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Abstract

In this paper, we study the overlap distribution and Gibbs measure of the Branching
Random Walk with Gaussian increments on a binary tree. We first prove that the
Branching Random Walk is 1 step Replica Symmetry Breaking and give a precise form
for its overlap distribution, verifying a prediction of Derrida and Spohn. We then prove
that the Gibbs measure of this system satisfies the Ghirlanda-Guerra identities. As a
consequence, the limiting Gibbs measure has Poisson-Dirichlet statistics. The main
technical result is a proof that the overlap distribution for the Branching Random
Walk is supported on the set {0, 1}.
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1 Introduction

In this paper, we study the Branching Random Walk (BRW), or directed polymer, on a
binary tree. To fix notation, let TN be the binary tree of depth N and let {gv}v∈TN\∅ be a
collection of i.i.d. standard Gaussian random variables indexed by this tree without its
root. We define the Branching Random Walk by

H(v) =
∑
β∈p(v)

gβ

where p(v) is the root-leaf path to v excluding the root. Viewed as a gaussian process on
∂TN , (H(v))v∈∂TN is centered and has covariance structure

EHN (v)HN (w) = |v ∧ w|,

where v ∧w denotes the least common ancestor of v and w and |α| is the depth of α ∈ TN .
In particular,

EHN (v)HN (v) = N.
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On the overlap distribution of Branching Random Walks

One can think of the root-leaf paths on the tree as polymer configurations and HN as an
energy. We denote the partition function corresponding to this polymer model by

ZN (β) =
∑

eβHN (v)

and the free energy by

FN (β) =
1

N
E logZN (β).

If we denote the Gibbs measure by

GN,β(v) =
eβHN (v)

Z

then this induces a (random) probability measure on the leaves ΣN = ∂TN . In the
following 〈·〉N denotes integration with respect to this measure or the corresponding
product measures. We will drop the subscript N when it is unambiguous. Finally, let
R(v, w) = 1

N |v ∧ w|, and let R12 = R(v1, v2), which we call the overlap between two
polymers. An important object in the study of mean field spin glasses is the (mean)
overlap distribution

µN,β(A) = EG⊗2
N,β(R12 ∈ A). (1.1)

The Branching Random Walk, was introduced to the mean field spin glass community
in [17]. There, Derrida and Spohn argued that the statistical physics of this model
should be similar to the Random Energy Model (REM). They predicted that the overlap
distribution should consist of one atom at high temperature and two atoms at low
temperature. In the language of Replica theory it should be Replica Symmetric (RS) at
high temperature and one step Replica Symmetry breaking (1RSB) at low temperature.
Furthermore, they predicted that, as with the REM, the limiting Gibbs measure of the
system should be a Ruelle Probability Cascade (see the discussion preceding Corollary
3.6 for a definition). As a consequence, it was suggested [15, 17] that the BRW should
serve as an intermediate toy model for spin glass systems, between the REM and the
Sherrington-Kirkpatrick (SK) model, as it is still analytically tractable, while having a
key feature of SK that the REM lacks: a strong local correlation structure.

The study of replica symmetry breaking in its various forms is the subject of major
research in the mathematical spin glass community. As such it is of interest to have a
few simple, but non-trivial examples in which Replica Symmetry Breaking can be seen
essentially “by hand”. In this paper, we give proofs of the predictions of Derrida and
Spohn described above using a combination of arguments that are basic to both fields.
In particular, we avoid the use and analysis of the extremal process.

We begin first with the study of Replica Symmetry and Replica Symmetry Breaking.
Replica Symmetry above the critical temperature was proved by Chauvin and Rouault
in [15]. Our contribution is proving Replica Symmetry Breaking below the critical
temperature, and in particular obtaining the mass on the atom at 1.

Theorem 1.1. Let βc =
√

2 log 2. Then

EG⊗2
N,β(R12 ∈ ·)→ µβ(·) =

{
δ0 β < βc
βc
β δ0 + (1− βc

β )δ1 β ≥ βc
(1.2)

weakly as measures

We now turn toward the characterization of the Gibbs measure for this system.
Our next result is to prove that the Gibbs measure satisfies a class of identities called
the Approximate Ghirlanda-Guerra Identities which will imply the Ruelle Probability
Cascade Structure described above. To this end, let (vi) be i.i.d. draws from GN,β, let
Rij = R(vi, vj) and define Rn = (Rij)i,j∈[n]. The doubly infinite array R = (Rij)ij≥1 is
called the overlap array corresponding to these draws.
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Theorem 1.2. The Branching Random Walk satisfies the Approximate Ghirlanda-Guerra
identities. That is, if f is a bounded measurable function [0, 1]n

2

then for every p,

lim
N→∞

|E〈f(Rn)Rp1,n+1〉G⊗n+1
N,β

− 1

n

(
E〈f(Rn)〉G⊗nN,βE〈R

p
12〉G⊗nN,β +

n∑
k=2

E〈f(Rn)Rp1k〉G⊗nN,β

)
| = 0

Remark 1.3. Note that by Theorem 1.1, only the case β > βc is interesting in the above
theorem.

Our proof is a version of the technique introduced by Bovier and Kurkova in [11,
12] (see [10] for a textbook presentation) and is analogous to [5, 6]. An immediate
consequence of this is that the overlap array distribution for these systems converges to
a Ruelle Probability Cascade, see Corollary 3.6. This also implies a mode of convergence
of Gibbs measures and the convergence of the weights of balls in support a Poisson-
Dirichlet process, which was first proved by Barral, Rhodes, and Vargas in greater
generality by different methods [8]. This is explained in the discussion surrounding
Corollary 3.6.

For experts in Branching Random Walks, we emphasize here the following point.
Just as in the work of Arguin-Zindy, these methods allow us to obtain Poisson-Dirichlet
statistics for the system without an analysis of the extremal process. In particular, we
can avoid an analysis of the decoration (see, e.g., [27, 21] for this terminology) thereby
side-stepping a major technical hurdle.

The Approximate Ghirlanda Guerra Identities (AGGI) have emerged as a unifying
principle in spin glasses. Due to the characterization-by-invariance theory [24], we know
that the limiting overlap distribution is an order parameter for models that satisfy the
AGGIs, as originally predicted in the Replica Theoretic literature [22]. As such, it has
become very important to find models that satisfy these identities in the limit. This has
proved to be very difficult.

They are known to hold exactly for the generic mixed p-spin glass models [24], the
REM and GREM [11, 12]. These ideas have extended to the 2D Gaussian Free Field and
a class of Log-Correlated fields [5, 6]. For many other models, however, we only know
these results in a perturbative sense [16, 19, 24, 25]. A contribution of this paper is the
observation that the Branching Random Walk falls in to the class of models for which
these identities hold exactly.

We finally turn to the main technical step involved in the proofs of the above results.
Just as with the REM, both of these predictions can be shown to follow from standard
concentration and integration-by-parts arguments provided one can show that the model
is at most 1RSB and that the top of the support is at 1 when it is 1RSB. To our knowledge
this result is thought of as folklore in the Branching Random Walk community. For
example, such a result follows from similar ideas to those in [4, 5, 6, 21]. The proof
of this result for similar models can be seen in [4] and [18]. In our setting, this is the
content of the following proposition.

Proposition 1.4. The mean overlap distribution is supported on the set {0, 1} ( [0, 1].
That is, for any weak limit we get that

EG⊗2
N,β(R12 ∈ ·)→ mδ0 + (1−m)δ1

for some m ∈ [0, 1].

In the Random Energy Model, this is a consequence of the second moment method
combined with a large deviations estimate. In our setting, however, this argument breaks
down due to the correlation structure of the Branching Random walk. This is often
explained by the seemingly innocuous observation that the sub-leading correction to
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the expected maximum (see the definition of mN in Section 2) is of the same order of
magnitude as in the REM, but the pre-factor is 3/2 as opposed to 1/2. We point the
reader to [3, Section 3.2] for a discussion of how this small change is a signature of a
profound structural difference.

In the study of such models, this issue is dealt with by a truncated second moment
method approach. In our setting, this takes the form of the tilted barrier estimates of
Bramson, see Section 2.1.

Before turning to the proofs of the above, we make the following remarks.

Remark 1.5. In our setting, one does not need the full power of the Ghirlanda-Guerra
identities to obtain the aforementioned characterization of the Gibbs measure. In
particular, as a consequence of Proposition 1.4, the Approximate Ghirlanda-Guerra
Identities are equivalent to an approximate form of Talagrand’s identities [24], which
characterize the Poisson-Dirichlet process through its moments. This is explained in
more detail in the discussion surrounding Corollary 3.6.

Remark 1.6. These arguments do not depend greatly on the Gaussian nature of the
problem. In particular, the main technical tool, Proposition 1.4, holds in fairly large
generality (see Remark 2.1). The remaining results are essentially consequences of the
sub-Gaussian tails of the model and an applications of integration-by-parts. These results
should extend to increments that have sub-Gaussian tails. For experts, we also note
that if the decoration process has enough moments, the first two results follow by an
application of the Bolthausen-Sznitman invariance (see [9][24, Sect. 2.2]). As a study
of the extendability of these results are not within the scope of this paper we do not
examine these questions further.

Acknowledgments. The author would like to thank Ofer Zeitouni for many helpful
discussions regarding Branching Random Walks and for a careful reading of an early
draft of this paper. This research was conducted while the author was supported by
an NSF Graduate Research Fellowship DGE-1342536, and NSF Grants DMS-1209165
and OISE-0730136. Preparation of this manuscript was partially supported by NSF
OISE-1604232.

2 The support of the overlap distribution

In this section, we will prove Proposition 1.4, namely that the support of the overlap
distribution is the set {0, 1}. To this end, we introduce the following notation. Let

Sv(l) =
∑

w∈p(v)
depth(w)≤l

gw

denote the walk corresponding to the BRW at vertex v. In this notation, HN (v) = Sv(N).
Let S(l) denote a random walk with standard Gaussian increments and let P z denote its
law conditioned to start at z.

We think of the collection of walkers (Sv)v∈∂TN as a pack of walkers that branch at
each time step. We call MN = maxv∈∂TN Sv(N) the leader of the walkers. With slight—
or, depending on your taste, great—exaggeration, we call mN = βcN − 3

2βc
logN . To

justifying this simplification, we remind the reader of the result from [2] that the family
of random variables (MN −mN )N≥0 is tight. In particular, ifMK = {|MN −mN | ≤ K},
there is a function ε1(K) with

lim
K→∞

ε1(K) = 0

such that
P (Mc

K) ≤ ε1(K).
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Of course this does not necessarily show that mN the true location of MN . The true
location will be an order 1 correction from this. Finally let λN = mN

N , and Λ(x) = x2

2 . In
the following we will drop the subscript N whenever possible for readability, and we say
f .a g if f ≤ C(a)g where C is a constant that depends at most on a.

This section is organized as follows. First we prove a basic estimate that will be
used through out the section. We then prove the main estimates required to prove
Proposition 1.4. We finally turn to the proof of Proposition 1.4. Before we start we make
a brief remark regarding the extension of these results to more general increments than
Gaussian.

Remark 2.1. The results of this section hold in more generality than we study here. For
the interested reader, note that in the following we use sub-Gaussian tails (we believe
that one can relax this, however computing the free energy in this setting becomes
delicate), that the increments are i.i.d. and have support on (−1/2, 1/2), and finite
moment generating function and rate functions, and that the tree is k-ary. In this setting,
mN = Nx+O(logN) where xuniquely solves Λ∗(x) = log k and x > EX, and λ uniquely
achieves the equality in Λ∗(x) + Λ(λ) = λx. For more on this see, e.g., [13]. To avoid
un-necessary notation and technicalities, we will stick to the Gaussian case where we
have the self-duality of the moment generating function, Λ = Λ∗.

2.1 Tilted barrier estimates

In the following, we will repeatedly use of a class of estimates called tilted-barrier
estimates. These estimates are used frequently in the study of Branching Random Walks
and Log-Correlated fields and were, to our knowledge, introduced by Bramson [14]. The
goal of these estimates is to bound probabilities of the form

P z (S(l) ≤ λl +K ∀l ∈ [T ];S(T ) ∈ λT + [a, b]) .

We think of the underlying event as follows: there is a random walker, S(l), which starts
at z, and two lines, λl and λl + K, which are barriers. Our goal is to compute the
probability that the walker stays below the farther barrier, λl +K, for the duration of its
walk but ends in a window near the nearer barrier, λl.

The idea of the estimate is to tilt the law of the walker, P z, to a new measure, Q−z,
so that under Q−z, the walk S̃(t) = λ · l − S(t) will be centered. The result will then
follow by an application of the ballot theorem applied to S̃. We will make this precise in
Proposition 1.4. Before proving this estimate, we first prove the relevant ballot theorem.

Lemma 2.2. (Ballot-type theorem) Let (S(t))nt=0 be given by S(t) = X0 +
∑t
i=1Xi be a

random walk with (Xi)
n
i=1 i.i.d. standard Gaussian and X0 is the starting position. For

any A,B ∈ Z with 0 ≤ A < A+ 1 ≤ B, and z ≥ 0, we have that

P z(S(t) ≥ 0, 0 < t < n;S(n) ∈ [A,B]) .
max{z, 1}B(B −A)

n3/2
.

Remark 2.3. This proof is a minor modification of the proof of [1, Theorem 1]. This
modification is explained, for example, in [13, Lemma 2.1] we include its proof for the
convenience of the reader.

Proof. Let τh = min {0 < k ≤ n : S(t) < −h} with the convention that if the condition
never happens, τh = n. Define the time reversed, reflected walk, Sr,{

Sr(t) = Sr(t− 1)−Xn−(t−1)

Sr(0) = 0
.

That is, Sr(t) = S(t)− S(n). Let τ rh be the same hitting time as before for the reversed
walk.
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Observe that if S(t) ≥ 0 for t ∈ [n] and S(n) ∈ [A,B], we must have that τ0 ≥ bn4 c,
τ rB ≥ bn4 c, and S(n) ∈ [A,B]. This is for the following reasons. The first condition
follows immediately from the positivity. The second condition follows from the fact that
if τ rB ≤ bn4 c <

n
2 , S(n) splits as

S(n) = S(n− τ rB)− Sr(τ rB) ≥ −Sr(τ rB) > B

by positivity of S which contradicts S(n) ≤ B. As a result, since {τ0 ≥ bn4 c}, {τ
r
L ≥ bn4 c},

and (Xi)
d 3n4 e
i=bn4 c+1are independent, it follows that

P z(S(t) ≥ 0, 0 < t < n;S(n) ∈ [A,B])

≤ P z
(
τ0 ≥ b

n

4
c, τ rB ≥ b

n

4
c, S(

3n

4
)− Sr(bn

4
c) ∈ [A,B]

)
≤ P 0(τz ≥ b

n

4
c)P 0(τB ≥ b

n

4
c) sup

x
P 0
(
S(
n

2
) ∈ x+ [A,B]

)
.

max{z, 1}
(n/4)1/2

max{B, 1}
(n/4)1/2

(B −A)√
n

.

The first inequality follows by set containment. The second inequality follows by a
conditioning argument. The second equality follows from independence, the fact that
Sr(t), t ∈ [n/4] does not depend on X0 = z, and symmetry. The last inequality follows
from [1, Lemma 3] and the fact that the last term is at most (B−A)/

√
n/2 by [1, Theorem

2] combined with a union bound.

We now turn to the proof of the Tilted Barrier Estimate.

Lemma 2.4. (Tilted Barrier Estimate) Let K, z ≥ 0, and let a and b be such that a+ 1 ≤
b ≤ K. Then we have

P z(S(l) ≤ λl +K ∀l ∈ [T ];S(T ) ∈ λT + [a, b]) .
eλ(z−a)

2−T
max{K + z, 1} · (K − a) · (b− a)

T 3/2
.

(2.1)

Proof. Define the measure Q−z by the tilting

dQ−z(S) = eλ(S(T )−z)−TΛ(λ)dP z(S).

Observe that under Q−z(S), the walk S̃ has no drift, i.e.,

EQ−z
(
S̃
)

= 0,

and starts at −z. Note that

P z (S(l) ≤ λl +K ∀l ∈ [T ];S(T ) ∈ λT + [a, b])

=EQ−z
(
e−λ(S(T )−z)+TΛ(λ)

1(S(l) ≤ λl +K ∀l ∈ [T ];S(T ) ∈ λT + [a, b])
)

≤ eλ(z−a)−λ22 TQK−z
(
S̃ ≥ 0∀l ∈ [T ]; S̃ ∈ K − [a, b]

)
.

By Lemma 2.2 and the choice of λ, we have that

P z(S(l) ≤ λ · l+K ∀l ∈ [T ];S(T ) ∈ λT + [a, b]) . 2−T eλ(z−a) max{K + z, 1}(K − a)(b− a)

T 3/2
.
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2.2 Applications of concentration and tilted barrier estimates

In this subsection, we prove three estimates regarding the probability of the Branch-
ing Random Walker having walkers that behave pathologically. Before we begin, we
remind the reader of the interpretation of HN in terms of the walkers Sv, and the inter-
pretation of mN as (essentially) the location of the leader MN = maxv∈∂TN Sv discussed
at the beginning of this section.

In our first estimate, we will show that there is a barrier beyond which it is unlikely
for any walker to cross. In order for this probability to go to zero, we will need that the
barrier drifts off to infinity logarithmically in N . This will follow from the Gaussian tails
of the increments. To make this precise, define the event

ΓNL = {∃v ∈ ∂TN : ∃l ∈ [N ] : Sv(l) ≥ λl +K} (2.2)

which is the event that there is a leaf v whose corresponding walker Sv crosses the
barrier LK at some time l ≤ N . We then have the following lemma.

Lemma 2.5. For every κ > 5
2(βc− 3

2e )
, for N sufficiently large and K ≥ κ logN ,

P (ΓNK) = oN (1).

Proof. By the union bound and the Gaussian tail inequality, we see that

P (ΓNL ) ≤
N∑
l=1

exp

[
l
β2
c

2
− 1

2l

(mN

N
l +K

)2
]
.

Now,

l
β2
c

2
− 1

2l

(mN

N
l +K

)2

≤ 3

2

logN

N
l − (βc −

3

2βc

logN

N
)K

so that

P (ΓNK) ≤ e−(βc− 3
2βc

logN
N )K

∑
N

3
2
l
N ≤ N−κ(βc−

3
2βc

logN
N )N

5
2 .

Thus provided

κ >
5

2
(
βc − 3

2
logN
N

)
this is oN (1). The result follows by optimizing 3

2
logN
N in N .

The next estimate we will need is a control on the probability that there is a walker
that enters the strip λl+ [0,K] on a time of order tN and ends near the leader at time N ,
i.e. near mN − x (recall the interpretation of mN as the location of the leader from the
beginning of this section). To this end, we define the event

ΞNε,K = {∃v ∈ ∂TN , T ∈ N [ε, 1− ε] : Sv(l) ≤ λl+K ∀l ∈ [N ], Sv(T ) ≥ λT, Sv(N) ≥ mN − x}
(2.3)

which is the event that there is a leaf, v, whose corresponding walker, Sv, enters the
window λl+[0,K] on the time scale of N [ε, 1− ε]. The probability of this event is bounded
as follows.

Lemma 2.6. For all x,K ∈ Z, x > 0,K ≥ 1, and ε ∈ (0, 1/2), we have that

P (Ξε,K) .ε
K4(x+K)2

N1/2
eλNx.
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Proof. By a union bound

P (Ξε,K) ≤ 2N
(1−ε)N∑
T≥εN

P (S(l) ≤ λl +K ∀t ∈ [N ], S(T ) ≥ λT, S(N) ≥ mN − x). (2.4)

The summand satisfies

P (S(l) ≤λl +K ∀t ∈ [N ], S(T ) ≥ λT, S(N) ≥ mN − x)

≤ P (S(l) ≤ λl +K ∀l ∈ [N ];S(T ) ∈ λT + [0,K], S(N) ∈ mN + [−x,K])

≤
K−1∑
i=0

P (S(l) ≤ λl +K, ∀l ∈ [T ];S(T ) ∈ λT + [i, i+ 1])

· max
z∈[i,i+1]

P (S(l) ≤ λl +K,∀l ∈ [T,N ];S(N) ∈ mN + [−x,K]|S(T ) = λT + z).

(2.5)

We now compute the multiplicands in the summand.
The first multiplicand can be controlled by the tilted barrier estimate (2.1) to get

P 0 (S(l) ≤ λl +K ∀l ∈ [T ];S(T ) ∈ λT + [i, i+ 1]) . 2−T e−λi
K · (K − i)

T 3/2
. (2.6)

To bound the second multiplicand, first let T ′ = N − T . Observe then that for all
z ∈ [0,K − 1], we have K − z ≥ 1, so that by the titled barrier estimate yields

P (S(l) ≤ λl +K ∀l ∈ [T,N ];S(N) ∈ mN + [−x,K]|S(T ) = λT + z)

= P z (S(l) ≤ λl +K ∀l ∈ [T ′];S(T ′) ∈ λT ′ + [−x,K])

. 2−T
′
eλ(x+z) (K − z)(x+K)2

(T ′)
3/2

(2.7)

Plugging (2.6)-(2.7) into (2.5) and plugging this into (2.4), yields the desired bound.

Our last estimate (once combined with the above two estimates) shows that it is
unlikely for there to be two walkers who branch on the genealogical time scale T –that is,
that here are two v, w ∈ ∂TN with |v ∧ w| = T –and both end only order 1 away from the
leader mN (recall again the interpretation of mN from the beginning of the section). We
make this precise in the following lemma and corollary.

First we fix a pair v, w ∈ ∂TN with |v ∧ w| = T and bound the probability of this
pathological event. To this end, define for such a pair v, w the event

ENε (T,K, v, w) = {Sv(l), Sw(l) ≤ λl +K ∀l ∈ [N ];Sv(l), Sw(l) ≤ λl ∀l ∈ N [ε, (1− ε)];
Sv(N), Sw(N) ∈ mN + [−x,K]} . (2.8)

This is the event that the walkers corresponding to v and w stay below the barrier λl+K

for all time, stay below the barrier λl on the time scale tN , and end in the window
[mN − x,mN +K]. We control the probability of this event as follows

Lemma 2.7. Let v, w ∈ ∂TN be such that R(v, w) = t, T = Nt, T ′ = N −T , and t′ = 1− t.
Let K ≥ 1x > 0. Then

P (ENε (T,K)) . 2−(N+T ′) e2λNx

N
3
2 (1+t)t3/2(1− t)3

(x+K)4K4

Proof. Observe that

P (ENε (T,K, v, w))
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≤
∞∑
j=0

P (S(l) ≤ λl +K ∀l ∈ [T ];SN (T ) ∈ λl + [−j − 1,−j])

· max
z∈[−j−1,−j]

P (S(l) ≤ λl +K ∀l ∈ [T,N ];S(N) ∈ mN + [−x,K]|S(T ) = λT + z)2

We bound the two multiplicands by application of the tilted barrier estimate. Observe
that the first multiplicand satisfies

P (S(l) ≤ λl +K ∀l ∈ [T ]; SN (T ) ∈ λl + [−j − 1,−j]) . 2−T eλ·j
K(K + j + 1)

T 3/2

and that the second satisfies

P (S(l) ≤ λl +K ∀T ∈ [T,N ];S(N) ∈ mN + [−x,K]|Sv(T ′) = λT + z)

. 2−T
′
eλN (x+z) max{K + |z|, 1}(x+K)2

T ′3/2
.

Here we used that K−z ≥ 0 (for us z ≤ 0). Combining the results then yields the desired
estimate, namely

P (ENε (T,K, v, w)) . 2−(N+T ′) e2λx

N
3
2 (1+t)t3/2(1− t)3

(x+K)4K4.

By an application of the union bound, we see that the previous estimate implies that
it is rare for there to be any pairs of leaves |v ∧ w| = T that have this behavior.

Corollary 2.8. Let vT , wT ∈ ∂TN be a pair satisfying |v ∧ w| = T . Under the conditions
of Lemma 2.7, we have that for ε ∈ (0, 1

2 )

(1−ε)N∑
T≥εN

2N+T ′P (Eε(T,K, vT , wT )) .ε
e2λx

N
1
2 + 3

2 ε
(x+K)4K4.

2.3 Proof of Proposition 1.4

The proof of Proposition 1.4 will now follow immediately from an application of the
following two estimates. The first estimate says that below the critical temperature, the
Gibbs measure gives no mass to points that more than a large, but order 1, distance
from the leader. This follows more or less immediately from the sub-gaussian tails of the
increments and the tightness of the (centered) leader, MN −mN .

Lemma 2.9. Let β > βc. Then for each x,

lim
x→∞

lim sup
N→∞

EGN (H ≤ mN − x) = 0.

Proof. Before we begin, we make the following useful definitions. For readability, we
suppress dependence on N whenever it is unambiguous. Let

V Ny = {v ∈ ∂TN : HN (v) ∈ mN − [y, y + 1]}

and NN
y = card(V Ny ). Choose α = α(β) such that β > βc(1 + α). Let un = un(α) =

(1 + α)−1N1/22−1/2.
Now, recall from [18, Prop. 3.3] that for all y ≥ 0,

ENN
y . Ne−βcy−

y2

2N

and there is a universal constant c1 such that for all y, u with 0 ≤ u+ y ≤
√
N, u ≥ −y,

P (NN
y ≥ eβc(y+u)) . e−βcu+C log+(y+u).
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Let x0 = x0(α, β) be such that for all y ≥ x0, c1 log((1 + α)y) ≤ βα
2 y. Then for all

y ∈ [x, uN ],

P (NN
y ≥ eβc(1+α)y) . e−

βcα
2 y.

This implies that

EGN (HN ≤ mN − x) ≤ ε1(K) + EGN (HN ≤ mN − x)1TK .

Let
BαN (x) =

{
∃y ∈ [x, uN ] ∩N : NN

y ≥ eβc(1+α)y
}
.

Note that on the eventMK , we have Z ≥ eβmN−βK from which it follows that

EGN (HN (v) ≤ mN − x)1TK ≤ P (BαN (x)) + E

∞∑
y=x

∑
H∈V Ny

eβH

Z
1TK1BαN (x)c

.
uN∑
y=x

e−
βcα
2 y + eβK

(
uN∑
y=x

e−(β−βc(1+α))y +

∞∑
uN

Ne−(β−βc)y

)
.α,β e

−c(α)x + eβK
(
e−c

′(α)x +Ne−c
′′(β)uN

)
.

Putting these together yields

lim sup
N→∞

EGN (H ≤ mN − x) .α,β ε1(K) + e−c(α)x + eβK−c
′(α)x.

Since K was arbitrary, we may take K = c′(α)x
2β , and the result follows.

We now show that it is unlikely to have two points that are both order 1 away from
the leader, but overlap strictly in (0, 1). The idea of this estimate is that for this to happen
there must be two walkers, Sv1 and Sv2 , whose branching time is of order N and both
land order 1 away from the leader. This event is rare by the above.

Lemma 2.10. Let β > βc. For all x and all A ( (0, 1), we have that

lim supEG⊗2(R12 ∈ A;H(v1), H(v2) ≥ mN − x) = 0.

Proof. Recall the events ΓL, ΞNL,ε, and ENε (T, L, vT , wT ) from (2.2)(2.3),and(2.8) respec-
tively where vT , wT are as per Corollary 2.8. Observe that

EG⊗2
N (R12 ∈ A; HN (v1), HN (v2) ≥ mN − x)

≤ P (ΓNL ) + P (ΞNL,ε) + EG⊗2
N (R12 ∈ A;HN (v1), HN (v2) ≥ mN − x)1(ΓNL )

c
,(ΞNL,ε)

c

≤ P (ΓNL ) + P (ΞNL,ε) + E
∑

R12∈(ε,1−ε)

1HN (v1),HN (v2)∈mN+[−x,K]1(ΓNL )
c
,(ΞNL,ε)

c

≤ P (ΓNL ) + P (ΞNL,ε) +

(1−ε)N∑
T≥εN

2N+TP (ENε (T, L, vT , wT ))

.ε P (ΓNL ) +
L4(x+ L)

N1/2
eλNx +

e2λNx

N
1
2 + 3

2 ε
(x+ L)4L4

where the last inequality follows by Lemma 2.6 and Corollary 2.8. Choosing L = c logN

for c large enough, and sending N → ∞ then yields the result after applying Lemma
2.6.

We now prove Proposition 1.4.
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Proof of Proposition 1.4. By [15], it suffices to take β > βc. Note that it suffices to show
that µN (ε, 1− ε)→ 0. Let A = (ε, 1− ε). Observe that

µN (A) = EG⊗2
N (R12 ∈ A;H(v1) ∧H(v2) ≤ mN − x)

+ EG⊗2
N (R12 ∈ A;H(v1), H(v2) ≥ mN − x)

≤ 2EGN (HN ≤ mN − x) + EG⊗2
N (R12 ∈ A;H(v1), H(v2) ≥ mN − x) .

The result then follows from Lemma 2.9 and Lemma 2.10 by taking N → ∞ and then
x→∞.

3 The Derrida-Spohn conjecture and the Ghirlanda-Guerra iden-
tities

In this section we prove the Derrida-Spohn conjecture and show that the Branching
Random Walk satisfies the Ghirlanda-Guerra Identities.

3.1 Derrida-Spohn conjecture

The proof of the Derrida-Spohn conjecture will follow immediately after the following
technical preliminaries. Recall first the following result of Chauvin and Rouault.

Proposition 3.1. (Chauvin-Rouault [15]) The free energy satisfies

F (β) = lim
1

N
E logZN =

{
log 2 + β2/2 β < βc

βcβ β ≥ βc
. (3.1)

Recall the following integration-by-parts. Let Σ denote an at most countable set;
(x(σ))σ∈Σ and (y(σ))σ∈Σ be centered Gaussian processes with uniformly bounded vari-
ances and mutual covariance C(σ1, σ2) = Ex(σ1)y(σ2) ; G′ be a finite measure on Σ;
Z =

∑
ey(σ); and G(σ) = ey(σ)G′(σ)/Z.

Lemma 3.2. [24, Lemma 2](Gibbs-Gaussian Integration-by-parts). We have the identity

E 〈x(σ)〉G = E
〈
C(σ1, σ1)− C(σ1, σ2)

〉
G⊗2 .

Furthermore, for any bounded measurable f on Σn,

E
〈
f(σ1, . . . , σn)x(σ1)

〉
G⊗n

= E

〈
f(σ1, . . . , σn)

(
n∑
k=1

C(σ1, σk)− nC(σ1, σn+1)

)〉
G⊗n+1

.

As a consequence we have the following

Corollary 3.3. We have

F ′(β) = β

∫
(1− x)dµ

where µ is a limit point of the mean overlap measure.

Proof. Notice that Lemma 3.2 gives

F ′N (β) =
1

N
E 〈HN 〉 = β

1

N
E 〈NR11 −NR12〉 = βE 〈1−R12〉 = β

∫
(1− x)dµN,β .

Where µN,β is as per (1.1). Since FN and F are convex and C1, and FN → F point-wise
on R+, we have that F ′N → F ′. This gives us the lefthand side of the desired equality.
Furthermore, since f(x) = 1 − x is in C ([0, 1]), and the sequence µN,β ∈ Pr ([0, 1]) is
necessarily tight, weak convergence applied to the last term yields the righthand side of
the desired equality.
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Finally we observe that the limiting overlap distribution has suppµ ⊂ {0, 1}. We now
turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. By Corollary 3.3 and Proposition 1.4, we know that for any such
weak limit, we get

F ′(β) = β

∫
(1− x)dµ = βm.

Differentiating (3.1), equating, and solving for m, we get

m =

{
1 β ≤ βc
βc
β β ≥ βc

.

3.2 Ghirlanda-Guerra identities

We now turn to the proof of the Ghirlanda-Guerra Identities for these models. We
need the following preliminary lemmas. Observe that a standard application of Gaussian
concentration yields the following.

Lemma 3.4. The free energy concentrates about its mean:

P(|FN − EFN | > ε) ≤ 2e
Nε2

2β2

As a consequence of this, we find the Gibbs measure concentrates around a fixed
energy level to order N .

Lemma 3.5. The intensive energy concentrates. In particular,

lim
N→∞

1

N
E 〈|HN − E 〈HN 〉|〉β = 0

for each β.

Proof. The result then follows from Lemma 3.4 after a modification of the proof of [24,
Theorem 3.8].

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Observe first that for β ≤ βc, µ = δ0 by Theorem 1.1 so that the
identities are trivial in this setting. It suffices to study β > βc. Furthermore, the limiting
overlap distribution is supported on {0, 1} by Proposition 1.4, so it suffices to show the
Approximate Ghirlanda-Guerra Identities for p = 1, since Rp12 = R12 when R12 ∈ {0, 1}.
The result then follows by a standard integration-by-parts argument.

Notice that if we apply Lemma 3.2 with ΣN = ∂TN , x(σ) = HN (σ), y(σ) = βHN (σ),
and C(σ1, σ2) = βNR12 it follows that

1

N
E
〈
f(Rn)HN (σ1)

〉
= βE

〈
f(Rn)

(
n∑
k=1

R1k − nR1,n+1

)〉

and
1

βN
E
〈
HN (σ1)

〉
= E 〈1−R12〉 .

As a result,

1

βN
E
〈
f(Rn)

(
HN (σ1)− E 〈HN (σ)〉)〉

=
1

βN

(
E
〈
f(Rn)HN (σ1)

〉
− E 〈f(Rn)〉E 〈HN (σ)〉

)
EJP 21 (2016), paper 50.
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=

(
E 〈f(Rn)〉+

n∑
k=2

E 〈f(Rn)R1k〉 − nE 〈f(Rn)R1,n+1〉

)
− (E 〈f(Rn)〉 − E 〈f(Rn)〉E 〈R12〉)

= E 〈f(Rn)〉E 〈R12〉+

n∑
k=2

E 〈f(Rn)R1k〉 − nE 〈f(Rn)R1,n+1〉 .

This implies that

|E 〈f(Rn) ·R1,n+1〉 −
1

n

(
E 〈f(Rn)〉E 〈R12〉+

n∑
k=2

E 〈f(Rn) ·R1k〉

)
|

=
1

βnN
|E 〈f(Rn) (HN − E 〈HN 〉)〉|

≤ ||f ||L∞([0,1]n2 )

1

βnN
E 〈|HN − E 〈HN 〉|〉 → 0

by Lemma 3.5.

The Approximate Ghirlanda-Guerra identities have many deep consequences. We
highlight one simple consequence regarding the limit of the overlap array distribution in
these systems. Let QβN be the overlap array distribution corresponding to GβN . As {QN}
is a sequence of measures on the compact polish space [0, 1]N

2

, it is tight. Let Qβ be any
limit point of this sequence. We will show that it is the unique limit point and is given by
what is called a 1RSB Ruelle Probability Cascade which we define presently.

To this end, define RPC(ζ) for ζ = θδ0 +(1−θ)δ1 with θ ∈ (0, 1] as follows. If θ ∈ (0, 1),
let {en} be the standard basis for `2, let (wn) be the ranked points of a Poisson-Dirichlet,
PD(θ, 0) process [26], and let

G =
∑

wnδen .

If θ = 1, let G = δ0. Then RPC(ζ) is the overlap array distribution induced by G. One
important result to note is that RPC(ζ) satisfies the Ghirlanda-Guerra identities [24,
Section 2]. This is a consequence of a standard invariance property of the Poisson-
Dirichlet process/Poisson point processes of Gumbel type.

What we will show now is that as a consequence of Theorem 1.2, we will have that
Q = RPC(µβ). This an immediate consequence of the characterization-by-invariance
theory used in spin glasses [24, 28, Section 15.13]. In this setting, the proof is fairly
elementary and does not require the full machinery of this theory. Furthermore, it
illustrates some essential ideas for this method. For these reasons, and to make this
presentation self-contained, we include the proof.

Corollary 3.6. We have the limit QβN
(d)→ Qβ where Qβ is the overlap distribution corre-

sponding to RPC(µβ) where µβ is as in (1.2).

Proof. (For readability, we drop the dependence on β and denote RPC(ζ) by Q̃.) It
suffices to check that

Q(Rn = A) = Q̃(Rn = A)

for every n×n Gram matrix, A, with entries in {0, 1}. This is done by a direct computation,
which reduces both sides to the same polynomial in µ(R12 = 1). Before, we begin the
computation, observe that Q satisfies:

• Weak Exchangeability: for every π : N→ N a permutation of finitely many indices

Q((Rij)i,j≥1 ∈ A) = Q((Rπ(i)π(j))i,j≥1 ∈ A),
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• Ultrametricity:
Q(R12 ≥ min{R13, R23}) = 1,

• The Ghirlanda-Guerra identities: for every f and ψ bounded measurable, we have∫
f(Rn)ψ(R1,n+1)dQ =

1

n

[∫
fdQ ·

∫
ψdµβ +

n∑
k=2

∫
f(Rn)ψ(R1,k)dQ

]
,

• The diagonal is almost surely 1: Q(R11 = 0) = 0.

The probability Q(Rn = A) is computed by recursively applying the following cases:

Case 1. n = 2.

The Q-probability of this event is either µβ(R12 = 1) or µβ(R12 = 0).

Case 2. n ≥ 3 and A is not the identity.

By weak exchangeability, we can assume that A is block-diagonal, and that
the blocks are arranged in decreasing size. Take the first block and suppose
that it is of length m ≥ 2. Let Rn(m) denote the n − 1 × n − 1 matrix
obtained by deleting the m−th row and column of Rn and similarly for A(m).
By ultrametricity and the Ghirlanda-Guerra Identities combined with weak
exchangeability, it follows that

Q(Rn = A) = Q(Rn(m) = A(m), R1m = 1)

=
1

n
Q(Rn−1 = A(m)) [µ(R12 = 1) +m− 1]

It thus suffices to compute Q(Rn−1 = A(m)).

Case 3. n ≥ 3 and A = Id.

By ultrametricity, it follows that

Q(Rn = Id) = Q(Rn−1 = Id,R1,n = 0)−
n−1∑
k=2

Q(Rn−1 = Id,Rk,n = 1)

To see why, note that if Rn−1 = Id and Rk,n = 1 for some k 6= n, then the
remaining must all be zero. By the Ghirlanda-Guerra identities, the first
event is

Q(Rn−1 = Id,R1,n = 0) = Q(Rn−1 = Id)

[
1− 1

n− 1
Q(R12 = 1)

]
.

The first term is then computed by Case 3. The second event is computed by
Case 2.

By applying repeatedly these cases, the probability of any such event is reduced to
a polynomial in µ(R12 = 1). Evidently, the same argument applied to Q̃ yields same
polynomials, and thus the desired result.

We now make the following remarks regarding how this can be understood to imply
certain modes of convergence for the Gibbs measures.

Remark 3.7. Observe that by the uniqueness portion of the Dovbysh-Sudakov theorem
[23], this shows that the Gibbs measure GN sampling converges to G as above in the
sense of Austin [7].
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Remark 3.8. We also observe that for β > βc we can recover a result like that from
[8] mentioned in the introduction. In particular, if we partition ∂TN in to groups of
leaves with overlap at least 1 − ε, call them (Bεi ), then the ranked weights (GN,β(Bεi ))

converge in law to the ranked weights of PD(βcβ , 0). This follows from an approximation
argument combined with Talagrand’s identities (see, e.g., [20, Theorem 6.3.5] or [28,
Section 15.4]).
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