scale log(α)/α). Hence, fixation occurs approximately at time (3− γ) log(α)/α.
(B) For µ = 1/(logα), the epidemic model J 1 from Theorem 2 starts with J1(0) = (1, 0).
The first successful migrant transports the beneficial allele to colony 2 at time 1 + X,
where X is an exp(2ρ1a(1, 2))) distributed waiting time. Then, J1(1 + X) = (2, 1) and
thus SJ 1 = 2 + X. From here on, fixation in colony 2 takes one more unit of time. In
total, fixation occurs approximately at time (1 + SJ 1) log(α)/α = (3 +X) log(α)/α.
For both figures we simulated a Wright-Fisher model, distributed on two colonies of
equal size, i.e. a(1, 2) = a(2, 1) = b(1, 2) = b(2, 1) = 1 and ρ1 = ρ2 = 1/2. In (A), we used
the following parameters: Each colony has size N = 104, m = 0.001 is the chance that an
individual chooses its ancestor from the other colony, and s = 0.01 is the (relative) fitness
advantage of beneficials, per generation. This amounts to γ = log(N ·s)/ log(N ·m) = 2/3.
In (B), we used N = 105, s = 0.1 and N ·m = 1/(logN · s).

Remark 2.7. In [13] (see also [26]), it is derived in a heuristic manner that for s � 1

and sN = α > µ = mN � 1 the time to the first successful migrant is ∼ 1
α log(1 + α

µ ). At
least for µ ∈ Θ(αγ), 0 ≤ γ ≤ 1, this is confirmed by our Theorem 2.
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Remark 2.8 (Different strengths of migration). The key argument mentioned at the
beginning of Remark 2.6 continues to hold if the migration intensity between colonies is
not of the same order of magnitude. More precisely, assume that the asymptotics of the
gene flows as α→∞ is of the form µρia(i, j) = µρjb(j, i) ∈ Θ(αγij ), where the exponents
(γij)i,j=1,...,d ∈ [0, 1]d×d may vary with i, j (possibly also due to a strongly varying colony
size).

Then colony j can become infected from neighbouring colonies only if one of the
neighbouring colonies (i) is infected and (ii) carries enough beneficial mutants in order
to infect colony j. So again the fixation time of the beneficial allele can be computed
from taking the minimal time it takes to infect all colonies across the graph G, plus
the final phase of fixation of the beneficial allele. Consequently, the epidemic process
Iι := Iι,γ from Definition 2.5 can be changed to Iι,γ as follows: As soon as for some i
the process Iιi reaches the value 1, then after an additional fixed time of length 1− γij
all of the Iιj for which a(i, j) > 0 are set to 1.

In the sequel we focus on the case γij ≡ γ of a spatially homogeneous asymptotics in
order to keep the presentation transparent. We emphasise however, that our proofs are
designed in a way which makes the described generalization feasible.

3 The ancestral selection graph

A principal tool for the analysis of interacting Wright–Fisher diffusions with selection
is their duality with the ancestral selection graph (ASG) of Krone and Neuhauser, which
we recall in detail below. The main idea for the proof of Theorems 1 and 2 is

• to obtain via the ASG a duality relationship and a Kingman paintbox representation
also for the diffusion process X ∗ (i.e. the process conditioned to get absorbed at 1),
and to represent Tfix via duality,

• to show how the equilibrium ASG and its time-reversal can be employed for asymp-
totic calculations as α→∞.

This structure allows us to use the techniques of (multidimensional) birth-death processes
in order to perform the asymptotic analysis using bounds based on sub- and supercritical
branching processes.

In the present section we will focus on the two bullet points, while the asymptotic
analysis of the birth-death processes is in Section 4, with the basic heuristics in Section
4.1. To carry out this program we proceed as follows:

In Section 3.1 we will give an informal description of the ASG and present some of
the central ideas of the subsequent proofs. We will also state a key proposition (Propo-
sition 3.1) which gives a connection between the fixation time and a two-dimensional
birth-and-death process that describes the percolation of the beneficial type within
the equilibrium ASG. We give a formal definition of the structured ASG via a particle
representation in Section 3.2 and derive a time-reversal property in Section 3.3, which
will be important in the proof of Proposition 3.1. In the subsequent sections we will
derive paintbox representations for the solutions of (2.1) and (2.5) using the duality
relationships from above, and complete the proofs of Proposition 3.1 and Theorem 1.

3.1 Outline of proof strategy and a key proposition

The basic tool for proving Theorems 1 and 2 will be a representation of X∗(τ) (the
solution of (2.5) at a fixed time τ ) in terms of an exchangeable particle system. This
representation is first achieved for initial conditions x ∈ [0, 1]d \ {0}, and then also for
the entrance laws from 0. At the heart of the construction is a conditional duality which
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extends the classical duality between the (unconditioned) X (the solution of (2.1)) and
the structured ancestral selection graph.

The latter is constructed in terms of a branching-coalescing-migrating system A =

(Ar)r≥0 of particles, where each pair of particles in colony i

- coalesces at rate 1/ρi, i = 1, . . . , d,
and each particle in colony i

- branches (i.e. splits into two) at rate α,

- migrates (i.e. jumps) to colony j at rate µb(i, j).

When the starting configuration of A consists of ki particles in colony i, i = 1, . . . , d,
we will speak of a k-ASG, where for brevity we write k := (ki)i=1,...,d. A more refined
definition of A, which will also allow to speak of a connectedness relation between parti-
cles at different times, will be given in Sections 3.2 and 3.4. With this refined definition,
each particle in Ar is represented as a point in {1, . . . , d} × [0, 1], the first component
referring to the colony in which the particle is located, and the second component being
a label which is assigned independently and uniformly at each branching, coalescence
and migration event. The ASG then records the trajectories of all the particles in A, see
Figure 2(a) for an illustration.

Writing Kk
r (i) for the number of particles in the k-ASG in colony i at time r and using

the notation

(1− y)` :=

d∏
i=1

(1− yi)`i , y = (y1, . . . , yd) ∈ [0, 1]d, ` = (`1, . . . , `d) ∈ Nd0, (3.1)

we have a moment duality between K = (K(i))i=1,...,d and the solution X of (2.1):

Ex[(1−X(τ))k] = E[(1− x)K
k
τ ], x ∈ [0, 1]d, k ∈ Nd0, τ ≥ 0. (3.2)

Here and in the following, we denote the probability measure that underlies the particle
process A (and processes related to it) by P (and thus distinguish it from the probability
measure Px that underlies the diffusion process X appearing in (2.1) as well as the
corresponding processes, like X ∗). Analogously, we use these notation types for the
corresponding expectations and variances. The proof of the basic duality relationship
(3.2) will be recalled in Lemma 3.7.

Eq.(3.2) has a conceptual interpretation in population genetics terms: We know that
X(τ) is the vector whose i-th coordinate is the frequency of the beneficial type B in
colony i at time τ when X(0) = x. Thus, the left hand side of (3.2) is the probability that
nobody in a k-sample drawn from the population (with ki individuals drawn from colony
i, i = 1, . . . , d) is of type B, given that τ time units ago the type frequencies were x. In
the light of a Moran model with selection (whose diffusion limit yields the process X ),
the particles’ trajectories in the ASG can be interpreted as potential ancestral lineages
of the k-sample. The type of a particle in the sample can be recovered by a simple rule:
it is the beneficial type B if and only if at least one of its potential ancestors carries type
B. In other words, the beneficial type percolates upwards along the lineages of the ASG;
see Fig. 2(b) for an illustration.

Consequently, the event that nobody in the k-sample is of type B equals the event
that nobody of the sample’s potential ancestors is of type B. The probability of this event,
however, is just the right hand side of (3.2). Thus, Eq. (3.2) expresses the probability of
one and the same event in two different ways.

We will argue in Sec. 3.6 that the process A can be started with infinitely many parti-
cles in each colony, with the number of particles immediately coming down from infinity.
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Figure 2: (a) A realisation of the k-ASG in the time interval [0, τ ] with 2 colonies, and
k = (2, 4). Initially and at each coalescence, branching and migration event, independent
and uniform[0, 1]-distributed labels are assigned to the particles, and the genealogical
connections of particles are recorded (visualised by the horizontal dashed lines).
(b) The same realisation of the ASG as in Figure 2(a), now showing the particle’s types.
Two of the five particles in Aτ are marked with B. Percolation of type B happens
“upwards” along the ASG: all those particles in the (2, 4)-sample A0 are assigned type B
which are connected to a type B-particle in Aτ .

This process will be denoted by A∞. If one marks the particles in A∞τ independently with
probabilities given by x and lets the types percolate upwards along the ASG, then one
obtains for each i ∈ {1, . . . , d} an exchangeable marking of the particles in A∞0 that are
located in colony i. Let us denote by F x,τi the relative frequency of the marked particles
within all particles of A∞0 that are located in colony i; due to de Finetti’s theorem, for
each i, the quantity F x,τi exists a.s. Based on the duality relationship (3.2) we will show
in Lemma 3.9 that

Px(X(τ) ∈ (·)) = P(F x,τ ∈ (·)), x ∈ [0, 1]d \ {0}, τ ≥ 0.

EJP 21 (2016), paper 61.
Page 10/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3355
http://www.imstat.org/ejp/


The fixation time of a strongly beneficial allele

Y Z∞

Figure 3: The paintbox representations constructed in Section 3.8 uses two particle
systems that are coupled to each other. Initially, these two systems are disjoint, and the
coupling consists in a (local) coalescence between the two ASG’s as illustrated in the
figure. The potential ancestors of the sample on top of the figure are found at the bottom
of the figure. The bold lines (in the left part of the figure) belong to Y, the gray lines
belong to Z \ Y.

Following Aldous’ terminology (see e.g. p. 88 in [1]) we will call this a “Kingman paintbox”
representation of X(τ).

In order to find a similar representation for X∗(τ), we will use a coupling of two
processes, denoted Z := Z∞ and Y, which both follow the same dynamics as A. Here,
Z∞ starts with Z∞0 = ∞ and Y0 is an equilibrium configuration of the coalescence-
branching-migration dynamics described above. (As we will prove in Proposition 3.3,
the particle numbers in equilibrium constitute a Poisson configuration with intensity
measure (2αρ1, . . . , 2αρd), conditioned to be non-zero.) Since Z and Y follow the same
exchangeable dynamics, we can embed both in a single particle system A which starts
in the a.s. disjoint union A0 := Y0 ∪ Z0 and follows the coalescence-branching-migration
dynamics. Then, Y arises by following particles within Y0 along A and Z arises by
following particles within Z0 along A.

Let A(x)
τ denote the subsystem of marked particles of Aτ = Yτ ∪ Zτ which arises by

an independent marking with probabilities x. We will prove in Lemma 3.11 that

Ex[(1−X∗(τ))k] = P(Zkτ ∩ A(x)
τ = ∅|Yτ ∩ A(x)

τ 6= ∅), x ∈ [0, 1]d \ {0}, k ∈ Nd0, τ ≥ 0,

with Zk started in k particles. This conditional duality relationship will be crucial for
deriving the paintbox representation for X∗(τ). With the notation F x,τ introduced above
for the vector of frequencies of the marked particles we will prove in Lemma 3.12 that

Px(X∗(τ) ∈ (·)) = P(F x,τ ∈ (·) | Yτ ∩ A(x)
τ 6= ∅), x ∈ [0, 1]d \ {0}, τ ≥ 0.

Let us emphasize that the conditioning under the event {Yτ ∩ A(x)
τ 6= ∅} affects the

distribution of Y, i.e. takes it out of equilibrium and changes its dynamics between times
0 and τ . We will denote the vector of particle numbers in Yr by Nr, r ≥ 0.

Now consider, for some ι ∈ {1, . . . , d} and 0 < ε < 1, the vector x = εeι, meaning
that initially a fraction ε of the particles in colony ι is of beneficial type while all
the other colonies carry only the inferior type b. In the limit ε → 0 the conditioning

under the event {Yτ ∩ A
(εeι)
τ 6= ∅} amounts to changing the distribution of Nτ from its
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(A) (B)

Figure 4: (A) A realisation of the processes (M t)t≥0 and (Lt)t≥0 for the case of one
colony. The joint distribution of these two processes is given in Proposition 3.1. T is the
first time t when M t = Lt. (B) The pair (L,M) has an underlying structure in terms of
the particle system Ŷ, where L arises as the counting process of all particles in Ŷ, and
(M t)t≥0 is the counting process of the marked particles in Ŷ.

equilibrium distribution to the distribution of Π + eι, where Π is Poi(2αρ)-distributed, see
Remark 3.13. This will result in a paintbox representation for the distribution of X ∗(τ)

under the measure Pι
0 which appears in Theorem 1, see Corollary 3.15 a). The event

that, in the system (2.5), fixation of the beneficial type has occurred by time τ can then
be reexpressed as the event that the (one) marked particle in Yτ is among the potential
ancestors of all the infinitely many particles in Z∞0 , see Corollary 3.15 c).

We will show in Lemma 3.18 and in Corollary 3.19 that frequencies within Y and Z
are very close, such that for the distribution of the fixation time on the log(α)/α-timescale
it will suffice to study the probability that the marking of a single particle in colony
ι at time τ percolates “upwards” through Y in the time interval [0, τ ]. This analysis
is most conveniently carried through in the time reversal Ŷ of Y, whose migration

rates are reversed as given by Equation 2.2. The event {Yτ ∩ A
(εeι)
τ 6= ∅} is the same

as {Ŷ0 ∩ A(x)
0 6= ∅}; thus the conditioning changes the initial condition of Ŷ but not

its dynamics (whereas, as mentioned above, the dynamics of Y, is changed by the
conditioning).

We will write (M t)t≥0 for the counting process of the marked particles in (Ŷt)t≥0, and
(Lt)t≥0 for the counting process of all particles in (Ŷt)t≥0. The dynamics of the bivariate
process (Lt)t≥0,M t)t≥0) is described next, together with the key result how to use the
ASG for approximating the fixation time under strong selection. Its proof is given in
Section 3.9 and an illustration is given in Figure 4.

Proposition 3.1 (An approximation of Tfix). Let (Lt,M t), Lt = (L1
t , . . . , L

d
t ), M t =

(M1
t , . . . ,M

d
t ), be defined as follows: For fixed ι ∈ {1, . . . , d}, let Π1, . . . ,Πd be inde-

pendent and Poi(2αρi)-distributed, and put L0 = Π + eι, M0 = eι. The process (L,M)

jumps from (`,m) to

(`+ ei,m+ ei) at rate αmi,

(`+ ei,m) at rate α(`i −mi),
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(`− ei,m− ei) at rate
1

ρi

(
mi

2

)
,

(`− ei,m) at rate
1

ρi
(`i −mi)mi +

1

ρi

(
`i −mi

2

)
,

(`− ei + ej ,m− ei + ej) at rate µa(i, j)mi,

(`− ei + ej ,m) at rate µa(i, j)(`i −mi).

Moreover, let
T := inf{t ≥ 0 : M t = Lt}, (3.3)

and let Tfix be the fixation time of X ∗, where X ∗ is a solution of the SDE (2.5) as described
in Theorem 1. Assume that the limiting distribution of α

logαT exists as α→∞. Then

lim
α→∞

Pι
0

( α

logα
Tfix ≤ t

)
= lim
α→∞

P
( α

logα
T ≤ t

)
, (3.4)

in each continuity point of the limiting distribution function. Here, µ = µ(α) can depend
on α in an arbitrary way.

Remark 3.2 (Existence of limiting distribution). Our proof of Theorem 2 in Sec. 4 will
reveal in particular that the limiting distribution of α

logαT exists as α → ∞, at least if
µ = µ(α) falls in one of the three cases of Theorem 2.

3.2 The structured ancestral selection graph as a particle system

We will define a Markov process A = (Ar)r≥0 that takes its values with probability 1
in the set of finite subsets of {1, . . . , d} × [0, 1]. We shall refer to the elements of Ar
as particles. For each particle (i, u) ∈ Ar, we call i the particle’s location and u the
particle’s label. Recall that we denote the probability measure that underlies A by P.
It will sometimes be convenient to annotate the configuration of locations of the initial
state as a superscript of A or Z. Specifically, for k = (k1, . . . , kd) ∈ Nd0, we put

Ak0 =

d⋃
i=1

{(i, Uig) : 1 ≤ g ≤ ki}, (3.5)

where the Uig are independent and uniformly distributed on [0, 1].
We now specify the Markovian dynamics of A in terms of its jump kernel Db for some

migration kernel b on {1, . . . , d}. Here we distinguish three kinds of events (see Figure 5
for an illustration):

(1) Coalescence: for all i = 1, . . . , d, every pair of particles in colony i is replaced at
rate 1/ρi by one particle in colony i with a label that is uniformly distributed on
[0, 1] and independent of everything else.

(2) Branching: for all i = 1, . . . , d, every particle in colony i is replaced at rate α by
two particles in colony i with labels that are uniformly distributed on [0, 1] and
independent of each other and of everything else.

(3) Migration: for all i = 1, . . . , d, every particle in colony i is replaced at rate µ b(i, j),
j ∈ {1, . . . , d}, j 6= i, by a particle in colony j with a label that is uniformly dis-
tributed on [0, 1] and independent of everything else.

We will refer to A = (Ar)r≥0 also as the structured ancestral selection graph (or ASG for
short). The vector of particle numbers at time r is Kr = (Kr(1), . . . ,Kr(d)) with

Kr(i) := # (Ar ∩ ({i} × [0, 1])) , r ≥ 0, i = 1, . . . , d. (3.6)
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Figure 5: If a coalescing event (1), a branching event (2) or a migration event (3) occurs
by time r, we connect the lines within the ASG according to the rules as given in Section
3.2. In all cases, labels Uig are uniformly distributed on [0, 1], and are updated upon any
event for the affected lines.

K :=(Kr)r≥0 is a Markov process whose jump rates (based on the migration kernel b)
are for k = (k1, . . . , kd) ∈ Nd0 \ {0} given by

qbk,k−ei := qk,k−ei :=
1

ρi

(
ki
2

)
,

qbk,k+ei
:= qk,k+ei

:= αki,

qbk,k−ei+ej := µ b(i, j)ki,

qbk,` := qk,` := 0 otherwise.

(3.7)

By analogy with the notation Ak, we write (Kk
r )r≥0 for the process with initial state k.

3.3 Equilibrium and time reversal of the ASG

Proposition 3.3 (Equilibrium for Db).

1. The unique equilibrium distribution π for the dynamics Db is the law π of a Poisson
point process on {1, . . . , d}× [0, 1] with intensity measure 2αρ⊗λ, conditioned to be
non-zero (where ρ = (ρ1, . . . , ρd) and λ stands for the Lebesgue measure on [0, 1].)

2. The jump kernel D̂ of the time reversal of A in its equilibrium π is again of the form
(1),(2),(3), with the only difference that the migration rates b(i, j) are replaced by
the migration rates a(i, j) as defined in (2.2), i.e. D̂ = Da.

Proof. We will prove the duality relation

π(dz)Db(z, dz′) = π(dz′)Da(z′, dz), (3.8)

which by well known results about time reversal of Markov chains in equilibrium (see
e.g. [20]) proves both assertions of the Proposition at once. Since, given the particles’
locations, their labels are independent and uniformly distributed on [0, 1] and since this
is propagated in each of the (coalescence, branching and migration) events, it will be
sufficient to consider the process K. Indeed, defining qak,` as in (3.7) and putting

π(k1,...,kd) =
e−2α

1− e−2α

(2α)k1+···+kd

k1! · · · kd!
ρk11 · · · ρ

kd
d , k ∈ Nd0 \ {0},

one readily checks for all k ∈ Nd0 \ {0}

πk · qk,k−ei = πk−ei · qk−ei,k, πk · qbk,k−ei+ej = πk−ei+ej · q
a
k−ei+ej ,k.

This can be summarized as

πkq
b
k,` = π`q

a
`,k, k, ` ∈ Nd0 \ {0},

which by definition of Db and Da lifts to (3.8), and thus proves the Proposition.
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3.4 Genealogical relationships in the ASG

Thanks to the labelling of the particles it makes sense to speak about genealogical re-
lationships within A. Doing so will facilitate the interpretation of the duality relationships
in the proofs of Proposition 3.1 and Theorem 1.

Definition 3.4 (Connections between particles in A). Let A follow the dynamics Db

described in Section 3.2. We say that a particle (i′, u′) replaces a particle (i, u) if either
of the following relations hold:

• there is a migration event in which (i, u) is replaced by (i′, u′),
• there is a coalescence event for which (i, u) belongs to the pair which is replaced

by (i′, u′),
• there is a branching event for which (i′, u′) belongs to the pair which replaces (i, u).

(Note that in the 2nd and 3rd case we have necessarily i = i′.) For r, s ≥ 0 we say that
two particles (i, u) ∈ Ar∧s, (i′, u′) ∈ Ar∨s are connected if either (i, u) = (i′, u′) or there
exists an n ∈ N and (i0, u0), . . . , (in, un) such that (i0, u0) = (i, u), (in, un) = (i′, u′), and
(i`, u`) replaces (i`−1, u`−1) for ` = 1, . . . , n. For any subset Sr of Ar, let

Cs(Sr) :=
⋃

(i,u)∈Sr

{(i′, u′) ∈ As : (i, u) and (i′, u′) are connected}

be the collection of all those particles in As that are connected with at least one particle
in Sr. We briefly call Cs(Sr) the subset of As that is connected with Sr.

3.5 Basic duality relationship

We recall a basic duality result for the ASG for a structured population in Lemma 3.7,
as can e.g. be found in [3, equation (1.5)]. For this purpose we use a marking procedure
of the process A.

Definition 3.5 (A marking of particles). Let A follow the dynamics Db described in
Section 3.2, and fix a time τ > 0. Take x = (x1, . . . , xd) ∈ [0, 1]d, and mark independently
all particles in colony i at time τ with probability xi. Denote by

A(x)
τ := {(i, u) ∈ Aτ : (i, u) is marked }

the collection of all marked particles in Aτ .

Remark 3.6 (Connectedness and marks). In the sequel we will use the following obser-
vation: for any subset S0 of A0,

S0 ∩ C0(A(x)
τ ) = ∅ if and only if Cτ (S0) ∩ A(x)

τ = ∅.

For S0 = A0, we find that C0(A(x)
τ ) = ∅ if and only if A(x)

τ = ∅.
In words: no particle in S0 is marked (i.e. of “beneficial type”), if and only if no

potential ancestral particle of S0 is marked.

Lemma 3.7 (Basic duality relationship). Let X = (X(t))t≥0 be the solution of (2.1) with
X(0) = x ∈ [0, 1]d, and let A follow the dynamics Db. Then, for all k = (k1, . . . , kd) ∈ Nd0,
we have, using the notation (3.1) and (3.6)

Ex[(1−X(τ))k] = E[(1− x)K
k
τ ] = P(A(x)

τ = ∅|#A0 = k). (3.9)

Proof. The generator of the Markov process X is given by

GX f(x) = 1
2

d∑
j=1

1

ρi
xi(1− xi)

∂f2(x)

∂2xi
+ α

d∑
i=1

xi(1− xi)
∂f(x)

∂xi

+ µ

d∑
i,j=1

b(i, j)(xj − xi)
∂f(x)

∂xi
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for functions f ∈ C2([0, 1]d). Hence, for fk(x) := (1− x)k and gx(k) := (1− x)k,

GX fk(x) =

d∑
i=1

1

ρi
xi

(
ki
2

)
(1− x)k−ei + α

d∑
i=1

ki(−xi)(1− x)k

+ µ

d∑
i,j=1

b(i, j)ki((1− xj)− (1− xi))(1− x)ki−ei

=

d∑
i=1

1

ρi

(
ki
2

)(
(1− x)k−ei − (1− x)k

)
+ α

d∑
i=1

ki
(
(1− x)k+ei − (1− x)k

)
+ µ

d∑
i,j=1

b(i, j)ki
(
(1− x)k−ei+ej − (1− x)k

)
= GKgx(k),

where GK is the generator of K. Now, the first equality in the duality relationship (3.9)
is straightforward; see [7, Section 4.4]. The second equality in (3.9) is immediate from
the definition of the marking procedure in Definition 3.5.

3.6 A paintbox representation of X(τ)

Our next aim is a de Finetti–Kingman paintbox representation of the distribution of
X(τ) under Px in terms of the dual process K∞. In order to achieve this, we need to
be able to start the ASG with infinitely many lines and define frequencies of marked
particles.

Remark 3.8 (Asymptotic frequencies).

1. The process A can be started from

A∞0 =

d⋃
i=1

{(i, Uig)} : 1 ≤ g <∞}, (3.10)

where (Uig)i=1,...,d,g=1,2,... is an independent family of uniformly distributed random
variables on [0, 1]. Indeed, the quadratic death rates of the process K (recall this
process from (3.6)) ensure that the number of particles comes down from infinity.
In order to see this, consider the process (K1

r + · · ·+Kd
r )r≥0 and note that given

K1
r + · · · + Kd

r = k it increases at rate αk and its rate of decrease is minimal if
colony i carries ρik lines, i = 1, . . . , d, hence is bounded from below by

d∑
i=1

1

ρi

(
ki
2

)
≥ 1

2

(
d∑
i=1

ki
2 − k

)
≥ 1

2

(
1

d
k2 − k

)
≥ k(k − d)

2d
, (3.11)

where we have used the Cauchy–Schwarz inequality in the second “≥”. Using the
same bounds as in Proposition 6.9 of [5], we see that #A∞ε = O(ε−1) as ε→ 0.

2. For i = 1, . . . , d, let (Ji1, Ji2, . . .) := ((i, Ui1), (i, Ui2), . . .) be the (numbered) collec-
tion of particles in A∞0 that are located in colony i. Then by definition of the
dynamics of A∞, the sequence

(1{Ji1∈C0(A(x)
τ )},1{Ji2∈C0(A(x)

τ )}, . . .) (3.12)
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is exchangeable. Thus, by de Finetti’s theorem, the asymptotic frequency of ones
in this sequence exists a.s., which we denote by F x,τ = (F

x,τ
i )i=1,...,d with

F
x,τ
i := lim

n→∞

1

n

n∑
j=1

1{Jij∈C0(A(x)
τ )} (3.13)

Lemma 3.9 (Asymptotic frequencies and the solution of (2.1)). For x ∈ [0, 1]d \ {0}, let
F x,τ be as in (3.13). Then, for the solution X of (2.1) and τ ≥ 0,

P(F x,τ ∈ (.)) = Px(X(τ) ∈ (.)). (3.14)

Proof. From (3.10), for all k ∈ Nd0 \ {0}, the process Ak can be seen as embedded in A∞,
if we write

Ak0 :=

d⋃
i=1

{(i, Uig) : 1 ≤ g ≤ ki} ⊂ A∞0 . (3.15)

By exchangeability of the sequence (3.12) and de Finetti’s theorem (cf. Remark 3.8) we
obtain

E[(1− F x,τ )k] = P(Ak0 ∩ C0(A(x)
τ ) = ∅). (3.16)

Since the right-hand sides of (3.16) and (3.9) are equal, we conclude from Lemma 3.7
that

E[(1− F x,τ )k] = Ex[(1−X(τ))k]

which shows (3.14), since k ∈ Nd0 \ {0} was arbitrary.

Under P we have F x,τ = 1 a.s. if and only if for all i = 1, . . . , d the sequences
(1{Ji1∈C0(A(x)

τ )},1{Ji2∈C0(A(x)
τ )}, . . .) consist of ones a.s. Hence the events {F x,τ = 1} and

{C0(A(x)
τ ) = A∞0 } are a.s. equal under P. A fortiori we have

Px(Tfix ≤ τ) = Px(X(τ) = 1) = P(C0(A(x)
τ ) = A∞0 ). (3.17)

This equality allows to compute the probability of eventual fixation.

Corollary 3.10 (Eventual fixation). The probability for eventual fixation of the beneficial
type,

h(x) := Px(Tfix <∞) (3.18)

can be represented as (using the notation introduced in Lemma 3.7)

h(x) = 1− E
[
(1− x)Ψ

]
, (3.19)

where

Ψ ∈ Nd0 \ {0} is Poisson(2αρ)-distributed, conditioned to be non-zero. (3.20)

In other words, Ψ counts the number of particles in colonies 1, . . . , d of the Poisson point
process from Proposition 3.3. In particular, h(x) is given by formula (2.4).

Proof. Since Px(Tfix < ∞) = limτ→∞Px(Tfix ≤ τ), we can apply the representation

(3.17). We have that K∞τ
τ→∞
===⇒ Ψ, and the probability that (K∞r )r≥0 between times r = 0

and r = τ has a “bottleneck” at which the total number of lines equals 1 converges to
one; this was called the ultimate ancestor in [14]. Thus, as τ → ∞, the r.h.s. of (3.17)
converges to the probability that at least one particle in the configuration Ψ is marked
(provided all the particles at colony i are marked independently with probability xi).
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This latter probability equals the r.h.s. of (3.19). To evaluate this explicitly, we write
for independent Li ∼ Poi(2αρi), i = 1, . . . , d and L = (L1, . . . , Ld), L = L1 + · · ·+ Ld (see
Proposition 3.3)

(1− e−2α)h(x) = (1− e−2α)(1− E[(1− x)Ψ])

= (1− e−2α)− E[(1− x)L, L 6= 0]

= (1− e−2α)− E[(1− x)L] + P(L = 0)

= 1−
d∏
i=1

E[(1− xi)Li ]

= 1−
d∏
i=1

e−2αρie2αρi(1−xi) = 1− e−2α(x1ρ1+···+xdρd),

i.e. we have shown (2.4).

3.7 A duality conditioned on fixation

The next lemma is the analogue of Lemma 3.7 for the conditioned diffusion X ∗ in
place of X . Here, for k ∈ Nd0 \ {0}, we will use the process A, which follows the dynamics
Db and has the initial state Y0 ∪Zk0 , where Zk0 is as in the right hand side of (3.5) and Y0

is an equilibrium state for the dynamics Db (as described in Proposition 3.3) which is
independent of Zk0 . Note that this independence guarantees that, with probability one,

all labels are distinct, and hence Y0 is a.s. disjoint from Zk0 .
In terms of A, we define two processes Y and Z = Zk, which follow the dynamics Db

with initial states Y0 and Z0, by setting

Zs = Cs(Zk0 ) and Ys = Cs(Y0), s ≥ 0.

We emphasize that Zk d
= Ak and Y d

= AΨ due to exchangeability of particles, hence Zk
and Y constitute a coupling of Ak and AΨ (with disjoint initial states).

Lemma 3.11 (Duality conditioned on fixation). Under Px let X ∗ = (X∗(t))t≥0 be the
solution of (2.5), started in X∗(0) = x. Under P and for k ∈ Nd0 \{0}, let A, Y and Z = Zk
be as described above. Then

Ex[(1−X∗(τ))k] = P(Zk0 ∩ C0(A(x)
τ ) = ∅ | Y0 ∩ C0(A(x)

τ ) 6= ∅)

= P(Zkτ ∩ A(x)
τ = ∅ | Yτ ∩ A(x)

τ 6= ∅). (3.21)

Proof. In view of Remark 3.6 the fixation probability (3.18) can be expressed as

h(x) = P(Y0 ∩ C0(A(x)
τ ) 6= ∅) = P(Yτ ∩ A(x)

τ 6= ∅), τ ≥ 0. (3.22)

The second equality in (3.21) follows right away from Remark 3.6. To show the first
equality, we set out by writing the Markovian semigroup of X∗ as the h-transform of the
semigroup of X,

Ex[(1−X∗(τ))k] =
Ex[(1−X(τ))k, Tfix <∞]

Px(Tfix <∞)
=

Ex[(1−X(τ))k h(X(τ)]

h(x)
. (3.23)

The numerator of the right-hand side of (3.23) equals

Ex[(1−X(τ))k (1− E[(1−X(τ))Ψ])]

= Ex[(1−X(τ))k]− E⊗Ex[(1−X(τ))Ψ+k]. (3.24)
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Writing (Kk
r )r≥0, (Nr)r≥0 and (Gr)r≥0 for the processes of particle numbers in Zk, Y

and A, respectively, we obtain from the duality relation (3.9) that

E⊗Ex[(1−X(τ))Ψ+k] = E[E[Ex(1−X(τ))N0+k|N0]]]

= E[E[(1− x)Gτ |G0]] = E[(1− x)Gτ ].

Hence, again by the duality relation (3.9) and by Remark 3.6, the right hand side of
(3.24) is equal to

E[(1− x)K
k
τ ]− E[(1− x)Gτ ] = P(Zkτ ∩ A(x)

τ = ∅)− P(A(x)
τ = ∅)

= P(Zk0 ∩ C0(A(x)
τ ) = ∅)− P((Zk0 ∪ Y0) ∩ C0(A(x)

τ ) = ∅)

= P({Zk0 ∩ C0(A(x)
τ ) = ∅} ∩ {Y0 ∩ C0(A(x)

τ ) 6= ∅}).

Combining this with (3.23), (3.24) and (3.22), we arrive at the first equality in (3.21).

3.8 A paintbox representation for X∗(τ)

We now lift the assertion from Lemma 3.9 about the paintbox construction of X(τ)

to X∗(τ). For this, let the process A follow the dynamics Db and have the initial state
Y0 ∪ Z∞0 , where Z∞0 is as in (3.10) and Y0 is an equilibrium state for the dynamics Db

(as described in Proposition 3.3) which is independent of Z∞0 . Recall from (3.13). the

definition of the asymptotic frequencies F x,τ = (F
x,τ
i )i=1,...,d of C0(A(x)

τ ) within A0.

Lemma 3.12 (A paintbox for X∗(τ)). Under Px let X ∗ = (X∗(t))t≥0 be the solution of
(2.5), started in X∗(0) = x. Under P, let the process A and the frequencies F x,τ be as
above. Then,

Px(X∗(τ) ∈ (.)) = P(F x,τ ∈ (.) | Yτ ∩ A(x)
τ 6= ∅). (3.25)

Proof. For Z∞0 = {Jig := (i, Uig) : i = 1, ..., d, g = 1, 2, ...}, we observe that the se-

quence (3.12) is exchangeable under the measure P(· | Yτ ∩A(x)
τ 6= ∅), which guarantees

the a.s. existence of F x,τ . We now parallel the argument in the proof of Lemma 3.9:
For each k ∈ Nd0 \ {0}, with Zk0 is as in the right hand side of (3.5), we have because of
exchangeability

E[(1− F x,τ )k | Yτ ∩ A(x)
τ 6= ∅] = P(Zk0 ∩ C0(A(x)

τ ) = ∅ | Yτ ∩ A(x)
τ 6= ∅).

Combining this with Lemma 3.11, and since k was arbitrary, we obtain the assertion.

We are interested in the limit of (3.25) as x = x(ε) ∼ εeι and ε → 0 for a fixed
ι ∈ {1, . . . , d}. For brevity we write

Px,τ (·) := P(· | Yτ ∩ A(x)
τ 6= ∅). (3.26)

Remark 3.13 (Limit of small frequencies). Let P be a Poisson point process on
{1, . . . , d} × [0, 1] with intensity measure 2αρ⊗ λ. (Compare with Proposition 3.3.) For

ι ∈ {1, . . . , d} and x = x(ε) = εeι, the conditional distribution of (Yτ ,Yτ ∩ A(x(ε))
τ ) given

{Yτ ∩ A(x(ε))
τ 6= ∅} converges, as ε → 0, to the distribution of (P(ι), {(ι, U)}), with

P(ι) := P ∪ {(ι, U)}, and U independent of P and uniformly distributed on [0, 1]. In
particular, under the limit of Pεeι,τ as ε → 0, with probability 1 there is exactly one
marked particle in Yτ , with the location of this particle being ι. Indeed, (using the same
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notation as in the proof of Corollary 3.10),

lim
ε→0

Px(ε),τ (#(Yτ∩({ι} × [0, 1])) = k) = lim
ε→0

e−2αρι(2αρι)
k(1− (1− ε)k)/k!

1−
∑∞
`=0 e

−2αρι(2αρι)`(1− ε)`/`!

= lim
ε→0

e−2αρι(2αρι)
kkε/k!

1− e−2αριε

= e−2αρι
(2αρι)

k−1

(k − 1)!
,

(3.27)

the weight of a Poisson(2αρι)-distribution at k − 1. A similar calculation shows that
this also equals the limit of Px(ε),τ (#(Yτ∩({ι} × [0, 1])) = k,#Yτ ∩ A(x)

τ = 1) as ε → 0,
explaining the additional particle (ι, U) in Yτ under Pι,τ .

Definition 3.14 (The process A with small marking probability). ttt

• The weak limit of Pεeι,τ (A ∈ (.)) as ε→ 0 will be denoted by

Pι,τ (A ∈ (.)).

From the previous remark, under Pι,τ , there is a.s. exactly one marked particle in
Yτ , with the location of this particle being ι. This particle will be denoted by •.

• For each colony i, consider the configuration C0({•}) ∩ Z∞0 ∩({i} × [0, 1]), i.e. the
configuration of all particles in Z∞0 that are located in colony i and are connected
with {•}. By exchangeablity, the relative frequency of this configuration within
Z∞0 ∩({i} × [0, 1]) exists, i = 1, . . . , d, cf. Remark 3.7.2. As before, we denote the
vector of these relative frequencies by F ι,τ := (F ι,τ1 , . . . , F ι,τd ).

Corollary 3.15 (Entrance laws for (2.5)). There exists a weak limit of the distribution of
X ∗ under Pεeι

as ε → 0, which we denote by Pι
0(X ∗ ∈ (.)). In particular, ((X∗t )t>0,P

ι
0)

defines an entrance law from 0 for the dynamics (2.5).

Proof. As a consequence of (3.25) and the reasoning in Remark 3.13 we have

Pεeι
(X∗(τ) ∈ (.)) = Pεeι,τ (F εeι,τ ∈ (.))

ε→0−−−→ Pι,τ (F ι,τ ∈ (.)). (3.28)

Together with the Markov property, this shows that there exists a weak limit of the
distribution of X ∗ under Pεeι

as ε→ 0. Hence the result follows.

Remark 3.16 (Asymptotic expected frequencies). For the asymptotic frequencies, we

have that ριEι,t[F
ι,t
j ]/t

t→0−−−→ διj . Indeed, Eι,t[F ι,tj ] is the probability that a particle from
Z∞0 located on colony j belongs to C0({•}). In order for the particle to be connected to •,
a coalescence event within time t must occur. For small t, and up to linear order in t,
this can only happen if the particle is located on the same colony, i.e. ι = j. In this case,
since the coalescence rate on colony ι is 1/ρι, the result follows.

Remark 3.17 (A correction of [21]). In [21] the case of a single colony (d = 1) is studied.
Lemma 2.4 of [21] can be seen as an analogue of our Lemma 3.12 (together with
Remark 3.13). However, Lemma 2.4 of [21] neglects the effect which the conditioning on
the event {Yτ ∩ A(x)

τ 6= ∅} has on the distribution of Ψ, and works right away with the
time-reversal of Y in equilibrium. Our analysis shows that, in spite of this imprecision,
the conclusions of the main results of [21] remain true.

As a consequence of (3.25) and (3.28) we obtain

Pι
0(Tfix ≤ τ) = Pι

0(X∗(τ) = 1) = Pι,τ (Z∞0 ⊆ C0({•}). (3.29)

EJP 21 (2016), paper 61.
Page 20/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3355
http://www.imstat.org/ejp/


The fixation time of a strongly beneficial allele

3.9 Proof of Proposition 3.1

From (3.29) we now derive a result on how to approximate Tfix as α→∞. The idea
is that in this limit the time which it takes for Z∞ to coalesce with Y is essentially
negligible on the logα

α -timescale. This is captured by the following lemma, whose proof
we defer to the end of the section.

Lemma 3.18 (Approximating Tfix). For δ, τ > 0, let δα := δ logα
α and τα := τ logα

α , and let •
be as in Definition 3.14. Then,

Pι,τα(Z∞0 ⊆ C0({•})) ≤ Pι,τα(Y0 ⊆ C0({•})) for all α > 0, (3.30)

lim inf
α→∞

Pι,τα(Y0 ⊆ C0({•})) ≤ lim inf
α→∞

Pι,τα+δα(Z∞0 ⊆ C0({•})). (3.31)

The next corollary follows by combining (3.29) and Lemma 3.18.

Corollary 3.19. For α > 0 let Sα be a random variable with distribution function
τ 7→ Pι,τα(Y0 ⊆ C0({•})), where τα = τ logα

α . (In the subsequent proof of Proposition
3.1 we will see that Sα has a natural interpretation as the rescaled fixation time of • in
the time-reversal of Y.) If Sα converges in distribution as α→∞ and if τ is a point of
continuity of the limiting distribution function, we have

lim
α→∞

Pι
0(Tfix ≤ τα) = lim

α→∞
Pι,τα(Y0 ⊆ C0({•})). (3.32)

Proof. The limit in the right hand side exists by assumption. If τ − δ is a continuity point
of the limiting distribution function F , then we have by (3.31) (with τ replaced by τ − δ)
and again abbreviating δα = δ logα

α

lim
α→∞

Pι,τα−δα(Y0 ⊆ C0({•})) ≤ lim inf
α→∞

Pι,τα(Z∞0 ⊆ C0({•})).

Hence, working along a sequence of continuity points τ − δ of F with δ ↓ 0, we have

lim
α→∞

Pι,τα(Y0 ⊆ C0({•})) = lim
δ→0

lim
α→∞

Pι,τα−δα(Y0 ⊆ C0({•}))

≤ lim inf
α→∞

Pι,τα(Z∞0 ⊆ C0({•})) = lim inf
α→∞

Pι
0(Tfix ≤ τα)

≤ lim sup
α→∞

Pι
0(Tfix ≤ τα) = lim sup

α→∞
Pι,τα(Z∞0 ⊆ C0({•}))

≤ lim
α→∞

Pι,τα(Y0 ⊆ C0({•})).

The preceding corollary shows that, in order to study the asymptotic distribution
of Tfix on the logα

α -timescale, it suffices to analyse the asymptotics of the percolation
probabilities of the marked particles within the equilibrium ASG under the (conditional)
probability Pι,τα . As already explained in Sec. 3.1, the link to Proposition 3.1 is now
given by a time reversal argument.

Proof of Proposition 3.1. In view of (3.32), we are done once we show that, for τ > 0,

P
(
T ≤ τ

)
= Pι,τ (C0({•}) ⊇ Y0), (3.33)

where T is defined in (3.3). For this, we bring the time reversal Ŷ of Y = (Yr)0≤r≤τ into
play, which is defined by

Ŷs := Yτ−s, 0 ≤ s ≤ τ.

Analogously, we define Ĉs({•}) := Cτ−s({•}). Then, our assertion (3.33) is equivalent to

P
(
T ≤ τ

)
= Pι,τ (Ĉτ ({•}) ⊇ Ŷτ ). (3.34)
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We recall that the dynamics of Ŷ in equilibrium is given by Da; see Proposition 3.3.
While for Y the conditioning (3.26) is at the terminal time τ (and thus modifies the
dynamics D), the same conditioning expressed for Ŷ happens at the initial time 0 and
thus does effect the initial state but not the dynamics Da. The distribution of Ŷ0 which
results from this conditioning is described in Remark 3.13. Thus we observe that
under Pι,τ , the time-reversed process Ŷ follows the dynamics Da and has initial state
Ŷ0 = P(ι) = P ∪ {(ι, U)}, with P defined in Remark 3.13 and • := (ι, U).

We now put for i = 1, . . . , d and t ≥ 0

N̂ i
t := #

(
Ŷt ∩ ({i} × [0, 1])

)
, Ĥi

t := #
(

Ĉt({•}) ∩ ({i} × [0, 1])
)
. (3.35)

Under Pι,τ the process (N̂ t, Ĥt)0≤t≤τ with N̂ t = (N̂1
t , . . . , N̂

d
t ) and Ĥt = (Ĥ1

t , . . . , Ĥ
d
t ),

then has the same law as the process (Lt,M t)0≤t≤τ defined in Proposition 3.1. In
particular, (3.34) is shown.

We prepare the proof of Lemma 3.18 by two estimates and include their (simple)
proofs for convenience.

Remark 3.20 (Comparing Π and Π + eι). Recall that Π = (Π1, ...,Πd) is distributed
according to d independent Poisson distributions, where Πi ∼ Poi(2αρi). As above, Ψ

is distributed as Π, conditioned to be positive (compare with (3.20)) and Π + eι is as in
Proposition 3.1. Then, (dTV denoting the total variation distance)

dTV(Π,Ψ) = o(1),

dTV(Π,Π + eι) = o(1)
(3.36)

as α→∞.
Indeed: The first result is immediate since P[Π = 0] = e−2α. For the second result, by

a second moment calculation, we have that Πι/(2αρι)
α→∞−−−−→ 1 in L2 and therefore, as

α→∞,

dTV(Π,Π + eι) = e−2αρι

∞∑
k=1

∣∣∣ (2αρι)k
k!

− (2αρι)
k−1

(k − 1)!

∣∣∣+ o(1)

= e−2αρι

∞∑
k=1

(2αρι)
k

k!

∣∣∣1− k

2αρι

∣∣∣+ o(1)

= E
[∣∣∣1− Πι

2αρι

∣∣∣]+ o(1) = o(1).

We are now ready for the

Proof of Lemma 3.18. For proving (3.30) it suffices to show that, for each α > 0,
Pι,τα((I, U) /∈ C0({•}),Z∞0 ⊆ C0({•})) = 0 for a particle (I, U) taken uniformly from
Y0. To show this equality, we will prove that for all i = 1, . . . , d

Pι,τα((I, U) /∈ C0({•}),Z∞0 ⊆ C0({•}), I = i}) = 0. (3.37)

We write p := (I, U), and note that

Rp := inf{r > 0 : Cr({p}) 6⊆ {i} × [0, 1]} > 0 Pι,τα a.s.

The idea is now that with probability 1 we will find particles in Z which coalesce with⋃
r≥0 Cr({p}), withouth being affected by an earlier branching or coalescence with
Y \

⋃
r≥0 Cr({p}), and hence on the event {p /∈ C0({•})} never connect to the particle •.

In order to achieve this, we recall that under Pι,τα the dynamics of Z is given by Db,
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and this also applies conditional under Y for the particles in Z up to the time of their
possible coalescence with particles in Y.

We now consider the subsystem of particles in Z which initiates from all those Z
particles that are located in colony i at time 0, and remove from it all those particles that
undergo a migration or a branching event, or coalesce with some particle in Yr \Cr(p) at
some time r ≥ 0. The system of particles of Z at time r which remain after this pruning
(and all of which are located in colony i by construction) will be denoted by Z(i)

r .

Given Y, the process (#Z(i)
r ) is up to time Rp stochastically bounded from below by a

death process (Kr)r≥0 entering from infinity with death rate 1
ρi

(
k
2

)
+ (α+ µ

∑
j 6=i b(i, j) +

M)k, where M := max{#(Yr∩({i} × [0, 1])) : 0 ≤ r ≤ Rp}. Hence, the essentially
quadratic death rate guarantees that for any c > 0 limε→0

∫ c
ε
Krdr = ∞ a.s. Indeed,

ρirKr
r→0−−−→ 2 a.s. by a second moment calculation, and Kr ≈ 2

ρir
is not integrable at r = 0.

Consequently, also limε→0

∫ c
ε

#Z(i)
r dr =∞ a.s., and thus with probability 1 there will be

a coalescence between Z(i)
r and Cr({p}) for some r < Rp.

Since on the event {p /∈ C0({•})} the set Cr({p}) is contained in the complement of

Cr({•}), we conclude the existence of particles in Z(i)
0 (and hence in Z∞0 ) that belong to

the complement of C0({•}). This shows (3.37).

To prove (3.31), we first note that the particle • specified in Definition 3.14 is (because
of the random marking) a uniform choice from the particles in Yτα ∩ ({ι} × [0, 1]) under
Pι,τα , and a uniform choice from the particles in Yτα+δα ∩ ({ι} × [0, 1]) under Pι,τα+δα .

However, as noted already after formula (3.34), the conditioning at time τα, which is
inherent in Pι,τα , destroys the time-homogeneity of the dynamics of Y between times
0 and τα; consequently, under Pι,τα the marking probabilities in Z∞0 will be different
from those in Y0. In order to account for this, the strategy of our proof will be to define
under the unconditioned probability measure P particles ◦ and ◦′ whose distributions
will turn out to be close in variation distance to that of • under Pι,τα and under Pι,τα+δα ,
respectively, and which lead to the same marking probabilities in Y0 and Z∞0 .

To be specific, let ◦ result from a uniform pick from (Yτα ∪Z
∞
τα)∩ ({ι}× [0, 1]) provided

that this set is not empty; otherwise we pick ◦ uniformly from Yτα ∪ Z
∞
τα . Similarly, we

pick ◦′ uniformly from (Yτα+δα ∪Z
∞
τα+δα

)∩ ({ι}× [0, 1]) provided that this set is not empty;
otherwise we pick ◦′ uniformly from Yτα+δα ∪ Z

∞
τα+δα

.

This construction immediately implies that for any fixed i = 1, ..., d, the family of
events ({(i, Uig) ∈ C0(◦)})(i,Uig)∈Y0∪Z∞0 , is exchangeable conditional under Y0 ∪ Z∞0 . We
will show five properties ((A)–(E)) of the joint distribution of A, Y, Z∞ and ◦, proceeding
in two main steps proving first (A) and then (B)–(E).

(A) the total variation distance between the distribution of (At,Yt,Z∞t , ◦)0≤t≤τα under
P and the distribution of (At,Yt,Z∞t , •)0≤t≤τα under Pι,τα converges to 0 as α→∞. Like-
wise, the total variation distance between the distribution of (At,Yt,Z∞t , ◦′)0≤t≤τα+δα

under P and the distribution of (At,Yt,Z∞t , •)0≤t≤τα+δα under Pι,τα+δα converges to 0

as α→∞.

Having achieved this, we will construct a process (Z ′r)0≤r≤δα under P with the follow-
ing properties:
(B) Z ′r ⊆ Z

∞
r for all r ∈ [0, δα],

(C) {Z ′δα ⊆ Cδα(◦′)} ⊆ {Z∞0 ⊆ C0(◦′)};
(D) for any i = 1, ..., d, Z ′δα({i} × [0, 1]) = O(α/ log(α)) with high probability as α→∞,
(E) for any i = 1, ..., d, the family of events ({(i, Uig) ∈ Cδα(◦′)})(i,Uig)∈Yδα∪Z′δα

is ex-

changeable conditional under Yδα ∪ Z ′δα .

The proof of the first assertion of (A) will be achieved in several steps.
(i) We first note that because of Remark 3.20 the total variation distance between the
distributions of Yτα under Pι,τα and under P converges to 0 as α→∞.
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(ii) Now a crucial observation is that the time-reversed dynamics of (Yt)0≤t≤τα under P
and under Pι,τα both are given by the dual jump kernel Da. Consequently, the conditional
distribution of (Yt)0≤t≤τα given Yτα under Pι,τα equals that under P. This shows that
the variational distance between the distributions of (Yt)0≤t≤τα under Pι,τα and under P
equals the variational distance between the distributions of Yτα under Pι,τα and under P.
(iii) Next note that the conditional distribution of (At,Yt,Z∞t )0≤t≤τα given (Yt)0≤t≤τα
under Pι,τα equals that under P. Hence the variational distance between the distributions
of (At,Yt,Z∞t )0≤t≤τα under Pι,τα and under P equals the variational distance between
the distributions of (Yt)0≤t≤τα under Pι,τα and under P.
(iv) Combining (i)–(iii) we see that the total variation distance between the distribution
of (At,Yt,Z∞t )0≤t≤τα under P and the distribution of (At,Yt,Z∞t )0≤t≤τα under Pι,τα

converges to 0 as α→∞.
(v) According to Definition 3.14, due to the random marking under Pι,τα the particle •
arises by a uniform choice from Yτα ∩ ({ι} × [0, 1]). We now claim that under P, on an
event whose probability converges to 1 as α→∞, the particle ◦ constitutes a uniform
choice from Yτα ∩ ({ι}× [0, 1]). We will prove in the next section a key lemma, Lemma 4.1,
which will tell us that under P the number of particles in Yt in colony i, i = 1, . . . , d, is
with high probability as α→∞ concentrated around 2ρiα, uniformly in t ∈ [0, τα]. Hence
our claim holds if #(Z∞τα \ Yτα) = o(α) with high probability as α→∞. To see this, we
note that the probability of the event

{#(Yt ∩ ({i} × [0, 1])) ≥ 2αρi(1− ε) for some ε > 0 and for all i; 0 ≤ t ≤ τα}

tends to 1 as α → ∞ because of Lemma 4.1. On this event, however, the process
#(Z∞t \Yt)0≤t≤τα under P is stochastically bounded from above by a birth-death process
which in state (k1, ..., kd) with k = k1 + ...+ kd has birth rate αk and death rate at least∑d

i=1
1
ρi

(
ki
2

)
+ 1

ρi
2αρi(1− ε)ki ≥ k(k−d)

2d + 2α(1− ε)k, see (3.11). Hence a second moment

calculation shows that, with high probability as α→∞, #(Z∞τα \ Yτα) = O( α
logα ) = o(α).

Together with (iv), this shows the first part of the assertion of (A); the arguments for the
second part of (A) are the same, with τ being replaced by τ + δ.

For (B)–(E), we define the particle system (Z ′t)0≤t≤δα as a subsystem of (Z∞t )0≤t≤δα
(from which property (B) is automatic). As its initial state we take Z ′0 := Z∞0 . We then
impose the rule that the particles in Z ′ perform all coalescence and migration events
dictated by Z, but follow only a single one of the two particles in Z upon a branching
event. More formally,

• if (i, Uig), (i, Uig′) ∈ Z∞r− coalesce, i.e. are replaced by (i, Uig′′) ∈ Z ′∞r , and if
(i, Uig), (i, Uig′) ∈ Z ′r−, then the same replacement happens in Z ′r,

• if (i, Uig), (i, Uig′) ∈ Z∞r− ∪ Yr− coalesce, i.e. are replaced by (i, Uig′′) ∈ Z∞r , and if
only (i, Uig) ∈ Z ′r− but (i, Uig′) /∈ Z ′r−, then (i, Uig) ∈ Z ′r− is replaced by (i, Uig′′) in
Z ′r,

• if (i, Uig) ∈ Z∞r− migrates to j, i.e. is replaced by (j, Ujg′) in Z∞r , and if (i, Uig) ∈ Z ′r−,
the particle also migrates to j in Z ′r, i.e. (i, Uig) is replaced by (j, Ujg′) in Z ′r,

• if (i, Uig) ∈ Z∞r− branches, i.e. is replaced by (i, Uig′), (i, Uig′′) ∈ Z∞r , and if (i, Uig) ∈
Z ′r−, then (i, Uig) is replaced by (i, Uig′) in Z ′r.

Note that Z∞0 ⊆ C0(Z ′δα) by construction, so if Z ′δα ⊆ Cδα(◦′) then Z∞0 ⊆ C0(Cδα(◦′)) =

C0(◦′), i.e. we have property (C). Since Z ′ is a coalescing random walk, it is a death
process which in state (k1, ..., kd) with k = k1 + · · · + kd has death rate (using (3.11))∑d
i=1

1
ρi

(
ki
2

)
≥ k(k−d)

2d . A second moment calculation then shows (D). Finally, the ex-
changeability claimed in (E) holds by construction.
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Based on properties (A)–(E) we can now prove (3.31). Indeed, because of (A)

Pι,τα(Y0 ⊆ C0({•})) = P(Y0 ⊆ C0({◦})) + o(1) as α→∞. (3.38)

From the stationarity of Y under P together with property (A),

P(Y0 ⊆ C0({◦})) = P(Yδα ⊆ Cδα({◦′})) + o(1) as α→∞. (3.39)

For all fixed i ∈ {1, . . . , d}, consider the event

Ei,α := {(Yδα({i} × [0, 1]) ≥ ρiα,Z ′δα({i} × [0, 1]) ≤ ρiα}.

Then because of the exchangeability property (E) we have

P(Yδα ∩ ({i} × [0, 1]) ⊆ Cδα({◦′}) | Ei,α) ≤ P(Z ′δα ∩ ({i} × [0, 1]) ⊆ Cδα({◦′}) | Ei,α).

Because of property (D) we have P(Ei,α)→ 1 as α→∞, and consequently

lim inf
α→∞

P(Yδα ⊆ Cδα({◦′})) ≤ lim inf
α→∞

P(Z ′δα ⊆ Cδα({◦′})). (3.40)

Property (C) yields

P(Z ′δα ⊆ Cδα({◦′})) ≤ P(Z∞0 ⊆ C0({◦′})) (3.41)

and property (A) implies

P(Z∞0 ⊆ C0({◦′})) = Pι,τα+δα(Z∞0 ⊆ C0({•})) + o(1) as α→∞. (3.42)

Combining (3.38)–(3.42) we arrive at (3.31).

3.10 Proof of Theorem 1

Let x 6= 0. Then equation (3.21) shows that the one-dimensional distributions of X ∗
are determined. This shows the uniqueness (see Theorem 4.4.2 of [7]).

Now let (X ∗,P) with X ∗ = (X∗(t))t≥0 be an entrance law from 0 for the dynamics
(2.5). For fixed t > 0 and 0 < δ < t we can represent P(X∗(t) ∈ (·)) by means of (3.25),
putting τ := t − δ and using the “random paintbox” X∗δ instead of the deterministic x
figuring in (3.25). More specifically, we have by the Markov property of X ∗

P(X∗(t) ∈ (.)) = E[PX∗(δ)(X
∗(t− δ) ∈ (.))]

= E[P(FX
∗(δ),t−δ ∈ (.) | Yt−δ ∩ A(X∗(δ))

t−δ 6= ∅) | X∗(δ)]. (3.43)

Now consider the random vector Nδ := (Yt−δ({i} × [0, 1]))i=1,...,d, and write νX
∗(δ)

δ for

the distribution of Nδ conditioned under the event {Yt−δ ∩A(X∗(δ))
t−δ 6= ∅} for given X∗(δ).

We recall that the unconditional distribution of Yt−δ is the distribution π described in
Proposition 3.3. Thus we are faced with a Poisson coloring, where the coloring is rare
(due to the assumption that X∗(δ)→ 0 in probability as δ → 0) but conditioned to produce
at least one colored particle. Using the notation Π for a Poisson vector as in Proposition
3.3, we infer that there exist {1, . . . , d}-valued random variables Jδ independent of Π

such that the total variation distance between ν
X∗(δ)
δ and the distribution of Π + eJδ

converges to 0 as δ → 0. We thus obtain from (3.43) for all t > 0

P(X∗(t) ∈ (.)) = E[PJδ,t−δ(F Jδ,t−δ ∈ (.))] + o(1) as δ → 0. (3.44)

Because of compactness, there is a sequence δn → 0, and an {1, . . . , d}-valued ran-
dom variable J such that Jδn

n→∞
===⇒ J . By continuity, we thus obtain from (3.44) the

representation
P(X∗(t) ∈ (.)) = E[PJ,t(F J,t ∈ (.))], t > 0. (3.45)
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We claim that this representation is unique. Indeed, let J ′ be a {1, . . . , d}-valued random
variable whose distribution is different from that of J , and which obeys

E[PJ,t(F J,t ∈ (.))] = E[PJ
′,t(F J

′,t ∈ (.))], t > 0. (3.46)

Then there must exist an i ∈ {1, . . . , d} such that P(J = i) < P(J ′ = i). On the other
hand, from Remark 3.16,

lim sup
t→0

E[EJ,t[F J,ti ]]

E[EJ′,t[F J
′,t

i ]]
= lim sup

t→0

∑d
j=1 P(J = j)Ej,t[F j,ti ]∑d
j=1 P(J ′ = j)Ej,t[F j,ti ]

=
P(J = i)

P(J ′ = i)
< 1, (3.47)

which contradicts (3.46).
From (3.45) and (3.28) we obtain the representation

P(X∗(t) ∈ (.)) = E[PJ,t(F J,t ∈ (.))] = E[PJ
0 (X∗(t) ∈ (.))], t > 0,

which shows that every entrance law from 0 is a convex combination of the entrance
laws Pi

0(X∗ ∈ (.)), i = 1, . . . , d. To see the extremality of the latter, note that by the same
reasoning which led to the contradiction of (3.46) and (3.47), the equality

Pi
0(X∗(t) ∈ (.)) = E[PJ

0 (X∗(t) ∈ (.))], t > 0

is impossible unless P(J = i) = 1. This completes the proof of Theorem 1.

4 Proof of Theorem 2

4.1 Heuristics

Before we come to the formal proofs, we give a summary of all three cases. Some
basic ideas will be formalised in a few lemmas that are collected in Section 4.2. The
basis of our proof is the ancestral selection graph and the approximate representation of
the fixation time in Proposition 3.1. Moreover, by our interpretation of the d extremal
entrance laws (see Remark 2.3) and symmetry, we can consider the situation when
the ASG has a single marked particle in colony 1. Recall from Definition 3.14 that this
marked particle • is of the form (1, U) for a [0,1]-uniformly distributed U .

It is important to note that at all times during the sweep, Lit from Proposition 3.1
(which is the same as the number of particles in Y with jump kernel Da from Section 3.2,
started in P ∪ {•}) in colony i is about 2αρi with high probability, see Lemma 4.1.
Within Y, we distinguish between marked particles (comprising M t = (M1

t , . . . ,M
d
t ) with

M i
t := #

(
Ct({•}) ∩ ({i} × [0, 1])

)
) and wildtype particles; see also (3.35).

Let us turn to case 1. Here, migration happens at rate of order α. Since splitting
events of marked particles in (M t)t≥0 happen at rate α as well, marked particles are
present quickly (i.e. after time of order 1/α) in all colonies. More precisely, the number of
particles of the B allele (M1(t) + · · ·+Md(t))t≥0 is close to a pure branching process with
branching rate α in this starting phase. Then, when the number of particles exceeds αε
(for some small ε), the particles start to coalesce and the process is not pure branching
any more. The time when this happens is roughly (log(εα))/α ≈ log(α)/α; compare with
Lemma 4.4. Rescaling time by a factor of α, we can see – using an ordinary differential
equation – that the time the system needs to reach at least 2αρi(1− ε) particles in colony
i, i = 1, . . . , d, is of order 1/α and hence is negligible for our claim. When there are
2αρi(1− ε) marked particles in colony i, there are about ε2α wildtype particles in total.
Any wildtype line performs a subcritical branching process with splitting rate α (which is
the splitting rate within the ASG) and death rate at least 1

ρi
2αρi(1− ε) = 2α(1− ε) (which

is the coalescence rate with one of the 2αρi(1 − ε) marked particles within the same
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colony). The extinction time of such a subcritical branching process can be computed to
be about log(α)/α; see Lemma 4.7. In total, this gives a fixation time 2 log(α)/α.

Now we come to case 2, where migration happens at rate of order αγ . For simplicity
let us consider the case of two colonies first. The number of marked particles increases
exponentially at rate α in colony 1, so the number of particles at time (1− γ) log(α)/α

is exp((1 − γ)(logα)) = α1−γ . Since the migration rate is of the order αγ , the first
migrant to colony 2 arises exactly by that time. Indeed, the total rate of migration is
of order α1−γαγ = α, but at time (1− γ − ε) log(α)/α the total migration rate was only
α1−γ−εαγ = α1−ε. Moreover, we note that at time (1− γ + ε) log(α)/α there are already
α1+ε migrants, such that the first migrant occurs around time (1− γ) log(α)/α. After the
first migrant arises, its offspring starts to expand exponentially at rate α in colony 2.
After another time x log(α)/α, it increased in frequency to αx particles. Moreover, the
number of migrants from colony 1 (in the case x < γ, i.e. during the exponential growth

phase in colony 1) is
∫ x log(α)/α

0
α1−γeαtαγdt ≈ αx which indicates that the number of

marked particles in colony 2 is of order αx by time (1− γ+x) log(α)/α for x < γ; see also
2. in Lemma 4.4. After time log(α)/α, the exponential growth phase in colony 1 is over
and the marked particles in colony 2 still increase exponentially due to splitting events in
colony 2. At time (2− γ) log(α)/α, the exponential growth phase in both colonies is over
and – as in case 1 – it takes time of order 1/α until there are at least 2αρi(1− ε) particles
in colony i, i = 1, 2. Again, we can consider the total number of wildtype particles and
approximate it by a subcritical branching process which dies after time about log(α)/α;
see again Lemma 4.7. Hence, the fixation time is about (3− γ) log(α)/α.

For more than two colonies, it is clear that infection of a new colony happens if and
only if a neighbouring colony has about α1−γ marked particles, which happens some time
(1− γ) log(α)/α after this colony was infected. This leads to the first epidemic model.

For case 3, where migration happens at rate of order 1/(logα), observe that the total
number of migration events between colonies in a time of order log(α)/α is of order 1
(since there are of order α particles per colony, each of which has a migration rate of
order 1/ logα). Again, we start by considering two colonies, µ = c/(logα), and consider
the process on the new time-scale dτ = α

logαdt. If the number of marked particles in
colony 1 is smaller than α, migration of a marked particle is unlikely. At time τ = 1,
however, there are about 2ρ1α marked particles in colony 1, each of which migrates at
rate c/α (on time-scale dτ ), leading to an effective rate 2cρ1 of migration. This means we
have to wait an exponential waiting time with rate 2cρ1 for the first migrant. After that
time, the marked particles have already fixed in colony 1, but colony 2 needs another 2
time-units (on the time-scale dτ ) before fixation.

For d colonies, note that a new colony k gets infected, if a migrant from another
infected colony is successful. After time τ = 1, enough particles have accumulated on
this colony such that it can send migrants to its neighbouring colonies, hence becomes
infectious. If it is infectious, it sends migrants at rate 2ρka(k, j) to colony j, which is
exactly the second epidemic model.

4.2 Some lemmas

We now state some general lemmas, which are used in the proof of Theorem 2. Recall
that ρ = (ρ1, . . . , ρd) constitutes the equilibrium distribution for the migration dynamics.

Lemma 4.1 (L concentrated around 2αρ). Assume tα ↓ 0 and let L = (Lt)t≥0 with
Lt = (L1

t , . . . , L
d
t ) follow the same dynamics as in Proposition 3.1. (Recall that this

process depends on the parameters α and µ.)

Let µ = O(α), εα ↓ 0 be any sequence such that tα/εα → 0 and P
(∣∣∣L0

α −2ρ
∣∣∣ > ε2

α

)
→ 0.
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Then,

lim
α→∞

P
(

sup
0≤r≤tα

∣∣∣Lr
α
− 2ρ

∣∣∣ > εα

)
= 0.

Before turning to the proof of this lemma, let us observe that a sequence εα ↓ 0,
which fulfills the requirements of Lemma 4.1, exists iff L0/α

α→∞
===⇒ 2ρ.

Remark 4.2 (A Lyapunov function for the limiting system). In the proof of the lemma, a
function h arises; see (4.3). In order to understand the form of this function, consider a
chemical reaction network for chemical species A1, . . . , Ad, governed by

Ai
α−→ 2Ai, 2Ai

1/ρi−−−→ Ai, Ai
µb(i,j)−−−−→ Aj . (4.1)

for i, j = 1, . . . , d. Here, the chemical species Ai refers to the particles in colony i. (We
refer the reader to [9] for general notions of chemical reaction network theory.) For
mass action kinetics, properly rescaled, the vector of concentrations c = (c1, . . . , cd) with
ci being the concentration of species Ai satisfies the dynamical system

ċi = αci −
1

2ρi
c2i + µ

∑
j 6=i

cjb(j, i)− cib(i, j), i = 1, . . . , d. (4.2)

Since the system (4.1) is weakly reversible and complex balanced, local asymptotic
stability has been shown via the Lyapunov function h(c) =

∑d
i=1((log(ci/c

∗
i )− 1)ci + c∗i ),

see Proposition 5.3 in [9], where (c∗1, . . . , c
∗
d) denotes the equilibrium value of (4.2). In

fact, with κi = ci and 2ρi = c∗i , this is the function h appearing in (4.3) below.

Proof of Lemma 4.1. The generator of Lα := L/α is

GLαf(κ) = α2
d∑
i=1

(
κi
(
f(κ+ ei/α)− f(κ)

)
+
κi(κi − 1/α)

2ρi

(
f(κ− ei/α)− f(κ)

))
+ µα

d∑
i,j=1

b(i, j)κi
(
f(κ+ ej/α− ei/α)− f(κ)

)
for functions f : Rd+ → R. Now, define

h(κ) =

d∑
i=1

((
log
( κi

2ρi

)
− 1
)
κi + 2ρi

)
= 2 +

d∑
i=1

(
log
( κi

2ρi

)
− 1
)
κi. (4.3)

This function is strictly convex and vanishes if and only if κ = 2ρ. Hence we are done

once we show that sup0≤r≤tα h(Lαr )
α→∞−−−−→ 0 in probability. For this, we will make use of

Doob’s maximal inequality for sub-martingales and some calculations using the generator
of Lα. Since log(x+ δ) ≤ (log x) + δ

x , for i, j = 1, . . . , d and i 6= j,

h(κ± ei/α)− h(κ) =
(

log
(κi ± 1/α

2ρi

)
− log

( κi
2ρi

))
(κi ± 1

α )

± 1

α

(
log
( κi

2ρi

)
− 1
)

= ± 1

α

(
log
(κi ± 1/α

2ρi

)
− 1
)

+ κi log
(

1± 1

ακi

)
≤ ± 1

α
log
(κi ± 1/α

2ρi

)
,

h(κ+ ej/α− ei/α)− h(κ) ≤ 1

α

(
log
(κj + 1/α

2ρj

)
− log

(κi − 1/α

2ρi

))
.
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Moreover,

d∑
i,j=1

b(i, j)
(
κj
ρi
ρj
− κi

)
=

d∑
j=1

κj
ρj

d∑
i=1

ρib(i, j)−
d∑

i,j=1

κib(i, j)

=

d∑
j=1

κj
ρj

d∑
i=1

ρjb(j, i)−
d∑

i,j=1

κib(i, j)

=

d∑
i,j=1

κjb(j, i)− κib(i, j) = 0,

Hence, using that log(x) ≤ x − 1 and (1 − x) log(x) ≤ 0 for all x ≥ 0, we obtain for
sufficiently large α and for κ ∈ A := (ρ1, 4ρ1)× · · · × (ρd, 4ρd)

GLαh(κ) ≤ α
d∑
i=1

κi log
(κi + 1/α

2ρi

)
− κi(κi − 1/α)

2ρi
log
(κi − 1/α

2ρi

)
+ µ

d∑
i,j=1

b(i, j)κi

(
log
(κj + 1/α

2ρj

)
− log

(κi − 1/α

2ρi

)
︸ ︷︷ ︸

≤
(κj+1/α)ρi
(κi−1/α)ρj

−1

)

≤
d∑
i=1

ακi

(
log
(κi − 1/α

2ρi

)
− κi − 1/α

2ρi
log
(κi − 1/α

2ρi

)
︸ ︷︷ ︸

≤0

)
+

2ακi
α(κi − 1/α)

+ µ

d∑
i,j=1

b(i, j)
(
κj
ρi
ρj
− κi

)
+ C

µ

α

d∑
i,j=1

b(i, j)
(κi + κj)ρi

κiρj

≤ C ′

(4.4)

for some C,C ′ > 0 which are independent of all parameters; recall that µ = O(α) by
assumption. Note that (4.4) shows that (GKα

h)+ is bounded uniformly by C ′ for all α
on the set A. Now, consider the martingale (recall that g = g+ − g− with g+ = g ∨ 0 and
g− = (−g)+ ≥ 0)(

h(Lα(r ∧ TA))−
∫ r∧TA

0

(GLαh(Lα(s))ds
)
r≥0

=
(
h(Lα(r ∧ TA)) +

∫ r∧TA

0

(GLαh(Lα(s)))− − (GLαh(Lα(s)))+ds
)
r≥0

,

which is stopped when Lα leaves the set A at the stopping time TA. Clearly, since h ≥ 0,(
h(Lα(r ∧ TA)) +

∫ r∧TA

0

(GLαh(Lα(s)))−
)
r≥0

is a positive submartingale. We restrict the initial state Lα(0) to be in the set A (this
event has probability converging to 1 as α→∞). Note that, by assumption, we find some
C ′′ > 0 such that E[h(Lα(0))] ≤ C ′′ε2

α and tα
εα

α→∞−−−−→ 0. By Doob’s martingale inequality,
for tα ↓ 0 and if ε is small enough, for Lα(0) ∈ A,

P( sup
0≤r≤tα

h(Lα(r)) > εα) = P( sup
0≤r≤tα

h(Lα(r ∧ TA)) > εα)

≤ P
(

sup
0≤r≤tα

h(Lα(r ∧ TA)) +

∫ r∧TA

0

(GLαh(Lα(s)))−ds > εα

)
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≤ 1

εα
E
[
h(Lα(tα ∧ TA)) +

∫ tα∧TA

0

(GLαh(Lα(s)))−ds
]

=
1

εα
E
[
h(Lα(0)) +

∫ tα∧TA

0

(GLαh(Lα(s)))+ds
]

≤ C ′′ε2
α + C ′tα
εα

α→∞−−−−→ 0

and the result follows.

We also need a little refinement of the last lemma. Here, only bounds on the birth
and death rates are assumed.

Corollary 4.3 (Particle-counting in a single colony concentrated around 2αρ). Let
V = (Vr)r≥0 be a birth-death process with birth- and death rates bk and dk satisfying

αk ≤ bk ≤ αk + cα1+γ ,
1

ρ

(
k

2

)
≤ dk ≤

1

ρ

(
k

2

)
+ cαγk

for some γ ∈ [0, 1) and c ≥ 0, ρ > 0. If V0/α
α→∞−−−−→p 2ρ, then

sup
0≤r≤tα

∣∣∣Vr
α
− 2ρ

∣∣∣ α→∞===⇒ 0

for tα ↓ 0.

Proof. For c = 0, the assertion would just be a special case of Lemma 4.1 for a single
colony. For c > 0, we fix ε > 0 and take α large enough such that

αk ≤ bk ≤ (α+ c′αγ)k,
1

ρ

(
k

2

)
≤ dk ≤

1

ρ
(1 + ε)

(
k

2

)
for some c′ > 0 whenever k ∈ [αρ, 4αρ]. Now consider the process V ′ = (V ′r )r≥0 (V ′′ =

(V ′′r )r≥0) with the lower (upper) bound of bk and the upper (lower) bound of dk as birth-
and death rates. Clearly, the processes V, V ′, V ′′ can be coupled such that V ′r ≤ Vr ≤ V ′′r
for all r as long as Vr, V ′r , V

′′
r ∈ [αρ, 4αρ] and conclude from Lemma 4.1 (by suitably

modifying the proof and the value of α used there) that

sup
0≤r≤tα

∣∣∣V ′r
α
− 2ρ

1 + ε

∣∣∣ α→∞−−−−→p 0,

sup
0≤r≤tα

∣∣∣V ′′r
α
− 2ρ

α+ c′αγ

α

∣∣∣ α→∞−−−−→ 0.

Combining the last two limits gives the result since ε > 0 was arbitrary.

Since the processes M1, ...,Md, which count the marked particles, are in their initial
phases close to a supercritical branching process, we need bounds for this kind of
processes. In the proof of Theorem 2 we will use the next lemma to control (i) the time
until the number of marked particles in the first colony reaches the order αp, (ii) the
time until another colony is infected from the first colony (i.e. the occurrence of the
first marked particle on this second colony), and (iii) the time until αγ particles are
marked in the infected colony, when the migration rate µ = cαγ . These three asymptotics
correspond to (4.5), (4.6)and (4.7) below. In Lemma 4.4 we will deliberately suppress
the effects of back-migration. These effects are controlled in the course of the proof of
Theorem 2 by comparison arguments.
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Lemma 4.4 (Asymptotic hitting times of a bivariate birth-death process). Let c, c′, c′′ > 0,
γ, p ∈ (0, 1]; εα ↓ 0, ε′α ↓ 0 with εα, ε

′
α > 1/(logα). Let V = (Vt)t≥0 be a birth-death

process with birth rate bk = αk and death rate dk ≤ cεααk for k ≤ εαα, started in
V0 = 1. Moreover, conditional under V let W = (Wt)t≥0 be a birth-death process with
time-inhomogeneous birth rate µVt + αWt and death rate dk ≤ c′ε′αα

γk for k ≤ ε′αα
γ ,

starting in W0 = 0. Then we can conclude

1. For n ∈ N let Tn be the first time when Vt = n. Then, P(Tεαα =∞) ≤ cεα and for
all ε > 0

P
(∣∣∣ α

logα
Tεααp − p

∣∣∣ > ε
)

α→∞−−−−→ 0. (4.5)

2. For n ∈ N let Sn be the first time when Wt = n. Then, for µ = c′′αγ , and any ε > 0

P
(∣∣∣ α

logα
S1 − (1− γ)

∣∣∣ > ε
)

α→∞−−−−→ 0 (4.6)

and

P
(∣∣∣ α

logα
Sε′ααγ − 1

∣∣∣ > ε
)

α→∞−−−−→ 0. (4.7)

Proof. 1. We start with proving (4.5). First, let V ′ be a pure branching process with
branching rate α (i.e. bk

′ = αk and dk
′ = 0), started with V ′0 = 1 and T ′n its hitting time of

V ′t = n. Then we observe that, as α→∞,

E[T ′εααp ] =

εαα
p−1∑

i=1

1

αi
=

logαp

α
+O

(
log(εα)

α

)
, V[T ′εααp ] =

εαα
p−1∑

i=1

1

α2i2
= O

( 1

α2

)
.

(4.8)
Hence by Chebyshev’s inequality

P
(∣∣∣ α

logα
T ′εαp − p

∣∣∣ > ε
)
≤
α2V[T ′εααp ]

(logα)2ε2

α→∞−−−−→ 0.

Since T ′n ≤ Tn stochastically for all n, this implies

P
( α

logα
Tεααp − p < −ε

)
α→∞−−−−→ 0.

For the second bound in (4.5) we consider a process V ′′ = (V ′′t )t≥0 with bk
′′ = αk

and dk
′′ = cεααk with V ′′0 = 1, and its hitting time T ′′n of n. Within the branching

process V ′′ we consider the immortal lines, i.e. the process of those particles which have
descendants at any later time. By classical theory [2, Chapter I.5], the probability that a
single line will not be immortal equals the solution of cαεα

α(1+cεα) + α
α(1+cεα)x

2 = x, which is

smaller than 1, and hence equals cεα. So, P(Tεααp<∞) ≥ 1− cεα follows and assuming
Tεαα < ∞ we can restrict ourselves in the sequel to the event that the (single) initial
particle of V ′′ is immortal. Moreover, when an immortal particle splits in V ′′, the new
particle has the chance 1− cεα to be immortal. So, every splitting event leads to a new
immortal particle with probability 1− cεα, so V ′′ (given it starts with a single immortal
particle) is bounded from below by a binary pure branching process V ′′′ with individual
branching rate α(1− cεα). For n ∈ N, let T ′′′n be the time it takes V ′′′ to reach n. Then
T ′′′n ≥ T ′′n stochastically for all n, on the event that V ′′ starts with an immortal particle at
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time 0. On the other hand it is clear that, for all n ∈ N, T ′′n ≥ Tn stochastically. Hence we
obtain by the same calculations as in (4.8), now applied to the process V ′′′, the estimate

lim
α→∞

P
( α

logα
Tεααp − p > ε

)
≤ lim
α→∞

P
( α

logα
T ′′′εααp − p > ε

)
= lim
α→∞

P
( α(1− cεα

2 )

log(α(1− cεα
2 ))

T ′′′εααp − p > ε
)

≤ lim
α→∞

α2V[T ′′′εααp ]

log(α)2ε2
= 0.

This completes the proof of (4.5).
2. For the proof of (4.6), we again use comparison arguments based on the processes

V ′ and V ′′′ defined in the first part of the proof. Having in mind that V ′′′t ≤ Vt ≤
V ′t stochastically as long as V ′t ≤ εαα, we introduce the birth processes W ′ = (W ′t )t≥0

andW ′′′ = (W ′′′t )t≥0, whose birth rates, conditional on V ′ resp. V ′′′ are µV ′t + αW ′t and
µ(V ′′′t −W ′′′t ) + αW ′′′t , respectively. Also, we assume W ′0 = W ′′′0 = 0. Let S′1 and S′′′1 be
the first jump times of W ′ and of W ′′′ (from 0 to 1). From this construction, it is clear
that S′1 ≤ S1 ≤ S′′′1 stochastically. We claim that, on the event {Tεαα <∞}, for any ε > 0,

P
( α

logα
S′1 − (1− γ) < −2ε

)
α→∞−−−−→ 0 (4.9)

as well as

P
( α

logα
S′′′1 − (1− γ) > 2ε

)
α→∞−−−−→ 0 (4.10)

which together imply the assertion (4.6). For (4.9), let L′ be the number of particles in
V ′ at the time whenW ′ reaches 1 for the first time. Then, L′ is geometrically distributed
with success parameter c′′αγ

α+c′′αγ = c′′

α1−γ+c′′ and thus P(L′ < α1−γ−ε)
α→∞−−−−→ 0. Recalling

that T ′n is the first time when V ′t = n, we conclude by

lim
α→∞

P
( α

logα
S′1 − (1− γ) < −2ε

)
= lim
α→∞

P
( α

logα
S′1 − (1− γ) < −2ε, L′ ≥ α1−γ−ε

)
≤ lim
α→∞

P
( α

logα
T ′α1−γ−ε − (1− γ) < −2ε

)
= 0,

where the last equality follows by a similar calculation as in 1. For (4.10), let L′′′ be the
number of particles in V ′′′ at the time whenW ′′′ reaches 1 for the first time. Then, L′′′

is geometrically distributed with success parameter c′′αγ

α(1−cεα)+c′′αγ = c′′

α1−γ(1−cεα)+c′′ and

thus P(L′′′ > α1−γ+ε)
α→∞−−−−→ 0. Similarly as above we observe that

lim
α→∞

P
( α

logα
S′′′1 − (1− γ) > 2ε

)
= lim
α→∞

P
( α

logα
S′′′1 − (1− γ) < 2ε, L′′′ ≤ α1−γ+ε

)
≤ lim
α→∞

P
( α

logα
T ′′′α1−γ+ε − (1− γ) < 2ε

)
= 0.

This concludes the proof of (4.6).
Let us now turn to the proof of (4.7). Using (4.6) we can work on the event{∣∣∣ α

logα
S1 − (1− γ)

∣∣∣ < ε
}
∩ {Tεαα <∞}.

Then the time it takes to have Wt = ε′αα
γ is stochastically smaller than the waiting time

until one particle starting at time (1− γ+ 2ε) logα
α has ε′αα

γ offspring if we take the birth
rate to be αk and the death rate to be c′ε′αα

γk. This time, in turn, is smaller than the
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time until the number of immortal lines U in the latter process reaches c′ε′αα
γ . (In fact,

U is a pure branching process with individual branching rate (1− c′ε′ααγ−1)α.) Hence,
by the same calculation as in the proof of part 1., now denoting by T ′n the first time when
Ut = n

lim
α→∞

P
( α

logα
Sε′ααγ − 1 > 3ε

)
= lim
α→∞

P
( α

logα
Sε′ααγ − 1 > 3ε,

α

logα
S1< 1− γ + 2ε

)
≤ lim
α→∞

P
( α

logα
T ′ε′αα − 1 > ε

∣∣∣ α

logα
T ′1 = (1− γ + 2ε)

)
= 0.

This proves one of the bounds in (4.7). For the other bound we work again with V ′,
the pure branching process with individual branching rate α started in V ′0 = 1, and
note that E[Vt] ≤ E[V ′t ] = eαt. Again, conditional on V ′, letW ′ be a birth-death process
with time-inhomogeneous birth rate µV ′t + αW ′t and death rate 0, now starting at time
s = (1 − γ − 2ε) logα

α with W ′s = 1, and recall E[V ′s ] = eαs = α1−γ−2ε. Then, the time it
takes to have Wt = ε′αα

γ is stochastically larger than the hitting time of ε′αα
γ of the

processW ′. We have that d
dtE[W ′t ] = µE[V ′t ] + αE[W ′t ], t ≥ s, W ′s = 1, which is solved by

E[W ′t ] =
eαt

α

(
αγ+2ε + αµt− µ(1− γ − 2ε) logα

)
, t ≥ s.

Therefore, with µ = c′′αγ and t = (1− 3ε) logα
α , using Markov’s inequality,

lim
α→∞

P
( α

logα
Sε′ααγ < 1− 3ε

)
≤ lim
α→∞

P
(
W ′

(1−3ε) logα
α

> ε′αα
γ
)

≤ lim
α→∞

α1−3ε

ε′αα
1+γ

(
αγ+2ε + c′′αγ(γ − ε) logα

)
= 0,

which completes the proof of (4.7).

The following is a direct consequence of Lemma 4.4 in the case of d colonies.

Corollary 4.5. Assume the birth-death process V with the same rates as in Lemma
4.4 starts in V0 = k for k ∈ N, and consider not a single birth-death process W, but `
birth-death processesW1, ...,W`, which, conditional under V, have birth rate µVt +αW i

for i ∈ {0, ..., `} and death rate dk ≤ cε′αα
γk for k ≤ ε′αα

γ (again with the notation and
assumptions from Lemma 4.4). Let n ∈ N and Sin be the first time when W i

t = n. Then,
for µ = c′′αγ and any ε > 0,

P
(∣∣∣ α

logα
Si1 − (1− γ)

∣∣∣ > ε, i ∈ {0, ..., `}
)

α→∞−−−−→ 0

and

P
(∣∣∣ α

logα
Siε′ααγ − 1

∣∣∣ > ε, i ∈ {0, ..., `}
)

α→∞−−−−→ 0.

We now complement Lemma 4.4 to cover also the case in which the process V starts
in c′αγ for some c′ > 1 instead of 1. This lemma will be used later to control the time
until of order α particles are marked when one starts with c′αγ marked particles.

Lemma 4.6 (Exponential growth of a near-exponential process). Let 0 ≤ γ < p ≤ 1,
c′, c′′ > 0 and cα, εα ↓ 0 be sequences with εα > 1/(logα) and log cα ∈ o(logα). Let
V = (Vt)t≥0 be a birth-death process with birth rate bk with αk ≤ bk ≤ αk + c′α1+γ and
death rate dk ≤ c′′εααk for k ≤ εαα, started in V0 = cαα

γ . Let Tn be the first time when
Vt = n.
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Then, for all ε > 0,

P
(∣∣∣ α

logα
Tεααp − (p− γ)

∣∣∣ > ε
)

α→∞−−−−→ 0. (4.11)

Proof. We need to take two bounds for the process V. Let V ′ = (V ′t )t≥0 be a birth-death
process with birth rate b′k = αk+ c′α1+γ , death rate dk = 0 and V ′0 = cαα

γ . If T ′εααp is the
first time when V ′t = εαα

p, it is clear that T ′εααp ≤ Tεααp stochastically.

We define W ′ = (W ′t )t≥0 with W ′t :=
log V ′t log(α)/α

logα , i.e. V ′t log(α)/α = αW
′
t and W ′0 =

γ + log cα
logα ∈ γ + o(1). Note that α

logαT
′
εααp is the time when W ′ hits p + log εα

logα ∈ p + o(1).
Let G′ be the generator ofW ′. Then, for x > γ

G′f(x) = (logα)(αx + cαγ)(f( 1
logα log(αx + 1)︸ ︷︷ ︸
≈x+

1
logαα

−x

)− f(x))
α→∞−−−−→ f ′(x).

Consequently, and since W ′t quickly leaves its initial state W ′0 ∈ γ + o(1), by Theorem
4.2.11 in [7] the process W ′ converges as α → ∞ on the subsets Eα := { log k

logα : log k ∈
N, k ≥ γ logα + log cα} to the (right continuous) process with semigroup T (t)f(x) =

f(x+ t) for x ≥ γ, growing linearly and deterministically at speed 1. Since W ′0 ∈ γ+ o(1),
it hits p+ o(1) asymptotically as α→∞ at time p− γ and

P
( α

logα
Tεααp − (p− γ) < −ε

)
≤ P

( α

logα
T ′εααp − (p− γ) < −ε

)
α→∞−−−−→ 0.

On the other hand, consider the process V ′′ = (V ′′t )t≥0 with birth rate b′′k = αk, death
rate dk = c′′εααk and V ′′0 = cαα

γ , as well as the time T ′′εααp when this process hits εααp.

Again, consider W ′′ = (W ′′t )t≥0 with W ′′t :=
log V ′′t log(α)/α

logα and note that α
logαT

′′
εααp is the

time whenW ′′ hits p+ log εα
logα ∈ p+ o(1). Then, as above, if G′′ is the generator ofW ′′, for

smooth f ,

G′′f(x) = (logα)αx(f( 1
logα log(αx + 1))− f(x))

+ c′′(logα)εαα
x(f( 1

logα log(αx − 1))− f(x))
α→∞−−−−→ f ′(x)

and, sinceW ′′0 = γ+ log cα
logα ∈ γ+o(1), the processW ′′ hits p+ log εα

logα ∈ p+o(1) asymptotically
at time p− γ and

P
( α

logα
Tεααp − (p− γ) > ε

)
≤ P

( α

logα
T ′′εααp − (p− γ) > ε

)
α→∞−−−−→ 0.

While the last two lemmata were about supercritical branching processes, we also
need the following result about the extinction time of a process which is close to a
subcritical branching process.

Lemma 4.7 (Extinction time of a birth-death process). Let c > 0 and εα ↓ 0. Let
V = (Vt)t≥0 be a birth-death process with birth rate bk = αk and death rate dk such that
α(2− εα)k ≤ dk ≤ α(2 + εα)k, started in V0 = zαα with zα → z for some z > 0. Let Tzαα
be the extinction time of V, i.e. the first time when Vt = 0.

Then, for all ε > 0,

P
(∣∣∣ α

logα
Tzαα − 1

∣∣∣ > ε
)

α→∞−−−−→ 0.

Proof. As a first step, consider a sub-critical branching processW = (Wt)t≥0 with birth
rate α and death rate α(1 + xα), where xα ↓ x with x > 0. Let Sxα1 be the extinction time,
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when the process is started in a single particle, W0 = 1. Then, from classical theory (see
e.g. [10, Chapter V (3.4)]) it follows, that

f(t) := P(Sxα1 > t |W0 = 1) =
xα

(1 + xα)etαxα − 1
.

Now, consider the same branching process, but started in W0 = zαα and denote its
extinction time by Sxαzαα. Then, g(t) := P(Sxαzαα > t) satisfies

g(t) = 1− (1− f(t))zαα.

Hence, for ε > 0,

P

(
α

logα
Sxαzαα −

1

xα
> ε

)
= g

(
logα

α

(
1

xα
+ ε

))
= 1−

(
1− xα

(1 + xα)α1+xαε − 1

)zαα
α→∞−−−−→ 0,

P

(
α

logα
Sxαzαα −

1

xα
< −ε

)
= 1− g

(
logα

α

(
1

xα
− ε

))
= 1−

(
1− xα

(1 + xα)α1−xαε

)zαα
α→∞−−−−→ 0.

(4.12)
Stochastically, S1+εα

zαα ≤ Tzαα ≤ S1−εα
zαα and hence,

P
( α

logα
Tzαα − 1 < −2ε

)
≤ P

( α

logα
S1+εα
zαα −

1

1 + εα
< −2ε+

εα
1 + εα

)
α→∞−−−−→ 0

as well as, by (4.12),

P
( α

logα
Tzαα − 1 > 2ε

)
≤ P

( α

logα
S1−εα
zαα −

1

1− εα
> 2ε− εα

1− εα

)
α→∞−−−−→ 0,

and we are done.

While Lemma 4.4 dealt with the initial phase in which allele B is established in a
colony, and Lemmata 4.6 and 4.7 are good for the final phase of fixation, the following
lemma links up these two phases.

Lemma 4.8 (Fast middle phase of local sweep). Let V = (Vt)t≥0 be a birth-death process
with birth rate bk ≥ αk and death rate dk ≤ 1

ρ

(
k
2

)
+ cαγk for some γ ∈ (0, 1) and

c ≥ 0, ρ > 0. Moreover, let Tn be the first time when Vt = n. Then there exists a sequence
εα ↓ 0 with εα > 1/(logα) such that for all ε′α ↓ 0 with ε′α ≥ εα and for all ε > 0

P
( α

logα
T(1−ε′α)2αρ > ε

∣∣∣V0 = ε′αα
)

α→∞−−−−→ 0. (4.13)

Proof. We only need to consider the case bk = αk and dk = 1
ρ

(
k
2

)
+ cαγk, since T(1−ε′α)2αρ

is maximal in this case. It suffices to show that for all δ > 0 small enough and for all
ε > 0

P
( α

logα
T(1−δ)2αρ > ε

∣∣∣V0 = δα
)

α→∞−−−−→ 0. (4.14)

We consider the generator of the process (Vt/α/α)t≥0, which is given by

Gαf(y) = αy(f(y + 1
α )− f(y)) +

(1

ρ

αy(y − 1
α )

2
+ cαγy

)
(f(y − 1

α )− f(y))

α→∞−−−−→ y
(

1− y

2ρ

)
f ′(y).
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Using standard arguments, (Vt/α/α)t≥0 converges weakly as α→∞ to the solution of
the ODE y′ = y(1− y/(2ρ)), and if V0 = δα, the limiting process starts in y(0) = δ. This
solution converges to 2ρ as t→∞ (from below since δ < 2ρ(1− δ)) and its hitting time
of 2ρ(1− δ) is finite. Consequently, T(1−δ)2αρ ∈ O(1/α) with high probability as α→∞,
and (4.14) follows.

4.3 Proof of Theorem 2

We are now in the position to prove our main result, Theorem 2. The proof will be
structured in three main parts, corresponding to the three cases µ ∈ Θ(α), µ ∈ Θ(αγ),
and µ = 1

logα in Theorem 2. Parts 2 and 3 will each be divided into subparts A and B,
where A deals with the special case d = 2 and B with the general case d ≥ 2. We feel that
this is instructive, because most of the ideas and tools prepared in Sections 3 and 4.2
come into play already in the case d = 2. We will give the arguments in parts 1, 2.A and
3.A in detail, whereas we restrict to an outline of the main ideas in parts 2.B and 3.B.
Parts 2.A and 2.B will additionally be structured into the cases (i) γ ∈ (0, 1) and (ii) γ = 0.

The proof of all cases is based on an application of Proposition 3.1. In view of this
result, it suffices to check that the fixation time T defined in (3.3) satisfies the properties
claimed for Tfix in Theorem 2. In the sequel, Tk or TVk will always denote the hitting time
of k (or of bkc if k is not an integer) of a birth-death process V .
Convention. We will use the term with high probability or whp as a synonym for with
probability 1 as α→∞.

Note that in cases 1 and 2 of Theorem 2 the right hand sides are deterministic, so
that we have to show that for all ε > 0

P

(∣∣∣ α

log(α)
T − 2− SIι,γ

∣∣∣ > ε

)
α→∞−−−−→ 0.

As a prelude, we state two results which hold in all cases. Recall from Proposition 3.1
that the process (L,M) starts in (Π + e1, e1).
(a) Note that

L0

α ⇒ 2ρ. Hence, by Lemma 4.1, for some large c, there exists a sequence
εα ↓ 0 with

P
(
Lir ∈ [2αρi(1− ε2

α), 2αρi(1 + ε2
α)] for all i, for all 0 ≤ r ≤ cd logα

α

)
α→∞−−−−→ 1. (4.15)

(b) Let εα > 0 be as in (a). For some τ > 0, and τα = τ logα
α , consider the event

Eτ,i0 := {Liτα ∈ [2αρi(1− ε2
α), 2αρi(1 + ε2

α)],M i
τα

∈ [2αρi(1− 4ε2
α), 2αρi(1 + ε2

α)], i = 1, ..., d,

M i0
τα = 2αρi(1− 4ε2

α) for some i0}.

Now, consider L1 + · · ·+ Ld −M1 − · · · −Md, which is a birth-death process with birth
rate bn = αn if Li = `i,M

i = mi, i = 1, ..., d and `1 + · · · + `d −m1 − · · · −md = n and
death rate

d`,m :=

d∑
i=1

1

ρi

((`i −mi

2

)
+mi(`i −mi)

)
=

d∑
i=1

`i +mi − 1

2

`i −mi

ρi
.

(Note that the birth and death rates are independent of µ.) By Lemma 4.1, for all
i = 1, ..., d, and since the dynamics of M and of L coincide, whp on the event Eτ,i0 , M i

stays in [2αρi(1− 2εα), 2αρi(1 + 2εα)] between the times τα and τα + cd logα
α . Moreover,

L1, ..., Ld are bounded as stated in (4.15). Hence, we find the bounds

2α(1−O(εα))n ≤ d`,m ≤ 2α(1 +O(εα))n.
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By stopping at time τα + cd logα
α with cd ≥ 1, we can apply Lemma 4.7 to conclude that,

whp,

L1 + · · ·+ Ld −M1 − · · · −Md hits 0 at time in (4.16)[
τα +

logα

α
(1−O(εα)), τα +

logα

α
(1 +O(εα))

]
.

1. Case µ ∈ Θ(α) Set µ = α for simplicity. If (M i)i=1,...,d = k = (ki)i=1,...,d and
` := k1 + · · · kd, the process M1 + · · · + Md has birth rate b` = α` and death rate
1
ρ1

(
k1
2

)
+ · · · 1

ρd

(
kd
2

)
≤ 1

min ρi

(
`
2

)
=: d`. For any εα ↓ 0 with εα > 1/(logα), we can choose

c > 0 such that d` ≤ cεαα` for ` ≤ εαα. Then, Lemma 4.4, Assertion 1, (used for
M1 + · · · + Md in place of V, and with p = 1) shows that M1 + · · · + Md hits εαα at
some time Tεαα in log(α)

α (1 + o(1)) whp. Arguing as in the proof of Lemma 4.8, we see
that for any ε > 0 small enough any potential limit x = (xi)i=1,...,d of the processes
1
α (M1

Tεα+t/α, . . . ,M
d
Tεα+t/α) as α→∞ solves for t > 0 the system of ODEs

ẋi = xi −
1

2ρi
x2
i +

d∑
j=1

a(j, i)xj − a(i, j)xi,

starting at t = 0 in some state with x1+ · · ·+ xd = ε. These ODEs have equilibrium 2ρ

and a state x with xi ∈ [2ρi(1− ε), 2ρi(1 + ε)], i = 1, ..., d and xi0 = 2ρi0(1− ε) for some i0
is reached after time of order o(log(α)). Now we can – as in the proof of Lemma 4.8 –
pass to a sequence εα, such that the conditions from above are fulfilled and so that at
some time t ∈ logα

α (1 + o(1)) a state (M1
t , . . . ,M

d
t ) with M i

t ∈ [2αρi(1− εα), 2αρi(1 + εα)],
i = 1, ..., d and M i0

t = 2αρi(1− εα) for some i0 is reached whp. In summary, fixation in
the sense of (3.3) occurs at time t ∈ logα

α (2 + o(1)).

2. A.(i) Case µ ∈ Θ(αγ) for γ ∈ (0, 1), d = 2: In the first steps we will apply
Lemma 4.4 a couple of times, with suitable choices of the process V and W in or-
der to control the “initial phase” of the pair of processes (M1,M2). Note that when
(M1,M2) is in state (k, `), then the process M1 has birth rate b1k = αk + µa(2, 1)` and
death rate d1

k = 1
ρ1

(
k
2

)
+ µa(1, 2)k, whereas the process M2 has birth rate α`+ µa(1, 2)k

and death rate d2
` = 1

ρ2

(
`
2

)
+ µa(2, 1)`. Moreover, M1 + M2 is a birth-death process

with birth rate α(k + `) and death rate 1
ρ1

(
k
2

)
+ 1

ρ2

(
`
2

)
. Let εα, ε′α ↓ 0 be sequences with

εα, ε
′
α > 1/(logα).

First, we are going to establish that M1 hits εααp by time

TM
1

εααp ∈
logα

α
(p+ o(1)) whp.

On the one hand, this hitting time TM
1

εααp is stochastically larger than TM
1+M2

εααp . For
the latter, Assertion 1 of Lemma 4.4 (applied to with Vt = M1

t + M2
t ) ensures that

TM
1+M2

εααp ∈ logα
α (p+ o(1)) whp. On the other hand, TM

1

εααp is smaller than the hitting
time of εααp when only non-(im)migrated lines in M1 are counted. This process of
non-immigrated lines is a birth-death process M̃1 with birth rate αk and death rate
1
ρ1

(
k
2

)
+ µa(1, 2)k, and therefore fulfills the conditions of the process V of Lemma 4.4

(with εα as above). Consequently, also T M̃
1

εααp ∈
logα
α (p+ o(1)) whp. Taking these two

comparisons together, we find that TM
1

εααp ∈
logα
α (p+ o(1)) whp as well.

Second, we will show that the process M2 hits 1 by time

TM
2

1 ∈ logα

α
(1− γ + o(1)) whp. (4.17)
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This hitting time is actually the same if we change the birth rate of M1 (from αk + µ`)
to αk, since M2 = 0 before TM

2

1 . Hence, up to time TM
2

1 , the process (M1,M2) in place
of (V,W) fulfills the conditions of Lemma 4.4, with the µ appearing there replaced by
µa(1, 2). This lemma can now be directly applied to obtain (4.17).

Third, we will argue that there exists a sequence ε′α ↓ 0 with ε′α > 1/(logα) such that
M2 hits ε′αα

γ by time

TM
2

ε′αα
γ ∈

logα

α
(1 + o(1)) whp. (4.18)

On the one hand, this hitting time is stochastically larger than the hitting time if migration
from colony 2 to colony 1 is suppressed. For the thus modified process (M̂1, M̂2), M̂1

has birth rate αk and therefore (M̂1, M̂2) fulfills the requirements of Lemma 4.4 (for

the same combination of εα, ε′α as described above) and T M̂
2

ε′αα
γ ∈ logα

α (1 + o(1)) whp.
On the other hand, this hitting time is stochastically smaller than the hitting time of
ε′αα

γ if only a single migration event from colony 1 to colony 2 happens, i.e. the hitting
time TVε′ααγ of a process V which starts at time logα

α (1 − γ + o(1)) with V = 1, and has

birth rate α` and death rate 1
ρ2

(
`
2

)
+ µa(2, 1)`. By Lemma 4.4, Assertion 1, this time

is TVε′ααγ ∈
logα
α (1 − γ + o(1)) + logα

α (γ + o(1)) = logα
α (1 + o(1)) whp and (4.18) follows.

Moreover, we have shown that the pair (M1,M2) inherits the properties (4.5), (4.6),
(4.7) proved in Lemma 4.4 for the pair (V,W).

In order to go further, we next observe that (as a consequence of the statement
in the first step of this proof, with p = 1) we have that TM

1

εαα ∈
logα
α (1 + o(1)) and

TM
2

εααγ ∈
logα
α (1 + o(1)) whp. By Lemma 4.8 (applied to the process M1) we find a se-

quence εα decreasing sufficiently slow such that it takes time of at most order o(log(α)/α)

until M1 hits 2αρ1(1− εα). Note, that the sequences εα, ε′α were arbitrary and only had
to fulfill εα, ε′α > 1/(logα), hence there exist sequences εα, ε′α for which all assertions
claimed so far are fulfilled. Also in the following we will if neccessary replace the
sequences by slower converging ones. We note that, due to Corollary 4.3, whp the
process M1 will not drop below 2αρ1(1− 2εα) for the entire period remaining to fixation
with εα again suitably adapted. Now, if M2 = `, it has birth rate α` + µa(1, 2)M1, and
since M1 ≤ L1 ≤ 2αρ1(1 + εα), this is bounded above by α`+ cα1+γ for some constant
c. The death rate of M2 is (for the same εα, ε

′
α as above) 1

ρ2

(
`
2

)
+ µa(2, 1)` ≤ cε′αα`/2

for ` ≤ ε′αα for some c > 0. In addition, the sequence εα fulfills the conditions on
the sequence cα in Lemma 4.6. Hence, Lemma 4.6 implies that M2 hits ε′αα by time
TM

2

ε′αα
∈ TM2

ε′αα
γ + log(α)

α (1− γ + o(1)) = log(α)
α (2− γ + o(1)) when εα, ε′α are suitably adapted.

Again, M2 rises to 2αρ2(1 − 2εα) by some time of order o(log(α)/α) by Lemma 4.8
(applied to the process M2), so by some time in log(α)

α (2 − γ + o(1)), we find that
M1 ≥ 2αρ1(1 − 2εα) and M2 = 2αρ2(1 − 2εα). Now, fixation occurs after time in
T = TM

2

ε′αα
+ log(α)

α (1 + o(1)) = log(α)
α (3− γ + o(1)) by (4.16).

2. A.(ii) Case µ ∈ Θ(1), d = 2: Arguing exactly as in Case 2.A.(i), but now with p = 1,
we obtain for any εα ↓ 0 with εα > 1/(logα) that M1 hits εαα by time TM

1

εαα ∈
logα
α (1+o(1))

whp. In addition, by Lemma 4.8, M1 has increased to (1−εα)2αρ1 (maybe after modifying
εα) by time TM

1

(1−εα)2αρ1
∈ logα

α (1 + o(1)).

For bounding the time TM
2

1 stochastically from below, fix ε > 0 and let M̂2 be as M2

but with γ = ε/2. Since T M̂
2

1 ≤ TM2

1 , we find that by Lemma 4.4

P
( α

logα
TM

2

1 − 1 < −ε
)
≤ P

( α

logα
T M̂

2

1 − (1− ε/2) < −ε/2
)

α→∞−−−−→ 0. (4.19)

For bounding TM
2

1 from above, consider migrants only after time TM
1

(1−εα)2αρ1
∈ logα

α (1 +

o(1)). Due to Corollary 4.3, whp the process M1 will not drop below 2αρ1(1− 2εα) for the
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t M ι
t logα/α M i

t logα/α, i ∈ D1 M i
t logα/α, i ∈ D2 M i

t logα/α, i ∈ D3 · · ·
0 1 0 0 0 · · ·

1− γ Θ(α1−γ) 1 0 0 · · ·
2(1− γ) Θ(α1∧(2(1−γ))) Θ(α1−γ) 1 0 · · ·
3(1− γ) Θ(α1∧(3(1−γ))) Θ(α1∧(2(1−γ))) Θ(α1−γ) 1 · · ·

Table 1: The table gives (approximate) times and orders of magnitude in the case 2.B.(i)
(γ ∈ (0, 1), d ≥ 2); see text for more explanation.

entire period remaining to fixation. The expected number of migrants between times
TM

1

(1−εα)2αρ1
and TM

1

(1−εα)2αρ1
+ 1

log logα
logα
α is at least µa(1, 2)2αρ1(1−2εα) 1

log logα
logα
α

α→∞−−−−→
∞ and hence we have M2

t ≥ 1 for some t ∈ logα
α (1 + o(1)) whp. Together with (4.19)

this says that TM
2

1 ∈ logα
α (1 + o(1)) whp. We can now apply Lemma 4.6 (with γ := 0 and

p = 1) to infer that the process M2 reaches εαα in logα
α (2 + o(1)) whp. From Lemma 4.8,

we hence find some t ∈ 2 logα
α (1 + o(1)) for which M1

t ≥ 2αρ1(1− εα),M2
t = 2αρ2(1− 2εα).

Then by (4.16), fixation occurs at time in logα
α (3 + o(1)).

2. B.(i) Case µ ∈ Θ(αγ) for γ ∈ (0, 1), d ≥ 2: Set [d] := {1, ..., d} and, for s =

0, 1, . . . ,∆ι, let Bs(ι) be the set of vertices in [d] which can be reached from ι by at
most s steps (cf. Definition 2.5). We partition [d] =

⋃∆ι

s=0Ds into D0 := {ι} and Ds :=

Bs(ι) \Bs−1(ι), s = 1, . . . ,∆ι. Arguing similarly as in part 2.A (i), now based on Corollary
4.5, we obtain the analogue of (4.17), simultaneoulsly for all i ∈ D1. In the language of
the epidemic process Iι,γ this means that all colonies i ∈ D1 are infected at times

TM
i

1 ∈ log(α)

α
(1 + o(1)) whp;

see also Table 1 for orientation.
Let us concentrate now on a colony m ∈ D2 and set D(m)

1 := {j ∈ D1 : a(j,m) > 0}.
From the second assertion of Corollary 4.5 we obtain that there exists a sequence εα ↓ 0,
such that for all colonies i ∈ D(m)

1 ,

TM
i

εαα1−γ ∈
log(α)

α
(2(1− γ) + o(1)) whp.

Hence, all i ∈ D(m)
1 will infect m by this time whp. Equation (4.7), translated to the pairs

(M ι,M i) for i ∈ D1 in a similar way as done in part 2.A.(i) for the pair (M1,M2), implies
that migration from the founder colony ι does not speed up (on the log(α)

α -timescale) the
processes M i till they reach εαα

γ for an appropriate sequence εα; in fact, during this
period the rate of growth of M i is that of a branching process with Malthusian parameter
α. Lemma 4.6 carries this assertion further: Since M ι ≤ 2αρι(1 + 2εα), migration
from colony ι to colonies in D1 is bounded by cα1+γ for an appropriate constant c.
In addition, the sequence εα fulfills the conditions of the sequence cα in Lemma 4.6.
Consequently, the process M i continues to grow like a branching process with rate α by
Lemma 4.6 and for m ∈ D2 the assertions of Lemma 4.4 are fulfilled with

∑
j∈D(m)

1
M j

playing the role of V and Mm playing the role of W, see also Table 1. It follows that
TM

m

1 ∈ log(α)
α (2(1− γ) + o(1)) whp.

Repeating these arguments one finds that all colonies are, whp, infected by a time in
log(α)
α (∆ι(1− γ) + o(1)), with ∆ι as in Definition 2.5. Finally, arguing as in part 2.A.(i), it

takes an additional time in log(α)
α (2 + o(1)) until fixation occurs. This sums up to a total

time in log(α)
α ((2 + SIι,γ ) + o(1)) whp, with SIι,γ = (1− γ)∆ι according to Definition 2.5.

EJP 21 (2016), paper 61.
Page 39/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3355
http://www.imstat.org/ejp/


The fixation time of a strongly beneficial allele

2. B.(ii) Case µ ∈ Θ(1), d ≥ 2: We will use the same notation as in Case 2.B.(i).
Let εα > 0. The argument from Case 2.A.(ii) works for all colonies i ∈ D1 which are
distance 1 apart from colony ι. Hence, whp, at some time in logα

α (2 + o(1)), there is
M i ∈ [2αρi(1 − 2εα), 2αρi(1 + 2εα)] for i = ι and i ∈ D1. Similarly, each colony m ∈ D2

has Mm = 1 (and in this sense is infected ) within an additional time interval of length
o( log(α)

α ), and then Mm increases to 2αρm(1− 2εα) after a duration in logα
α (1 + o(1)). This

procedure is iterated, and all colonies are infected by a time in log(α)
α (∆ι + 1 + o(1)) whp.

Then, from (4.16), fixation occurs at time in log(α)
α (∆ι + 2 + o(1)) whp, giving the result.

3. A. Case µ = 1
logα

, d = 2: The main step in this case is to show that

α

logα
TM

2

1
α→∞
===⇒ 1 +X, where X ∼ exp(2ρ1a(1, 2)). (4.20)

By the same arguments as in Case 2.A.(ii), for any sequence εα ↓ 0 with εα > 1/(logα),
we have TM

1

(1−εαα)2αρ1
= logα

α (1 + o(1)) whp. In addition, M2 = 0 before TM
1

εαα whp, as we

can estimate the number of migrants from colony 1 to colony 2 by εααµa(1, 2) logα
α (1 +

o(1))
α→∞−−−−→ 0. Here, the expected number of migrants from colony 1 to colony 2 during

[TM
1

εαα, T
M1

(1−εαα)2αρ1
] is bounded from above by 2αρ1(1− εα)µa(1, 2)o

(
logα
α

) α→∞−−−−→ 0 since

TM
1

(1−εαα)2αρ1
− TM1

εαα = o
(

logα
α

)
by Lemma 4.8 with a possibly slower decreasing sequence

εα. Hence, we have M2 = 0 before TM
1

(1−εαα)2αρ1
whp as well. By Corollary 4.3, we have

that M1
t ∈ [2αρ1(1− 2εα), 2αρ1(1 + 2εα)] after TM

1

(1−εαα)2αρ1
until fixation. Hence, for all

x > 0,

lim
α→∞

P
( α

logα
TM

2

1 − 1 > x
)

= lim
α→∞

E
[

exp
(
−
∫ logα

α (1+x)

TM
1

(1−εαα)2αρ1

µa(1, 2)M1
t dt
)]

= lim
α→∞

exp
(
−
∫ logα

α (1+x)

logα
α

2αρ1a(1, 2)

logα
dt
)

= e−2ρ1a(1,2)x,

which gives (4.20). Analogously to the other cases we find c > 0 and a sequence εα ↓ 0

with εα > 1/(logα), such that if (M1,M2) = (k, `), M2 is a birth-death process with birth
rate b` = α` + µa(1, 2)k ≤ α` + cα/ logα and death rate d` = 1

ρ2

(
`
2

)
+ µa(2, 1)` ≤ εαα`

for ` ≤ εαα. So, we can apply Lemma 4.6 (for γ = 0) in order to see that TM
2

εαα occurs

after duration in logα
α (1 + o(1)) Then, using Lemma 4.8, we see that TM

2

2αρ2(1−2εα) ∈
logα
α (2 +X + o(1)) for some X distributed as above. Then, using (4.16), fixation occurs

at time in logα
α (3 +X + o(1)), as claimed.

3. B. Case µ = 1
logα

, d ≥ 2: By the same arguments as in Case 3.A at a time t ∈
logα
α (1+o(1)), colony ι in the process J ι from Definition 2.5 switches from being infected

to being infectious. From here on, each colony i ∈ D1 can be infected by a migrant from
colony ι at rate 2ρ1a(ι, i)α/(logα), i.e. at rate 2ρ1a(ι, i) on the logα

α -timescale. After i
is infected, M i increases until there are of the order α particles, which happens after
time of duration logα

α (1 + o(1)). Then, the colony becomes infectious, meaning that other
colonies can be infected from that colony. More precisely, if colony i is infectious and
colony j satisfies a(i, j) > 0, then, as long as M j = 0, a migrant from M i arrives in
colony j after an exponential time with rate 2ρia(i, j) on the logα

α -timescale. Continuing

in this way, the waiting time until all colonies are infectious is log(α)
α (SJ ι + o(1)) in the
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approximating process J ι. At this time, each colony i has M i ≥ 2αρi(1− εα), i = 1, . . . , d.
As in the other cases we conclude from (4.16) that after an additional time of duration in
logα
α (1 + o(1)), fixation has occurred.
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